Gaussian Measure of a Small Ball and Capacity in Wiener Space

Davar Khoshnevisan^{a*} and Zhan Shi^b

^aDepartment of Mathematics, University of Utah Salt lake City, UT. 84112, USA. Email: davar@math.utah.edu

^bL.S.T.A., Université Paris VI 4, Place Jussieu, 75252 Paris Cedex 05, France Email: shi@ccr.jussieu.fr

Summary. We give asymptotic bounds for the Gaussian measure of a small ball in terms of the hitting probabilities of a suitably chosen infinite dimensional Brownian motion. Our estimates refine earlier works of Erickson [6].

Keywords. Small ball probability, capacity, Wiener space

1991 AMS Subject Classification. Primary. 60G15; Secondary. 60J45.

In honor of Professor M. Csörgő on occasion of his 65th birthday

1. INTRODUCTION

Let $(\mathcal{B}, \|\cdot\|, \mu)$ denote a Gauss space in that $(\mathcal{B}, \|\cdot\|)$ is a Banach space which carries a centered, Gaussian measure μ living on the Borel σ -field of \mathcal{B} .

An old problem, which has received much recent attention, is to describe the rate at which the μ -measure of a small balanced ball (in \mathcal{B}) goes to zero, as the radius of the ball decreases to zero. To make this precise, suppose p is a continuous semi-norm on \mathcal{B} . That is, $p: \mathcal{B} \mapsto \mathbb{R}$ such that

- (i) For all $x, y \in \mathcal{B}$, $p(x+y) \leq p(x) + p(y)$;
- (ii) for all $\alpha \in \mathbb{R}$ and all $x \in \mathcal{B}$, $p(\alpha x) = |\alpha|p(x)$;
- (iii) whenever $x \to y$ in \mathcal{B} , $p(x-y) \to 0$.

In particular, note that $x\mapsto p(x)$ is a (nonnegative) continuous map from $\mathcal B$ into $\mathbb R_+$.

The so–called *small ball problem* for μ consists of finding a good approximation to the following:

$$\mu_p(r) \triangleq \mu(\omega \in \mathcal{B} : p(\omega) \leqslant r),$$
 (1.1)

^{*} Research supported by grants from the National Science Foundation and the National Security Agency

as $r \to 0^+$. A major breakthrough is the recent work of Kuelbs and Li [11] relating μ_p to a combinatorial problem on the reproducing kernel Hilbert space corresponding to μ . The latter route typically leads one to long-standing open problems in functional analysis; cf. [11] for details.

Throughout this paper, we only deal with the case when p is transient. Rather than developing a theory for this, we define transience via the following technical assumption which will prevail throughout the rest of the paper:

Assumption 1.1. We assume the following two conditions:

(a) p is transient in the sense that for some $\kappa > 2$,

$$\limsup_{r \to 0^+} r^{-\kappa} \mu_p(r) < \infty; \text{ and }$$

(b) p is nondegenerate in the sense that $1 > \mu_p(1) > 0$.

Remark 1.1.1.

- (a) Suppose dim(\mathcal{B}) = $d < \infty$. In other words, \mathcal{B} is finite dimensional with (topological) dimension d. It is easy to see that as $r \to 0^+$, $\mu_p(r) \sim Cr^d$ for some C > 0. Therefore, Assumption 1.1(a) says that d > 2 in this case. This corresponds to the well–known condition of transience in the classical sense.
- (b) When p has rank ≥ 3 , p is transient; see [6] for details.
- (c) If p is nondegenerate, there exists c > 0, such that $1 > \mu_p(c) > 0$. By considering the semi-norm $c^{-1}p$ instead, we see that Assumption 1.1(b) is not an essential restriction.

Motivated by the work of Erickson [6], this paper proposes a different approximation of μ_p . To begin, recall that the triple $(\mathcal{B}, \|\cdot\|, \mu)$ corresponds to a Wiener space C. To define it, let $C(\mathcal{B})$ denote the space of all continuous functions $\omega : [0,1] \mapsto \mathcal{B}$ with $\omega(0) = 0$, endowed with the compact open topology. Let \mathcal{C} denote the associated Borel field. For all $\omega \in C(\mathcal{B})$, let $B_t(\omega) = \omega(t)$. It is a well known fact that there exists a probability measure \mathbb{P} on the measure space $(C(\mathcal{B}), \mathcal{C})$ which renders the process B a μ -Brownian motion; cf. Gross [8] or Üstünel [13] for a modern treatment as well as some of the new developments in this area. In particular, we mention the following important properties:

- (i) with \mathbb{P} -probability one, $t \mapsto B_t$ is continuous;
- (ii) B has independent and stationary increments (under \mathbb{P});
- (iii) for all $x \in \mathcal{B}^*$, the random variable $\langle x, B_t \rangle$ has a one-dimensional Gaussian distribution with mean 0 and variance $t \int_{\mathcal{B}} ||x||^2 \mu(dx)$ (under \mathbb{P});
- (iv) B is a \mathcal{B} -valued diffusion.
- (v) $B_0 = 0$, \mathbb{P} -almost surely.

