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My overarching research goal is to bring the advanced tools of mathematics to bare on relevant real world
problems bringing new perspectives to some fields, improving general scientific understanding, and fostering
new methods for prediction and analysis. I also believe that such pursuits create a positive feedback into
mathematics, inspiring new ways of thinking, motivating new mathematical developments, and providing
a bed rock to test such developments. This positive feedback between mathematics, applied problems,
and experiment guides my research philosophy. Perhaps there is a nice mathematical idea for which we
would seek to find a problem to which it may apply, maybe it’s a pressing real world problem that needs
innovative approaches, or it is just an interesting data set or experimental result that can spawn new ideas
and innovations. Any of these can serve as a starting point, mid point or end point but their interplay is
key. To that end, I believe in a sort of kitchen sink approach, not in the sense that we indiscriminately try
every thing until something seems to stick, but that we don’t limit our set of tools, approaches, starting
points, or motivation. We should work in an interdisciplinary way seeking collaboration with those who can
offer knowledge, skills, or resources that may move a piece of work forward perhaps gaining new insight and
skills along the way. I believe the real benefit of working in applied mathematics is the freedom to truly be
interdisciplinary and not locked into one specific way of thinking. I also believe, when possible, an attempt
should be made to accelerate research to application beyond initial publication, something I have enjoyed
doing at the Joint Center for Satellite Data Assimilation these last few years.
Throughout my career, my main scientific interest has been focused on Earth’s climate in some way or
another and more recently on data assimilation aimed at improving weather prediction, something I consider
important as extreme weather becomes more common. Both areas of research provide many opportunities
to experience an interdisciplinary feed back. As an undergraduate and continuing into graduate school I
worked on problems involving sea ice utilizing campus labs to design experimental methods I was fortunate to
employ in Arctic and Antarctic field campaigns. I have been involved in research which applies: percolation
theory to electrical and fluid transport through the porous microstructure of sea ice [15],[14]; inversion theory
to problems in remote sensing [29]; graph theory to melt pond evolution [1]; and homogenization theory to
ocean wave dynamics in the marginal ice zones (MIZ) of the Arctic and Antarctic [31]. That work was been
guided by the fact that sea ice may be thought of as a composite material over multiple scales and was
inspired by in person observation of waves propagating through the MIZ in the Antarctic.
As a postdoc, I began working with larger data sets primarily through the lens of Data Assimilation (DA)
and Statistical or Machine Learning techniques. Working with others from across the globe we: developed
new techniques allowing the application of the Ensemble Kalman Filter (EnKF) to models which use non-
conservative adaptive mesh solvers [32] (motivated by a lagrangian sea ice model); employed new metrics
using boundary preserving diffeomorphisims to calibrate a sea ice model [38] (that explicitly models leads)
using SAR satellite imagery [16]; applied ensemble smoothing techniques with an age stratified SEIR model
to study the spread of SARS-CoV-2 (the virus that causes COVID-19) obtaining continuous time series of
the basic reproductive number R0 which, can be used to evaluate successes and failures of various mitigation
strategies [7]; extended the previously mentioned model and DA method to a multi-group population model
to study disparities in the impact of the pandemic on different racial/ethnic groups [9]. The ESMDA method
proved so powerful in accurately estimating time dependent parameters, we later applied it to a reduced
order model of the polar vortex with two main controlling parameters, h (representing perturbations from
topography) and λ (representing the thermal gradients) [34]. The data assimilated came from the ECMWF
ERA 5 reanalysis set and we found the reduced order model, when parameters were time dependent, could
reproduce more complex behavior of the polar vortex and found signatures of sudden stratospheric warming
(SSW) events in the state and parameter analyses. I was also involved in some work employing Generative
Adversarial Networks (GANs) trained on images of melt ponds on Arctic sea ice to produce realistic meltpond
geometries for use in sea ice modeling; and studying sea ice microstructure through the lens of topological
data analysis [30].
While there is inherent value in all research, the value of that work can be multiplied if it can be readily
applied. When working in the field of DA I noticed a divide between those doing fundamental research and

