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1 David F. Anderson, Timo Seppäläinen,
and Benedek Valkó. Introduction to
Probability. Cambridge University Press,
1 edition, 2018

Introduction

These are lecture notes intended for teaching MATH 5010:
Introduction to Probability at the University of Utah. These notes
are intended to accompany the textbook of the course.1 They are not
intended to stand alone.

These notes are not only a reference but a lecture tool. I, the in-
structor, use the notes while also provide copies to the students. The
students are expected (though not required) to fill out their own copy
of the notes as I fill out a copy that they can see on a screen behind me.
Thus I save time in class writing down tedious definitions, comments,
and example problem set-up and instead can spend time solving prob-
lems and explaining material to the student. Students spend less time
watching me write on the board and more time watching me work on
problems and interacting with them. I’m usually facing my students
when filling out these notes, allowing me to interact with them better.

The course follows the recommended course outline in [Anderson
et al., 2018]; in fact, I initially taught the course in a twelve-week
summer course, so some topics suggested by the authors had to be
dropped for the sake of time. “Finer points” sections are not intended
to be subjects taught in depth in this course, especially since it is not
an honor’s course, but the topics of those sections often appear in the
footnotes for the interested student.

If you plan to use these notes, I hope you find them useful to your
purposes. I put a lot of thought and work into them and while they
are not perfect, I feel they aid in teaching immensely and I’m proud of
them.





1 The complement of Ω is the empty set,
∅; that is, Ωc = ∅.
2 A natural choice of F is the power
set P , consisting of all subsets of Ω.
While P works in discrete spaces as the
choice of F , it is a poor choice in general
since P often produces so many sets
that P is no longer a proper probability
measure; that is, it’s not possible for
P (Ω) = 1 when F = P and Ω = R or
any other uncountably infinite sample
space. Instead we require that F be a
σ -algebra; which means that: Ω ∈ F ;
if A ∈ F , then Ac ∈ F ; and if A ∈ F
and B ∈ F , then A∪B ∈ F . We then say
that all open sets are in F to produce
the Borel sets. These technical details
are rarely a concern though; most sets
you imagine are valid events. We won’t
discuss these details in this class, but
this would be an important topic in
graduate-level probability courses.
3 At times it’s useful to instead think
of a probability measure and allow the
existence of other measures defined on
the same space; for example, there could
be two probability measures on a space,
P andQ, or a sequence of probability
measures P1,P2, . . ..
4 Other terminology includes probabil-
ity distribution, which is particularly
common when discussing random
variables.
5 In higher level analysis classes you
may learn measures in general, such as
Lebesgue measure, which generalizes
notions such as length, area, or volume;
P is a measure as well, and the proper-
ties common to measures apply to P as
well. This is why we use Venn diagrams
to help explain how probabilities work;
since Venn diagrams operate primarily
off of our intuition for how areas work,
and both area and probabilities are mea-
sures, Venn diagrams are a natural tool
for understanding at an intuitive level
how to compute some probabilities.
6 Other common terminology includes
pairwise disjoint; more specifically, if
i , j, then Ai ∩Aj = ∅.

1
Experiments with Random Outcomes

Introduction

This chapter introduces basic concepts in probability. We define
a probability model and its accompanying parts. After some examples,
we then see random variables.

In this chapter I take for granted your knowledge of set theory and
number theory. Most students have seen these ideas before now, and
repeating them uses time that we could be using on probability theory
itself. However, Appendices B and C of the textbook include reviews
of these topics; additionally, students can meet with me in office hours
to get a personal review.

We will be skipping Section 1.6 from the textbook.

1.1 Sample Spaces and Probabilities

A probability model includes three key ingredients:

1. The sample space Ω1, the set of all possible outcomes of the experi-
ment;

2. F , the collection of possible events, which are subsets of Ω.2

3. The3 probability measure4,5, P, which is a function defined on F
and returns values in R, or P : F →R. P satisfies the following:

(a) P (A) ≥ 0 for any event A ∈ F ;

(b) P (Ω) = 1; and

(c) If A1,A2, . . . is a sequence of mutually exclusive6 events, then

P (
⋃∞
i=1Ai) =

∞∑
i=1

P (Ai) . (1.1)
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7 Andrey N. Kolmogorov. Foundations of
the Theory of Probability. Chelsea Pub Co,
2 edition, June 1960
8 The proof of this is strange, especially
considering that there’s an easier
argument based off of Proposition 3, but
I’m avoiding using Proposition 2 which
needs this fact and also is used in the
proof of Proposition 3, and I don’t want
to make a circular argument.

9 I use the notation [n] to represent the
set {1, . . . ,n} ⊂N.

Together the triple (Ω,F ,P) are called a probability space.
The axioms above are intentionally sparse; in fact, once you have

these axioms, you can obtain all the other important features of how
probabilities work. Below I will prove important facts about P that
give us the rest of the probability models features. The axiomatiza-
tion above is known as the Kolmogorovian axiomatization, after the
Russian mathematician Andrey Kolmogorov, who first formulated
probabiltiy in these measure-theoretic terms7.

Proposition 1. 8

P (∅) = 0. (1.2)

Proposition 2. For a collection of mutually exclusive events A1, . . . ,An,
with Ai ∈ F for every i ∈ [n]9,

P (
⋃n
i=1Ai) =

n∑
i=1

P (Ai) . (1.3)
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10 I use the notation Ac to denote the
complement of a set.

11 So although I wrote P : F → R, the
more precise formulation is P : F →
[0,1] ; I simply wanted minimal axioms.

Proposition 3. P (Ac) = 1−P (A)10 for every A ∈ F .

Proposition 4. P (A) ≤ 1 for every A ∈ F .11
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12 You may find the notation 1 ≤ i1 <
i2 < . . . < ik ≤ n in Equation (1.4)
novel; what it means is that it ranges
over all sets of k numbers written in
order that are at least 1 and at most
n. Suppose n = 3 and k = 2; then the
sets of numbers (i1, i2) summed over
would be (1,2), (1,3), and (2,3). So∑

1≤i1<i2≤3P
(
Ai1 ∩Ai2

)
would become

P (A1 ∩A2)+P (A1 ∩A3)+P (A2 ∩A2).
This is one of the steps to using the
general inclusion/exclusion formula to
obtain the statement of Proposition 6; as
an exercise, use Proposition 7 to recover
the statements of both Propositions 5
and 6 and also try the case when n= 4.

Proposition 5. P (A∪B) = P (A) +P (B) −P (A∩B) for any events
A,B ∈ F .

Proposition 6. For any sets A,B,C ∈ F ,

P (A∪B∪C) =P (A) +P (B) +P (C)−
P (A∩B)−P (A∩C)−P (B∩C)+
P (A∩B∩C) .

Proposition 6 is proven similarly to Proposition 5. In fact, both are
instances of Proposition 7 below (again, stated without proof).

Proposition 7 (General inclusion-exclusion formula). Let A1, . . . ,An ∈
F ; then12

P (
⋃n
i=1Ai) =

n∑
k=1

(−1)k+1
∑

1≤i1<i2<...<ik≤n
P

(
Ai1 ∩ . . .∩Aik

)
. (1.4)

Let’s use these facts to start making some probability models.

Example 1. A simple coin flip ends in either heads (H) or tails (T ).

1. What is the sample space Ω?

2. What is F ?
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13 The notation P ({ω1,ω2, . . .}) grows
cumbersome after a while; it’s typical to
simply omit {} and write P (ω1,ω2, . . .)
instead.

14 Regarding event interpretation, two
events bear special mention: Ω and
∅. Ω can be understood as the event
that anything happens, while the event
∅ is the event that literally nothing
happens. In my experience students
don’t struggle with interpreting Ω but
∅ is an event students seem to want to
assign inappropriate interpretations,
such as “the dice lands on the side and
sticks there” or “The coin never ends.”
The only interpretation of ∅ that I
think could be appropriate is “A logical
contradiction occurs” but any other
interpretation is wrong. The events
that I listed as incorrect should not be
thought of as outcomes in ∅ but rather
outcomes that are not in Ω and thus
explicitly forbidden in our model. ∅
is the empty set; there are no outcomes
in the empty set! No outcome is associate
with the empty set!

3. We will call a coin flip “fair” if P ({H}) = P ({T })13. Find the
probabilities of these events.

Example 2. Consider rolling a six-sided die, and the outcome of
interest is the number of pips showing when the die finishes rolling.

1. What is the sample space Ω?

2. List and interpret14 some events in F .

3. If the dice is fair, what is the probability of any element of Ω?
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15 The notation A×B when A and B are
sets denotes the Cartesian product of
the sets A and B.

A×B=
{
(a,b) : a ∈ A,b ∈ B

}
.

16 A set denoted by text naturally means
the set consisting of elements that
satisfy the conditions set by the text.

4. LetQ be a probability measure on this space representing an unfair
die roll, where rolling a six is twice as likely as rolling a one. Find
Q (ω) for every ω ∈Ω.

5. Now consider a sample space consisting of two die rolls; that is,
Ψ =Ω×Ω15. List the elements of Ψ .

6. Let PΨ be the probability measure that assigns equal probability to
every member of Ψ . If ψ ∈ Ψ , what is PΨ (ψ)?

7. Compute PΨ (The dice sume to 4)16.
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17 See footnote 14; ∅ does not corre-
spond to the outcome that the experi-
ment never ends.

18 The conclusion of this example is that
even when we allow non-termination
in our model, the string of coin flips in
this perfectly natural and reasonable
probability model ends with probability
1. In probabilistic parlance, an event A
occurs almost surely (a.s.) if P (A) = 1;
or equivalently, P (Ac) = 0. So in our
probability model, we will eventually
see a head and end the experiment a.s..

Example 3. Consider flipping a coin until it lands heads-up. We will
denote an outcome of this space with a string such as H , TH , T TH ,
and so on.

1. Describe Ω.

2. Let ω ∈Ω. Let n(ω) be the length of the string ω. Suppose P (ω) =

2−n(ω). Show that P is a probability measure.

3. Technically, the experiment must terminate with a final flip of H
in our probability model formulated above because there is no out-
come in Ω that corresponds to the experiment never ending.17 We
need to add an outcome to Ω that allows for this possibility. Let’s
do so, while at the same time still having P assign probabilities
for the other elements in Ω the same way as before; call the new
element of Ω “∞”. What is P (∞)?18
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1.2 Random Sampling

When Ω is finite (that is, |Ω| < ∞, where |A| is the number of
elements in a set A), a natural probabililty model assigns an equal
probability to all elements of Ω. We say the elements of Ω are chosen
uniformly at random if, for every A ∈ F ,

We can then call P the uniform measure on Ω. The uniform mea-
sure is the primary reason why probabiltiy is concerned with counting
techniques, since many probability computations amount to counting
both the number of elements in Ω and elements in a set A ∈ F .

When counting we often find ourselves picking k out of n items in
order to form one instance of the event of interest A. For example, in a
string of coin flips that are either H or T , we need to pick which k out
of the n locations contain H , or we need to model picking cards from a
deck to form a poker hand. To do this we have some basic rules:

Proposition 8 (Sum Rule). If for each of k sets we have n1, . . . ,nk elements,
all sets are mutually exclusives, and we need to pick an element from one
of the k sets, the total number of ways to make the choice is

∑k
i=1ni .

Proposition 9 (Product Rule). If to form an element of a set we need to
make k choices and for each choice there are n1, . . . ,nk ways to make the
choice, then the total number of ways to form the element is

∏k
i=1ni .

Now suppose that out of n items we need to pick k. In order to
determine how many ways there are to do this, we need to answer
questions such as

• Are items chosen with or without replacement? That is, if we pick
an item for one of the k, can it be picked again?

• Does order matter? That is, does rearranging the k items picked
lead to a distinct, different outcome, or not?

The answer to these questions leads to one of the four following
formulas being used.

Replaced Removed
Ordered nk (n)k =

n!
(n−k)!

Unordered (n+k−1
k ) (nk) =

n!
k!(n−k)!

Recall that n! = n(n− 1)(n− 2) . . . (2)(1) =
∏n
k=1 k, and 0! = 1.



introduction to probability lecture notes 15

Example 4. 1. Suppose we flip a coin eight times, producing a string
of length 8 consisting of H and T . What is the probability that the
string consisting of the first four flips will be identical to the string
consisting of the last four flips?

2. What is the probability that out of the eight flips we will see 3 H?

Example 5. 1. A high school basketball team has 24 players. There
are five positions on the court that the team needs to fill: small
forward (SF), power forward (PF), shooting guard (SG), point
guard (PG), and center (C). Teams where players occupy different
positions are distinct. How many teams are possible?
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2. Among the 24 players, 4 are SGs, 7 are PGs, 9 are PFs, 2 are SFs,
and 2 are Cs. What is the probability that a team randomly (uni-
formly) constructed from all players regardless of their positions is
a valid team?

Example 6. Dave’s Donuts offers 14 flavors of donuts (consider the
supply of each flavor as being unlimited). The “grab bag” box consists
of flavors randomly selected to be in the box, each flavor equally
likely for each one of the dozen donuts. How many distinct “grab
bag” boxes exist (that is, where order of the donuts in the box does not
matter)? How many boxes exist that have no more than three distinct
flavors in the box?
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19 One can easily prove that equal
probability is not possible when Ω is
infinite.

20 This need not necessarily be the case;
for example, a probability model could
assign a non-zero probability to, say,
ω = 0, and probability zero to every
other outcome (this could be a model
for, say, how long a customer has to
wait to be serviced at a shop, where
a wait time of zero occurs when the
customer is serviced upon arrival). It is
possible to assign positive probability
to a countable subset of Ω and use a
different probability model for the
other elements of Ω, but these are
unnecessary complications.
21 The symbol ∝means “proportional
to”, meaning that two things differ by a
multiplicative constant. For example, if
f (x) = 10

x , then f (x) ∝ 1
x

22 In this case, P is proportional to the
Lebesgue measure, l, where l([c,d]) =
d − c for any [c,d] ⊂ R. Lebesgue
measures follow the same rules as
probability measures except that we
do not require l(Ω) = 1. Often Ω = R
and F consists of the Borel sets of
R, which are sets that can be formed
by complementation and union of
open intervals. We then call (R,F , l)
a measure space. In fact, this idea can
be extended to higher-dimensional
space and l generalizes our notions of
length, area, and volume. If you wish
to learn more about these ideas, take an
advanced real analysis class.
23 The point of this part is that bound-
aries and single points don’t matter in
continuous models.

1.3 Infinitely Many Outcomes

From our discussion up to this point, we can clearly see that sample
spaces need not be finite. We already saw in Example 3 a situation
where |Ω| =∞, or more precisely, |Ω| = |N| = ℵ0. When |Ω| = ℵ0, we
say that Ω is countably infinite, and when |Ω| ≤ ℵ0, Ω is countable.
When Ω is countable, we can assign a non-zero probability to each
ω ∈ Ω, and in the case of finite Ω they can even all have the same
probability.19

The real numbers, R, are uncountable; that is, |R| = 2ℵ0 = c. In
fact, any interval of R is uncountable, and this extends to higher-
dimensional spaces as well. If |Ω| = c, probability models typically20

will let P (ω) = 0 for every ω ∈ Ω, and assign probabilities in ways
other than the number of elements in the set A ∈ F (which is often an
uncountably infinite set as well).