We will denote by \mathbb{E} the expectation operator corresponding to the underlying (Gaussian) probability measure \mathbb{P} .

It will be convenient to write our results in terms of the μ -Ornstein-Uhlenbeck process O given by

$$O_t \triangleq e^{-t/2} B_{e^t}, \qquad t \geqslant 0. \tag{1.2}$$

We note in passing the elementary fact that O is a \mathcal{B} -valued stationary diffusion whose stationary measure is μ .

For any $\varkappa > 1$, define,

$$\lambda_p(r;\varkappa) \triangleq \sup \left\{ a > 0 : \mu_p(a) \leqslant \varkappa \mu_p(r) \right\}, \qquad r > 0. \tag{1.3}$$

In the finite-dimensional case, it is possible to show that for any $\varkappa > 0$, as $r \to 0^+$, $\lambda_p(r;\varkappa) \sim \varkappa^{1/d}r$, where $d \geqslant 3$ is the dimension of \mathcal{B} . In this connection, see also Remark 1.1.1(a).

The promised correspondence between μ_p and the process O can then be described in terms of λ_p as follows:

Theorem 1.2. Suppose $p: \mathcal{B} \mapsto \mathbb{R}$ is a nondegenerate, transient semi-norm on \mathcal{B} . Then, for all T > 0, and all $\varkappa > 1$, there exists a constant $c \in (1, \infty)$ such that for all $r \in (0, 1/c)$,

$$\frac{\mu_p(r)}{c \ r^2} \leqslant \mathbb{P}\Big(\inf_{0 \leqslant t \leqslant T} p(O_t) \leqslant r\Big) \leqslant \frac{c \ \mu_p(r)}{\left(\lambda_p(r;\varkappa) - r\right)^2}.$$

In fact, the proof of Theorem 1.2 can be used, with little change, to show the following:

Corollary 1.3. Suppose $p: \mathcal{B} \to \mathbb{R}$ is a nondegenerate, transient semi-norm on \mathcal{B} . Then, for all $\lambda > 0$ and all $\varkappa > 1$, there exists a constant $c \in (1, \infty)$ such that for all $r \in (0, 1/c)$,

$$\frac{\mu_p(r)}{c \ r^2} \leqslant \int_0^\infty e^{-\lambda T} \mathbb{P}\Big(\inf_{0 \leqslant t \leqslant T} p(O_t) \leqslant r\Big) dT \leqslant \frac{c \ \mu_p(r)}{\left(\lambda_p(r;\varkappa) - r\right)^2}.$$

Remark.

(a) The quantity,

$$\int_0^\infty e^{-\lambda T} \mathbb{P}\big(\inf_{0 \leqslant t \leqslant T} p(O_t) \leqslant r\big) dT,$$

is the λ -capacity of the "ball" $\{\omega \in \mathcal{B} : p(\omega) \leq r\}$; cf. Üstünel [13] and Fukushima et al. [7] for details. It turns out that under very general conditions, $\lambda_p(r;\varkappa) - r$ has polynomial decay rate; cf. Remark 1.1.1(a) above. Thus, Theorem 1.2 and its variants provide exact (and essentially equivalent) asymptotics between the λ -capacity of a small ball and the small ball probability μ_p given by (1.1).

(b) In infinite dimensions – which is what is of interest here – the methods of Erickson [6] provide an upper bound of $\mu_p((1+\varepsilon)r)$ for any $\varepsilon > 0$. In such cases, μ_p decays exponentially fast. Therefore, Theorem 1.2 is an essential improvement.

A refinement of Theorem 1.2 is proved in Section 2. Section 3 contains an explicit application. The methods of the latter section can be combined with those of [6] to provide a host of other examples.

2. THE MAIN ESTIMATE

In this section, we provide bounds for the probability that O hits a small ball in terms of the small ball probability μ_p defined by (1.1). The main result of this section is the following probability estimate:

Theorem 2.1. Suppose p is a continuous, nondegenerate, transient semi-norm on \mathcal{B} in the sense of Assumption 1.1. Suppose further that $g: \mathbb{R}_+ \mapsto \mathbb{R}_+$ is a bounded measurable function satisfying: for some $\varkappa > 1$,

$$I_g \triangleq \liminf_{r \to 0^+} \frac{g(r)}{\left(\lambda_p(r; \varkappa) - r\right)^2} > 0.$$

Then, there exists a constant $c \in (1, \infty)$ which depends only on \varkappa , $\sup_x g(x)$ and I_g , such that for all $r \in (0, 1/c)$,

$$\frac{\mu_p(r)g(r)}{c \ r^2} \leqslant \mathbb{P}\Big(\inf_{0 \leqslant t \leqslant g(r)} p(O_t) \leqslant r\Big) \leqslant \frac{c \ \mu_p(r)g(r)}{\left(\lambda_p(r;\varkappa) - r\right)^2}.$$

Remark 2.1.1.