1



those applying DA in weather and climate science. One of the primary reasons for this divide are the systems
used by each group to do the research. Mathematicians typically stick to toy models and ideal situations
with code written in Python or Matlab for demonstrations of new ideas. While these are good for initial
development this makes adoption of new ideas by the scientific community at large slow and difficult. Large
scale models are complex, legacy objects which are difficult to adapt for new ideas and can require full time
employees to implement anything novel, even just for testing. This seems a shame in a field where rapid
developments are taking place that could benefit the scientific community at large. This has been recognized
by in atmospheric and climate science and is being addressed through the development of the Joint Effort
for Data assimilation Integration (JEDI) system. JEDI is funded by NASA, NOAA, The Navy, USAF, and
UK Met Office and is a generic Data Assimilation system meant to be used with each partner’s model and
observations. JEDI will be the operational system for each of those agencies in the very near future. To
facilitate that, JEDI is designed in such a way that any model with an JEDI interface has access to the whole
system, so that when a new development is added it is immediately available. It is for this reason I applied
for a position at the Joint Center for Satellite Data Assimilation (JCSDA) in late 2021. I wanted to gain
experience closer to operational settings and hopefully directly contribute new innovations. One such new
innovation I was tasked to add to JEDI is a Hybrid Differential Tangent Linear Model (HTLM) developed
in [25] which showed promise in improving 4d-Var assimilations and allowing for the use of 4d-Var with new
model physics without the costly updating of the traditional tangent linear model. The HTLM at it’s core
uses an ensemble of nonlinear model runs to correct linear model trajectories when the linear model itself is
missing linearized physics or is otherwise incomplete. After its addition to JEDI, the HTLM is being used
with NASA’s GEOS model for atmospheric composition experiments, NOAA GFS for 4d-Var experiments
with metrology, and with the Sea Ice and Ocean Coupled Assimilation (SOCA) system in JEDI to enable
4d-Var experiments there. I think this is a success story where a new innovation was made readily available
to the community at large and as a result was quickly adoptable enabling new science to be done. This is
something I would hope to continue to be able to do in my research when possible, I could imagine developing
and testing new ideas in DA directly in JEDI and if successful then making them immediately available to the
community at large as a result. While the scientific community can benefit from innovations added to JEDI,
researchers can benefit from development in systems like JEDI as well. In addition to Lorenz 95 and Quasi-
Geostrophic toy models, JEDI provides access to the kinds of large scale models that are difficult to develop
and test with, it opens the door to doing fundamental research in a setting otherwise very difficult to work
in. Not can only new DA methods be tested with real complex atmospheric models, new ideas in modeling
are made easier to test and develop as well. One could add a new physical parameterization to MPAS for
example and use JEDI to run it, estimate parameters, or evaluate forecast scores with and without DA.
This is especially relevant for research toward improving extreme weather prediction, something I think that
should be considered important climate research. However even with all of these benefits, it would be nice to
extend the utility of systems like JEDI to more basic and developmental research. I would love to develop a
tool which allowed researchers to prototype new ideas in climate science, perhaps novel ODE/PDE reduced
order models, a new parameterization of a physical phenomena, an ecological, epidemiological, or migration
model in a simple way and generate a JEDI interface for those models. This would aid in running simulations
on HPC environments as well as connect new models to the DA Algorithms, observations operators, and data
ingest tools already available in JEDI. I would also love to see more DA methods aimed at developmental
models included in JEDI like ESMDA or novel particle filters, for example. There are also existing ideas
that could easily be added, tested and iterated upon such as Feature Calibration and Alignment (FCA)
analysis [23] which aligns coherent structures as part the analysis. I also believe there is opportunity for
development in the Community Radiative Transfer Model (CRTM), particularly with respect to sea ice
microwave emissivity, something that could benefit from an experimental component. All in all, I believe
there is a real novel opportunity to create a research program that drives new fundamental innovations with
an aim of accelerating their application as a core mission objective. The pursuit of that objective strengthens
the interdisciplinary feedback that is so beneficial to applied mathematics and science as whole.
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Data Assimilation and Ensemble Methods

Ensemble Methods for Parameter Estimation and General Reanalysis

Ensemble smoother techniques can be derived by assuming a perfect forward model.

y = g(x) (1)

In general, x is the realization of model parameters, and y consists of the uniquely predicted measurements
resulting from the parameters x through the model operator g(x). The vector y then consists of the predicted
measurements given some model error, e. To solve the inverse problem, it is efficient to frame it into an
equation using Bayes’ theorem:

f(x | y) ∝ f(y | g(x))f(x) (2)