Example 7. Let Ω = [a,b], where a,b ∈ R and a < b. We will say that,
for a ≤ c ≤ d ≤ b, P ([c,d]) ∝ d − c.21,22

1. What is P ([c,d])?

2. What is P ((c,d))23?

3. Let Ω be the sample space consisting of the distance from a city
along a straight stretch of road a car accident occurs that’s between
100 and 150 miles away, so Ω= [100,150]. What is the probability
that an accident occurs more than 130 miles away?
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24 Such a collection of B1, . . . ,Bk is
known as a partition of Ω. The simplest
non-trivial partition of Ω is {A,Ac} for
some A ∈ F .
25 This fact will be expressed in a
slightly different form as the Law of
Total Probability in a later chapter.

4. What is the probability that the accident happens between 110 and
120 miles away?

5. What is the probability that the number of miles away, rounded
down, the accident occurs at will be an even number?

1.4 Consequences of the Rules of Probability

The rules of probability allow us to more easily compute the
probabilites of complex events that are difficult to enumerate. We
developed a lot of these rules in Section 1.1. We will see more conse-
quences and how they can be used here.

Proposition 10. Let A ∈ F , and B1, . . . ,Bk ∈ F be a collection of mutually
exclusive events such that

⋃k
i=1Bi =Ω24. Then25

P (A) =
k∑
i=1

P (A∩Bi) . (1.5)
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Example 8. At a dinner party, 28% of the guests are male Republicans,
12% are female Republicans, 25% are male Democrats, and 25% of
guests are female Democrats. If you randomly pick a guest at the
dinner party, what’s the probability that the guest is female? What’s
the probability the guest is Republican? (There are no independents
or third-party voters at the party.)

Example 9. This example resumes from Example 3. What is the
probability that it will take at least four flips in order to see the first
head?

Example 10. An urn contains balls and blocks which are either red or
blue. There are 30 objects in the urn, 10 of which are blocks and 18
of which are blue; 8 objects are blue balls and 4 are red blocks. Reach
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into the urn and pull out objects without replacement. If you pull out
three objects, what is the probability that they all have the same trait
(that is, they’re all blocks, all balls, all red, or all blue)?
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26 We can in fact say more. The prob-
ability measure is continuous; if we
have events A1 ⊆ A2 ⊆ . . . ⊆ An ⊆ . . .
and we set A∞ =

⋃∞
k=1Ak , then

limn→∞P (An) = P (A∞). A similar
statement can be said for “decreas-
ing” sets; if A1 ⊇ A2 ⊇ . . . ⊇ An ⊇ . . .
and we set A∞ =

⋂∞
k=1Ak , then

limn→∞P (An) =P (A∞).

Proposition 11. If A ⊂ B, then P (A) ≤P (B).26

Example 11. I gave an argument in Example 3 for why the sequence
of coin flips terminates with a H a.s. even when we allow for the
possibility that it doesn’t ever terminate. Here is an argument that
uses Proposition 11 to make the same argument.

1.5 Random Variables: A First Look

Loosely, random variables are variables whose values are un-
known, but this is not how random variables are treated in probability.
In fact, random variables are technically neither random nor “vari-
ables” in the way people usually think of them. Instead, random
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27 Actually, random variables need
not be real-valued. We can develop
probability models for complex-valued
or vector-valued random variables,
or even random functions, such as
Brownian motion. In principle, any
mathematical object can be the output
of a random variable. But in this course,
random variables will always be real-
valued.
28 The randomness of random variables
comes not from the random variable
itself but from the input to the random
variable, ω ∈Ω.
29 Since there are restrictions on what
sets we can query in probability models,
represented by F , there are restriction
on what constitutes valid X as well.
We require that random variables be
measurable, meaning that for any Borel
set A, X−1(A) ∈ F . That is, when we
ask whether the random variable X
lies in a region for which we should be
able to get an answer, we should not
suddenly produce a preimage that isn’t
measurable.
30 But this is different from the random
variable being constant. Perhaps the
random variable is not constant, but
values of Ω that cause the random
variable to change values occur with
probability 0. We could, for example
develop a random variable for the
model in Example 3 that equals 1 for
ω ,∞ and 0 for ω =∞; since P (∞) = 0,
this random variable will equal 1 a.s.
even though there is an outcome in the
sample space that would cause it to
change.
31 Of course these are not the only types
of random variables we can form. We
can extend the example from footnote
20 to a random variable representing
waiting time to be serviced, where
X = 0 represents no waiting time, which
occurs with a non-zero probability.

variables (r.v.s) are functions that take values from Ω as inputs and
return real numbers as outputs.27,28 For example, we could have a
random variable X that takes inputs from Ω and returns values in
R, or X : Ω→ R.29 Random variables are traditionally named with
letters from the end of the alphabet and often are capitalized (but this
is a convention that is frequently broken).

Suppose we want an event that corresponds to X ∈ A ⊆ R; that
is, we want an event that represents X being in the set A ⊆ R. The
set corresponding to this is

{
ω : X(ω) ∈ A

}
; that is, it’s all ω ∈ Ω

such that X(ω) ∈ A. However, this is rather wordy to write and
is often abbreviated to {X ∈ A}. So understand that P (X ∈ A) =

P (
{
ω : X(ω) ∈ A

}
). You may recognize that

{
ω : X(ω) ∈ A

}
represents

the preimage of A under X, or all values of Ω causing X(ω) ∈ A.
(We denote the image of a set B ⊆ Ω with X(B); more precisely,
X(B) =

{
a ∈R : X(ω) = a for some ω ∈ B

}
. The preimage of a set

A ⊆R is the set
{
ω : X(ω) ∈ A

}
and is abbreviated as X−1(A).)

Degenerate random variables satisfy P (X = c) = 1 for some
c ∈ R. These random variables are, from a probabilistic perspective,
effectively constant; that is, they are constant a.s..30 Degenerate
random variables are the first example of one major class of random
variables: discrete random variables. Discrete random variables take
values in a finite or countably infinite subset of R a.s.; using notation,
we say

∣∣∣X(Ω)
∣∣∣ ≤ ℵ0. Continuous random variables, on the other

hand, are random variables for which P (X = c) = 0 for any c ∈ R
but for which there exists an interval (a,b) such that P (X ∈ (a,b)) =
P (a < X < b) > 0.31 In this chapter we will concern ourselves only
with discrete random variables (with the exception of the random
variable following from the sample space of Example 7).

The probability distribution of X is the collection of probabilities
P (X ∈ B) for B ⊆ R. Probability distributions, and anything giving
them, fully characterize r.v.s. In the case of discrete r.v.s, there are
numbers x1,x2, . . . such that

∞∑
n=1

P (X = xn) = 1. (1.6)

((1.6) is true even when X takes only finitely many values with
positive probability; when that’s the case, an infinite number of
summands will be 0.) The probability distribution of discrete r.v.s
is fully characterized by the probability mass function (p.m.f.),
pX(x) =P (X = x). This is because

P (X ∈ A) =
∑
x∈A
P (X = x) =

∑
x∈A

pX(x). (1.7)
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(I adopt the convention in this class that
∑
x∈∅ f (x) = 0.)

Example 12. Reconsider the probability model from Example 3. Let
N (ω) be the length of the string ω ∈ Ω (for ω , ∞; in that case, let
N (∞) =∞, even though∞ <R.) What is pN (n) for n ∈N? Use pN (n)
to compute P (N ≥ 3).

Example 13. Consider the sample space Ψ from Example 2. Define
three random variables taking values from Ψ and returning values in
R. Give their p.m.f.s.
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Example 14. Let Ω be the sample space from Example 7 and U : Ω→
R be the identity function on this space (so U (ω) = ω). A random
variable with this distribution is said to be uniformly distributed,
which we denote with U ∼UNIF(a,b).

1. If U represents the distance from a city an accident occurs, as in
Example 7, what is the distribution of U?

2. Compute P (U ≤ 130) and P (140 ≤U ≤ 145).

3. Compute P (U ≥ 160).



1 The notation Ak when applied to a set
means the Cartesian product of the set
taken k times, or Ak = A×A× . . .×A =�k
i=1A.

2
Conditional Probability and Independence

Introduction

One important tool we saw for computing probabilities last chap-
ter was counting, and that tool combined with basic results for how
probabilities interact with set relationships allowed us to get new
probabilities. We’ll next add conditional probability to your arsenal.
Conditional probabilities allow us to describe the relationships be-
tween events in an intuitive way, and form the basis of perhaps the
single most important idea in probability and statistics: independence.
(We will be skipping Section 2.6.)

Let’s start by learning about conditional probabilities.

2.1 Conditional Probability

Consider the space
1 Ω= {H ,T }3, representing flipping a coin three

times. Suppose we are interested in the event {all flips are the same}.
What is the probability of this event?

Suppose we flip the coin twice and get the sequence HH . It seems
like we should update the probability this event occurs from our
previous answer. What answer, intuitively, should we get?

Conditional probabilities give us the tools to do the updating of
probabilites we desire. Let A and B be events with P (A) > 0 and
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2 It’s possible to relax this assumption
that both events have positive probabil-
ity; in fact, we really want to be able to
do this since we may want to condition
on the event that a continuous random
variable is equal to a specific number,
an event that has probability zero. We
may see later tools for dealing with
probability-zero events in conditional
probabilities, but for now let’s keep the
math simple and assume that all events
of interest have positive probability.
3 The economist John Maynard Keynes
(who was a trained mathematician
that studied probability, but is more
famous for his economic theories)
supposedly once said “all probabilities
are conditional”. There is a sense
where this is obviously true; for any
probability measure P, P (A) =P (A|Ω).
But I believe Keynes is making more
of a philosophical statement about
the nature of probabilities; that any
probability we compute in order to
make a statement about real-world
phenomena and activities is conditional
on the state of and our knowledge of
those activities. If our beliefs about
the world are incorrect—that is, we
condition on the wrong Ω—then the
probabilites we compute may not be as
useful as we think.

P (B) > 0.2 The conditional probability of A given B is

P (A|B) =
P (A∩B)
P (B)

. (2.1)

In short, a conditional probability is a probability measure where
the sample space is restricted to B.3 Since B is assumed to have oc-
cured, we restrict the universe Ω to the subset where B occurs; this
also forces a renormalization of our probability measures. Below is an
illustration explaining the idea behind the formula:

Proposition 12. P (·|B) is a probability measure on both (Ω,F ) and
(B,FB), where FB = {A∩B : A ∈ F } and B ∈ F with P (B) > 0.
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Because of Proposition 12, all the rules we proved in Chapter 1 still
hold, and we can treat P (·|B) like any other probability measure.

You could probably guess the formula for conditional probabilities
when all outcomes in Ω are equally likely and |Ω| <∞:

The formula for computing conditional probabilities is useful, but
what may be even more useful is the formula for computing P (A∩B)
when P (A|B) is known.

Proposition 13.

P (A∩B) =P (A|B)P (B) . (2.2)

Proposition 13 can be generalized to an arbitrary number of events:

Proposition 14.

P (
⋂n
i=1Ai) =P (A1)P (A2|A1)P (A3|A1 ∩A2) . . .P (An|A1 ∩A2 ∩ . . .∩An−1)

(2.3)

=P (A1)
n∏
i=2

P
(
Ai

∣∣∣∣⋂i−1
j=1Aj

)
. (2.4)
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4 This could also be solved combinatori-
cally.

Example 15. An urn contains 8 red, 12 blue, and 9 yellow balls. What
is the probability that a red ball was drawn from the urn when two
balls are drawn from the urn without replacement given that none of
the balls drawn are yellow? (Order doesn’t matter.)

Example 16. An urn contains red balls and blue balls. Reach into the
urn and draw balls until a red ball is drawn. There are 10 red balls
and 7 blue balls. What is the probability that it takes four draws to see
the red ball?4

Conditional probabilities give us a natural tool for computing
probabilities in more complicated experiments. More specifically,
Proposition 13 combined with Proposition 10 from Chapter 1 gives
us the Law of Total Probability, which can help decompose a compli-
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5 See footnote 24 from Chapter 1 for a
definition of a partition.

6 Questlove. Conditional probaility and
dice. Mathematics Stack Exchange, 2018.
URL https://math.stackexchange.

com/q/2650862

cated event into more digestable parts.

Theorem 1 (Law of Total Probability). Let A ∈ F and {B1, . . .Bk} ⊂ F be
a partition5 of Ω.

P (A) =
k∑
i=1

P (A|Bi)P (Bi) . (2.5)

Example 17. There are three types of pennies in circulation. One type
of penny is fair; 80% of pennies are this type. There’s a penny that’s
slightly biased so that P (H) = 0.52; this is about 17% of pennies.
Finally, there’s a penny that’s noticeably biased towards tails so that
P (H) = 0.13. If I pull a random penny from my pocket and flip it,
what is P (H)?

Example 18. This example is based off a question asked on Math
Stack Exchange6. Roll a six-sided die and record the number of
pips showing. Then roll the die again and again until eventually a

https://math.stackexchange.com/q/2650862
https://math.stackexchange.com/q/2650862
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7 The easiest partition is {H ,Hc} ⊂ F , in
which case (2.6) reduces to

P (H |D) =
P (D |H)P (H)

P (D |H)P (H) +P (D |Hc)P (Hc)
.

8 The notation here, D and H1, . . . ,Hk ,
is intended to suggest “data” and
“hypothesis”, respectively. This is
because Bayes’ Theorem motivates
Bayesian inference and a branch of
statistics known as Bayesian statistics.
In Bayesian statistical books (2.6) is
abbreviated as:

P (H |D) ∝P (D |H)P (H) .

In Bayesian inference, we start out with
prior beliefs about the probability a set
of hypotheses H1, . . . ,Hk are true. We
then observe data D. We apply Bayes
Theorem to update the probabilities
each of the hypotheses are true; we call
these posterior probabilities.

number at least as large as the number rolled first is seen. What is the
probability that on the last die roll you roll a 3?

2.2 Bayes’ Formula

When we combine Equation (2.1) with Equation (2.2) and Theorem
1, we get Bayes’ Theorem:

Theorem 2 (Bayes’ Theorem). Let D ∈ F with P (D) > 0 and {H1, . . . ,Hk} ⊂
F be a partition of Ω.7,8 For every j ∈ [k] with P

(
Hj

)
> 0:

P
(
Hj

∣∣∣D)
=

P
(
D
∣∣∣Hj)P(

Hj
)

∑k
i=1P (D |Hi)P (Hi)

. (2.6)
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9 Stuart Sutherland. Irrationality. Pinter
& Martin, 2007

Example 19. Reconsider the example from Example 17. Suppose I
flipped the coin and observed H . For each of the coins in circulation,
compute the posterior probability that the coin that was flipped was
that type of coin.

Example 20. I first read this example in Stuart Sutherland’s book,
Irrationality9. In a town there are two cab companies: the Green Cab
company and the Blue Cab company. 90% of cabs are blue cabs and
the remaining 10% are green cabs. One day a hit-and-run accident
occurs; a pedestrian was hit by a cab. A witness of the crime claims
that the cab that hit the pedestrian was green.