- (a) The special case when $q(r) \equiv T$ immediately yields Theorem 1.2.
- (b) Suppose $g \equiv T$ and $\dim(\mathfrak{B}) = d < \infty$. This is the finite dimensional version of Theorem 2.1 and is well known. Namely, that in d > 2 dimensions, there exists a constant $c \in (1, \infty)$ such that for all r small enough,

$$c^{-1}r^{d-2} \leqslant \mathbb{P}\left(\inf_{0 \leqslant t \leqslant T} p(O_t) \leqslant r\right) \leqslant cr^{d-2}.$$

(Recall Remark 1.1.1(a) regarding transience in finite dimensions as well as the estimates for λ_p .)

- (c) The lower bound in Theorem 2.1 holds as long as g is bounded and measurable. More precisely, the condition that $I_g > 0$ is only needed for the upper bound.
- (d) According to Weber [14] (cf. also Albin [1] and Khoshnevisan and Shi [9]), there is a connection between the modulus of continuity of a Gaussian process and its

hitting probabilities. In our setting, the Gaussian process is infinite dimensional. In some infinite dimensional cases, such moduli of continuity are found; cf. Csáki and Csörgő [3] and Csáki et al. [4]. While it seems somewhat unlikely, one cannot help but ask if there is a connection between our results and such moduli of continuity in infinite dimensions.

The rest of this section is devoted to the proof of Theorem 2.1.

Lemma 2.2. Define,

$$W_t \triangleq \frac{O_t - e^{-t/2}O_0}{\sqrt{1 - e^{-t}}}. (2.1)$$

 \Diamond

For any fixed $t \ge 0$, W_t as an element of \mathcal{B} is an independent copy of O_0 , satisfying,

$$O_t = \sqrt{1 - e^{-t}} W_t + e^{-t/2} O_0.$$

Proof. By (1.2), $W_t = e^{-t/2}(B_{e^t} - B_1)$ which is independent of $O_0 = B_1$. To verify that W_t is distributed as O_0 , it suffices to show that for all $x \in \mathcal{B}^*$,

$$\langle x, O_t \rangle - e^{-t/2} \langle x, O_0 \rangle \stackrel{(d)}{=} \sqrt{1 - e^{-t}} \langle x, O_0 \rangle.$$

This is a finite dimensional result which can be readily verified by checking means and covariances.

Lemma 2.3. Suppose r > 0 and $t \ge 0$ are fixed and p satisfies Assumption 1.1. Then uniformly over all $f \in \mathcal{B}$ with $p(f) \le r$,

$$\mathbb{P}(p(O_t) \leqslant r \mid O_0 = f) \leqslant \mu_p \left(\sqrt{\frac{1 + e^{-t/2}}{1 - e^{-t/2}}} r \right).$$

Proof. Let W_t be as in (2.1). By properties of p,

$$\sqrt{1 - e^{-t}} p(W_t) \leqslant p(O_t) + e^{-t/2} p(O_0).$$

Therefore, conditional on $\{p(O_0) \leq r\}$, $\{p(O_t) \leq r\}$ implies $\{p(W_t) \leq cr\}$, where

$$c \triangleq \sqrt{\frac{1 + e^{-t/2}}{1 - e^{-t/2}}}.$$

Since by Lemma 2.2 $p(W_t) \stackrel{(d)}{=} p(O_0)$, the result follows.

Lemma 2.4. Suppose p is a continuous semi-norm on \mathcal{B} for which Assumption 1.1 is verified. Then for any T > 0,

$$\limsup_{r \to 0^+} r^{-2} \int_0^T \mu_p \left(\sqrt{\frac{1 + e^{-t/2}}{1 - e^{-t/2}}} \ r \right) dt < \infty.$$

Proof. Note that for all 0 < r < 1,

$$\sqrt{\frac{1+e^{-t/2}}{1-e^{-t/2}}}\ r\leqslant 1, \quad \text{ if and only if } \quad t\geqslant 2\ln\Big(\frac{1+r^2}{1-r^2}\Big).$$

Therefore, for all r > 0 small,

$$\int_0^T \mu_p \left(\sqrt{\frac{1 + e^{-t/2}}{1 - e^{-t/2}}} \ r \right) dt \leqslant 2 \ln \left(\frac{1 + r^2}{1 - r^2} \right) + \int_{2 \ln \left((1 + r^2)/(1 - r^2) \right)}^T \mu_p \left(\sqrt{\frac{1 + e^{-t/2}}{1 - e^{-t/2}}} \ r \right) dt.$$

As $r \to 0^+$, the first term behaves like $4r^2$. On the other hand, for $t \leqslant T$,

$$\sqrt{\frac{1+e^{-t/2}}{1-e^{-t/2}}} \leqslant \frac{c_1}{\sqrt{t}},$$

for some constant c_1 . By Assumption 1.1(a), there exist c_2 , c_3 , $c_4 > 0$, such that for all r > 0 small, the second term is bounded above by

$$c_2 \int_{c_3 r^2}^T \left(\frac{r}{\sqrt{t}}\right)^{\kappa} dt \leqslant c_4 r^2.$$

This concludes the proof.

