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Preface

These lecture notes were written by me to accompany John Verzani’s Using R
for Introductory Statistics (2nd ed.), to be delivered in lectures teaching students
how to program with R in the programming lab accompanying a lecture section
focusing on the statistical methods themselves.

These notes are not intended to stand alone; I like Verzani’s book and I believe
that these notes should supplement it, not replace it. For those taking the
programming lab for the University of Utah’s Mathematics Department statistics
courses, I would insist on reading Verzani’s book in addition to these lecture
notes. However, these notes could serve as a light weight introduction to R and
statistical programming.

In any case, I hope that you find these notes useful, and wish you the best of
luck.

Curtis Miller
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Lecture 1

Control Flow
In programming, control flow is the order in which statements in a program are
evaluated, if they’re evaluated at all. R is a full-featured programming language
and thus allows for control flow statements. We will review those statements
here.

if and else

if statements allows for conditional evaluation of code, and take the form
if (condition) {code}.1 condition must be a statement that evaluates to
a single TRUE or FALSE. If condition is TRUE, then code will be run. How-
ever, programmers may want certain code to run if condition is FALSE; for
this purpose, else exists, and we may use it in the format if (condition)
{code_true} else {code_false}. In fact, programmers may want to check a
series of possibilities and execute code based on which is true, in which case we
can write else if to add more contingencies to our if statement.

Below are some examples of using if statements.
if (1 + 1 == 2) {

print("Arithmetic works!")
}

## [1] "Arithmetic works!"
if (0 < 1) {

print("We have order!")
} else {

print("We don't have order!")
}

## [1] "We have order!"
1When on a single line, the braces {} are actually optional, but I recommend always using

them for style purposes; your code is more robust and easily changed if you always use braces.
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x <- 0

if (x < 0) {
print("x is less than zero")

} else if (x == 0) {
print("x is zero")

} else {
print("x is greater than zero")

}

## [1] "x is zero"

Similar to if and else is the ifelse() function, used like so: ifelse(vec,
return_true, return_false). ifelse() is a vectorized function; vec could be
a vector consisting of TRUE and FALSE value. For every TRUE in vec, return_true
will be returned; elsewhere, return_false is returned.
(x <- rnorm(10))

## [1] -0.8820750 -0.4256935 0.6602596 -1.8273232 -1.0539485 1.3842224
## [7] 0.8441204 0.3333570 0.7442229 -1.1100196
# We will return a vector where all negative numbers are zero; otherwise, the
# original value of the vector is kept.

x < 0

## [1] TRUE TRUE FALSE TRUE TRUE FALSE FALSE FALSE FALSE TRUE
ifelse(x < 0, 0, x) # Put 0 where TRUE, else put corresponding x value

## [1] 0.0000000 0.0000000 0.6602596 0.0000000 0.0000000 1.3842224 0.8441204
## [8] 0.3333570 0.7442229 0.0000000

switch()

Suppose you wanted a value to depend on some input, and many different values
for that input are possible. For example, a string determines the statistic to
return. We could chain if and else statements like so:
stat <- "mean"
x <- rnorm(10)

if (stat == "mean") {
mean(x)

} else if (stat == "median") {
median(x)

} else if (stat == "max") {
max(x)
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} else if (stat == "min") {
min(x)

}

## [1] -0.3233816

The above code works but is verbose and error-prone2. We could tidy our code
by using switch() which allows for passing parameters that can provide multiple
outputs for multiple cases.

Here’s the above code block tidied by switch():
switch(stat,

mean = mean(x),
median = median(x),
max = max(x),
min = min(x)

)

## [1] -0.3233816

tryCatch()

tryCatch() is a function that allows for conditionally running code depending
on whether an error appeared or not. Rather than a program simply failing when
an error occurs, tryCatch() facilitates nuanced approaches to error handling.
A common syntax for tryCatch() is tryCatch(expr, error = function(e)
{do_something()}). expr is some code to be run, and the function passed to
the error argument handles the error object e. An optional parameter, finally,
allows for an expression that will always be run regardless of whether there was
an error or not, and will be evaluated before the result of expr is returned.
tryCatch(1 + 1, error = function(e) {"Help!"}, finally = print("Hello!"))

