Notes on Continuity

Definition: A function f is continuous at $x=c$ if all of the following conditions are satisfied:
(i) $f(c)$ exists, i.e., $f(x)$ has a definite value at $x=c$.
(ii) $\lim _{x \rightarrow c} f(x)$ exists.
(iii) $\lim _{x \rightarrow c} f(x)=f(c)$.

If one or more of the conditions above do not hold, we say the function is discontinuous at $x=c$.

- Every polynomial function is continuous at all points.
- A rational function $\frac{f(x)}{g(x)}$ is discontinuous for those values of x where $g(x)=0$ and continuous at all other points.
- To find the points of discontinuity of a rational function $\frac{f(x)}{g(x)}$ solve the equation $g(x)=0$. The solutions of this equation are the points of discontinuity. Any other point which is not a solution of the equation $g(x)=0, \frac{f(x)}{g(x)}$ is continuous there.
- Examples: Find the points of discontinuity of the the following functions:

1. $\frac{x^{3}-1}{x^{2}-x-6}$
2. $\frac{x^{2}}{x}$
3. $\frac{x}{x^{2}+1}$

- The points of discontinuity of (1) are solutions of $x^{2}-x-6=0$, which are $x=-2,3$.
The same for (2) is the solution of $x=0$, i.e. 0 is the only point of discontinuity of the function in (2).
For the function in (3), discontinuities are solution of $x^{2}+1=0$, but this equation does not have any real root, so this function is continuous everywhere. This example (3) shows that polynomials are Not the only functions which are continuous everywhere, there are some more.
- For a piecewise defined function $f(x)$, if each of its pieces is defined by a polynomial then the function may or may not be continuous at the points where $f(x)$ changes its formula, but it is continuous at all other points.
- Example: $f(x)= \begin{cases}x^{2}-x+1 & \text { if } x \leq 0 \\ 2 x^{3}+1 & \text { if } 0<x<1 \\ 4 & \text { if } x \geq 1\end{cases}$

The function is changing its formula at 0 and 1 , so the only possible discontinuities of $f(x)$ are at 0 and 1 , the function is continuous at all other points.

Now, $f(0)=0^{2}-0+1=1$, so $f(0)$ exists.
$\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} x^{2}-x+1=0^{2}-0+1=1$
$\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} 2 x^{3}+1=2 \cdot 0^{3}+1=1$
Therefore $\lim _{x \rightarrow 0^{-}} f(x)=1=\lim _{x \rightarrow 0^{+}} f(x)$, so, $\lim _{x \rightarrow 0} f(x)$ exists and
$\lim _{x \rightarrow 0} f(x)=1=f(0)$
Hence $f(x)$ is continuous at $x=0$.

Now look at $x=1, f(1)=4, f(1)$ exists.
$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} 2 x^{3}+1=3$
$\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} 4=4$
$\lim _{x \rightarrow 1^{-}} f(x) \neq \lim _{x \rightarrow 1^{+}} f(x)$, so $\lim _{x \rightarrow 1} f(x)$ does not exists.
Hence $f(x)$ is Not continuous at $x=1$ (even though $f(1)$ is defined, $f(x)$ fails to satisfy the condition (ii) of the definition).
Therefore the only point of discontinuity of $f(x)$ is $x=1$, at all other points the function is continuous.