Equation (2) represents the so-called smoothing problem, which can be approximated using ensemble meth-
ods. In practice this problem can be solved using an iterative ensemble smoothing method called an ensemble
smoothing with multiple data assimilation (ESMDA). The method, which is similar to an ensemble smoother,
solves the parameter-estimation problem and is formally derived from the Bayesian formulation using a tem-
pering procedure [37]. What separates this method from other similar methods is that it approximates the
posterior recursively, gradually introducing information to alleviate the impact of any nonlinear approxima-
tions. After updating through to the last time step, it begins the assimilation process over again - resampling
the vector of perturbed observations, which reduces sampling error [6]. The general steps can be described
simply. (1) Sample a large ensemble of the parameters you wish to estimate assigning uncertainty to each.
(2) Integrate the ensemble of model realizations forward in time to obtain a prior ensemble prediction. (3)
Compute the posterior of the ensemble of parameters using the difference between predicted states and ob-
servations with the correlations between those parameters and predicted states. (4) Integrate the ensemble
of updated model realizations forward in time and repeat for the number of ESMDA steps chosen. After the
cycle is completed the ensemble mean of parameters are considered optimal as well as the mean of model
predictions arising from the ensemble of parameters. One also obtains a measure of uncertainty through the
spread in the parameters as well.
These methods have broad applicability and are only constrained by dimensionallity and the computational
cost of the forward model. In addition to the advantage of providing a measure of uncertainty ESMDA can
be used to estimate critically important parameters through the combination of the model and available
data in the reanalysis sense. A particularly relevant example of recent is the COVID-19 pandemic. In
[8] a Susceptible Infected Exposed and Recovered (SEIR) model which was compartmentalized through an
age stratified contact rate matrix used ESMDA to estimate important parameters and make short term
predictions by a large group of international researchers in their regions. Participating in this effort our
group used this model to compare the success of mitigation efforts of four U.S. states by estimating the
basic reproduction number of the SARS-CoV-2 virus as a function of time R(t). Shown in Figure 1 is
a sample of the results where a gradual step down of R(t) is used starting at dates which correspond to
sufficient decreases in mobility data as measured from cell phones. In this figure we highlight that New York
achieved a consistent R(t) < 1 implying decreasing cases while California fluctuated around R(t) = 1 during
the data window of early March to May 20th. The model was conditioned on cumulative deaths and daily
hospitalizations. Methods like these can be used to preform a reanalysis of the spread of SARS-CoV-2 and
tied to other historical data to determine successful strategies and better prepare for the future. The model in
[8] has also recently been extended to model sub-populations with transmission between populations possible
as well as the provision of a continuous prior on R(t). The sub-populations can represent different countries,
states, other localities or population groups with in a locality. In [9] we use cumulative death data reported
for different racial/ethnic groups to analyze and study observed disparities in the spread of SARS-CoV-2
across these groups in the United States. We focus on 9 states with the most complete reporting of this data
as well as the District of Columbia. In this more recent analysis a continuous prior for the given locality is
taken from rt.live and used for all groups and updated based on the death data over time. In Figure ?? we see
the results for the District of Columbia which shows that after the mitigation period (corresponding to the
large dip in R(t)) a stratification in the basic reproduction number occurs across the different racial/ethnic
groups with the Black and Latinx communities showing the highest rate of spread and more deaths than
other groups. This is particularly notable since the Black community is roughly the same proportion of the
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Figure 1: US Case 3: A gradual step down in R(t) with the first and intermediate values chosen so that the
prior mean closely follows the data until the time for which R(t) is guessed to be one. The red thin line in
the plots for R(t) is an indication of the value R(t) = 1 for easier identification.
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Figure 2: Analysis results for the continuous update case for the state of District of Columbia .

population of D.C. while the Latinx community only about 11%. We see this as the detection of front-line
communities who bores the brunt of the pandemic for a variety of reasons. Methods like ESMDA can be
used in this way to shed light on inequity, determine disparity and provide social scientists and policy makers
with valuable estimates of critical parameters needed for decision making and equitable actions.
ESMDA was so effective at estimating time dependent parameters related to transmission rates in the
previous work we aimed to use it to study a reduced order model of the polar vortex in [34]. In that work we
sought to evaluate the representativeness of a reduced order model for the polar vortex originally developed
in [28] in the context of the ERA 5 reanalysis data set from ECMWF. We assimilated the reanalysis data
to estimate the two main controlling parameters, h (representing perturbations from topography) and λ
representing the thermal gradients which drive the polar vortex. We found that when h and λ are allowed to
be time dependent we could, through ESMDA parameter estimation, drive the reduced order model in such
a way that mean zonal winds represented in the reanalysis data were reproduced. More over the phase space
between the mean zonal wind U and parameter λ in this case remained close to the equilibrium solutions of
the autonomous version of the system of equations with observe jumping between branches of those solutions.
The analysis and phase space are shown in the top row of Figure 3. We then analyzed these recovered time
series and found typical signatures of them consistent with their physical meaning around known historical
sudden stratospheric warming (SSW) events, bottom row in Figure 3. There we show the same SSW event
but with two different decorelation lengths (controlling speed of variation) for the perturbation parameter h.
We noted that successful capturing of the data and SSW events was not particularly sensitive to how rapidly
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h could change. This is somewhat counter intuitive as it is generally understood that perturbations to the
vortex from topography cause destabilization of it and one might expect it to be the controlling parameter.
However it should be noted that a strong thermal gradient, larger λ, typically leads to a strong polar vortex
resistant to perturbations. This suggests perhaps a more subtle interplay between these two parameters
highlighted by the ESMDA analysis and pointing to a direction of future research into the interplay between
the two.