Lemma 2.4 is sharp. Indeed, using Assumption 1.1(b) instead of 1.1(a) in the proof of Lemma 2.4, we immediately arrive at the following:

Lemma 2.5. Under the conditions of Lemma 2.4, for all T > 0,

$$\liminf_{r \to 0^+} r^{-2} \int_0^T \mu_p \left(\sqrt{\frac{1 + e^{-t/2}}{1 - e^{-t/2}}} \ r \right) dt > 0.$$

We are ready to prove Theorem 2.1.

Proof of Theorem 2.1. Fix $\varkappa > 1$ as given. The conditions on g imply the existence of a constant $c \in (1, \infty)$, such that for all $r \in (0, 1)$,

$$c^{-1} \left(\lambda_p(r; \varkappa) - r \right)^2 \leqslant g(r) \leqslant c. \tag{2.2}$$

 \Diamond

For all $r \ge 0$, define,

$$\tau(r) \triangleq \inf \{ s > 0 : \ p(O_s) \leqslant r \}. \tag{2.3}$$

Since p is continuous, $p^{-1}([0,r])$ is closed. Therefore, $\tau(r)$ is a stopping time for the diffusion O. By (2.2) and the stationarity of O, for all $r \in (0,1)$,

$$g(r)\mu_{p}(r) = \mathbb{E}\left[\int_{0}^{g(r)} \mathbb{1}\{p(O_{t}) \leqslant r\}dt\right]$$

$$= \mathbb{E}\left[\int_{0}^{g(r)} \mathbb{1}\{p(O_{t}) \leqslant r\}dt \, \mathbb{1}\{0 \leqslant \tau(r) < g(r)\}\right]$$

$$\leqslant \mathbb{E}\left[\int_{0}^{c} \mathbb{1}\{p(O_{t}) \leqslant r\}dt \, \mathbb{1}\{0 \leqslant \tau(r) < g(r)\}\right], \tag{2.4}$$

where $\mathbb{1}\{\cdots\}$ is the indicator of whatever appears in the brackets. By Lemma 2.3,

$$\mathbb{P}(p(O_t) \leqslant r, \tau(r) = 0) = \mathbb{P}(p(O_t) \leqslant r \mid p(O_0) \leqslant r) \mathbb{P}(\tau(r) = 0)$$
$$\leqslant \mu_p \left(\sqrt{\frac{1 + e^{-t/2}}{1 - e^{-t/2}}} \ r \right) \mathbb{P}(\tau(r) = 0).$$

Therefore,

$$\mathbb{E}\left[\int_{0}^{c} \mathbb{1}\left\{p(O_{t}) \leqslant r\right\} dt \, \mathbb{1}\left\{\tau(r) = 0\right\}\right] \leqslant \mathbb{P}\left(\tau(r) = 0\right) \int_{0}^{c} \mu_{p}\left(\sqrt{\frac{1 + e^{-t/2}}{1 - e^{-t/2}}} \, r\right) dt. \quad (2.5)$$

On the other hand, applying the strong Markov property at time $\tau(r)$, we arrive at the following:

$$\begin{split} \mathbb{E}\bigg[\int_0^c \mathbbm{1}\big\{p(O_t)\leqslant r\big\}dt \ \mathbbm{1}\big\{0<\tau(r)< g(r)\big\}\bigg] \\ &= \mathbb{E}\bigg[\mathbbm{1}\big\{0<\tau(r)< g(r)\big\}\int_0^{c-\tau(r)} \mathbbm{1}\big\{p(O_t)\leqslant r\big\}dt \circ \theta\big(\tau(r)\big)\bigg] \\ &\leqslant \mathbb{P}\big(0<\tau(r)< g(r)\big) \sup_f \mathbb{E}\bigg[\int_0^c \mathbbm{1}\big\{p(O_t)\leqslant r\big\}dt \ \bigg| \ O_0=f\bigg], \end{split}$$

where θ is the shift functional on the paths of the diffusion O and the supremum is over all $f \in \mathcal{B}$ with $p(f) \leq r$. By Lemma 2.3,

$$\mathbb{E} \left[\int_0^c \mathbb{1} \{ p(O_t) \leqslant r \} dt \, \mathbb{1} \{ 0 < \tau(r) < g(r) \} \right]$$

$$\leqslant \mathbb{P} \left(0 < \tau(r) < g(r) \right) \cdot \int_0^c \mu_p \left(\sqrt{\frac{1 + e^{-t/2}}{1 - e^{-t/2}}} \, r \right) dt.$$