## [1] "Hello!"

## [1] 2
tryCatch(1 + "a", error = function(e) {"Help!"}, finally = print("Hello!"))

## [1] "Hello!"

## [1] "Help!"
# Errors are actually objects that we can inspect; here I capture this object
error_obj <- tryCatch(1 + "a", error = function(e) {e})
str(error_obj)

2The above code could be quickly written and vastly improved like so: stat <-
get("mean"); stat(x). Try it! What just happened? What does get() do? Without
using get() or a string, we could similarly try stat <- mean; stat(x). Either solution is
probably better than using switch(), though.
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## List of 2
## $ message: chr "non-numeric argument to binary operator"
## $ call : language 1 + "a"
## - attr(*, "class")= chr [1:3] "simpleError" "error" "condition"
error_obj$message

## [1] "non-numeric argument to binary operator"

Repeated Evaluation
A loop is a section of code evaluated repeatedly before a program proceeds to
later code. All loops consist of a body of code to be repeated and a condition
determining if the loop needs to be terminated. Beware: if this condition never
occurs, the loop will never end and the program will never stop unless some
outside force (such as a kill signal from the operating system) terminates the
program.3

A while loop may be the simplest loop; the body is run until the condition
passed to the loop becomes false. These loops take the form while (condition)
{code}.
x <- 0
while (x < 10) {

print(x)
x <- x + 1

}

## [1] 0
## [1] 1
## [1] 2
## [1] 3
## [1] 4
## [1] 5
## [1] 6
## [1] 7
## [1] 8
## [1] 9

Below is a simple loop that never ends:
while (TRUE) {

print("I'm a potatoe!")
}

3Actually many programs consist of loops that basically never end. Video games and
graphical programs, for example, are understood as operating in a loop that will not terminate
until the whole program terminates.
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for loops use list-like objects in their condition and also have a variable that
represents each element in the list. The syntax for for loops is for (var in l)
{do_something_with(var)}. These loops can be viewed as while loops where
the condition for continuation is that there are more elements in the list to
process.
x <- 1:10
for (i in x) {

print(i)
}

## [1] 1
## [1] 2
## [1] 3
## [1] 4
## [1] 5
## [1] 6
## [1] 7
## [1] 8
## [1] 9
## [1] 10
# A Fibonacci number calculator
m <- 10 # Tenth number in Fibonacci sequence
f_num <- 1 # The first number in the sequence
s_num <- 1 # The second number in the sequence
for (i in 1:(m - 2)) {
t_num <- f_num + s_num
f_num <- s_num
s_num <- t_num

}
t_num

## [1] 55
# Equivalent while loop
f_num <- 1
s_num <- 1
l <- 1:(m - 2)
n <- length(l)
idx <- 1
while (idx <= n) {

i <- l[idx]
t_num <- f_num + s_num
f_num <- s_num
s_num <- t_num
idx <- idx + 1

}
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t_num

## [1] 55

The expression break when used in a loop allows for early termination of the
loop.
x <- 0
while (TRUE) { # Will this loop end?

x <- x + 1
if (x > 10) {

print("Potatoe!")
break

}
}

## [1] "Potatoe!"

repeat is essentially a while loop with a condition that’s always true; the only
way to break the loop (other than a kill signal) is via break.
# This loop is equivalent to the loop above
x <- 0
repeat {
x <- x + 1
if (x > 10) {
print("Potatoe!")
break

}
}

## [1] "Potatoe!"

You may have heard never to use loops such as for loops when programming in
R. There are good reasons to avoid for loops; you should not use them in place
of vectorized operations, for example. However, there are times when loops are
unavoidable (the Fibonacci sequence is an example of a sequence that’s hard to
handle without loops) and when programming one should be ready to use any
necessary loops.

Throwing Errors and Warnings
While novice programmers strongly dislike errors they are important for pro-
gramming. Ample errors and warnings allow for easier debugging and prevent
programs from entering unwanted territory; an error thrown near the initial bad
code can save hours of time trying to find the initial problem. Thus programmers
look for places to throw errors and warnings to make sure that programs run as
expected and don’t behave badly.
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In R there are three classes of run-time messaging that can be used for behavior
management; ranked from most to least severe, there are errors, warnings,
and messages. We can throw an error using the function stop(), where the
input to stop() is the message to accompany the error.
x <- "a"
if (is.character(x)) {

stop("x should not be a character")
} else {
x + 1

}

## Error in eval(expr, envir, enclos): x should not be a character

Errors should be thrown via stop() when the appropriate course of action is for
the program to stop and not proceed. This contrasts with throwing a warning,
where the program can still proceed but the user should be notified that some
belief about the state of the program has been violated.
u <- 1
if (!is.logical(u)) {

warning("u is not boolean!")
}

## Warning: u is not boolean!
u | FALSE

## [1] TRUE

Finally there are messages. Messages simply alert the user to the current
operation of the program; they do not necessarily indicate “bad” behavior.
Packages, for example, produce messages as they load.
sum <- 0
for (i in 1:10) {
message(i)
sum <- sum + i

}

## 1

## 2

## 3

## 4

## 5

## 6

## 7
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## 8

## 9

## 10
sum

## [1] 55

Functions
You should already have seen functions and function authoring before, so consider
this sentence review: a function is a structure in a program that will execute
some segment of code when called. Functions often take inputs and will return
outputs depending on those inputs. In R, functions are objects that can be
created like any other data object; to repeat, functions in R can be treated as
data. This means that:

• You can save function in variables, vectors, lists, etc. (For example, the
following is legal and perfectly reasonable code: c(mean, median, sd).)