The defense attorneys of the Green Cab company subject the
witness to testing, showing her many images of blue and green cabs.
In testing, they discover that the witness correctly identifies green
cabs 90% of the time and incorrectly identifies green cabs 40% of the
time.

Use this evidence to compute how likely it was that the cab in-
volved in the hit-and-run accident belonged to the Green Cab com-
pany. Does there seem to be good evidence that the Green Cab com-
pany was culpable in the hit-and-run accident, based on the witness
testimony?
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10 This information interpretation
flows the other way as well; that is,
information about whether A happened
gives no information about how likely
B is to have occured. I’ll leave showing
this as an exercise.

2.3 Independence

As mentioned in the introduction, independence may be the sin-
gle most important idea of probability theory. Many key theorems
in probability, such as the Central Limit Theorem and the Law of
Large Numbers, require independence. Even processes that model
dependence relationships, such as AR(1) processes in time series
analysis, utilize independence in some way. Models frequently as-
sume independence, since doing so makes modelling probabilities of
intersections tractable when they otherwise would not be so.

One way to define independence is with conditional probabilities:
we say A,B ∈ F are independent if P (A|B) = P (A). This can be seen
as saying that A and B are independent if information about B does
not give information about how likely A is to occur.10 It follows from
this “definition” of independence and from Equation (2.2) that

P (A∩B) =P (A)P (B) . (2.7)

Actually, Equation (2.7) can serve as a definition of independence too,
often does, and will be the “definition” of independence used here.
The reasons why include:

• (2.7) implies that P (A|B) =P (A);

• (2.7) better handles probability-zero events;

• We often need to invoke independence more when computing
P (A∩B) than when computing P (A|B); and

• (2.7) better generalizes to multiple sets and to other objects both
here and in higher-level probability (such as how independence
relates to expected values).

Sometimes the notation A‚ B is used to denote independence of
two events.

Example 21. Can events be independent of themselves? Find the
possible probabilities of self-independent events.
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11 The notation P ({X ∈ A} ∩ {Y ∈ B})
can become cumbersom and is often
abbreviated to P (X ∈ A,Y ∈ B).
12 We say a r.v. X is independent of a set
A, or X ‚ A, if for any Borel set B ⊆ R,
P ({X ∈ B} ∩A) =P (X ∈ B)P (A).

Proposition 15. If A‚ B, then Ac ‚ B, A‚ Bc, and Ac ‚ Bc.

Example 22. Consider rolling a six-sided die and tracking the
number of pips that appear when rolled. Show that the events
A = {even number of pips} and B = {no more than four pips} are
independent.

Random variables X and Y are independent (or X ‚ Y ) if for any
Borel sets A,B ⊆R,11,12

P ({X ∈ A} ∩ {Y ∈ B}) =P (X ∈ A)P (Y ∈ B) . (2.8)

Example 23. You flip a fair coin twice; let Xi(ω) = 1 if the ith flip is H
and Xi(ω) = 0 otherwise. Compute P (X1X2 = 1).
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13 This shows that pairwise indepen-
dence does not imply mutual indepen-
dence.

14 Glyn George. Testing for the inde-
pendence of three events. Mathematical
Gazette, 88, November 2004

When discussing independence of collections of events/r.v.s,
we need to be more careful. Let B1, . . . ,Bk ∈ F be a collection of
events. We say that these events are pairwise independent if for ev-
ery i , j ∈ [k], P

(
Bi ∩Bj

)
= P (Bi)P

(
Bj

)
. One problem with this

notion of independence in collections of events is that it does not
imply P

(
Bi ∩Bj ∩Bl

)
= P (Bi)P

(
Bj

)
P (Bl) for distinct i, j, l ∈ [k], as

demonstrated in Example

Example 24. Roll an eight-sided die, and record the number showing;
that is, Ω = {1,2,3,4,5,6,7,8}. Let A = {2,3,4,5}, B = {1,2,5,6}, and
C = {1,3,4,6}. Show that these events are pairwise independent but
that P (A∩B∩C) ,P (A)P (B)P (C).13

We say that B1, . . . ,Bk are mutually independent if, for any m ≤ k
and {i1, . . . , im} ⊆ [k],

P
(⋂m

j=1Bij
)
=

m∏
j=1

P
(
Bij

)
. (2.9)

Equation (2.9) says, in words, that the probability of the intersec-
tion of any subcollection of events from {B1, . . . ,Bk} is the product of
the probabilities of those events. This is a strong statement, and we
cannot make the requirement in (2.9) less restrictive. For example
we saw in Example 24 that pairwise independence does not imply
mutual independence. Below we see an example of events where
P

(⋂k
i=1Bi

)
=

∏k
i=1P (Bi) but the events are not mutually indepen-

dent.

Example 25. Using the diagram below14 for finding probabilities, com-
pute P (A∩B∩C) and P (A)P (B)P (C). Are A, B, and C mutually
independent?
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15 Sometimes we may say B1 ‚ B2 ‚
. . .‚ Bk ≡‚k

i=1Bi .
16 Like in footnote 12, we can say that
a collection of r.v.s X1, . . . ,Xn and sets
B1, . . . ,Bk are independent if for any
m ≤ n, l ≤ 0 (and we’ll allow m = 0 and
l = 0 to represent empty collections),
{i1, . . . , im} ⊆ [n], {j1, . . . , jl } ⊆ [k], and
Borel sets A1, . . . ,Am ⊆R,

P
(⋂m

u=1

{
Xiu ∈ Au

}
∩

⋂l
v=1Bjv

)
=

m∏
u=1

P
(
Xiu ∈ Ai

) l∏
v=1

P
(
Bjv

)
.

17 Like in footnote 15, we could use
the notation X1 ‚ X2 ‚ . . . ‚ Xn ≡‚n

i=1Xi . If we want to say that the
random variables X1, . . . ,Xn are indepen-
dent r.v.s and independent of the collec-
tion of independent set B1, . . . ,Bk , we
could use the notation X1 ‚ . . .‚ Xn ‚
B1 ‚ . . .‚ Bk ≡‚n

i=1Xi ‚‚k
j=1Bj

like we did in footnote 12.

0 .10

.16

.34

A B

C

.04

.06

.10 .20

Mutual independence is usually what is meant when we say that a
collection of events B1, . . . ,Bk are “independent” and so we will take
it as our definition of independence when we have more than two
events.15,16

Proposition 16. Let A ∈ F and A∗ ∈ {A,Ac}. If B1, . . . ,Bk are independent,
then for any m ≤ k and {i1, . . . , im} ⊆ [k],

P

(⋂m
j=1B

∗
ij

)
=

m∏
j=1

P

(
B∗ij

)
. (2.10)

For random variables, we say the r.v.s X1, . . . ,Xn are independent17

if for any m ≤ n, {i1, . . . , im} ⊆ [n], and Borel sets A1, . . . ,Am ⊆R,

P
(⋂m

j=1

{
Xij ∈ Aj

})
=

m∏
j=1

P
(
Xij ∈ Aj

)
. (2.11)

The following propositions are stated without proof:
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18 “Iff” means “if and only if”, which in
logic is the symbol ⇐⇒ ; that is, two
statements imply each other and thus
are equivalent.

Proposition 17. If B1, . . . ,Bk are independent sets and we form new
sets C1, . . . ,Cl from B1, . . . ,Bk via set operations without ever using any
Bj twice in the construction of the sets C1, . . . ,Cl , then C1, . . . ,Cl are
independent events as well.

Proposition 18. If we have independent r.v.s X1, . . . ,Xn and form r.v.s
Y1, . . . ,Ym in such a way that any Yj is a function of a subset of the r.v.s
X1, . . . ,Xn but no two Yjs depend on common Xis, then Y1, . . . ,Ym are
independent as well.

Proposition 19. If X1, . . . ,Xn are discrete, they are independent iff18, for
every x1, . . . ,xn ∈R:

P (X1 = x1, . . . ,Xn = xn) =
n∏
i=1

P (Xi = xi) . (2.12)
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We say that a collection of random variables X1, . . . ,Xn are identi-
cally distributed if, for every i, j ∈ [n] and Borel set A ⊆R, P (Xi ∈ A) =
P

(
Xj ∈ A

)
. (For discrete random variables, we can instead say that, for

every x ∈ R, P (Xi = x) = P
(
Xj = x

)
.) When X1, . . . ,Xn are both inde-

pendent and identically distributed, we say they’re independent and
identically distributed (i.i.d.). The i.i.d. assumption is frequently in-
voked in statistics and probability and one you should be comfortable
with.

Example 26. The diagram below shows a system of components:

A signal will enter the system from the left end and will reach the
right end if it’s able to find a path from the left end to the right end,
with every compoment functioning properly in the path. Each com-
poment functions properly independently of all other compoments
(the probability a component functions properly is shown in the dia-
gram). What is the probability that the signal will reach the end of the
system?
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19 Notice that I didn’t say what Ω
is. At this point, it doesn’t matter as
much anymore. All that matters is the
resulting distribution of the r.v.s; several
different Ωs could produce random
variables with the same distribution,
and we may not even know what Ω is;
we only know the resulting distribution
of the r.v.s. Thus when discussing r.v.s
you may see authors making statements
about the properties of Ω without
saying much else about what is in Ω.
Here, all we really need is that there be
a set A , Ω in F to have a probability
model producing random variables with
the listed properties.

20 I’m very cavalier in defining an infi-
nite sequence of i.i.d.r.v.s. Particularly,
there is no way that the sample space Ω
on which these r.v.s are defined is count-
able (if they truly are independent), as
we could view the sequence generated
by X1,X2, . . . as a binary representation
of a number in [0,1], an uncountable set.
However, the argument that follows is
essentially correct, for reasons that go
beyond the scope of this class.

Example 27. Let X1, . . . ,Xn be i.i.d.r.v.s where X1(Ω) = {0,1},19 and
P (X1 = 1) = p ∈ [0,1]. Compute the probability:

P (
∑n
i=1Xi = k) (2.13)

for some k ∈ [n]∪ {0}.

2.4 Independent Trials

Now that we have learned about i.i.d.r.v.s, we can start constructing
interesting random variables. We say that a r.v. X follows a Bernoulli
distribution, or X ∼ BER(p), if P (X = 1) = 1 −P (X = 0) = p ∈
[0,1]. We saw this random variable in Example 27, and it may be the
simplest non-trivial random variable we can form.

Example 27 featured another interesting random variable. The
random variable S =

∑n
i=1Xi follows what’s known as the binomial

distribution, or S ∼ BINOM(n,p). If we think of X1 as recording
whether a (potentially biased) coin flip was heads (1) or not (0), S
tracks how many heads out of n flips we saw. Example 27 computed
the p.m.f. of S.

Now suppose you have an infite sequence of i.i.d. Bernoulli r.v.s
X1,X2, . . . with X1 ∼ Ber(p)20 Let N be the index of the first Xi such
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21 Not all authors do this. Some authors
instead have N track the number of time
we had Xi = 0 before Xi = 1. In that
case, the minimal value of N is 0 and
the p.m.f. is p(1− p)n for n ∈N∪ {0}.

that Xi = 1. The even {N = n} is the event that X1, . . . ,Xn−1 = 0 and
Xn = 1; because these r.v.s are i.i.d., the probability this event occurs
is p(1 − p)n−1 for n ∈ N. Notice this is the p.m.f. of N (it’s zero for
n <N). We call a random variable with this p.m.f. a geometric random
variable, which we also denote with the notation N ∼GEOM(p).21

Example 28. Roll seven six-sided dice and count how many times a six
was rolled. What is the probability this count does not exceed 5?

Example 29. Roll a six-sided die until a six is seen. What is the
probability you will need to roll the die at least six times?
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22 For two events, we could use the
notation A ‚ B

∣∣∣C to say A and B are
conditionally independent on C. For a
collection of events, we may say instead
B1 ‚ . . .‚ Bk |C ≡‚k

i=1Bi
∣∣∣C.

2.5 Further Topics on Sampling and Independence

Sometimes events are not independent of each other but they are
independent if we know further information. When this occurs, we
have conditional independence22. We say that events B1, . . . ,Bk ∈ F
are conditionally independent given C ∈ F if for any m ≤ k and
i1, . . . , im ⊆ [k]:

P
(⋂m

j=1Bij

∣∣∣∣C)
=

m∏
j=1

P
(
Bij

∣∣∣∣C)
. (2.14)

Example 30. Reconsider Example 17. I pull a coin out of my pocket
and flip it twice. We should assume that the two flips are condition-
ally independent depending on the type of coin flipped. Does that
mean the results of the two flips are independent of each other?

We have seen the binomial distribution, which counts the number
of “successes” in a series of n independent trials when the probability
of a single succes is p. This is appropriate if there is, in a sense, an
infinite supply of “successes” and “failures”. What if there isn’t?
Suppose that our sample of n trials pulls “successes” and “failures”
from a pool that has only M successes and N −M failures (the pool’s
size itself is N )? Then our individual trials are no longer independent
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23 If M and N are sufficiently large
relative to n, though, then the difference
between this random variable and the
binomial r.v. S ∼ BINOM

(
n, NM

)
is negli-

gible. Thus the binomial distribution is
often used to approximate the hypergeo-
metric distribution, and it’s used instead
of the more appropriate hypergeometric
distribution when population sizes are
much larger than the sample size.

since the pool of “successes” and “failures” decreases with every
trial.23

Compute the probability that k “successes” are seen in the sam-
ple, under the setup described above. (The answer depends on the
relationship between M, N , n, and k.)

What we’ve described above is the p.m.f. of the hypergeometric
distribution, and we denote a r.v. X with this distribution by X ∼
HGEOM(N ,M,n).

Example 31. A bin of 100 widgets contains 10 defective widgets and
90 fully functional widgets. A sample of three widgets is pulled from
the bin and tested. What is the probability that there are no defective
widgets in the sample?
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24 People like the birthday problem for
different reasons. I like the birthday
problem because it’s a demonstration of
a general fact from probability; while we
think of rare events as being unlikely to
happen, the probability that some rare
event or something “unusual” occurs
is actually quite high. “Miracles” and
“patterns” are common, even when the
cause is randomness.
25 This assumption is unlikely; birth-
days tend to cluster. That makes the
estimates seen here conservative and
collisions are more likely than described.
So we could decrease the sample size
and still be likely to see two people with
the same birthday.

We wrap up this chapter with the birthday problem.24

Example 32. How large does a group of people need to be for the
probability that two people share a common birthday (neglecting
birth year) to exceed 0.5? Assume that every day of the year is equally
likely to be a birthday25 and there are no leap years.



1 In measure-theoretic probability,
there is no distinction between the
two, and theorems are proven and
definitions provided for random
variables regardless of whether they are
discrete or continuous.

3
Random Variables

Introduction

Our discussion on random variables so far does not fully appreciate
how useful they are as analytic tools. It’s not immediately evident that
defining a function on Ω that takes real values is any more advanta-
geous than making Ω = R and defining a probability model where
our outcomes appear in a certain way. But in fact random variables
grant us access to tools and concepts we did not yet have. We get more
than just the random variable in our probabilitistic vocabulary.