Together with (2.5) and (2.4), this proves the following:

$$g(r)\mu_p(r) \leqslant \mathbb{P}\Big(\inf_{0 \leqslant t \leqslant g(r)} p(O_t) \leqslant r\Big) \cdot \int_0^c \mu_p\bigg(\sqrt{\frac{1 + e^{-t/2}}{1 - e^{-t/2}}} \ r\bigg) dt.$$

By Lemma 2.4, for all r > 0 small, the right hand side is bounded above by a constant multiple of $r^2\mathbb{P}(\inf_{0 \leq t \leq g(r)} p(O_t) \leq r)$. In other words, we have proven the following:

$$\liminf_{r \to 0^+} \frac{r^2}{g(r)\mu_n(r)} \mathbb{P}\left(\inf_{0 \leqslant t \leqslant g(r)} p(O_t) \leqslant r\right) > 0.$$
(2.6)

This constitutes the first half of Theorem 2.1. We have also verified Remark 2.1.1(c). The second half proceeds along different lines.

Recall the definition of λ_p from (1.3). Since μ_p is a decreasing function, one easily deduces that

- (i) $r \mapsto \lambda_p(r; \varkappa)$ is decreasing;
- (ii) $\lambda_p(r;\varkappa) \geqslant r$.

Fix $t \ge 0$. By Lemma 2.2 (in its notation), using the properties of p,

$$p(O_t) \leqslant \sqrt{1 - e^{-t}} p(W_t) + e^{-t/2} p(O_0).$$

(This should be compared to the proof of Lemma 2.3). Observe that conditional on $\{p(O_0) \leq r\}, \{p(W_t) < 1\}$ implies the following:

$$p(O_t) \leqslant \sqrt{1 - e^{-t}} + r \leqslant t^{1/2} + r.$$

Therefore, for all $t \leq (\lambda_p(r; \varkappa) - r)^2$,

$$\inf_{f} \mathbb{P}(p(O_t) \leqslant \lambda_p(r; \varkappa) \mid O_0 = f) \geqslant \mathbb{P}(p(W_t) \leqslant 1) = \mu_p(1) > 0, \tag{2.7}$$

where the infimum is taken over all $f \in \mathcal{B}$ which satisfy $p(f) \leq r$. The rest of the proof follows from stationarity and the strong Markov property at time $\tau(r)$, viz.,

$$3g(r)\mu_{p}(\lambda_{p}(r;\varkappa)) = \mathbb{E}\left[\int_{0}^{3g(r)} \mathbb{1}\left\{p(O_{t}) \leqslant \lambda_{p}(r;\varkappa)\right\} dt\right]$$

$$\geqslant \mathbb{E}\left[\int_{\tau(r)}^{3g(r)} \mathbb{1}\left\{p(O_{t}) \leqslant \lambda_{p}(r;\varkappa)\right\} dt \mid 0 \leqslant \tau(r) \leqslant g(r)\right] \cdot \mathbb{P}\left(0 \leqslant \tau(r) \leqslant g(r)\right)$$

$$\geqslant \mathbb{E}\left[\int_{0}^{2g(r)} \mathbb{1}\left\{p(O_{t}) \leqslant \lambda_{p}(r;\varkappa)\right\} dt \circ \theta\left(\tau(r)\right) \mid 0 \leqslant \tau(r) \leqslant g(r)\right] \cdot \mathbb{P}\left(0 \leqslant \tau(r) \leqslant g(r)\right)$$

$$\geqslant \inf_{f} \mathbb{E}\left[\int_{0}^{g(r)} \mathbb{1}\left\{p(O_{t}) \leqslant \lambda_{p}(r;\varkappa)\right\} dt \mid O_{0} = f\right] \cdot \mathbb{P}\left(0 \leqslant \tau(r) \leqslant g(r)\right),$$

where the infimum is taken over all $f \in \mathcal{B}$ such that $p(f) \leq r$ and θ is as before the shift on the paths of O. By (2.2),

$$3g(r)\mu_p\left(\lambda_p(r;\varkappa)\right)$$

$$\geqslant \inf_f \mathbb{E}\bigg[\int_0^{c^{-1}(\lambda_p(r;\varkappa)-r)^2} \mathbb{1}\big\{p(O_t)\leqslant r\big\}dt \ \bigg| \ O_0=f\bigg] \mathbb{P}\big(0\leqslant \tau(r)\leqslant g(r)\big),$$

where the infimum is taken over all $f \in \mathcal{B}$ with $p(f) \leq r$. Since c > 1, (2.7) implies

$$3g(r)\mu_p(\lambda_p(r;\varkappa)) \geqslant \mu_p(1) \ c^{-1}(\lambda_p(r;\varkappa) - r)^2 \ \mathbb{P}(0 \leqslant \tau(r) \leqslant g(r))$$
$$= \mu_p(1) \ c^{-1}(\lambda_p(r;\varkappa) - r)^2 \ \mathbb{P}(\inf_{0 \leqslant t \leqslant g(r)} p(O_t) \leqslant r).$$