• Functions can be passed to functions as arguments; we call functions
accepting functions as inputs functionals. (An example of functionals are
the apply() collection of functions, including lapply().)

• Functions can be returned by functions, as an output; we call the function
returned by another function a closure. (An example of a function that
produces closures is Vectorize().)

Functions consist of three key ingredients: the formals, the body, and the
environment. Formals are arguments the function accepts. The function body
is the block of code executed by the function when called. The environment
is the data structure in which the function is defined; user functions generally
are defined in the global environment, but closures often live in a different
environment.

The following illustration demonstrates the relationship between these three
things:

# This function was defined by the user and thus lives in the global environment

function(formals) {
body

}

There are functions that pick a function apart into these component parts:
increment <- function(x) {

x + 1
}
formals(increment)
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## $x
body(increment)

## {
## x + 1
## }
environment(increment)

## <environment: R_GlobalEnv>

The function args() is primarily interested in the formals of a function, but
for interactive use, showing R users what arguments a function takes and their
default values. args() should only be used interactively to personally learn
about a funciton, not for more advanced programming; when programming, use
formals().
args(paste)

## function (..., sep = " ", collapse = NULL)
## NULL
formals(paste) # The result is a list with named elements, and entries of the

## $...
##
##
## $sep
## [1] " "
##
## $collapse
## NULL

# list being parameter defaults

Infix Notation
Recall the rules for function names; syntactically valid names include alphanu-
meric characters, ., and _, but cannot start with numbers or _ (so .Mean_1_ is a
valid name, but 1.Mean_ and _Mean.1_ are not). However, we can give objects
syntactically invalid names by using backquotes, like so:
.Mean_1_ <- 1 # Syntactically valid name
`1.Mean_` <- 2 # Invalid name
`_Mean.1_` <- 3 # Invalid name
`Awesome sauce!` <- 4 # Invalid name

.Mean_1_
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## [1] 1
`.Mean_1_`

## [1] 1
`1.Mean_`

## [1] 2
`_Mean.1_`

## [1] 3
`Awesome sauce!`

## [1] 4

One particular case where we may want syntactically invalid names is to define
infix functions. You’ve already met one: +. Yes, + is a function, as demonstrated
below:
`+`

## function (e1, e2) .Primitive("+")
class(`+`)

## [1] "function"
`+`(1, 2)

## [1] 3

In short, an infix function is a function f that can be called with two arguments
like so: x f y. Most user-defined infix functions, though, need to have their
name wrapped by two % symbols, like %my_function%.

R does come with some such function already defined (excluding “trivial” ones
like +). %*% computes matrix (inner) products (the product of two matrices as
taught in linear algebra, as opposed to element-wise products as done by *), and
%o% matrix outer products. The dplyr operator %>% is another example. These
are not the only useful infix operators we could imagine, though.

For example, R does not have an operator for string concatenation (meaning
combining two strings; when we concatenate "string1" and "string2", we
get the string "string1string2"). We can define an infix operator for string
concatenation like so:
`%s%` <- function(x, y) {paste(x, y)} # Concatenate, separating with space
`%s0%` <- function(x, y) {paste0(x, y)} # Concatenate, no separating characters

"hello" %s% "world"

## [1] "hello world"
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"hello" %s0% "world"

## [1] "helloworld"

Variadic Arguments
When looking at some function arguments, you may on occasion notice the
argument .... This argument actually refers to a list of arguments of undefined
length. This allows for writing functions that can take arguments not necessarily
defined outright by the programmer in the function definition.

We allow for variadic arguments when we include ... in the function definition,
and use them by referring to ... in a function call. Any argument passed to the
function that was not named as an argument to the function is included in ....

Below is a function that collects some arguments in ... and attempts to return
them in a vector (this could be problematic if not all the arguments are of the
same type; I would recommend collecting in a list instead in general). The
function also has a named argument that gets printed.
collector <- function(..., stringout = "Hello!") {

print(stringout)
vec <- c(...)
return(vec)

}

u <- collector(1, 1, 4)

## [1] "Hello!"
u

## [1] 1 1 4
u <- collector(a = 1, b = 1, c = 1, stringout = 10)

## [1] 10
u

## a b c
## 1 1 1

One can place ... anywhere in the funciton defintion, but beware: where
it’s placed matters. Named arguments prior to ... are treated as positional
arguments, and arguments after ... must be referred to explicitly if they are to
be modified.
new_collector <- function(introstring = "Hello!", ...,

leavestring = "Goodbye!") {
print(introstring)
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u <- c(...)
print(leavestring)

u # u will be returned when referred to like this
}

x <- new_collector("Whoa", "Awesome", "world")