In this chapter we look at how we define the distribution of random
variables. Again, when we’ve defined random variables, the sample
space Ω they are defined on fades into the background and we only
need to worry about the objects characterizing the random variables
behaviour. This includes probability mass functions, probability
density functions, and cumulative distribution functions.

Then we get to see expected values. Expected values and variances
describe the “typical” values of random variables and how much
random variables stray from their “typical” value.

We wrap up by discussing one random variable that deserves a
place separate from others: Normal (or sometimes Gaussian) random
variables. These random variables are characterized by the “bell
curve” people who want to sound like scientists mention frequently.
In later chapters we will see why this random variable is so important.

3.1 Probability Distributions of Random Variables

In previous chapters I mentioned discrete random variables and
continuous random variables. In this class, we are forced to treat
discrete and continuous random variables separately1. Recall that for
discrete random variables, there is a countable set B such that if X is
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2 We call such a collection x1,x2, . . .
the support of the r.v. X, which can be
finite or countably infinite for discrete
random variables.
3 In this class, the support of discrete
r.v.s is almost always a subset ofN∪ {0}.

4 In measure-theoretic probability,
we call both pX and fX the Radon-
Nikodym derivative of P with respect
to either the Lebesgue measure l in
the case of fX and continuous random
variables, or a measure assigning mass
to individual points in R in the case of
pX and discrete random variables.
5 Perhaps you notices that (3.2) and (3.3)
are very similar in what they do. In fact,
in measure-theoretic probability, both
are essentially the same operator, and
both are called “integrals”. Integration
is summation, albeit of an uncountably
infinite amount of small things, and
summation is integration.

a discrete r.v., P (X ∈ B) = 1. For continuous random varaibles, this is
not true; if Y is a continuous r.v., the only sets for which P (Y ∈ B) > 0
are essentially open intervals or unions of open intervals. For an c ∈R,
P (Y = c) = 0.

We already saw, in Chapter 1, the definition of the probability
mass function (p.m.f.). Probability mass functions fully characterize
the distribution of discrete r.v.s; that is, for any B ⊆ R, we can figure
out P (X ∈ B) with just the p.m.f.. Let pX : R → R be the p.m.f. of
the r.v. X, and let x1,x2, . . . ,xn (or x1,x2, . . .) be the values such that
pX(xi) > 0 for all i ∈ [n] (resp. i ∈ N)2,3. It follows from the fact that
P (Ω) = 1 that

∑
i

pX(xi) = 1. (3.1)

To compute P (X ∈ B) for Borel sets B ⊆R, we simply sum over pX :

P (X ∈ B) =
∑
i:xi∈B

pX(xi). (3.2)

Continuous random variables, on the other hand, need to be han-
dled using the tools of calculus. Instead of being characterized by
a p.m.f., they’re characterized by a probability density function
(p.d.f.), traditionally denoted f (x) or fX(x) when X is a continuous
r.v..4 We compute probabilities for continuous random variables like
so:5

P (X ∈ B) =
∫
B
fX(x)dx. (3.3)

Actually, it is the integral that gives us the probabilities. Any function
g that yields the same value when integrated as fX is in (3.3) can be
considered the p.d.f.. The following is true for any real-valued f and
any c ∈R:

∫ c

c
f (x)dx = 0. (3.4)

This matters because it says that fX is not necessarily unique; we can
change the value of fX at individual points and it can still be a p.d.f.
that describes an identical probability distribution. (In fact, we can
make changes at countably many locations and the function will still
describe the same distribution.) Nevertheless, it is customary to say
that
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6 F(x) is the cumulative distribution
function; we will see it again later.

7 The earlier discussion suggests we
don’t need to have this be true for
countable subsets of R, but it certainly
must be true at points of continuity
of fX , so we may as well ban negative
values outright.

8 This is the first time I’ve used an
indicator function in this class. The
function 1A(x) is an indicator function
if

1A(x) =

1 if x ∈ A
0 o.w.

.

Indicator functions are very useful and
you should use them when you can.
They can help clarify problems.

fX(x) =
d

dx
P (X ≤ x) =

d
dx

∫ x

−∞
f (t)dt (3.5)

for any f satisfying (3.3) when x is a point of continuity of the func-
tion F(x) = P (X ≤ x).6 We don’t care about the value of fX on finite
subsets of R.

That said we do have restrictions on p.d.f.s. First, we require
fX(x) ≥ 0 for x ∈R7; second, we require

∫∞
−∞ fX(x)dx = 1.

Example 33. Let U ∼ UNIF(a,b). Find a function fU that could be a
p.d.f. of U .

Example 34. Let X be a continuous r.v. having p.d.f.8

fX(x) = Ce−λx1{x≥0}(x) =

Ce−λx if x ≥ 0

0 o.w.
.

Find C such that fX is a valid p.d.f.. If X has such a p.d.f., we say
X follows an exponential distribution, which we denote with X ∼
EXP(λ).
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9 This proposition shows why we cannot
have fX (x) < 0 at points of continuity.

10 Recall that the symbol ∀means “for
every” or “for all”. Also, the symbol ∃
means “there exists”.

fX itself doesn’t contain probabilities; that is, we cannot say that
P (X = x) = fX(x). That said, the following is true.

Proposition 20. Let X be a continuous r.v. with p.d.f. fX . Let a be a point
of continuity of fX . Then:9

P (a < X < a+ ε) ≈ εfX(a). (3.6)

3.2 Cumulative Distribution Function

The p.m.f. and the p.d.f. characterize discrete and continuous random
variables, respectively. A third way to characterize random variables
is with the cumulative distribution function (c.d.f.), which, for r.v. X,
is defined as10
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FX(x) =P (X ≤ x) ,∀x ∈R. (3.7)

(3.7) has the advantage of not requiring separate definitions for dis-
crete or continuous random variables; it’s the same for all random
variables, and characterizes them all in the same way. That said,
it’s computed differently depending on the type of random vari-
able. For discrete random variables we need to use (3.2), while for
continuous random variables we need to use (3.3). Thus, if X is a
discrete r.v. and Y is a continuous r.v. with p.m.f./p.d.f. pX/fY , then
P (X ≤ x) =

∑
i:xi<x pX(xi) and P (Y ≤ y) =

∫ x
−∞ fY (t)dt.

There are conditions on what functions can be c.d.f.s, which appear
below:

Proposition 21. A function FX is a c.d.f. iff all of the following are true:

1. FX(x) is non-decreasing;

2. limx→−∞FX(x) = 0 and limx→∞FX(x) = 1; and

3. FX is right-continuous; that is, limt→x+ F(t) = F(x).
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11 This only matters for discrete r.v.s,
and for them we can read FX (a−) as
the value of the c.d.f. at the next largest
number less than a when a is a point at
which the c.d.f. jumps.

We can get any probability we want using (3.7), although it may
take some work. For instance,

P (a < X ≤ b) =P (X ≤ b)−P (X ≤ a) = FX(b)−FX(a). (3.8)

What about P (a ≤ X ≤ b)? Let F(a−) = limx→a− F(x)
11. Then:

P (a ≤ X ≤ b) =P (X ≤ b)−P (X < a) = FX(b)−FX(a−). (3.9)

For continuous r.v.s, FX(a−) = FX(a), so in practice we always use
(3.8) for computing the probabilities of intervals. For discrete random
variables the difference matters.

Below are visualizations of what c.d.f.s look like for discrete and
continuous random variables. (The visualization suggests that we can
define continuous random variables as random variables with c.d.f.s
that are continuous and differentiable at every point except for maybe
a countable collection of points.)

Proposition 22.

P (X < a) = FX(a−) = lim
x→a−

FX(x). (3.10)



introduction to probability lecture notes 49

Example 35. Let X ∼GEOM(p).

1. Compute FX .

2. Let X be the number of flips of a fair coin until H is seen. Compute
P (X ≥ 3) and P (4 ≤ X ≤ 6).
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Example 36. Let U ∼UNIF(a,b).

1. Compute FU .

2. Let U represent the distance from a nearby city an accident occurs,
as in Example 14 from Chapter 1. Compute the probabilities
requested using the c.d.f..
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Example 37. Let T ∼ EXP(λ).

1. Compute FT .

2. Suppose T ∼ EXP(3) be the time it takes for a particle to leave a
radioactive material. Compute P (1 ≤ T ≤ 3).
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Example 38. In a hair salon, there are three chairs and three stylists
working those chairs. Upon entering, the probability a single chair is
filled with a customer is 20%. Label the chairs 1, 2, and 3. If there is a
customer in chair i, let Ti ∼ EXP(2) be the time until that customer’s
haircut is complete. Chairs are filled independently of each other,
and haircuts are completed independently of each other. Let T be the
amount of time a customer just entering the salon needs to wait to
be serviced (if there is a chair available, the customer is serviced im-
mediately). Find the c.d.f. of T . Is T a discrete or continuous random
variable?
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12 The expected value of X, or E [X] = µ,
is a “best guess” of the value of X in the
sense that E

[
(X −µ′)2

]
≥ E

[
(X −µ)2

]
for all µ′ ∈ R; that is, µ minimizes the
mean-square error of any guess µ′ for
the value of X.
13 In measure-theoretic probability,
expectations are integrals. Thus, expec-
tations are written differently; for in-
stance, E [X] =

∫
X(ω)P (dω) =

∫
XdP,

where the integral shown is a Lebesgue
integral. Thus there are not separate
definitions for expectations for discrete
and continuous random variables. Most
undergraduate students don’t see mea-
sure theory like this, but some do see
Riemann-Stieltjes integrals, in which
case we could say E [X] =

∫∞
−∞ xdFX (x),

where FX (x) is the c.d.f. of X and the
integral shown is a Riemann-Stieltjes
integral.. This definition also avoids ask-
ing whether X is discrete or continuous,
if either.

3.3 Expectation

Expected values are extremely important in probability theory.
Loosely, the expected value or expectation of a r.v. X is a “best guess”
as to what the value of the random variable is, or its “average” or
“mean” value.12,13 We can more easily see why we would call an ex-
pectation the “average” value of a random variable when we look at
expectations for discrete random variables:

E [X] =
∑

x:pX (x)>0

xpX(x). (3.11)

The formula for continuous random variables is similar when we
replace a sum with a Riemann integral and a p.m.f. with a p.d.f.:

E [X] =

∫ ∞
−∞
xfX(x)dx. (3.12)

An alternative formula for computing expected values exists when
X is non-negative almost surely.

Proposition 23. If X ≥ 0 almost surely, then

E [X] =

∫ ∞
0
P (X > x)dx. (3.13)
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Example 39. Compute the expected value of X ∼ Ber(p).

Example 40. Let (Ω,F ,P) be a probability space and A ∈ F . What is
the distribution of 1A(ω)? Compute E [1A].
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Example 41. Let N ∼GEOM(p). Compute E [N ].
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Example 42. Let U ∼UNIF(a,b). Compute E [U ].

Example 43. Let T ∼ EXP(λ). Compute E [T ].
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Often we want the expectation of g(X), where g : R → R is a
function. We could view g(X) as essentially a brand new random
variable, with its own p.m.f./p.d.f., and use the new distribution of
g(X) to compute E [g(X)]. That’s a lot of work. Fortunately, we don’t
have to work that hard.

Proposition 24. Let g :R→R be a function. Then, if X is a discrete r.v.:

E [g(X)] =
∑

x:pX (x)>0

g(x)pX(x). (3.14)

If X is a continuous r.v.:

E [g(X)] =

∫ ∞
−∞
g(x)fX(x)dx. (3.15)
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Proposition 25. Let a,b ∈R :

E [aX + b] = aE [X] + b. (3.16)
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Example 44. One day you walk into a medical clinic. If you did not
have to fill out paperwork, then the time you would need to wait to
see a doctor would be T minutes, where T ∼ EXP(0.1). But you do
have to fill out paperwork, it takes at least five minutes to complete it,
and you will not be seen by a doctor until the paperwork is completed
regardless of whether a doctor is available or not; if one is available,
though, you will be seen immediately. What is the expected time
separating the time you walked into the clinic to the time you finally
see a doctor?
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14 This is called the St. Petersburg game
and this example is known as the St.
Petersburg paradox. It’s “paradoxical”
not because the mathematics are wrong
but because the result is unexpected.

The next two examples show the limitations of expected values.

Example 45. Consider a game where a coin is flipped until H is seen
and the payout of the game depends on how many flips there were
until the first H . For each flip, the payout doubles; you would earn $1
if it took one flip, $2 if it took two flips, $4 if it took three flips, $8 if it
took four, and so on. How much would you be willing to pay to play
this game? What is the expected payout of the game?14

Example 46. Let X be a continuous r.v. with p.d.f. fX(x) =
1

π(1+x2)

for x ∈ R. Try to compute E [X]. (This is known as a Cauchy random
variable, denoted by X ∼ CAUCHY(0,1).)
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15 The first moment is the mean and
describes the location of the random
variable. The second moment is related
to the variance, which describes how
“spread out” or how much “variation”
there is in the random variable. The
third moment relates to “skewness”,
describing where outliers tend to appear
and how strong they are. Finally, the
fourth moment relates to kurtosis,
which describes how likely outliers are
to be seen at all. Other moments still
matter, but they are not named and not
as easily interpreted.
16 As demonstrated in Examples 45
and 46, moments need not be finite.
However, if k ≤m and E [|X |m] <∞, then
E

[
|X |k

]
< ∞ as well; that is, if X has a

finite mth moment, it has a finite kth

moment as well.

17 The variance itself isn’t necessarily
easy to interpret, since if X is measured
in units, then E [X] is interpreted in
units and Var (X) in units2. A related
quantity is the standard deviation of X,
which is SD (X) =

√
Var (X).

18 Conventionally, we write µ = E [X]
and σ2 = Var (X).

Some expectations are particularly interesting. We call E
[
Xk

]
the

kth moment of X. Moments characterize the behavior of random
variables15 and thus are important quantities.16

Example 47. Compute the kth moment of T ∼ EXP(λ).

3.4 Variance

The variance of a r.v. X relates to the r.v.s second moment. It describes
how much the r.v. varies around its mean.17,18 Specifically, Var (X) =
E

[
(X −µ)2

]
. However, there is an alternative formula for computing

Var (X).

Proposition 26.

Var (X) =E
[
X2

]
−E [X]2 . (3.17)
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Example 48. Computer the variance for X ∼ Ber(p).

Example 49. Compute the variance for N ∼GEOM(p).



introduction to probability lecture notes 63



64 curtis miller

Example 50. Compute the variance for U ∼UNIF(a,b).

Example 51. Compute the variance for T ∼ EXP(λ).
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19 This proposition is part of a bigger
point. When discussing the probabil-
ity space (Ω,F ,P) and the random
variables X defined on it, we can call
the space a vector space, with the r.v.s
being the vectors. Then we can addi-
tionally equip the space with a norm,

defining ‖X‖k =
(
E

[
Xk

]) 1
k , which is a

notion of “length” or “size” of random
variables. The case k = 2 is particularly
interesting as that corresponds to the
norm of Euclidean space, or space with
a geometry resembling the geome-
try we learn in middle school. But in
any case, a property of norms is that
‖x‖ = 0 ⇐⇒ x = 0; while that’s not
exactly what Proposition 28 says (see
footnote 30 from Chapter 1), it’s close
enough. These facts, by the way, are ad-
ditional reasons why we care about the
number of moments a random variable
has.