ESDMA with reduced order model of The Polar Vortex

Figure 3: Top Row: Model run compared to Data with analysis parameters. Bottom Row: Controlling
parameters around a know ssw event with different decorelation lengths

Future Directions: These methods are widely applicable to a broad range of problems. The ESMDA
method is model agnostic at its heart and more complex models than those discussed above could also
be employed. This type of data assimilation is also useful for short term forecasting as any number of
model parameters can be rapidly estimated providing a following forecast form a now tuned model. I am
also interested in studying how climate change has disproportionately affected marginalized groups and
see methods like this also useful. Air quality modeling in conjunction with air quality and health data,
storm surge and flood models, extreme temperature events and vulnerable populations in conjunction with
historical data are just some of the other topics that can be explored. There is also the potential of methods
like these to provide undergraduate students with valuable research experience as general codes can be given
to them allowing for accessible exploration of a specific model, data assimilation methodology, and relevant
data set. The broad application of these methods also provides for broad appeal and can facilitate mentoring
opportunities for students from a variety of backgrounds providing an introduction to computational methods

5



along the way. Adding parameter estimation methods like this to a system like JEDI could also enable
researchers to explore reduced order models in novel ways.

Ensemble Kalman Filter for Adaptive Moving Mesh Models

Ensemble data assimilation has been widely implemented in weather prediction [18], tumor growth and
spread [21], and petroleum reservoir history matching [35]. The ensemble Kalman filter (EnKF) relies on
estimates of error statistics using an ensemble of model runs assumed to be Gaussian distributed. The
error estimates themselves are calculated using the state vectors (xf

i ) formed from the state variables of each
ensemble member. When observations are available each of the Ne ensemble members are updated according
to

xa
i = xf

i +K
[
yi − h(xf

i )
]

1 ≤ i ≤ Ne. (3)

Here, y is a vector of observations, h is the operation operator which maps model variables to the observations
and K is the Kalman gain matrix and has the form,

K = XfYT

[
1

Ne − 1
YYT +Re

]−1

. (4)

The ith column of the matrix Xf is formed from the difference between each state vector xf
i and their mean

x̄f and normalized by the number of ensemble members minus one. The ith column matrix Y is formed
from the difference between each state vector and mean after applying the observation operator h to each
and Re is the observation error covariance matrix and can also be estimated from the ensemble statistics.
The EnKF is often used in a sequential mode by applying updates at times when observations are available
and using model to forecast in between.
The EnKF can be directly applied to any forward in time model for which all ensemble members have the
same dimension however some adaptations may be needed in special cases such as models which use adaptive
mesh solvers. Numerical solvers using adaptive meshes can focus computational power on important regions
of a model domain capturing important or unresolved physics. The adaptation can be informed by the model
state, external information, or made to depend on the model physics. This has caused AMM schemes to rise
in popularity and thus adaptation of DA schemes like the EnKF become important and even advantageous.
In recent work we developed an EnKF scheme for a 1-d adaptive mesh solver that in which the nodes are
advected with the flow and sometimes deleted if two nodes are too close together (with in a tolerance of
δ1) or inserted if two nodes are two far apart (outside a tolerance of δ2). While AMM schemes like this
are useful to focus computational power in regions of large gradients they present significant challenges for
ensemble DA methods. This is because each ensemble member may have a different number of nodes all
in different locations making the calculation of the needed error statistics difficult. The different number of
nodes can be addressed by interpolating to new nodes for each ensemble member to match the dimension
across the ensemble. However, this does not account for the fact that nodes are in different locations and
more care is needed. There are two primary options for addressing this, (1) interpolating each ensemble
member to the same grid or (2) including the node locations in the state vector paring nodes in some
reasonable way. For the scheme described above we use a partitioning of the domain based on the closeness
tolerance δ1. Partitioning the domain into intervals of size δ1 there is a guarantee that each interval will
have at most one point with in it. From there one can map each ensemble member to reference mesh defined
by the partition or interpolate new nodes for each ensemble member that does not have a point in a given
interval. In the former case the update is done on a regular grid with all nodes in the same location and
each ensemble member can be mapped back to the mesh structure it had before the update. In the latter
case we include the node locations in the state vector comparing nodes which occupy the same intervals to
calculate the needed error statistics for the EnKF. In this way the node locations themselves are updated
based on any available physical observations, which are observations of the quantities that drive that flow.
While the larger state vector does increase computational cost we did find that the inclusion and update of
those node locations improved the assimilation across several metrics including the standard RMSE measure
compared to instead only updating the physical quantities on the reference mesh defined by the tolerance
δ1. The models we consider in that work are Burgers equation and the Kuramoto – Sivashinsky equation. In
Figure 4 we show the blocks of the error covariance matrices, calculated as Xf (Xf )T , comparing covariance
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between the physical values and the node locations themselves. Strikingly we see that the diagonal of that
block takes on a very similar shape as that of the first spatial gradient of the solutions highlighting the extra
information brought into the update.

Figure 4: Top row: Examples showing the forecast covariances between the physical values and the node lo-
cations in the HRA method for BGM and KSM right before the 10th and 20th assimilation steps respectively.
Bottom row: The spatial gradient of the forecast mean and covariance between ui and zi corresponding to
the covariance matrices above, this highlights the extra information encoded into the Kalman gain when
using the HRA scheme.