## [1] "Whoa"
## [1] "Goodbye!"
x

## [1] "Awesome" "world"
x <- new_collector(1, 2, 3, 4)

## [1] 1
## [1] "Goodbye!"
x

## [1] 2 3 4
x <- new_collector("whoa", "awesome", "stuff", leavestring = "solo")

## [1] "whoa"
## [1] "solo"
x

## [1] "awesome" "stuff"
x <- new_collector(1, 2, 3, introstring = "whoa", leavestring = "awesome")

## [1] "whoa"
## [1] "awesome"
x

## [1] 1 2 3

So far I have demonstrated ... by immediately passing it to c(), but in fact
we can pass ... to any function. Let’s demonstrate by writing our own version
of the function paste(). The argument sep controls the separator between
words in the string. We could set sep = "_" to separate with _ rather than a
space (the default). That said, the only parameter we want to change is sep; we
otherwise want our new function to behave exactly like paste(), and we don’t
want to have to rewrite paste() to accomodate this. Also, we prefer simple
code; we don’t want to have to repeat all of paste()’s arguments in our function
definition, especially since we want our new function to work with all past and
future versions of paste() that could behave differently in other versions of R.
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(Actually I don’t expect the paste() syntax to ever change, but the moral of
the story stands.)

Given these design constraints, ... is extremely useful, since we only need to
write the following:
paste_ <- function(..., sep = "_") {

paste(..., sep = sep)
}
paste("hello", "world")

## [1] "hello world"
paste_("hello", "world")

## [1] "hello_world"
paste_("source", 1:10)

## [1] "source_1" "source_2" "source_3" "source_4" "source_5"
## [6] "source_6" "source_7" "source_8" "source_9" "source_10"
paste_("source", 1:10, collapse = "...") # A paste() argument

## [1] "source_1...source_2...source_3...source_4...source_5...source_6...source_7...source_8...source_9...source_10"
paste_("source", 1:10, collapse = "...", sep = "-") # Stupid but valid

## [1] "source-1...source-2...source-3...source-4...source-5...source-6...source-7...source-8...source-9...source-10"

Demonstration: z Statistic Function
Recall from previous courses the z statistic:

z = x̄− µ0
σ√
n

Here, x̄ is the sample mean, n the sample size, µ0 is the mean of the data under
the null hypothesis, and σ is the population standard deviation. Let’s write a
function that computes the z statistic. How will our function work? We will
sketch the following specification:

• We will call our function z.stat().
• z.stat() will take a list of numbers directly and compute the z statistic.

(This is probably not wise from a design perspective but allows us to
demonstrate the use of ....)

• Two named parameters for z.stat() will be sigma and mu, representing
the population standard deviation and mean under the null hypothesis,
respectively
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• The function should raise an error if the input data is not numeric or
if sigma is not positive. We want the function to check and throw its
own errors in these cases; while we might consider letting the arithmetic
throw the errors, having the function throw the error allows for easier error
diagnosis should an unwitting user make a mistake.

• We want the function to work for boolean (i.e. TRUE/FALSE) data but throw
a warning; while boolean can be easily converted to numeric, we don’t
want our function used this way, though we don’t want to explicitly ban
this usage.

• The user does not absolutely have to specify sigma; our function could fall
back on the sample standard deviation in that case. However, we don’t
want to encourage this use, so we should throw a warning if this occurs.

(I’m not going to argue this is good design; this is more about demonstrating
techniques than using them well. That said, writing a design document for code
is a very good idea, and essential if the code is going to be distributed or if a
team is working on it.)
# The following comments are more than just comments; they're ready for
# interpretation by a package called roxygen2, which can create documentation
# for functions and other package objects.

#' Z Statistic
#'
#' Compute the \eqn{z}-statistic for a given data set.
#'
#' @param ... Data for which to compute the \eqn{z}-statistic
#' @param mu The mean of the population under the null hypothesis
#' @param sigma The population standard deviation; unset by default (this is
#' achieved by making the default value of the parameter
#' \code{NULL})
#' @return The \eqn{z}-statistic
#' @examples
#' z.stat(1, 2, 3, mu = 2, sigma = 1)
z.stat <- function(..., mu = 0, sigma = NULL) {
x <- tryCatch(c(...), # Attempt to convert ... into a vector

error = function(e) {
"Inappropriate data passed to z.stat(); it should be numeric"

})
if (is.logical(x)) {
warning("Data passed to z.stat() is logical; may be inappropriate for z" %s%

"test")
} else if (!is.numeric(x)) {
stop("Data passed to z.stat() must be numeric")