Proposition 27.

Var (aX + b) = a2 Var (X) . (3.18)

Proposition 28. If E
[
X2

]
= 0, then P (X = 0) = 1.19
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20 David F. Anderson, Timo Seppäläinen,
and Benedek Valkó. Introduction to
Probability. Cambridge University Press,
1 edition, 2018

Proposition 29. If Var (X) = 0, then P (X = µ) = 1.

3.5 Gaussian Distribution

We’ve seen a number of random variables, but there is a random
variable that is particularly important in probability theory: the
Gaussian (or Normal) random variable. The p.d.f. for the standard
Gaussian r.v. is:

φ(x) =
1
√

2π
e−

x2
2 ,∀x ∈R. (3.19)

The c.d.f. is:

Φ(x) =

∫ x

−∞
φ(t)dt =

∫ x

−∞

1
√

2π
e−

t2
2 dt. (3.20)

φ(x) has no elementary antiderivative; (3.20) is the simplest expres-
sion of the c.d.f. of the standard Gaussian random variable, and needs
to be evaluated using numerical techniques. (A table of select values
of Φ(x) is given in Appendix E of the textbook20.) Even showing that
φ(x) integrates to 1 is tricky.

Proposition 30. ∫ ∞
−∞
φ(t)dt = 1. (3.21)
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The Gaussian r.v.’s p.d.f. is the classic bell curve so popular in pop
science.

We’ll let Z be a standard Gaussian r.v., and use the notation X ∼
N(0,1) to say so.

Proposition 31. E [Z] = 0 and Var (Z) = 1.
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We will say X follows a Gaussian distribution with mean µ and
variance σ2, or X ∼ N(µ,σ2), if E [X] = µ and Var (X) = σ2. The p.d.f.

of X is fX(x) =
1√

2πσ2
e
− (x−µ)2

σ2 , and the c.d.f. is the integral of the p.d.f.
up to x, as usual, for all x ∈R.

Proposition 32. ∫ ∞
−∞
fX(x)dx = 1. (3.22)
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21 Actually we can allow a = 0 if we
adopt the convention that N (µ,0) is a
degenerate r.v..

Additionaly notation; we say X D
== Y iff for every t ∈R, P (X ≤ t) =

P (Y ≤ t). This means X is equal in distribution to Y .

Proposition 33. Let X ∼N(µ,σ2) and Z ∼N(0,1). Then

X −µ
σ

D
== Z (3.23)

and

σZ + µ
D
== X. (3.24)

More generally, for a , 0,21

aX + b
D
== Y ∼N(aµ+ b,a2σ2). (3.25)
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Example 52. Let Z be a standard Gaussian r.v..

1. Compute P (Z > 0).

2. Compute P (Z ≤ 1).

3. Compute P (Z ≥ −2.24)
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Example 53. The daily returns of a stock are believed to follow a
N(0.001,0.01) distribution. What is the probability that the stock’s
returns will exceed the “risk-free” rate of r = 0.00025?



4
Approximations of the Binomial Distribution

Introduction

Early studies of probability focused on the binomial distribution,
since Bernoulli and binomial random variables are perhaps the sim-
plest and most natural random variables one considers when starting
to learn probability. Later, probabilists generalized important results
that applied to i.i.d. Bernoulli random variables and binomial r.v.s to
r.v.s in general.

Those results are difficult to prove, and require more advanced the-
ory than what’s given here. However, mathematicians proved the early
versions of these theorems using approximations and algebra, and
new students in probability can understand them without knowing
measure theory.

Not only will some of these approximations motivate interpreta-
tions of some random variables (such as the Gaussian, Poisson, and
exponential random variables), they additionally serve as prototypes
for important results we will discuss later. In fact, here we first see the
line of reasoning and thought known as asymptotic theory, the study
of the behavior of random variables or functions of random variables
as parameter values or the number of r.v.s involved in the calculation
approaches (in a limit) some (possibly infinite) number (for example,
as the number of random variables added together “grows large”). So
take these results to heart, as they will eventually become the most
important results in probability theory and statistics. (In fact, we will
be seeing some statistical theory in this chapter.)

First, recall that in Chapter 2 we saw that, if X1,X2, . . . are i.i.d.
Bernoulli r.v.s with X1 ∼ Ber(p), then Sn =

∑n
i=1Xi ∼ BIN(n,p). We

computed the p.m.f. of the binomial distribution in Example 27. Let’s
now compute E [Sn] and Var (Sn).
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These computations were algebraic in nature, but you may notice a
pattern; E [X1] = p and Var (X1) = p(1− p), and (not so coincidentally)
E [Sn] = E [X1] + . . .+E [Xn] and Var (Sn) = Var (X1) + . . .+ Var (Xn).
A probabilistic intuition for these numbers exists, but for now we will
just accept the results of the calculations as they are.

4.1 Normal Approximation

Consider the following plots of the probability mass function for
the binomial r.v.s S5 ∼ BIN(5,0.5), S20 ∼ BIN(20,0.5), and S100 ∼
BIN(100,0.5):
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Figure 4.1: Probability mass functions
for S5 ∼ cBIN(5,0.5), S20 ∼ BIN(20,0.5),
and S100 ∼ BIN(100,0.5). I used the
following R code to create these plots:

# i n s t a l l . p a c k a g e s ( d i s c r e t e R V )
l i b r a r y ( discreteRV )

S5 <− RV( 0 : 5 ,
dbinom ( 0 : 5 ,

prob = 0 . 5 ,
s i z e = 5 ) )

S20 <− RV( 0 : 2 0 ,
dbinom ( 0 : 2 0 ,

prob = 0 . 5 ,
s i z e = 2 0 ) )

S100 <− RV( 0 : 1 0 0 ,
dbinom ( 0 : 1 0 0 ,

prob = 0 . 5 ,
s i z e = 100) )

plot ( S5 )
plot ( S20 )
plot ( S100 )
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1 This is the first “central limit theorem”,
proven near the beginning of the 18th

century.

2 an ∼ bn iff limn→∞
an
bn

= 1. Interpret
this as saying that for large n, an ≈ bn.

3 A rule of thumb is that n is “large”
when np(1 − p) > 10. However, we
can decide for ourselves whether the
approximation is good enough by using
the following fact (stated without proof):∣∣∣∣∣∣P

(
Sn−np√
np(1−p)

≤ x
)
−Φ(x)

∣∣∣∣∣∣ ≤ 3√
np(1−p)

.

4 Intuitively, Proposition 35 says that
Sn ∼ N (np,np(1− p)) (approximately)
for large n.

Notice something? As we increase n, the p.m.f. starts to assume a
consistent shape. That shape resembles the p.d.f. of a Gaussian r.v.,
N ∼N(np,np(1−p)). Alternatively, we could say that the approximate
distribution of Sn−np√

np(1−p)
appears to resemble the distribution of Z ∼

N(0,1).
This observation is correct, and is the subject of the following

theorem, a central limit theorem.1

Theorem 3 (de Moivre-Laplace Central Limit Theorem). Let 0 < p < 1
be constant and suppose that Sn ∼ BIN(n,p). Then for any fixed −∞ ≤ a ≤
b ≤∞,

lim
n→∞

P

(
a ≤ Sn−np√

np(1−p)
≤ b

)
=

∫ b

a

1
√

2π
e−

x2
2 dx. (4.1)

The proof of this Central Limit Theorem needs the following:2

Proposition 34 (Stirling’s Approximation).

n! ∼ nne−n
√

2πn as n→∞. (4.2)

We have notation to signify this relationship between Sn and Z;
we say that the sequence of random variables X1,X2, . . . converge in

distribution to the random variable X, or Xn
D−→ X, if for every point

of continuity of the c.d.f. FX(x), limn→∞FXn(x) = FX(x). Theorem 3

says that Sn−np√
np(1−p)

D−→ Z ∼N(0,1).

The Central Limit Theorem justifies the following approximation
for computing binomial distribution probabilities:

Proposition 35. If Sn ∼ BIN(n,p), n is large3 and p is not too close to 0 or
1, then:4

P

(
a ≤ Sn−np√

np(1−p)
≤ b

)
≈ Φ(b)−Φ(a). (4.3)

That said, we often don’t want to use (4.3) itself. Binomial random
variables and Gaussian random variables differ in nature; the former
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is discrete, while the latter is continuous. This can lead to unaccept-
able errors if we use (4.3) directly. Instead, we may want to account
for the different natures of binomial and Gaussian r.v.s by applying a
continuity correction, of the form below:

P (a ≤ Sn ≤ b) ≈ Φ
 b+ 1

2 −np√
np(1− p)

−Φ  a− 1
2 −np√

np(1− p)

 . (4.4)

Example 54. In the miniature wargame Warhammer 40,000, the Ork
army relies primarily on numbers to inflict casualties on opponents.
Conflicts are generally resolved by rolling dice, and Ork units, primar-
ily due to having lots of bodies in a unit, can often throw many dice in
conflicts.

In one game, a unit of Ork Boyz charges an Imperial Ultramarine
Space Marines unit. To determine how many wounds are thrown by
the massive unit of Boyz (with almost fourty bodies in the unit), the
Ork player throws 87 dice. Each of these die hit with a roll of 3 or
more, and deal a wound on a second roll of four or more.

1. What is the probability that a single die roll will result in a wound?

2. What is the distribution of the number of wounds inflicted in the
charge, and what is the corresponding Gaussian approximating
distribution?

3. Estimate the probability that the charge will deal more than 20
wounds.

4. Estimate a number such that more than 80% of the time the attack
will deal more wounds than that number.
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5 We could write, instead of (4.5), an
equivalent statement:

lim
n→∞

P (|Xn −X | < ε) = 1,∀ε > 0.

6 Theorem 4 is known as a weak law of
large numbers, since it’s a statement
about convergence in probability. There
is another version that is based on
almost sure convergence, that makes
a stronger statement than Theorem 4.
We say that X1,X2, . . . converges almost
surely (a.s.) to a (often degenerate) r.v.

X, denoted Xn
a.s.−→ X, iff

P (limn→∞Xn , X) = 0,

or equivalently,

P (limn→∞Xn = X) = 1.

a.s. convergence implies convergence in
probability and is inherently a stronger
statement. Almost sure convergence
means that, with probability 1, the
sequence of random variables converges
to its limit; convergence in probability
merely says that the probability a
random variable is distant from its
limit becomes small. The strong law of
large numbers for binomial r.v.s says

that Snn
a.s.−→ p, and since it implies the

weak law of large numbers, it’s often the
theorem people refer to when they say
“the law of large numbers”.

4.2 Law of Large Numbers

In the previous section we saw one important type of theorem in prob-
ability: a central limit theorem. Another important type of theorem
is a law of large numbers. First, some terminology. We say that a
sequence of random variables X1,X2, . . . converge in probability to a

(often degenerate) r.v. X, denoted Xn
P−→ X, if for every ε > 0:5

lim
n→∞

P (|Xn −X | ≥ ε) = 0. (4.5)

Theorem 4 (Binomial Law of Large Numbers). As n→∞, Snn
P−→ p.6
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7 I don’t want to go into too much
depth about how confidence intervals
should be interpreted, but one should
not say that the probability that θ is
in the confidence interval (l̂, û) is C.
The reason is subtle; after we compute
(l̂, û) with real numbers and no longer
consider it to be random, since θ itself
is non-random, P

(
l̂ ≤ θ ≤ û

)
∈ {0,1},

depending on whether θ is or is not
between l̂ and û. We don’t know what
the value of θ is, but it’s not random
in this framework so talking about a
non-trivial probability of θ being in the
fixed and unchanging interval (l̂, û) is
basically nonsense. To learn more, take
some statistics classes.

4.3 Applications of the Normal Approximation

Theorem 3 is important for both probability theory and statistics. In
this section we will see some ways it’s used.

In statistics, a confidence interval is an interval that represent the
“best guess” for the value of an unknown parameter. More specifically,
a 100C% confidence interval for a parameter θ is an interval of the
form (l̂, û) computed from random variables such that, if L̂ and Û
represent the random versions of l̂ and û respectively, P

(
L̂ ≤ θ ≤ Û

)
=

C.7

Let p̂ = Sn
n ; we say that p̂ is the sample proportion of “successes”,

and serves as an estimate for p. We can use the Central Limit Theorem
to obtain an approximate confidence interval for the value of p.
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The confidence interval derived above takes the form

est.±m.o.e..

Here the margin of error is non-random; it doesn’t depend on the data,
but simply on the confidence level and the sample size. This means
that prior to computing the interval we can choose a sample size to
attain a given margin of error while maintaining a chosen confidence
level.

Example 55. Jack Johnson is running for the office of President of
Earth against his bitter rival John Jackson. The Johnson campaign
plans on conducting a poll to determine who is winning the election.

1. Suppose that the Johnson campaign wants the poll to have a mar-
gin of error not exceeding 3% and a confidence level of 99%. Find a
sample size that would satisfy these parameters.

2. In a sample of 1000 voters, 510 said they plan to vote for Jack
Johnson. Based on this, compute a 95% confidence interval for the
proportion of voters planning on voting for Jack Johnson.
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In Chapter 2, we first saw the hypergeometric distribution. This
distribution resembles the binomial distribution except it models
the number of “successes” out of n trials when the population of
“successes” and “failures” is finite and observations in the sample are
drawn without replacement. In many situations, though, the binomial
distribution is used even though the hypergeometric distribution
correctly models the count of the number of “successes” in the sample.
Yet this makes intuitive sense; If the population is sufficiently large it
shouldn’t matter numerically whether we sampled with replacement
or not.

In fact, one can show that this is true; the hypergeometric distribu-
tion does resemble the binomial distribution when population sizes
are sufficiently large.

Proposition 36. Let XN ∼HGEOM(MN ,N ,n). Suppose MN
N → p ∈ (0,1)

as N →∞. Then XN
D−→ X ∼ BINOM(n,p) as N →∞.
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Let’s wrap up this section with random walks. Flip a fair coin. If
it lands heads-up, take a step to the left; otherwise, take a step to the
right. Do this many, many times.

What does your path look like? It likely looks like the function
below.
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Figure 4.2: An example random walk.
This was generated with the following R
code.

s teps <− c ( 0 ,
2 * rbinom (200 ,

prob = 0 . 5 ,
s i z e = 1) − 1)

plot (cumsum( s teps ) ,
type = " l " ,
xlab = " Steps " ,
ylab = " P o s i t i o n " )

abline ( h = 0)

What I’ve described is a symmetric random walk. Random walks
are a rich topic all their own, and are a major topic in stochastic
processes (which is a natural progression of the material in this class).

Example 56. Consider the random walk described above.