Future Directions: While the work described was in 1-d, the complexity and range of patterns that can
form in 2-d or 3-d is far greater than is possible in 1-d. This implies that significantly more information may
be carried in the cross-covariances between physical values and node locations. Further, if the motivation for
the use of an AMM scheme is to focus computational power in regions of strong gradients, updating those
node locations in accordance with where observations of those gradients are large may be very advantageous.
If the remeshing rules for the AMM model are based on strict considerations of node distances and mesh
geometries, a 2-d or 3-d analogue of the reference mesh should be attainable enabling the application of
a scheme which includes the mesh in the . An example of such a model is the novel Lagrangian sea ice
model neXtSIM [27, 4] which uses a non-conservative adaptive triangular mesh and finite elements. The
key to implementing a scheme which updates the mesh is the configuration of an augmented vector that
includes variables characterizing the underlying numerical mesh. In 1-d there is little ambiguity as the
natural approach is to just add the grid points of the underlying mesh. But in 2-d, the characterization
of the “grid” in terms of such vector is not as straightforward when, for instance, using a finite element
method. In that case Physical values may be stored at the centers of the elements, where as the elements
themselves are determined by their vertices. Considerations of the mesh type, triangular, hexagonal, square
etc. also add complications. The development of 2-d or 3-d mesh update schemes is a rich mathematical
problem involving numerical analysis, statistics and topology. It also promises to relate to a wide range of
applications.

A Hybrid Tangent Linear Model (HTLM) in JEDI

4d-Var is arguably one of the most successful data assimilation techniques in numerical weather prediction
in terms of forecast accuracy. Standard strong constraint 4d-Var includes a time series of observations in a
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costfunction J(x0) which is minimized for an optimal initial condition x0 such that the forecast of the model
from that initial condition is consistent with the time series of observations in the assimilation window. The
future forecast is then run from the end of that window. A critical component of any 4d-Var scheme is the
tangent linear model (TLM) and its adjoint, which is essentially the transpose of the TLM. the TLM itself is
a linearization of the model in question, which for complex atmospheric models is no small task to implement
in code. Many physics parameterizations in these models are complex, full of cases and if statements making
”differentiation” of these schemes difficult. The implement of a TLM is a full time job and when the physics
of a model is updated or changed it can require full time employees to update the TLM. Given the success of
4d-Var there is then a desire to find other methods to obtain the TLM with less work, one approach is using
ensemble methods to learn it. Learning the entire TLM is computationally intractable, however if we have
even an incomplete, perhaps dynamics only, TLM we can use it to our advantage to make it tractable. In
this case the TLM advances a model perturbation δx forward in time. When the TLM is incomplete we can
refer to it as a simplified tangent linear model (STLM). The HTLM uses an available STLM in conjunction
with a nonlinear ensemble to calculate corrective coefficients for the STLM during a 4d-var run [25].
Suppose we have available a simplified TLM Mt−1 (perhaps with incomplete physics) so that

δx(t)− = Mt−1δx(t− 1)

Here the − super script denotes a perturbation advanced by the STLM, a sort of inital guess in perturbation
advancement. We will use a non-linear ensemble run and an ensemble of STLM ”first guesses” to find a
correction, N1, which will update δx(t)− at time t1

δx(t1)
+ = N1δx(t1)

−

We can find the jth row of the matrix N1, vj, with the equation:

[
δxj(t1)

nl
1 , δxj(t1)

nl
2 , . . . , δxj(t1)

nl
Nens

]
= vT

j


δxj1(t1)

−
1 δxj1(t1)

−
2 . . . δx1(t1)

−
Nens

δxj2(t1)
−
! δxj2(t1)

−
2 . . . δxj2(t1)

−
Nens

...
...

. . .
...

δxjs(t1)
−
1 δxjs(t1)

−
2 . . . δxjs(t1)

−
Nens



Figure 5: Linearization error reduction with the HTLM and NASA GEOS with atmospheric chemestry.

where we have perturbations from the full nonlinear model for the jth element of the state vector at time
t1 on the right and STLM advanced perturbations sampled around the jth point with an ”influence region”
of size s for each ensemble member. This sets up a set of least squares problems we can then solve for
the corrective updates we desire. Once we have said updates we can run 4d -Var normally applying the
updates at each subwindow in 4d-var. With the addition of this method to JEDI it is now available for any
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model with a JEDI interface and is already being tested with NOAA GFS, SOCA, and NASA GEOS with
atmospheric chemestry. An example of the reduction in linearization error for NO2 concentrations is shown
in Figure 5. This particular method is also intended to be operational at the UK Met Office as a part of
their new forecasting system currently underdevelopment.
Future Directions: While the HTLM shows good reduction in linearization error for hight resolutions it
can still be computationally intensive and methods to speed things up are desirable. Currently there are
already multi-resolution versions of the HTLM available in JEDI but the method could benefit from the
ability to calculate and apply update terms on GPU’s. The problem is extremely parallelizable and current
work on porting JEDI code to GPU’s is underway. The other expensive piece of this algorithm can be
running the nonlinear ensemble, a ML emulator for the nonlinear system would likely be sufficient and allow
for larger ensemble sizes, although the HTLM does well with fairly low ensemble numbers already.