By Assumption 1.1(b), $\mu_p(1) > 0$. By (1.3), we have proven the following:

$$\mathbb{P}\left(\inf_{0 \leqslant t \leqslant g(r)} p(O_t) \leqslant r\right) \leqslant \frac{3c\varkappa}{\mu_p(1)} \frac{\mu_p(r)g(r)}{\left(\lambda_p(r;\varkappa) - r\right)^2}.$$

Together with (2.6), this proves Theorem 2.1.

3. AN APPLICATION

Recall the μ -Brownian motion $B=(B_t; t \geqslant 0)$ from Introduction. The goal of this section is to provide some estimates of the escape rates of B when p is transient. In light of Remark 1.1.1, it is not too difficult to convince oneself that under Assumption 1.1, $t \mapsto p(B_t)$ is transient in that \mathbb{P} -a.s., $\lim_{t\to\infty} p(B_t) = \infty$. It is the goal of this section to estimate the rate at which this blow-up occurs. We improve results of Erickson [6] concerning the following class of problems.

Assumption 3.1. We assume the existence of constants $r_0 > 0$, $K_0 > 1$, $0 < \alpha \le 2$, $\chi > 0$ and $\beta \in \mathbb{R}$ such that for all $0 < r \le r_0$,

$$K_0^{-1} r^{\beta} \exp\left(-\frac{\chi}{r^{\alpha}}\right) \leqslant \mu_p(r) \leqslant K_0 r^{\beta} \exp\left(-\frac{\chi}{r^{\alpha}}\right).$$
 (3.1)

 \Diamond

See Erickson [6], Li [12] and their combined references for many examples of when this assumption is valid.

Note that under Assumption 3.1, \mathcal{B} is forced to be infinite-dimensional; see Remark 1.1.1. Moreover, Assumption 3.1 implies Assumption 1.1.

Our result on escape rates is the following:

Theorem 3.2. Suppose Assumption 3.1 is satisfied. Consider a measurable nonincreasing function $\psi : \mathbb{R}_+ \mapsto \mathbb{R}_+$. Let

$$I_1(\psi) \triangleq \int_1^\infty \psi^{\beta - \alpha}(t) \exp\left(-\frac{\chi}{\psi^{\alpha}(t)}\right) \frac{dt}{t},$$

$$I_2(\psi) \triangleq \int_1^\infty \psi^{\beta - 2\alpha - 2}(t) \exp\left(-\frac{\chi}{\psi^{\alpha}(t)}\right) \frac{dt}{t}.$$

Then

$$I_1(\psi) = \infty \implies \mathbb{P}(p(B_t) \geqslant t^{1/2}\psi(t), \text{ eventually for all } t \text{ large}) = 0,$$
 (3.2)

$$I_2(\psi) < \infty \implies \mathbb{P}(p(B_t) \geqslant t^{1/2}\psi(t), \text{ eventually for all } t \text{ large}) = 1.$$
 (3.3)

Proof of (3.2). Assume $I_1(\psi) = \infty$. Define the Erdős sequence, $t_k \triangleq \exp(k/\log k)$. For simplicity, write $\psi_k \triangleq \psi(t_k)$. Furthermore, define the measurable event,

$$E_k \triangleq \{ p(B_{t_k}) \leqslant t_k^{1/2} \psi_k \}.$$

According to an argument of Erdős [5], there exists a constant C > 1 such that,

$$C^{-1} \left(\log \log t_k\right)^{-1/\alpha} \leqslant \psi_k \leqslant C \left(\log \log t_k\right)^{-1/\alpha}.$$
(3.4)

By Brownian scaling,

$$\mathbb{P}(E_k) = \mu_p(\psi_k).$$

Since $I_1(\psi) = \infty$, (3.4) and Assumption 3.1 together yield:

$$\sum_{k} \mathbb{P}(E_k) = \infty.$$

Suppose we could show

$$\limsup_{N \to \infty} \frac{\sum_{k=1}^{N} \sum_{n=1}^{N-k} \mathbb{P}(E_k \cap E_{n+k})}{\left(\sum_{k=1}^{N} \mathbb{P}(E_k)\right)^2} < \infty, \tag{3.5}$$

then, according to Kochen and Stone [10], $\mathbb{P}(E_k, \text{ infinitely often}) > 0$. The latter is a tail event. By the classical 0–1 law of Kolmogorov, B_t has a trivial σ –field. Therefore, (3.5) implies $\mathbb{P}(E_k, \text{ i.o.}) = 1$, which yields (3.2).