1. Describe the distribution of Sn, the position of the random walk
after n steps.

2. Compute E [Sn] and Var (Sn).

3. Approximate the distribution of Sn.
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4. It is possible for the random walk to return to the origin (that is, to
return to 0) after an even number of steps. What is the probability
that process returned at step n = 2k for some k ∈ N? Find an
approximation for this probability.

Our treatment of random walks is far from satisfactory, but there
are a few remaining points to observe.

1. The location of the random walk after n steps resembles a Gaussian
random variable;

2. The position of the walk doesn’t grow like n but instead like√
n. This observation is one of the pillars of the subject known

as stochastic calculus.

3. Suppose that the random walk has reached Sn = 10. How does the
random walk move going forward? Well, what we get is effectively
a new random walk that starts at 10 instead of 0, but otherwise
behaves like its own random walk, moving independently of the
path before it and only using the fact that the current position is 10.
We could say that for m > n, Sm − Sn is independent of Sn.

4. The expected location of the process is 0 at any point. But if we
knew that the current value of the process were, say, 10, then
because we effectively start a new random walk at every point, the
expected value of the process at a future point would also be 10.
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5. How far away from 0 does the process wander? It turns out that
the process can wander far away from 0, on the order of

√
n, but

the process will always return to zero eventually, even if it takes
a very long time. That said, this is true for one-dimensional ran-
dom walks, but not necessarily true for random walks in higher
dimensions.

Random walks serve as a prototype for a process known as Brow-
nian motion or Weiner process. These processes are continuous,
always moving up and down (not just at discrete points, like the pro-
cess described above), and the position of the process doesn’t follow a
pseudo-binomial distribution but a Gaussian distribution. Every point
made above also characterizes Weiner processes. These processes are
so important they’ve earned books. To learn more about them, take a
stochastic processes course.

4.4 Poisson Approximation

Our Gaussian approximation for Sn required that n be large and p not
be too small or large in order to work. But what if p is close to either 0
or 1? In fact, we can still approximate Sn with a random variable, but
we would instead approximate it with a Poisson random variable.

The probability mass function of a Poisson random variable X with
parameter λ is, for x ∈N∪ {0}:

P (X = x) =
e−λλx

x!
. (4.6)

We use the notation X ∼ POI(λ) to represent Poisson r.v.s. Let’s
compute E [X] and Var (X):
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8 We do have an estimate for how good
the approximation is. If X ∼ BIN(n,p)
and Y ∼ POI(np) then for Borel sets A:∣∣∣P (X ∈ A)−P (Y ∈ A)

∣∣∣ ≤ np2.

What do Poisson random variables model? In short, they model the
number of times a rare event occurs over a period of time. We have
this interpretation because of the following theorems.

Theorem 5 (Law of Rare Events). Let λ > 0 and consider only n ∈N for
which λ

n < 1. Let Sn ∼ BIN
(
n, λn

)
. Then8

lim
n→∞

P (Sn = k) =
e−λλk

k!
,∀k ∈N∪ {0} . (4.7)
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9 Intuitively, this says Sn ∼ POI(np)
(approximately) for large n.

Theorem 5 suggests the following approximation for Sn when p is
small:9

Proposition 37.

P (Sn = k) ≈
e−np(np)k

k!
. (4.8)

What should we take away from the fact that binomial r.v.s can
be approximated by two different random variables? First, it turns
out that Poisson r.v.s look like Gaussian r.v.s as λ → ∞; in fact, if

Xn ∼ POI(λn) and λn → ∞ as n → ∞, then Xn−λn√
λn

D−→ Z ∼ N(0,1)
as n→ ∞. That said, for a particular problem, when should we use
the Poisson approximation or the Gaussian approximation? Well, if
np(1− p) > 10 it should be safe to use the Gaussian approximation, and
if p is small and n somewhat large, a Poisson approximation should
work well.

Example 57. A big shipment of widgets just arrived in a factory.
This shipment contains 10,000 widgets. Let’s assume that 100 of the
widgets are defective. A quality control official will select a sample
of 100 widgets and will reject the batch if more than 5 of the widgets
in the sample are defective. Sampling is done without replacement.
Estimate the probability that the batch is rejected.
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4.5 Exponential Distribution

Recall the geometric distribution, which we saw in Chapter 2. This
represents the number of times we need to flip a coin until we see
heads. In some sense, it models a waiting time; we are counting the
number of flips we need to wait through to complete the process.

Suppose I told you that we had already flipped the coin, say, two
times, and have yet to see heads. Does this tell us anything about
how long we need to wait to see the first heads? Aside from the trivial
fact that it took at least two flips to see that head, no; the subsequent
flips are memoryless, since they are independent of the first flips. In
a sense, whenever we flip the coin and fail to see a head, the process
restarts; we have made no progress.

We say that a random variable X is memoryless if for m,n > 0,
P (X > m+ n|X > m) = P (X > n). For the geometric random variable,
m and n are integers.

Proposition 38. If X ∼GEOM(p), then X is memoryless.

We saw the exponential random variable in Chapter 3. It turns out
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10 In fact, it turns out that exponential
r.v.s are the only continuous random
variables with p.d.f.s continuous
everywhere except at one point that are
memoryless.

11 Technically (4.9) doesn’t use the
c.d.f.s of either Tn or T directly, but that
doesn’t matter; P (X > x) characterizes a
random variable just as well as P (X ≤ x)
does, especially since it’s just one minus
the c.d.f..

that it has the memoryless property too (only now m and n can be any
positive real numbers).10

Proposition 39. If T ∼ EXP(λ), then T is memoryless.

What do exponential random variables model? It turns out they
also model waiting times. In fact, they’re the continuous analogue
to geometric random variables. This point is made by the following
theorem.

Theorem 6. Let λ > 0 and consider n ∈ N large enough so that λ
n <

1. Suppose that for such n that the random variable Tn satisfies nTn ∼
GEOM(λn ). Then

lim
n→∞

P (Tn > t) = e−λt ,∀t ≥ 0. (4.9)

That is, Tn
D−→ T ∼ EXP(λ) as n→∞.11





1 These correspond to Laplace trans-
forms, as seen in some analysis/applied
mathematics classes.
2 There is another class of functions
similar to moment generating func-
tions called characteristic functions.
The characteristic function of the real-
valued r.v. X is φ(t) = E

[
eitX

]
, where

i2 = −1. While moment generating
functions are not defined for all t, char-
acteristic functions are since

∣∣∣eitX ∣∣∣ = 1
always (when X is real-valued). Ad-
ditionally, just about every rule we
have for moment generating functions
also holds for characteristic functions.
While moment generating functions
correspond to Laplace transforms,
characteristic functions correspond to
Fourier transforms. That said, we will
not be studying these functions in this
class.

5
Transforms and Transformations

Introduction

Random variables are functions defined on the sample space
Ω, but we can create new random variables by taking functions of
existing random variables; after all, if X is a random variable and
g : R→ R is a function then g ◦X (which is commonly abbreviated
as g(X)) is also a function defined on Ω and thus is also a random
variable. Being a random variable, we can talk about the probabilistic
characteristics of g(X), such as its distribution or expected value.

We will see techniques for finding the distribution of g(X) in this
chapter. Additionally, we will see an additional tool for characterizing
the distribution of random variables: moment generating functions1,2.
These highly useful functions reveal the distributions of random
variables just like the p.m.f./p.d.f. or the c.d.f. of a random variable.

5.1 Moment Generating Functions

The moment generating function (m.g.f.) of a random variable is
the function

M(t) =E
[
etX

]
, t ∈R. (5.1)

(5.1) need not hold or be finite for all t ∈ R; it’s possible that the
expression holds only for a subset of R.

Example 58. Let X ∼ Ber(p). Compute the m.g.f. of X.
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Example 59. Let X ∼DUNIF(a,b). Compute the m.g.f. of X.

Example 60. Let N ∼GEOM(p). Compute the m.g.f. of N .
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Example 61. Let X ∼ POI(λ). Compute the m.g.f. of X.

Example 62. Let U ∼UNIF(a,b). Compute the m.g.f. of U .
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Example 63. Let T ∼ EXP(λ). Compute the m.g.f. of T .

The name “moment generating function” comes from the fact that
M (t) can give the moments of random variables, due to the following
fact:

Proposition 40. Let f (n)(x) denote the nth derivative of the function f (x).

M(n)(0) =E [Xn] . (5.2)
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Example 64. Use the m.g.f. of N ∼ GEOM(p) to compute the 2nd

moment of N .

While we like being able to compute moments using the m.g.f. of
a random variable, the reason why m.g.f.s are so important in proba-
bility theory is because we can completely describe the distribution of
random variables using moment generating functions.

Theorem 7. Let X and Y be two random variables with moment generating
functions MX(t) and MY (t). Suppose there exists δ > 0 such that for

t ∈ (−δ,δ), MX(t) =MY (t) <∞. Then X D
== Y .

Example 65. Let U ∼UNIF(0,1). What is the distribution of (b−a)U +

a for a < b?
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3 As a consequence of this, Xn
P−→ 0 as

well. When a random variable converges
in distribution to a constant, it con-
verges in probability to that constant as
well. However, in general, convergence
in probability is a stronger statement
than convergence in distribution, and
implies convergence in distribution but
generally is not implied by convergence
in distribution.

Example 66. Let T ∼ EXP(1). What is the distribution of T
λ for λ > 0?

Example 67. Suppose nXn ∼ Ber(p) for n ∈N. Compute the m.g.f. of
Xn. What is the distribution of Xn? Use the m.g.f. of Xn to show that

Xn
D−→ 0 as n→∞.3
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5.2 Distribution of a Function of a Random Variable

In this section we see techniques for uncovering the distribution of
the r.v. g(X) when we know the distribution of the r.v. X. For discrete
r.v.s we can commonly express the distribution of the r.v. directly by
examining the p.m.f. of X. In fact, we have for the discrete r.v. X, for
any function g :R→R :

pg(X)(y) =
∑

x:g(x)=y

pX(x). (5.3)

Example 68. Let X ∼DUNIF(−3,5). Compute the p.m.f. of the r.v. X2.
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4 We can work around these restrictions
if we needed to, but this is a simplified
exposition that works in most cases.
5 We will see other methods in this
chapter. In my opinion, if you are
unsure what technique to use, start with
the c.d.f. technique.

Example 69. Let Sn ∼ BIN(n,p). What is the p.m.f. of the r.v. Xn =
Sn
n ?

Now, from this point on, let’s consider continuous random vari-
ables. Let’s assume that the function g is differentiable everywhere
except perhaps at a finite number of points, and that the derivative is
non-zero except at a finite number of points.4 How can we determine
the distribution of g(X) if X is a continuous random variable?

A popular technique is the c.d.f. technique.5 The c.d.f. fully charac-
terizes the distribution of any r.v.. Additionally, for continuous r.v.s,
the c.d.f. can be differentiated to give the value of the p.d.f. of the
random variable everywhere except at perhaps a countable collection
of points, which can be arbitrarily picked anyway (since p.d.f.s are
unique up to a countable subset of R). Thus, attempt to compute the
c.d.f. of g(X) in terms of the c.d.f. of X, then use that c.d.f. to recover
information about the distribution of g(X) or its characteristics.

Example 70. Suppose U ∼ UNIF(−2,4). What is the p.d.f. of the r.v.
U2?
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Example 71. Suppose Z ∼N(0,1). What is the p.d.f. of the r.v. Y = Z2?
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Example 72. Suppose Z ∼ N(0,1). What is the p.d.f. of the r.v. W =

|Z |?

Example 73. Suppose U ∼ UNIF(−2,2). What is the p.d.f. of the r.v.
D = (U + 1)2?
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The c.d.f. technique itself can become the starting point for formu-
las intended to give the p.d.f. of a transformation of a r.v..

Proposition 41. Let X be a continuous r.v. with density function fX(x)
and the function g is differentiable, one-to-one, and have non-zero deriva-
tive everywhere except at perhaps a finite collection of points. Then the
density function of the r.v. Y = g(X) is

fY (y) =
fX

(
g−1(y)

)∣∣∣g ′ (g−1(y))
∣∣∣ (5.4)

for points y such that g−1(y) exists and g ′
(
g−1(y)

)
, 0; set fY (y) = 0

elsewhere.
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Not all functions we deal with, though, are one-to-one; for example,
X2 is often not one-to-one on the region of interest. Fortunately,
though, we can handle those cases.

Proposition 42. Under the conditions of Proposition 41 but relaxing the
requirement that g be one-to-one:

fY (y) =
∑

x:g(x)=y
g ′(x),0

fX(x)∣∣∣g ′(x)∣∣∣ . (5.5)

Example 74. Let T ∼ EXP(λ). Find the p.d.f. of the r.v. Y = T 2.
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Example 75. Let U ∼UNIF(−4,4). Let

g(t) =


t+ 2 if t ≤ −1

−t if − 1 < t ≤ 0

t if 0 ≤ t < 1

2− t if 1 ≤ t

.

Find the p.d.f. of the r.v. Y = g(U ).





1 If there are two random variables,
the joint p.m.f. is pX,Y (x,y) =
P (X = x.Y = y).

6
Joint Distribution of Random Variables

Introduction

In the background of the discussions we’ve had in previous chapters
lurks the idea of how random variables vary together. Part of the
convenience of considering random variables as functions is that
we can have multiple “functions” (r.v.s) defined on the same sample
space Ω. That is, we can have a function X(ω) and a function Y (ω)
that both take inputs ω ∈ Ω, and we want to investigate how X(ω)

and Y (ω) behave when given a common ω.
Thus we want to study the joint distributions of one or more ran-

dom variables. That will be the subject of this chapter. Now, one could
have both a discrete and a continuous random variable defined on
the same space; perhaps Z(ω) is a Gaussian random variable and
B(ω) is a Bernoulli random variable and B(ω) = 1 when Z(ω) > 0.
However, once again in this chapter, for the sake of simplicity, we will
be considering random variables that are jointly discrete and jointly
continuous.

Many of our ideas about univariate random variables carry over
here, and are ultimately generalized. Because I want to be as general
as I can be, I have to use painful notation, but these ideas are often
easier to understand when there are only two random variables, X and
Y , under consideration. Keep this simplification in the back of your
mind as you go through this chapter.

We will be skipping the last two sections for the sake of time.