}
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if (is.null(sigma)) {
warning("sigma not set; defaulting to sample standard deviation, but" %s%

"statistic may not be appropriate")
sigma <- sd(x)

}

if (!is.numeric(sigma) | sigma <= 0) {
stop("sigma must be a positive number")

}

xbar <- mean(x)
n <- length(x)

(xbar - mu) / (sigma / sqrt(n))
}

Let’s run some tests to see that our function works as intended.
z.stat(0.1, 1.1, -0.1, -2.5, 0.3) # Produces a warning

## Warning in z.stat(0.1, 1.1, -0.1, -2.5, 0.3): sigma not set; defaulting to
## sample standard deviation, but statistic may not be appropriate

## [1] -0.3634502
z.stat(0.1, 1.1, -0.1, -2.5, 0.3, sigma = 1)

## [1] -0.491935
z.stat(0.1, 1.1, -0.1, -2.5, 0.3, mu = 1, sigma = 1)

## [1] -2.728003
z.stat("0.1", 1.1, -0.1, -2.5, 0.3, mu = 1, sigma = 1) # Should produce error

## Error in z.stat("0.1", 1.1, -0.1, -2.5, 0.3, mu = 1, sigma = 1): Data passed to z.stat() must be numeric
z.stat(TRUE, TRUE, FALSE, TRUE, FALSE, mu = 1, sigma = 1) # Produces warning

## Warning in z.stat(TRUE, TRUE, FALSE, TRUE, FALSE, mu = 1, sigma = 1): Data
## passed to z.stat() is logical; may be inappropriate for z test

## [1] -0.8944272
z.stat(0.1, 1.1, -0.1, -2.5, 0.3, mu = 1, sigma = -1) # Produces error

## Error in z.stat(0.1, 1.1, -0.1, -2.5, 0.3, mu = 1, sigma = -1): sigma must be a positive number

Based on our tests our function seems to work appropriately.
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Lecture 2

Environments
Environments are special data structures that are responsible for handling the
names of variables and for looking up variables when requested. You have been
interacting with environments for as long as you have been using R. Whenever
you create a variable in R, what you have actually done is created an object then
created a slot in the global environment (the environment where user action in
R generally takes place) that points to that object. If an object has no slot in
an environment pointing to that object, R automatically destroys it during a
process known as garbage collection.

The function ls() lists the objects contained in an environment. By default, it
lists what’s in the global environment.
ls()

## [1] "_Mean.1_" "%s%" "%s0%" "1.Mean_"
## [5] "Awesome sauce!" "collector" "error_obj" "f_num"
## [9] "i" "idx" "increment" "l"
## [13] "m" "n" "new_collector" "paste_"
## [17] "s_num" "stat" "sum" "t_num"
## [21] "u" "x" "z.stat"
ls(envir = globalenv()) # globalenv() accesses the global environment

## [1] "_Mean.1_" "%s%" "%s0%" "1.Mean_"
## [5] "Awesome sauce!" "collector" "error_obj" "f_num"
## [9] "i" "idx" "increment" "l"
## [13] "m" "n" "new_collector" "paste_"
## [17] "s_num" "stat" "sum" "t_num"
## [21] "u" "x" "z.stat"
x <- 1
ls()

## [1] "_Mean.1_" "%s%" "%s0%" "1.Mean_"
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## [5] "Awesome sauce!" "collector" "error_obj" "f_num"
## [9] "i" "idx" "increment" "l"
## [13] "m" "n" "new_collector" "paste_"
## [17] "s_num" "stat" "sum" "t_num"
## [21] "u" "x" "z.stat"
ls(envir = globalenv())

## [1] "_Mean.1_" "%s%" "%s0%" "1.Mean_"
## [5] "Awesome sauce!" "collector" "error_obj" "f_num"
## [9] "i" "idx" "increment" "l"
## [13] "m" "n" "new_collector" "paste_"
## [17] "s_num" "stat" "sum" "t_num"
## [21] "u" "x" "z.stat"

The function environment() lists the current environment.
environment()

## <environment: R_GlobalEnv>

In fact, we can access objects in environments similarly to how we access objects
in lists. However, environments are not just a different kind of list. We’ll get
into that in a second; let’s first see how environments have similar syntax to
lists. We can create a new environment with the function new.env(). Objects
in the environment can be referenced using $, like so:
my_env <- new.env()
my_env$x <- 1
my_env[["y"]] <- 2
my_env[["awesome sauce"]] <- 3

my_env[["x"]] + my_env$y + my_env$`awesome sauce`

## [1] 6
ls(envir = my_env)

## [1] "awesome sauce" "x" "y"

However, despite these similarities, there are important distinctions between
environments and lists, such as objects saved in an environment are unordered;
there is no “first” item. So in the above code, my_env[1] and my_env[[1]] make
no sense. Names in environments are unique, and environments have reference
semantics. Additionally, you don’t remove objects from environments by setting
them to NULL, as you would with a list. Instead, you have to use the function
rm(), like so:
rm(list = "awesome sauce", envir = my_env)

There are two fundamental ingredients needed for an environment: a frame
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(which are the name-object bindings demonstrated above) and the environment’s
parent environment, which is an environment that “contains” the environment.
There is only one environment that does not have a parent: the empty envi-
ronment (created automatically and referenced with emptyenv()). Otherwise,
every environment has a parent. Aside from emptyenv(), two other important
environments are the global environment (referenced via globalenv() and rep-
resents the environment that the user generally works in) and baseenv() (the
environment of the base package).