New Metrics for Model Calibration

For models which produce coherent structures such as ocean, atmospheric, or sea ice models, comparison of
model output to observational data through something like a standard euclidean metric might be misleading
or not informative enough. In the presence of coherent structures such as hurricanes, eddies, or sea ice leads
one may want to measure model skill with considerations of the geometries as opposed to a simple point by
point comparison of values at specific locations. Using the Elastic-Dechohesive rheology the model presented
in [38] explicitly represents sea ice leads through discontinuities tracked by a jump vector. While predicting
the location of leads is important the shape and orientation of the cracks is also an important consideration
and warrants a metric which can take this into account. This can be accomplished by warping the model
out put, viewed as an image, to observational data first optimally aligning the leads and then calculating a
difference metric. The warping is done with a boundary preserving diffeomorphism and provides two metrics:
how close two images can possibly be and how much warping it took to warp one image to another. The
space of images considered is the set F = {f : D → Rn|f ∈ C∞(D)} with dim(D) = m ≤ n they are warped
using the set of orientation preserving diffeomorphisims γ ∈ Γ that preserve the boundary of D which forms
a group under the operation of composition f ◦ γ. The metric which gives the distance between two images
f1, f2 ∈ F is defined as,

da(f1, f2) = inf
γ∈Γ

||q1 − q2 ◦ γ|| where qi =

√
∂f(s)

∂x1
∧ . . . ∧ ∂f(s)

∂xm
fi(s). (5)

Figure 6: Posteriors for model calibration. Left: Using the amplitude and phase distances. Right: Using
just the Euclidean distance.

This distance, the amplitude distance, satisfies all of the requirements of a proper metric and measures how
close two images are after they are optimally aligned by the diffeomorphism γ the amount of warp from this
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gamma, the phase distance, can also be used as a measure of how different the two images are. These metrics
were applied to model out put for the model in [38] compared to SAR satellite imagery for a variety of shear
and tensile strength parameters sampled using a latin hyper cube sampling scheme. Using the metrics above
a statistical emulator was employed to estimate the optimal parameters based on the data. In Figure 6 we
can see that when using the two metrics above a meaningful calibration was obtained while simply using the
Euclidean distance provided a flat posterior with little new information. All of the details can be found in
[16]
Future Directions: Metrics like these can be applied to a variety of models which produce coherent
structures directly. However, finding the optimal gamma is difficult and new optimization techniques, rather
than just gradient dissent are desirable. Improving the optimization algorithm is a part of on going work. I
also have deep interest in the development of new metrics and studies of which metrics fit a specific situation
best. I also am interested in the development of DA methods which assimilate coherent structures based on
the geometry in observations as well as the physical values. This could apply to hurricane center locations,
ocean currents, sea ice leads, etc.

Machine Learning, Sea Ice and Geophysics

Machine Learning (ML) has become a hot topic in applied mathematics and statistics in recent years owing
to the direct utility some of the methods allow. I see ML as powerful for data analysis and an augmentative
tool for modeling and forecast. I am currently involved in two projects taking advantage of some of promise
of ML techniques to aid in sea ice modeling efforts and as an augmentative tool for Data Assimilation.
In the first we are exploring the use of a Generative Adversarial Network (GAN) trained on images of melt
ponds atop sea ice to generate realistic melt pond geometries and scenes which can serve as input to large
scale sea ice models for which parameters may depend on sub-scale processes related to the ponds themselves.
For example, ice strength is directly tied to ice thickness in most numerical sea ice models and melt ponds
have an effect on the ice thickness over the area which they cover. If, based on thermodynamic variables
in the model, the presence of ponds is expected one may wish to generate a statistically consistent melt
pond geometry to inform the strength parameter in the ice model. This is particularly important for models
wishing to use large ensembles as many realistic melt pond scenes may be needed. Some preliminary results
are shown in Figure 7.

GAN Generated Real Binarized Area v.s. Perimeter

Figure 7: Examples of GAN generated vs Real (but binarized) images of melt pond scenes with a comparision
of the Area vs Perimeter relationship for the generated set (Blue) and Real (Red) ponds.