6.1 Joint Distributions of Discrete Random Variables

Let X1,X2, . . . ,Xn be discrete random variables, all defined on the
same sample space Ω. The joint probability mass function (p.m.f.)
is1
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2 If there’s only two random vari-
ables, we can say E [g(X,Y )] =∑
x,y g(x,y)pX,Y (x,y)

3 Here we work with the first m r.v.s
due to notational convenience only. We
could work instead with any subcol-
lection of random variables and the
principle is still generally true; that is, if
{i1, . . . , im} ⊆ [n], then

pXi1 ,...,Xim
(xi1 , . . . ,xim ) =∑

xi1 ,...,xim

pX1,...,Xn (x1, . . . ,xn).

pX1,...,Xn(x1, . . . ,xn) =P (X1 = x1, . . . ,Xn = xn) . (6.1)

Like with the univariate p.m.f., we require that the joint p.m.f.
sums to 1 over the values where it is non-zero:

∑
x1,...,xn

pX1,...,Xn(x1, . . . ,xn) = 1. (6.2)

We do have the concept of expected values when we have multiple
r.v.s, but we need to work with functions of random variables g :Rn→
R rather than the random variables themselves directly:2

E [g(X1, . . . ,Xn)] =
∑

x1,...,xn

g(x1, . . . ,xn)pX1,...,Xn(x1, . . . ,xn). (6.3)

So far we’ve expanded upon the ideas that we originally had for
univariate r.v.s. Now let’s introduce a new idea. Suppose we have a
collection of random variables X1, . . . ,Xn and we have a joint p.m.f.
pX1,...,Xn(X1, . . . ,Xn), but we actually want a p.m.f. only for the random
variables X1, . . . ,Xm for m ≤ n; that is, we want pX1,...,Xm(x1, . . . ,xm).3

Proposition 43.

pX1,...,Xm(x1, . . . ,xm) =
∑

xm+1,...,xn

pX1,...,Xn(x1, . . . ,xm,xm+1, . . . ,xn). (6.4)
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4 For two random variables we have the
simpler expressions:

pX (x) =
∑
y
pX,Y (x,y)

and:

pY (y) =
∑
x
pX,Y (x,y).

We have as an immediate corollary to Proposition 43:4

Proposition 44.

pXi (xi) =
∑

x1,...,xi−1,xi+1,...,xn

pX1,...,Xn(x1, . . . ,xi−1,xi ,xi+1, . . . ,xn). (6.5)

The p.m.f. for Xi computed in (6.5) defines what’s known as the
marginal distribution of Xi . This name follows from the fact that, if
the joint p.m.f. of X1, . . . ,Xn were represented in a tabular form, the
p.m.f. of Xi is a marginal sum over the table’s entries.

Example 76. Roll two six-sided die. Let A(ω) be the maximum of the
numbers shown on the two die and I(ω) the minimum. Find the joint
p.m.f. of (A, I). Additionally, find the marginal distributions of the
two random variables.

Compute E [A], E [I ], and E [AI ].
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Example 77. Roll a six-sided dice and flip a coin. Let ω represent
an outcome of this experiment. X(ω) records the number of pips
showing on the dice. Y (ω) is 0 if the coin lands tails-up and 1 if
it lands heads-up. Find the joint p.m.f. of (X,Y ) and the marginal
distributions of X and Y .

Compute E [X], E [Y ], and E [XY ].

Example 78. Roll a six-sided die; let X be the result of the die roll.
Then roll the die repeatedly until a number at least as large as X is
rolled; let N be the number of rolls in this last sequence. What is the
joint p.m.f. of (X,N )? What are the marginal distributions of these
random variables?
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Compute E [X], E [N ], and E [XN ].
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5 The familiar binomial coefficient is the
multinomial coefficient when r = 2; we
simply omit k2 in notation since it is
automatically determined by k1 in that
context.

In previous chapters we saw the binomial distribution. In this
chapter we will generalize the distribution. Define the multinomial
coefficient for n ∈N and r ∈N:5

(
n

k1, . . . ,kr

)
=

n!
k1! . . . kr !

, k1 + . . .+ kr = n, k1, . . . ,kr ≥ 0. (6.6)

Let p1, . . . ,pr be non-negative numbers such that p1 + . . .+ pr = 1. The
r.v.s X1, . . . ,Xr follow the multinomial distribution if they have joint
p.m.f.:

pX1,...,Xr (x1, . . . ,xr) =
(

n
x1, . . . ,xr

)
px1

1 . . .pxrr , x1, . . . ,xr ≥ 0, x1 + . . .+ xr = n.

(6.7)

(The p.m.f. is zero elsewhere.) We say (X1, . . . ,Xr) ∼MULTIN(n,p1, . . . ,pr).
Multinomial random variables arise when we there are r possible
outcomes and we count in n trials how many times each of the r
outcomes occurs.

If (X1, . . . ,Xr) ∼MULTIN(n,p1, . . . ,pr), what is the marginal distri-
bution of Xi for some i ∈ [r]?

Example 79. Roll a die 100 times. What is the probability that you
observe exactly 20 ones, 27 twos, and 10 sixes?
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6 For example, we could have Z ∼N(0,1)
and W (ω) = −Z(ω); both Z and W are
continuous random variables, but they
are not jointly continuous and there
is no joint p.d.f. that describes their
distribution.
7 If it helps again to consider only
two random variables, the r.v.s X and
Y are jointly continuous if there is
a non-negative function fX,Y (x,y)
such that, for any Borel set B ⊆ R2,
P ((X,Y ) ∈ B) =

!
B fX,Y (x,y)dxdy.

8 Similarly, for two r.v.s, we have
fX (x) =

∫∞
−∞ fX,Y (x,y)dy and

fY (y) =
∫∞
−∞ fX,Y (x,y)dx.

9 Similarly, we have E [g(X,Y )] =∫∞
−∞

∫∞
−∞ g(x,y)fX,Y (x,y)dydx.

6.2 Jointly Continuous Random Variables

Ideas for jointly discrete random variables translate nicely to
the continuous case. There is only one caveat: while if a collection of
r.v.s X1, . . . ,Xn follow a jointly discrete distribution if each of them is a
discrete r.v., the same cannot be said for continuous r.v.s: more plainly,
if X and Y are continuous random variables, we cannot automatically
say that X and Y are jointly continuous.6

Instead, we say that X1, . . . ,Xn are jointly continuous random
variables if there exists a non-negative function fX1,...,Xn(x1, . . . ,xn)
such that, for every Borel set B ⊆Rn:7

P ((X1, . . . ,Xn) ∈ B) =
(

B
fX1,...,Xn(x1, . . . ,xn)dx1 . . .dxn. (6.8)

Like (6.2), we should require

(
Rn
fX1,...,Xn(x1, . . . ,xn)dx1 . . .dxn = 1. (6.9)

We can make statements similar to those made in Propositions 43
and 44, replacing p.m.f.s with p.d.f.s and sums with integrals. The
proofs are extremely similar to the discrete versions.8

Proposition 45.

fX1,...,Xm(x1, . . . ,xm) =
∫ ∞
−∞
· · ·

∫ ∞
−∞
fX1,...,Xn(x1, . . . ,xn)dxm+1 . . .dxn, m ∈ [n].

(6.10)

Proposition 46.

fXi (xi) =

∫ ∞
−∞
· · ·

∫ ∞
−∞
fX1,...,Xn(x1, . . . ,xi−1,xi ,xi+1, . . . ,xn)dx1 . . .dxi−1 dxi+1 . . .dxn, i ∈ [n].

(6.11)

Additionally, we treat expectations for jointly continuous random
variables like we did in the discrete case; for g :Rn→R:9

E [g(X1, . . . ,Xn)] =
(

Rn
g(x1, . . . ,xn)fX1,...,Xn(x1, . . . ,xn)dx1 . . .dxn.

(6.12)

Example 80. Let (X,Y ) have joint p.d.f. fX,Y (x,y) = xe−xy1y≥0,x∈[0,1](x,y).
Find the marginal distributions of X and Y .
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What is the probability that X > Y ?

Compute E [X], E [Y ], and E [XY ].
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10 A discussion of this issue in three-
dimensional space can be found in
Milzman [2014].

Let D ⊂R2. Let area(D) be the area of the set D. We say that (X,Y )
is distributed uniformly over D if fX,Y (x,y) = 1D (x,y)

area(D)
. Similarly, if

D ⊂ R3 and we let vol(D) be the volume enclosed in D, we say that
(X,Y ,Z) is distributed uniformly over D if fX,Y ,Z(x,y,z) = 1D (x,y,z)

vol(D)
.

Example 81. Imagine throwing darts at a dart board with a radius
of 6 inches. I don’t play darts so one might say that at best, when I
throw a dart, the position where it strikes the board will be uniformly
distributed over the board. But what exactly does that mean? Does
that mean uniformly distributed in the sense above? Does it mean
that, if we describe a dart’s position on the board by the distance from
the center R and clockwise angle from noon position Θ that (R,Θ)

will be uniformly distributed over [0,6]× [0,2π]?10

These probability models are not the same. Suppose the bulls-eye
is the circle of radius 1 (inch) in the center of the board. Compute the
probability that I hit the bulls eye under the two models.
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11 In bivariate situations, we can say
instead that, if X and Y are jointly
discrete, X ‚ Y iff

pX,Y (x,y) = pX (x)pY (y).

If X and Y are jointly continuous,
X ‚ Y iff

fX,Y (x,y) = fX (x)fY (y).

12 In general, we can define a multivari-
ate analogue to the c.d.f. of random
variables; we call FX1,...,Xn (x1, . . . ,xn)
the c.d.f. of X1, . . . ,Xn if

P (X1 ≤ x1, . . . ,Xn ≤ xn) =
FX1,...,Xn (x1, . . . ,xn).

The marginal c.d.f. of the random
variables X1, . . . ,Xm for m ∈ [n] is

FX1,...,Xm (x1, . . . ,xm) =

lim
xn+1→∞

· · · lim
xn→∞

FX1,...,Xn (x1, . . . ,xn).

Thus for a particular Xi the marginal
c.d.f. is

FXi (xi ) = lim
x1→∞

· · · lim
xi−1→∞

lim
xi+1→∞

· · · lim
xn→∞

FX1,...,Xn (x1, . . . ,xi−1,xi ,xi+1, . . . ,xn).

Or for two variables:

FX (x) = lim
y→∞

FX,Y (x,y).

That said, we in general have indepen-
dence iff

FX1,...,Xn (x1, . . . ,xn) =
n∏
i=1

FXi (xi ).

6.3 Joint Distributions and Independence

We discussed independence of random variables in Chapter 2, but
revisit the issue again here. It follows from Proposition 19 that dis-
crete random variables X1, . . . ,Xn are independent iff pX1,...,Xn(x1, . . . ,xn) =
pX1

(x1) · · ·pXn(xn). A similar statement can be made for jointly contin-
uous r.v.s.11

Proposition 47. Let X1, . . . ,Xn be jointly continuous random variables.
Then X1, . . . ,Xn are mutually independent of each other iff

fX1,...,Xn(x1, . . . ,xn) =
n∏
i=1

fXi (xi). (6.13)

Proposition 47 is proven similar to Proposition 19.12

Proposition 48. Suppose X1, . . . ,Xm are random variables independent of
the random variables Y1, . . . ,Yn. Let g : Rm→R and h : Rn→R and let
U = g(X1, . . . ,Xm) and V = h(Y1, . . . ,Yn). Then U ‚ V .
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Example 82. Let S ∼ EXP(λ) and T ∼ EXP(µ). If S ‚ T , what is the
joint p.d.f. fS,T (s, t)?

Compute P (S < T ).

Example 83. Consider the random variables presented in Example 77.
Are these random variables independent of each other?
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Example 84. Suppose (X,Y ) is uniformly distributed over [0,1]×[4,10].
Is X ‚ Y ?

Example 85. Suppose (U ,V ) is uniformly distributed over the region
in R2 enclosed by the points (0,0), (1,1), (2,1), and (1,0). Is U ‚ V ?
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Example 86. Consider the random variables (X,Y ) where the p.d.f.
of (X,Y ) is 24xy if x ≥ 0, y ≥ 0, and x+ y ≤ 1 (it is zero elsewhere). Is
X ‚ Y ?





7
Sums and Symmetry

Introduction

In this chapter we look at the behavior of sums of independent
random variables. Probability cares a great deal about the behavior
of sums of random variables, and this chapter is the first to explore
the topic. Then we discuss exchangeability, or when random variables
behave in very similar ways.

7.1 Sums of Independent Random Variables

Let’s start by considering two discrete random variables, X and Y ,
with X ‚ Y . Compute P (X + Y = n) for any n.

The conclusion is that if we call S = X + Y and attempt to find the
distribution of S, we get
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1 It can be shown that∑
k:pX (k)>0 pX (k)pY (n − k) =∑
k:pY (k)>0 pY (k)pX (n − k) and∫∞
−∞ fX (t)fY (x − t)dt =

∫∞
−∞ fY (t)fX (x −

t)dt; that is, the role the individual
marginal p.m.f.s/p.d.f.s play in the
sum/integral do not matter.

2 The implication of the commentary
in footnote 1 is that the operator ∗ is
commutative and defined on functions,
since the order of the function does not
matter to the operator (addition and
multiplication are also commutative
operations, operating on both real
numbers and functions.)
3 We could repeat the procedure shown
here an arbitrary number of times,
and there’s no restrictions on the
values of µ and λ beyong that they
be non-negative, so we could write
any Poisson random variables as a
sum of an arbitrary number of other
mutually independent Poisson random
variables. When random variables
following some distribution have this
property, we say that the distribution
is infinitely divisible. We will see that
Normal random variables also have this
property.

pS(n) =
∑

k:pX (k)>0

pX(k)pY (n− k). (7.1)

In fact, we can make a similar statement for jointly discrete random
variables. If X and Y are jointly continuous random variables and
S = X + Y , then1

fS(x) =

∫ ∞
−∞
fX(t)fY (x − t)dt. (7.2)

The procedure shown in (7.1) and (7.2) is called convolution, and
appears in many areas of mathematics. In fact, there’s notation for
this; we would say pS = pX ∗ pY and fS = fX ∗ fY .2

Example 87. Let X ∼ POI(λ) and Y ∼ POI(µ). Let X ‚ Y . What is the
distribution of X + Y ? That is, compute pX ∗ pY . 3
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Example 88. Let X ∼ N(µ1,σ2
1 ), Y ∼ N(µ2,σ2

2 ), and X ‚ Y . What is
fX ∗ fY ? What is the distribution of X + Y ?
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4 Specifically, GEOM(p) ≡NBIN(1,p).

5 The argument here can be extended
to show that the sum of two negative
binomial random variables with com-
mon parameter p also follow a negative
binomial distribution, with the first
parameter being the sum of the first
parameters of the two random variables
summed. This makes intuitive sense if
one views the negative binomial random
variable as generally being the sum
of geometric random variables. This
random variable models how many
times you need to flip a coin before you
see k heads in total.

The random variable X follows a negative binomial distribution,
denoted X ∼NBIN(k,p), if, for n ≥ k,

pX(n) =

(
n− 1
k − 1

)
pk(1− p)n−k . (7.3)

(pX(n) = 0 otherwise.) We see below that the negative binomial dis-
tribution can be viewed as a generalization of the geometric random
variable.4

Example 89. Consider two i.i.d. copies of X ∼ GEOM(p). Compute
pX ∗ pX to determine the distribution of their sum. 5



introduction to probability lecture notes 123

6 Γ (x) is called the gamma function and
is defined for x > 0 as

Γ (r) =

∫ ∞
0
xr−1e−x dx.

This is generally an important function.
In general it is not possible to compute
Γ (r) in a closed form but it is possible
for select r. We have the identities (that
can be verified via integration by parts)
that Γ (1) = 1 and Γ (r + 1) = rΓ (r);
because of this, we can say Γ (n+ 1) = n!
and that the gamma function gener-
alizes n! (as a consequence Stirling’s
approximation describes the behavior
of Γ (r) as well). Another important
identity is that Γ

(
1
2

)
=
√
π.