When we create an environment, we can declare its parent like so:
other_env <- new.env(parent = my_env)
other_env$z <- "great!"
my_env

## <environment: 0x55cdfaf8a8d8>
parent.env(other_env) # Find the parent of an environment

## <environment: 0x55cdfaf8a8d8>

By default, the parent of an environment created via new.env() is the global
environment. When using environments as data structures (say, as a substitute
for a list), consider making the parent the empty environment.

Due to the parent-child nature of environments, we could say that any environ-
ment has a sequence of ancestors, consisting of the parent of a given environment,
the parent of the parent environment, and so on. The only environment that
does not have a parent is the empty environment. Furthermore, the empty
environment is the ultimate ancestor of all environments.

To compare environments, we use a function called identical(); we cannot use
==. I demonstrate use of identical() below:
parent.env(globalenv())

## <environment: package:stats>
## attr(,"name")
## [1] "package:stats"
## attr(,"path")
## [1] "/usr/lib/R/library/stats"
identical(emptyenv(), globalenv())

## [1] FALSE
identical(my_env, other_env)

## [1] FALSE
identical(my_env, my_env)
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## [1] TRUE

Functions and Environments
Why does this discussion matter? Users generally are not creating environments.
Instead, environments are generated automatically when functions are called.
Users don’t notice because those environments are often instantly destroyed
when the function completes and terminates. However, this matters when
understanding and creating closures.

Consider the following function:
x <- 10
y <- 20
f <- function() {
x <- 30
cat("x is", x, "\n")
cat("y is", y, "\n")

}
f()

## x is 30
## y is 20
x

## [1] 10
y

## [1] 20
x <- 40
y <- 50
f()

## x is 30
## y is 50
x

## [1] 40
y

## [1] 50

What happened here? Here’s a step-by-step breakdown of the above code
sequence:

1. Variables x and y were created in the global namespace with some initial
values.
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2. The function f() was defined, then called. When f() was called, a new
environment was temporarily created, with the global environment being
its parent.

3. A variable x was defined in the environment where f() operated. This x
is distinct from the x that was defined in the global environment, since
they were defined in two separate environments. This is the reason why
the value of x in the global environment was not changed.

4. When x was referenced in f(), R first looked inside the active environment,
the temporary one created when the function was called. x was found
there, so the x that existed in the global environment was ignored. When
y was referenced, no y was found in the active environment, so R looked in
the parent environment, which was the global environment. A definition
for y was found there, and so it was the variable referenced.

5. We later changed the value of x and y in the global environment. The
first temporary environment from when f() was called the first time
was destroyed when the function finished its execution. When we called
the function a second time, a brand new environment was created, with
the global environment as its parent. x was still created in this new
environment, with its same value as before. The change to x in the global
environment didn’t affect the function’s execution. The reference to y,
though, did cause different behavior, since the y referred to in the function
was the y that existed in the global environment.

What if we wanted to change the value of a variable in the global environment
from the function? We could do so by using <<-, which will only create a variable
if no name is found in any of the current environment’s ancestors, and if no
reference is found, the variable is created in the global environment. <<- is
demonstrated below:
x <- 10
y <- 20
g <- function() {
x <<- 30
cat("x is", x, "\n")
cat("y is", y, "\n")

}
g()

## x is 30
## y is 20
x

## [1] 30
y

## [1] 20
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Now this time x was changed in the global environment. This is because when
<<- was called, it looked for x in the active environment, didn’t find it, then
looked in the parent of the active environment, which was the global environment.
It found x there, and modified its value. When x and y were referenced in the
function, both of them were from the global environment (before, only y was a
global variable).

Namespaces
A namespace is a special environment associated with a package. Each package
has its own namespace that is attached to the global environment when the
package is loaded. However, thanks to namespaces, we can even reference
functions in packages without even loading the package.

We reference objects in namespaces via either :: or :::, using syntax such as
namespace::object or namespace:::object. The difference between :: and
::: is that :: only accesses public objects, or objects that the package authors
have marked as available to all of R when the package is referenced. ::: accesses
all objects in a package, including private ones that the package authors did not
intend to make available to other code and probably don’t want to be available.
While referencing package objects via ::, referencing via ::: is unsafe and
should be avoided.