An additional use for such GAN could be in the aid of sea ice concentration retrievals. In the Arctic summer
months melt ponds cover vast areas of sea ice which have the same microwave signature as that of open
water. Passive microwave radiometry uses the contrast in microwave signatures of sea ice and open water
to estimate sea ice concentration usually at or above the 14km scale. When the melt ponds sit atop the ice
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they obscure the ice beneath which can cause up to a 30% in sea ice concentration retrieval [20]. If one can
rapidly generate sea ice scenes with open water and melt ponds through a well trained GAN, which, are
consistent with specific satellite observed microwave radiance. Then it may possible to obtain a measure of
uncertainty in what concentrations actually produced the signal. Further, using available validated data it
may be possible to train a Deep Neural Net to select the most likely candidate of those possibilities.
The second project looks using ML to replace the observation operator in Data Assimilation. This is mo-
tivated by the sea ice concentration example but is a generally applicable idea. The observation operator
maps model state variables to the observations space where the predictions and observations may be com-
pared. For passive microwave retrieved sea ice concentrations one may choose to use the concentration value
provided by NASA ( with up to 30% due to ponding), for example in which case the observation operator
is a simple projection or one may map the sea ice state what would be the observable microwave radiances.
The former case is computationally inexpensive and the latter not, especially when using ensemble methods.
Assimilating data that may be in in 30% error is undesirable and can be avoided by instead mapping sea ice
state to satellite radiance. ML enables this through cuts in computational cost. This concept could apply
to many other geophysical systems of interest.
Future Directions: In addition to the projects described above I am also interested in finding ways to
use ML to augment models and data assimilation schemes. One of the most obvious places to start is in
data processing. The identification of coherent structures or important features such as fronts or sea ice
leads would have broad appeal and is an obvious use of ML techniques. There is also the idea of dynamic
data thinning, many operational forecasting systems must thin data for assimilation due to computational
constraints. A system which identifies important features could choose to increase data resolution there while
reducing it in regions of slow dynamics. For models with adaptive meshes, it may also be possible to adapt
a system like this to dynamically refocus mesh resolution in areas where more may be needed to capture
important dynamics. For computationally expensive models the ability to run large ensembles is often a
missing but critical factor in improving forecast skill. This is particularly true with ensemble DA methods
where larger ensemble sizes provide better error statistics. While ML can not yet fully replace a numerical
model in long term forecasting there has been much progress in providing some short term prediction skill
[24, 26]. In the ensemble DA setting this is sufficient as more ensemble members can be created a short time
before an observation is available and progressed to the observation time using the ML forecasting scheme.
This could potentially allow the use of ensemble methods in cases where computational cost is prohibitive
as such. I am also interested in using self learning techniques such a self organizing maps in data analysis in
general. ML and its interplay with applied mathematics presents many opportunities.

Wave Dynamics in the Marginal Ice Zone

The MIZ can be loosely defined as the region of the ice pack with an ice concentration low enough such
that it is significantly effected by ocean swell. Waves propagating into the ice pack play a central role in
determining the the break up, distribution, and sizes of ice floes in the MIZ. The ice floes in turn control the
dispersion and attenuation of the of the incoming waves. These waves are important to consider in any sea
ice model and play a major role in ice melt, shore erosion in the Arctic, and the polar ecosystem. Recently,
continuum models have been developed which treat the MIZ as a two-component composite of ice and slushy
water [40, 19]. More specifically, the ice-water composite has been modeled as a thin elastic plate, a viscous
ice layer atop an inviscid fluid, as well as a viscoelastic layer atop an in-viscid fluid. These models yield
dispersion relations which determine the wave properties necessary for continued propagation through the
MIZ. At the heart of these models are effective parameters, namely, the effective elasticity, viscosity, and
complex viscosity. In practice, these effective parameters, which depend on the composite geometry and the
physical properties of the constituents, are quite difficult to measure. To overcome this difficulty, we have
employed the tools of homogenization theory to derive bounds on the effective parameters necessary for these
models [31]. Specifically, we have developed a Stieltjes integral representation, involving a positive spectral
measure of a self-adjoint operator, for the effective complex viscoelasticity ν∗ of the ice water composite in
the low frequency, long wave limit and have the form,

ν∗

ν2
= ||ϵ0||2(I − F (s)) , F (s) =

∫ 1

0

dµ(λ)

s− λ
, (6)
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ν1
ν∗

= ||σ0||2 (I − E(s)) , E(s) =

∫ 1

0

dη(λ)

s− λ
. (7)

The positivity of the measure allows for the derivation of rigorous forward bounds which depend on partial
information about the geometry of the ice-water composite. Integral representations like this have also
been used to derive inverse bounds, where measured data is used to bound the structural parameters of the
composite, such as the volume factions of the components [5]. We have also developed a simplified wave
equation for waves in the ice-water composite. This wave equation arises naturally from the homogenization
of the governing equations in the low frequency limit, and could provide a computationally inexpensive
numerical model of wave propagation in the MIZ. The bounds are shown in Figure 8 as well as an extension

General Bounds Matrix Particle Bounds

Figure 8: Left: General bounds derived from the Stieltjes integral representations for various wave periods
T. Right: Tighter bounds using the restricted support under the matrix particle assumption for T = 25

of the theory to the matrix-particle bounds valid in pancake ice. Pancake ice consists of small rounded ice
floes embedded in a slushy layer typically separated by some small amount. With this particular geometric
assumption the support of the measure in the above integral representations may be restricted,

F (s) =

∫ sM

sm

dµ(λ)

s− λ
E(s) =

∫ sM

sm

dη(λ)

s− λ
, (8)

allowing for a tightening of the original bounds [33, 3]. Here the restriction (sm, SM ) is governed by the
separation of the particles embedded in the matrix. In this case for reasonably chosen individual viscoelas-
ticites of each separate component we obtain much tighter bounds which fall on a data point measured from
lab grown pancake ice in a wave tank [41].