7 Specifically, EXP(λ) ≡GAMMA(1,λ).
8 The argument here can be extended
to show that the sum of two gamma
random variables with common parame-
ter λ also follow a gamma distribution,
with the first parameter being the sum
of the first parameters of the two ran-
dom variables being summed. When
the first parameter is an integer, since
exponential random variables can be
viewed as the time to wait until an event
happens, the gamma random variable
can be viewed as how long it will take
until the event happens r times, with
the process restarting after each time
the event occurs. Because geometric and
exponential random variables have very
similar properties and interpretations
(this was discussed in Chapter 4), we
can also view negative binomial and
gamma random variables and being
similar in role and interpretation.

The random variable X follows a gamma distribution, denoted
X ∼GAMMA(r,λ), if it has p.d.f.6

fX(x) =
λrxr−1e−λx

Γ (r)
1[0,∞)(t). (7.4)

We see below that the gamma distribution distribution can be
viewed as a generalization of the exponential distribution.7

Example 90. Consider two i.i.d. copies of T ∼ EXP(λ). Compute fT ∗ fT
to determine the distribution of their sum. 8
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9 In the two-variable case f (x,y) is
symmetric if f (x,y) = f (y,x).

7.2 Exchangeable Random Variables

Recall Example 86, where we had two random variables that
seemed to play similar rolls in the joint distribution. In fact, f (x,y) =
f (y,x); it seems as if, were you to remove the labels X and Y , pick one
of the two variables uniformly at random, and report its value in an
experiment, we would not be able to determine whether we saw X or
whether we saw Y . The two random variables are not independent of
each other but they are indistinguishable in their behavior. Similarly,
if I rolled two six-sided dice, randomly picked one, then told you how
many pips it was showing, you would not be able to determine which
dice I picked.

When random variables have this property, we say they are ex-
changeable; more specifically, if for any permutation i1, . . . , in of the
numbers 1, . . . ,n, the random variables X1, . . . ,Xn are exchangeable iff
(X1, . . . ,Xn)

D
==

(
Xi1 , . . . ,Xin

)
.

Recall that a function f (x1, . . . ,xn) is symmetric if for every permu-
tation i1, . . . , in of 1, . . . ,n, f (x1, . . . ,xn) = f (xi1 , . . . ,xin).

9

Proposition 49. The discrete (jointly continuous) random variables
X1, . . . ,Xn are exchangeable iff their joint p.m.f. (p.d.f.) is symmetric.
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Proposition 50. Suppose X1, . . . ,Xn are exchangeable. Then:

1. X1, . . . ,Xn are identically distributed; that is, they all have the same
marginal distributions;

2. If k ∈ [n], (X1, . . . ,Xk)
D
== (Xi1 , . . . ,Xik ) for any permutation i1, . . . , in of

1, . . . ,n;

3. For any g :Rk →R, E
[
g(Xi1 , . . . ,Xik )

]
=E [g(X1, . . . ,Xk)].
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Theorem 8. If X1, . . . ,Xn are i.i.d., they’re exchangeable as well.

Theorem 9. Let X1, . . . ,Xn be random variables whose values are drawn
without replacement from the set {1, . . . ,n}. Then X1, . . . ,Xn are exchange-
able.
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10 This allows us to consider non-
numeric outcomes as exchangeable as
well, since we can apply Theorem 9 to
those types of models.

Theorem 10. If X1, . . . ,Xn are exchangeable and if g :R→D is a function
with image in some set D, then g(X1), . . . ,g(Xn) are exchangeable as
well.10

Example 91. An urn contains red, green, and blue balls. There are 101
red balls, 16 green balls, and 37 blue balls. We pull 100 objects from
the urn. What is the probability that we get a blue ball on the first
draw, a green ball on the tenth draw, and a red ball on the hundredth
draw?

Example 92. Let X1, . . . ,Xn be i.i.d.. What is the probability that X1 is
the largest of the random variables?
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Example 93. Let (X1, . . . ,Xr) ∼ MULTIN(n,p1, . . . ,pr). Are X1, . . . ,Xr
necessarily exchangeable?

Give a condition for which X1, . . . ,Xr are exchangeable.

Roll 10 100-sided die. What is the probability that you will see five
numbers repeated twice?



1 This property seems innocuous but in
fact it’s extremely consequential. Most
students taking this class have seen
only the Riemann theory of integration,
but this theory is generally not the
theory used in modern mathematics for
describing how integration is done. One
step towards modern integration theory
is the Daniell integral . In Daniell
integration, we start by assuming there
is a set of real-valued functions we will
call H defined over some set X (so in
this case, the functions are random
variables and X is the sample space Ω),
and this set is closed under addition
and scalar multiplication (so if f ,g ∈ H
and a,b ∈R, af + bg ∈ H); additionally,
f ∈ H =⇒ |f | ∈ H . Then we call a
function I : H → R an elementary
integral if it satisfies the following three
axioms:

1. If a,b,f ,g are as above, I(af + bg) =
aI(f ) + bI(g); this is linearity;

2. f (x) ≥ 0∀x ∈ X =⇒ I(f ) ≥ 0; and
finally

3. If h1,h2, . . . is a sequence of non-
decreasing functions (that is, h1(x) ≤
h2(x) ≤ . . .∀x ∈ X) such that hn(x)→
h(x)∀x ∈ X, then I(hn)→ I(h).

Expected values satisfy these proper-
ties, so we say that expected values are
integrals; rather than integrals produc-
ing expected values, expected values
produce integrals.

P. J. Daniell. A general form of integral.
Annals of Mathematics, 19(4):279–294,
1918. ISSN 0003486X. URL http:

//www.jstor.org/stable/1967495

2 There are basically no assumptions
placed here; this fact is always true. No-
tably, this is true even when X1, . . . ,Xn
are not independent.

8
Expectation and Variance in the Multivariate Setting

Introduction

In this chapter we revisit expected values. Recall from Chapter 6
our definitions of expected values in the multivariate setting. In this
chapter, we’re interested in two special cases:

g(X1, . . . ,Xn) = g1(X1) + · · ·+ gn(Xn) =
n∑
i=1

gi(Xi); (8.1)

g(X1, . . . ,Xn) = g1(X1)× · · · × gn(Xn) =
n∏
i=1

gi(Xi). (8.2)

8.1 Linearity of Expectation

Expectations are linear operators.
1

Proposition 51. For any random variables X1, . . . ,Xn and real-valued
functions g1, . . . ,gn defined on the real numbers,2

E [
∑n
i=1 gi(Xi)] =

n∑
i=1

E [gi(Xi)] . (8.3)

http://www.jstor.org/stable/1967495
http://www.jstor.org/stable/1967495
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Example 94. Use Proposition 51 to recompute the expected values of:

1. S ∼ BIN(n,p);

2. S ∼HGEOM(n,M,N );
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3. S ∼NBIN(k,p);

4. S ∼GAMMA(r,λ), r ∈N.
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Example 95. Let (X1, . . . ,Xr) ∼MULTIN(n,p1, . . . ,pr) and let
{
i1, . . . , ij

}
⊆

[r]. What is E
[
Xi1 + · · ·+Xij

]
?

Example 96. There are n guests at a party. Suppose that the probability
a pair of guests know each other is p, and each pair of guests knows
each other independent of other pairs. Let X be the number of groups
of three in the party where each member of the group knows each
other. Compute E [X].
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3 Remember this fact as it matters
greatly to our upcoming discussion on
moment generating functions.

8.2 Expectation and Independence

Nothing in the previous section required independence; however,
now we will need independence to make statements about products of
functions of random variables.

Proposition 52. Let X1, . . . ,Xn be independent random variables. Then for
functions g1, . . . ,gn such that all expectations below are well-defined,3

E [
∏n
i=1 g(Xi)] =

n∏
i=1

E [g(Xi)] . (8.4)

Proposition 53. If X1, . . . ,Xn are independent random variables with finite
variances, then

Var (
∑n
i=1Xi) =

n∑
i=1

Var (Xi) . (8.5)
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Example 97. Use Proposition 53 to compute the variance of

1. S ∼ BIN(n,p);

2. S ∼NBIN(k,p);



introduction to probability lecture notes 135

3. S ∼GAMMA(r,λ), r ∈N.

Example 98. Let g(X1, . . . ,Xn) = Xn =
1
n

∑n
i=1Xi be the sample mean

of the i.i.d.r.v.s X1, . . . ,Xn. Compute E
[
Xn

]
and Var

(
Xn

)
.
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Example 99. A company sells boxes containing a random toy. There
are n toys possible, and each is equally likely to be in a box. A col-
lector wants to have at least one copy of each toy possible; she has
no friends, so the only way she can acquire more toys is by buying
more boxes. Let Tn be the number of boxes she buys before complet-
ing her collection. Compute E [Tn] and Var (Tn). Find asymptotic
approximations of these numbers.
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4 If you are familiar with Fouri-
er/Laplace transforms, then you are
already aware that in general the oper-
ation of convolution is related strongly
to these transformations, and (8.7) will
come as no surprise to you.
5 We can generalize this statement; if
X1, . . . ,Xn are independent random vari-
ables with m.g.f.s MX1 (t), . . . ,MXn (t),
then for all t ∈R,

MX1+···+Xn (t) =
n∏
i=1

MXi (t). (8.6)

8.3 Sums and Moment Generating Functions

In Chapter 7 we saw a method for finding the distribution of sums
of independent random variables, via convolution. We can also use
m.g.f.s for the same purpose.4

Proposition 54. Let X ‚ Y and have respective m.g.f.s MX(t) and MY (t);
then for all t ∈R,5

MX+Y (t) =MX(t)MY (t). (8.7)

In the following examples, assume X ‚ Y .

Example 100. Let X ∼ POI(λ) and Y ∼ POI(µ). Use Proposition 54 to
identify the distribution of S = X + Y .
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Example 101. Let X ∼ N(µX ,σ2
X) and Y ∼ N(µY ,σ2

Y ). Use Proposition
54 to identify the distribution of S = X + Y .

Example 102. Let X ∼ GAMMA(rX ,λ) and Y ∼ GAMMA(rY ,λ). Use
Proposition 54 to identify the distribution of S = X + Y .
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6 Notice Cov (X,X) = Var (X).
7 Sometimes the notation σXY is used to
refer to the covariance; this is due to σ2

X
being used to refer to the variance and
the relationship between the covariance
and variance (see footnote 6).

Example 103. Let X have p.m.f. pX(1) =
1
2 , pX(3) =

1
4 , and pX(10) =

1
4 , and Y have p.m.f. pY (0) =

1
3 , pY (2) =

1
3 , pY (4) =

1
6 , and pY (5) =

1
6 .

Use Proposition 54 to identify the distribution of S = X + Y .

8.4 Covariance and Correlation

In Chapter 3, we defined the variance of a random variable and
used it to quantify how much a random variable “varies.” Here, we
generalize the variance to take two random variables, in the form of
the covariance between X and Y . Let X and Y be random variables
defined on Ω. Then6,7
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Cov (X,Y ) =E [(X −E [X])(Y −E [Y ])] . (8.8)

Like with the variance, we have a shortcut formula for the covari-
ance.

Proposition 55.

Cov (X,Y ) =E [XY ]−E [X]E [Y ] . (8.9)

Example 104. Reconsider the random variables from Examples 77
and 78 in Chapter 6. Compute the covariance between the respective
random variables.
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Example 105. Let A,B ∈ F be subsets of Ω. Compute Cov (1A,1B).
What is the implication of Cov (1A,1B) = 0?

Cov (X,Y ) describes how X and Y vary together. Cov (X,Y ) ∈ R,
Cov (X,Y ) > 0 if X and Y , on average, exceed their means together,
and Cov (X,Y ) < 0 if X, on average, is greater than its mean when Y
is less than its respective mean, and vice versa. When Cov (X,Y ) = 0,
then we say X and Y are uncorrelated, which is sometimes denoted as
X ⊥ Y .

Proposition 56. Let X ‚ Y . Then X ⊥ Y as well.
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8 This means “linear in both arguments.”
Proposition 57 may not immediately
make that clear since constants seem
to disappear, but for every random
variable X, if b ∈ R is a constant, then
Cov (b,X) = 0; this is because b does not
vary at all.

While independence implies being uncorrelated, the converse
statement is false.

Example 106. Let (X,Y ) track the x and y coordinates of a randomly
selected point from R2 chosen from the points (1,1), (1,−1), (−1,2),
and (−1,−2), each with equal probability. Is X ⊥ Y ? Is X ‚ Y ?

I mentioned at the beginning of the chapter that the mean is a lin-
ear operator. The covariance also has a linearity property: Cov (X,Y )
is a bilinear operator.8 Additionally, it is symmetric in its arguments.

Proposition 57. Consider random variables X,X1, . . . ,Xm and Y ,Y1, . . . ,Yn
defined on the same probability space Ω and let a,a1, . . . ,am,b,b1 . . . ,bn ∈
R. Then:

1. Cov (X,Y ) = Cov (Y ,X);

2. Cov (aX + b,Y ) = aCov (X,Y ); and
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9 A consequence of Proposition 58 is
that Proposition 53 is true if the random
variables are uncorrelated; requiring
independence is not necessary.

3.

Cov

 m∑
i=1

aiXi ,
n∑
j=1

bjYj

= m∑
i=1

n∑
j=1

aibj Cov
(
Xi ,Yj

)
. (8.10)

The next fact generalizes Proposition 53.

Proposition 58. Let X1, . . . ,Xn be random variables with finite variances
and covariances. Then9

Var (
∑n
i=1Xi) =

n∑
i=1

Var (Xi) + 2
∑

1≤i<j≤n
Cov

(
Xi ,Xj

)
. (8.11)
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Example 107. Use Proposition 57 to compute the variance of a hyper-
geometric random variable, X ∼HGEOM(n,M,N ).
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10 The Greek letter used to signify
correlation is traditionally ρ. Thus, if
we also invoke the notation used in
footnote 7, we can rewrite (8.12) as
ρ = σXY

σXσY
.

11 Notice that the correlation has the
same sign as the covariance. Also, both
are zero together.

While the covariance is a useful quantity it suffers from a lack of
interpretability. Proposition 57 tells us that the covariance is sensitive
to the units of both of its inputs, so aside from the sign it is difficult
to interpret the numbers the covariance produces. To escape this
problem, we can use the correlation instead, where10,11

Corr (X,Y ) =
Cov (X,Y )√

Var (X)Var (Y )
. (8.12)

Theorem 11. Let X and Y be random variables with finite variances
defined on the same probability space Ω. Let a,b ∈R. Then:

1. Corr (aX + b,Y ) = sign(a)Corr (X,Y ), where sign(a) = a
|a| =

1{a>0}(a)−1{a<0}(a) is the sign of a;

2. −1 ≤ Corr (X,Y ) ≤ 1; and

3. Corr (X,Y ) ∈ {−1,1} iff for some a , 0,b ∈R, Y = aX + b a.s..
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Example 108. Reconsider the random variables from Examples 77
and 78 in Chapter 6. Compute the correlation between the respective
random variables.
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