For example, the function mvrnorm() from the package MASS allows for simu-
lating random variables that are joinly Normal. We can use this function without
explicitly loading MASS via :: like so:
MASS::mvrnorm(n = 10, mu = c(1, 1), Sigma = matrix(c(1, 0.5, 0.5, 1), nrow = 2))

## [,1] [,2]
## [1,] 0.96230907 1.1184061
## [2,] 2.52632180 2.4991550
## [3,] 0.18156713 1.2350943
## [4,] 1.39059996 1.7534182
## [5,] 0.09997212 0.3753247
## [6,] 0.93549445 -0.1150898
## [7,] 0.40520870 0.4681733
## [8,] 0.54726815 1.8557975
## [9,] -0.09466153 1.6461039
## [10,] 3.23136725 1.5636069

Why do namespaces matter? Consider the function sd() which is a function from
the packages stats that computes standard deviations. Reading the function’s
code reveals that it calls the function var(), also from stats, to compute the
standard deviation.
sd

## function (x, na.rm = FALSE)
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## sqrt(var(if (is.vector(x) || is.factor(x)) x else as.double(x),
## na.rm = na.rm))
## <bytecode: 0x55cdfa22dba8>
## <environment: namespace:stats>

The following code reveals that both sd() and var() “live” in an environment
that is not the global environment.
environment(sd)

## <environment: namespace:stats>
environment(var)

## <environment: namespace:stats>

What if we change var? Will doing so break sd()?
x <- rnorm(10)
var(x)

## [1] 0.4825343
sd(x)

## [1] 0.6946469
var <- function(x) {10}
var(x)

## [1] 10
sd(x)

## [1] 0.6946469

The output of sd() is unchanged. This is because sd() refers to the version of
var() that lives in its namespace, and doesn’t care about the version that lives
in the global environment. The var() in sd()’s namespace can’t be modified in
an active R session; one would have to modify the code of the stats package in
order to change var(). Therefore, sd() performs as expected.

If we wanted to go back to the old var(), we could do so via the following code:
var

## function(x) {10}
var <- stats::var
var

## function (x, y = NULL, na.rm = FALSE, use)
## {
## if (missing(use))
## use <- if (na.rm)
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## "na.or.complete"
## else "everything"
## na.method <- pmatch(use, c("all.obs", "complete.obs", "pairwise.complete.obs",
## "everything", "na.or.complete"))
## if (is.na(na.method))
## stop("invalid 'use' argument")
## if (is.data.frame(x))
## x <- as.matrix(x)
## else stopifnot(is.atomic(x))
## if (is.data.frame(y))
## y <- as.matrix(y)
## else stopifnot(is.atomic(y))
## .Call(C_cov, x, y, na.method, FALSE)
## }
## <bytecode: 0x55cdfa50ee20>
## <environment: namespace:stats>

Closures
The above discussions about environments may have been enlightening, but the
primary motivation was to allow discussion of writing functions that can return
closures, which are also functions (the term simply distinguishes a function
created by another function from usual functions).

Here’s an example of a function that returns closures:
incrementer <- function(i) {
function(x) {
x + i

}
}

f <- incrementer(2)
class(f)

## [1] "function"
f(1:3)

## [1] 3 4 5
g <- incrementer(200)
g(1:3)

## [1] 201 202 203

Closure constructors can be powerful tools, but to the uninitiated they can be
mysterious. Why is it, for example, that both f() and g() remember the value
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i was set to when they were created?

The answer is environments. When we see what environment the functions “live”
in, we discover it’s not the global environment. Instead, these functions still use
the “temporary” environments created when the function incrementer() was
invoked; these environments were actually not destroyed when the function ended
since other functions were created in those environments, then returned, and
thus those environments are still needed. We in fact see that the environments
the closures use are not the global environment:
environment(incrementer)

## <environment: R_GlobalEnv>
environment(f)

## <environment: 0x55cdfaa309d8>
environment(g)

## <environment: 0x55cdfab20298>

And in fact we see that the i values from those function calls live on in those
environments.
ls(envir = environment(f))

## [1] "i"
environment(f)$i

## [1] 2
environment(g)$i

## [1] 200

These features give closures their true power. For example, we can create
functions that remember how many times they were called.
elephant_func <- function() { # Cuz elephants never forget

calls <- 0
function() {
calls <<- calls + 1
calls

}
}

e1 <- elephant_func()
e1()

## [1] 1
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e1()

## [1] 2
e1()

## [1] 3
e2 <- elephant_func()
e2()

## [1] 1
e2()

## [1] 2
e1()

## [1] 4

This set of functions may be more difficult to unparse than the examples we
saw before, yet the only difference in the logic is that the parent environment of,
say, e1()’s execution environment is not the global environment anymore but
instead the environment created upon e1()’s birth. This is distinct from the
parent environment of any environment created by e2()’s execution.

