4. $\int \frac{x^2+x}{x^2-4} dx$ also needs long division. The top and bottom have equal degree 2:

$$x^2 + 0x - 4$$
 $x^2 + 0x - 4$
 $x + 4$
divide x^2 into x^2 to get 1
multiply $x^2 - 4$ by 1
subtract to find remainder $x + 4$

-

This says that $\frac{x^2+x}{x^2-4} = 1 + \frac{x+4}{x^2-4} = 1 + \frac{x+4}{(x-2)(x+2)}$. To decompose the remaining fraction, let

$$\frac{x+4}{(x-2)(x+2)} = \frac{A}{x-2} + \frac{B}{x+2}.$$

Multiply by x-2 so the problem is $\frac{x+4}{x+2} = A + \frac{B(x-2)}{x+2}$. Set x=2 to get $A = \frac{6}{4} = \frac{3}{2}$. Cover up x+2 to get (in the mind's eye) $\frac{x+4}{x-2} = \frac{A(x+2)}{(x-2)} + B$. Set x=-2 to get $B=-\frac{1}{2}$. All together we have

$$\int \frac{x^2 + x}{x^2 - 4} dx = \int \left(1 + \frac{\frac{3}{2}}{x - 2} - \frac{\frac{1}{2}}{x + 2}\right) dx = x + \frac{3}{2} \ln|x - 2| - \frac{1}{2} \ln|x + 2| + C.$$

5. $\int \frac{7x^2+14x+15}{(x^2+3)(x+7)} dx$ requires no division. Why not? We have degree 2 over degree 3. Also x^2+3 cannot be factored further, so there are just two partial fractions:

$$\frac{7x^2+14x+15}{(x^2+3)(x+7)}=\frac{A}{x+7}+\frac{Bx+C}{x^2+3}.$$
 Use $Bx+C$ over a quadratic, not just B !

Cover up x + 7 and set x = -7 to get $\frac{260}{52} = A$, or A = 5. So far we have

$$\frac{7x^2 + 14x + 15}{(x^2 + 3)(x + 7)} = \frac{5}{x + 7} + \frac{Bx + C}{x^2 + 3}.$$

We can set x = 0 (because zero is easy) to get $\frac{15}{21} = \frac{5}{7} + \frac{C}{3}$, or C = 0. Then set x = -1 to get $\frac{8}{24} = \frac{5}{6} + \frac{-B}{4}$. Thus B = 2. Our integration problem is $\int (\frac{5}{x+7} + \frac{2x}{x^2+3}) dx = 5 \ln|x+7| + \ln(x^2+3) + C$.

6. (Problem 7.5.25) By substitution change $\int \frac{1+e^x}{1-e^x}$ to $\int \frac{P(u)}{Q(u)} du$. Then integrate.

• The ratio $\frac{1+e^x}{1-e^x}dx$ does not contain polynomials. Substitute $u=e^x$, $du=e^x dx$, and $dx=\frac{du}{u}$ to get $\frac{(1+u)du}{(1-u)u}$. A perfect set-up for partial fractions!

$$\frac{1+u}{u(1-u)} = \frac{A}{u} + \frac{B}{1-u} = \frac{1}{u} + \frac{2}{1-u}.$$

The integral is $\ln |u - 2 \ln |1 - u| = x - 2 \ln |1 - e^x| + C$.