It remains to prove (3.5). By Anderson's inequality (cf. [2]) and elementary Brownian properties (cf. Introduction),

$$\mathbb{P}(E_k \cap E_{n+k}) = \mathbb{P}(E_k; \ p(B_{t_{n+k}} - B_{t_k} + B_{t_k}) \leqslant t_{n+k}^{1/2} \psi_{n+k})
\leqslant \mathbb{P}(E_k) \, \mathbb{P}(p(B_{t_{n+k}} - B_{t_k}) \leqslant t_{n+k}^{1/2} \psi_{n+k})
= \mathbb{P}(E_k) \, \mu_p \left(\sqrt{\frac{t_{n+k}}{t_{n+k} - t_k}} \psi_{n+k} \right).$$

From here, we can apply a classical argument going back at least to Erdős [5], and only provide its outline. Let C_i $(1 \le i \le 9)$ denote some unimportant constants. When $n \le \log k$, $\sqrt{t_{n+k}/(t_{n+k}-t_k)}\psi_{n+k} \le C_1 n^{-1/2}$, which implies

$$\mathbb{P}(E_k \cap E_{n+k}) \leqslant C_2 \, \mathbb{P}(E_k) \, \exp(-C_3 \, n^{\alpha/2}). \tag{3.6}$$

For $\log k < n < (\log k)^2$, we have $t_{n+k}/(t_{n+k}-t_k) \leq C_4$, which yields

$$\mathbb{P}(E_k \cap E_{n+k}) \leqslant C_5 \, \mathbb{P}(E_k) \, \exp(-C_6 \, \log k) \leqslant C_5 \, \mathbb{P}(E_k) \, \exp(-C_6 \sqrt{n}). \tag{3.7}$$

Finally, if $n \ge (\log k)^2$, then $t_{n+k}/(t_{n+k}-t_k) \le 1 + C_7 (\log(n+k))/n$. Hence

$$\mathbb{P}(E_k \cap E_{n+k}) \leqslant C_8 \, \mathbb{P}(E_k) \, \psi_{n+k}^{\beta} \, \exp\left(-\frac{\chi}{\psi_{n+k}^{\alpha}}\right)
\leqslant C_9 \, \mathbb{P}(E_k) \, \mathbb{P}(E_{n+k}).$$
(3.8)

 \Diamond

Combining (3.6)–(3.8) gives (3.5).

To prove the other part of Theorem 3.2, we need a preliminary result.

Lemma 3.3. Under Assumption 3.1, there exist $\varkappa > 1$, $r_1 > 0$ and $K_1 > 1$ such that for all $0 < r \le r_1$,

$$r + K_1^{-1} r^{1+\alpha} \leqslant \lambda_p(r; \varkappa) \leqslant r + K_1 r^{1+\alpha}.$$

Proof. We will prove the upper bound for $\lambda_p(r; \varkappa)$. The lower bound follows from similar arguments. Fix any $\gamma > 0$. Two applications of (3.1) show that for all $0 < r \le r_0$ so small that $r + \gamma r^{1+\alpha} \le r_0$,

$$\mu_p(r + \gamma r^{1+\alpha}) \leqslant K_0(r + \gamma r^{1+\alpha})^{\beta} \exp\left(-\frac{\chi}{(r + \gamma r^{1+\alpha})^{\alpha}}\right)$$
$$\leqslant K_0^2 \left[(1 + \gamma r_0^{\alpha})^{\beta} \vee 1 \right] \mu_p(r) \Omega$$

where,

$$Q \triangleq \exp\Big(\frac{\chi}{r^{\alpha}} - \frac{\chi}{(r + \gamma r^{1+\alpha})^{\alpha}}\Big).$$

A little calculus shows that whenever $\alpha > 0$, for all $0 < r \le r_0$,

$$1 - \frac{1}{(1 + \gamma r^{\alpha})^{\alpha}} \leq ((1 + \gamma r_0)^{\alpha - 1} \vee 1) \alpha \gamma r^{\alpha}.$$

Hence,

$$Q \leqslant \exp\left(\chi \alpha \gamma \left(1 \vee (1 + \gamma r_0)^{\alpha - 1}\right)\right).$$

Fix any $\varkappa > K_0^2$. Note that for all $\gamma > 0$ small,

$$K_0^2 [(1 + \gamma r_0^{\alpha})^{\beta} \vee 1] \exp \left(\chi \alpha \gamma [1 \vee (1 + \gamma r_0)^{\alpha - 1}]\right) \leqslant \varkappa.$$

Thus, we have shown that $\mu_p(r + \gamma r^{1+\alpha}) \leq \varkappa \mu_p(r)$. That is, for any $\varkappa > K_0^2$ and all $\gamma > 0$ small enough, $\lambda_p(r;\varkappa) \geq r + \gamma r^{1+\alpha}$.