Future Directions: Once wave propagation characteristics are understood for a given configuration of ice,
the next question is, how does the propagation of the wave affect the configuration? Waves of sufficient
amplitude can certainly break up larger ice floes, this changes the geometry and thus the wave propagation
characteristics in turn. I am interested in studying this problem through the development of a numerical
model of wave propagation and ice break up using some of the results outlined above. The effect that wave
propagation has on the floe size and thickness distribution of sea ice is important to consider in any large
scale sea ice model. When a floe is broken up by wave action it becomes more susceptible to lateral melting,
advection and rafting.

Physical Transport in Sea Ice

Fluid flow through sea ice mediates a broad range of processes such as, snow ice formation, melt pond
drainage, and nutrient flux for the algae which call it home. When viewed as a two phase composite of
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ice and brine pockets, both homogenization theory and percolation theory shed light on the constraining
parameter of fluid permeability. Many of the same methods we have applied to fluid flow through sea ice
apply to other porous materials such as soil. Beginning with the equations of Stokes flow in the brine pore
space and utilizing a two scale expansion, it has been shown that Darcy’s law applies in the limit where the
micro structure is much smaller than the composite. Darcy’s law states that the fluid velocity is proportional
to the pressure gradient through the effective permeability tensor K∗. That is, v = −(K∗/η)∇P where η
is the fluid viscosity. This allows for a direct measurement of the vertical component of K∗ [10]. The
permeability of the ice depends on the connectedness of the brine phase. As the ice warms, the brine pockets
begin to form long vertical channels allowing fluid to flow. In columnar ice, the channels first begin to
connect on large scales at about ϕ = 5% volume fraction, T = 5◦C and a bulk salinity of S = 5 parts per
thousand, dubbed the rule of fives [13]. Before the critical threshold of ϕ = 5% the ice remains impermeable,
while after this threshold the permeability increases rapidly as a function of volume fraction. For granular
ice, the critical threshold is significantly higher at about ϕ = 10%, something we experimentally confirmed
in Antarctica in 2012 [15]. This behavior can be explained using continuum percolation theory, in particular,
we use a compressed powder model [22, 12]. In this model, large polymer spheres of radius Rp are mixed
with much smaller metal spheres of radius Rm, and then the mixture is compressed. The main parameter
controlling the threshold is the ratio ξ = Rp/Rm. An approximate formula for the critical volume fraction
for percolation of the small metal spheres, when the spheres form long connected chains in the composite,
is given by ϕc = (1+ ξθ/(4Xc))

−1, where θ is a reciprocal planar packing factor, and Xc is a critical surface
area fraction of the larger particles which must be covered for percolation by the smaller particles [22]. An
analysis of the crystalline structure of sea ice yields a model prediction of ϕ ≈ 5% for columnar ice and
ϕ ≈ 10% for granular ice [?].
Percolation theory [39, 17, 11] can be used to model transport in disordered materials where the connectedness
of one phase, like brine in sea ice, dominates the effective behavior. Consider the square (d = 2) or cubic
(d = 3) network of bonds joining nearest neighbor sites on the integer lattice Zd. The bonds are assigned
fluid conductivities κ0 > 0 (open) or 0 (closed) with probabilities p and 1− p. There is a critical probability
pc, 0 < pc < 1, called the percolation threshold, where an infinite, connected set of open bonds first appears.
In d = 2, pc =

1
2 , and in d = 3, pc ≈ 0.25.

Let κ(p) be the permeability of this random network in the vertical direction. For p < pc, κ(p) = 0. For
p > pc, near the threshold κ(p) exhibits power law behavior, κ(p) ∼ κ0(p − pc)

e as p → p+c , where e is the
permeability critical exponent. For lattices, e is believed to be universal, depending only on d, and is equal
to t, the lattice electrical conductivity exponent [39, 17, 12, 2]. In d = 3, it is believed [39] that t ≈ 2.0,
and there is a rigorous bound [11] that t ≤ 2. Although e can take non-universal values in the continuum,
it was shown [39, 17] that for lognormally distributed inclusions, such as those in sea ice, the behavior is
universal, with e ≈ 2. The scaling factor k0 is estimated using critical path analysis [36] and microstructural
observations [13]. Thus

k(ϕ) ∼ 3 (ϕ− ϕc)
2 × 10−8 m2, ϕ → ϕ+

c ,

with ϕc ≈ 0.1 for granular ice and ϕc ≈ 0.05 for columnar ice. This model agrees well with measurements in
both the Arctic and Antarctic.
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