Corollary 3.4. Suppose that Assumption 3.1 holds. For K > 0, there exists a constant c > 1 such that for all $r \in (0, 1/c)$,

$$c^{-1} r^{\beta+\alpha-2} \exp\left(-\frac{\chi}{r^{\alpha}}\right) \leqslant \mathbb{P}\left(p(B_t) \leqslant t^{1/2}r, \text{ for some } t \in [1, 1+K r^{\alpha}]\right)$$
$$\leqslant c r^{\beta-\alpha-2} \exp\left(-\frac{\chi}{r^{\alpha}}\right).$$

We are now ready to complete the proof of Theorem 3.2.

Proof of (3.3). Assume $I_2(\psi) < \infty$. Let t_k and ψ_k be as in the proof of (3.2). Define,

$$\mathcal{U}_k \triangleq \mathbb{P}(p(B_t) \leqslant t_{k+1}^{1/2} \psi_k, \text{ for some } t \in [t_k, t_{k+1}]).$$

By Brownian scaling,

$$\mathcal{U}_k \leqslant \mathbb{P}(p(B_t) \leqslant t^{1/2} \varphi_k, \text{ for some } t \in [1, t_{k+1}/t_k]),$$

where $\varphi_k \triangleq (t_{k+1}/t_k)^{1/2} \psi_k$. By (3.4), $t_{k+1}/t_k = 1 + O(\varphi_k^{\alpha})$. Therefore, Corollary 3.4 shows that

$$\mathcal{U}_k \leqslant C_9 \,\varphi_k^{\beta-\alpha-2} \, \exp\left(-\frac{\chi}{\varphi_k^{\alpha}}\right) \leqslant C_{10} \,\psi_k^{\beta-\alpha-2} \, \exp\left(-\frac{\chi}{\psi_k^{\alpha}}\right),$$

where C_9 and C_{10} are two constants. Since $I_2(\psi) < \infty$, this yields $\sum_k \mathcal{U}_k < \infty$. By the Borel-Cantelli lemma, for all k_0 large enough (random but finite \mathbb{P} -a.s.), the following holds \mathbb{P} -a.s. for all $k \ge k_0$,

$$\inf_{t_k \leqslant t \leqslant t_{k+1}} p(B_t) \geqslant t_{k+1}^{1/2} \psi_k.$$

Take any $k \ge k_0$ and $t \in [t_k, t_{k+1}]$. Then, by monotonicity,

$$p(B_t) \geqslant t^{1/2} \psi(t),$$

as desired. \Diamond

REFERENCES

- 1. J.M.P. Albin (1992), On the general law of iterated logarithm with application to selfsimilar processes and to Gaussian processes in \mathbb{R}^n and Hilbert space, *Stoch. Proc. Appl.* 41, 1–31.
- 2. T.W. Anderson (1955), The integral of symmetric unimodular functions over a symmetric convex set and some probability inequalities, *Proc. Amer. Math. Soc.* 6, 170–176.
- 3. E. Csáki and M. Csörgő (1992), Inequalities for increments of stochastic processes and moduli of continuity, *Ann. Prob.* **20**, 1031–1052.
- 4. E. Csáki, M. Csörgő and Q.M. Shao (1992), Fernique type inequalities and moduli of continuity for ℓ^2 -valued Ornstein-Uhlenbeck processes, *Ann. Inst. H. Poincaré Prob. Statist.* **28**, 479–517.
- 5. P. Erdős (1942), On the law of the iterated logarithm, Ann. Math. 43, 419–436.
- 6. K.B. Erickson (1980), Rates of escape of infinite dimensional Brownian motion, Ann. Prob. 8, 325–338.
- 7. M. Fukushima, Y. Oshima and M. Takeda (1994), Dirichlet Forms and Symmetric Markov Processes, Walter de Gruyter, New York.
- 8. L. Gross (1965), Abstract Wiener space, *Proc. Fifth Berkeley Symp. Math. Statist. Prob. II*, Part 1, Univ. California Press, Berkeley, 31–41.
- 9. D. Khoshnevisan and Z. Shi (1996), Hitting estimates for Gaussian random fields, (Unpublished report).
- 10. S.B. Kochen and C.J. Stone (1964), A note on the Borel–Cantelli lemma, *Illinois J. Math.* 8, 248–251.
- 11. J. Kuelbs and W.V. Li (1993), Metric entropy and the small ball problem for Gaussian measures, J. Funct. Anal. 116, 133–157.
- 12. W.V. Li (1992), Comparison results for the lower tail of Gaussian seminorms, J. Th. Prob. 5, 1–31.
- 13. A.S. Üstünel (1995), An Introduction to Analysis on Wiener Space, Springer, Berlin.
- 14. M. Weber (1983), Polar sets of some Gaussian processes, *Probability in Banach Spaces IV*, Lecture Notes in Mathematics **990**, Springer, Berlin, 204–214.