Here’s one application of closures. Suppose that we want to examine multiple
confidence intervals for any given data set and we want an easy interface for
doing so. With closures we can create easy interfaces for changing the parameters
of confidence intervals, perhaps changing confidence levels or making them one-
sided or two-sided. The following code is a function factory implementing this
idea:
dat_ci <- function(dat) {

function(C = 0.95, type = "two.sided") {
alternative <- switch(type,
"two.sided" = "two.sided",
"upper" = "less",
"lower" = "greater"

)
c(t.test(dat, alternative = alternative, conf.level = C)$conf.int)

}
}

x1 <- rnorm(10)
c1 <- dat_ci(x1)
c1()

## [1] -1.0975042 0.7559742
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c1(0.9)

## [1] -0.9217374 0.5802074
c1(0.99)

## [1] -1.502127 1.160597
c1(0.99, "upper")

## [1] -Inf 0.985095
x2 <- rnorm(10)
c2 <- dat_ci(x2)
c2(0.99)

## [1] -1.312622 1.061951

Often in statistics we want to treat a data set as fixed but allow for, say, a
parameter, to vary. Closures make doing this easier. Let’s consider, for example,
the sum of square errors:

SSE(θ) =
n∑
i=1

(xi − θ)2

We want to find θ that minimizes the sum of square errors; we might call such a
θ a best predictor for an observation, or a good statistic describing the location
of xi. Calculus reveals that the value of θ that minimizes SSE(θ) is θ = x̄, the
sample mean. But let’s see if we can avoid calculus.

We can write a function that produces closures that compute SSE(θ) for input
θ given a fixed data set. We would like this function to produce a vector of SSEs
if given a vector of values of θ. We do this by actually returning a vectorized
version of the SSE(θ) function using the Vectorize() function (which is a
functional that returns closures). The final implementation is below:
sse_computer <- function(x) {
f <- function(t) {

if (!is.numeric(t) || length(t) > 1) stop("Invalid t")
sum((x - t)ˆ2)

}
Vectorize(f)

}

If we wished to plot SSE(θ) for a given data set, we can do so via the curve()
function, which is a plotting function with an interface friendly to mathematical
functions (try curve(exp, -2, 2) if you want a quick demo; this is ex plotted
from x = −10 to x = 10).
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x <- rnorm(20, mean = 10)
sse <- sse_computer(x)
curve(sse, 8, 12)
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The curve seems to take a minimum near 10 (which is the known mean of the
data.) For reference, the mean of the data is 10.1757534. That said, for what
value of θ is SSE(θ) minimized?

For this we can use the function optimize(), which is a numerical optimizer. The
first argument to optimize() is a function to minimize. (If we wish to maximize
a function, recall that maximizing f is the same thing as minimizing −f . For this
reason, optimization literature generally discusses only minimization problems
since such problems automatically include maximization.) The second argument
is a vector defining the interval over which the function should be minimized.
The function then returns a list with elements minimum and objective, with
minimum being where the minimum is attained (in our case, the optimal θ) and
objective the value of the function at the minimum (here, SSE(θ)).

Optimization here is easy:
optimize(sse, c(-100, 100))

## $minimum
## [1] 10.17575
##
## $objective
## [1] 18.31675
mean(x) # For comparison

## [1] 10.17575
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These are of course only some uses for closures. I have used them to gain control
over random number generation or to write functions that make predictions
from fitted models. As the course progresses, look out for more uses of closures
(especially after discussing linear models).

Replacement Functions
Consider the following code:
vec <- 1:3
names(vec) <- c("a", "b", "c")
vec

## a b c
## 1 2 3

How odd is this code? Doesn’t it seem strange that a function call can cause
the value of an input to that function to change, simply because of assignment?

Actually, the above code is misleading, for it was not the function names() that
was called, but names<-().
names

## function (x) .Primitive("names")
`names<-`

## function (x, value) .Primitive("names<-")

A commandment of functional programming is that code should not have side
effects. So a function call f(x) should not modify the state of variables outside
of f nor should x have its value modified. Following this rule helps make code
more easily understood and reasoned about. However, replacement functions
such as names<-() test this principle; while technically adhereing to at least the
spirit of the rule, it at least seems as if they change the value of their arguments.
(That said, one can still reason easily about the state of the program after this
function is called due to the presence of the assignment operator to the right of
a function call.)

We write replacement functions like we would any other function, with the
following restrictions:

• Our function name should be wrapped in backticks (like with infix functions)
and end with <-.

• We must have at least two arguments, which we call x and value, with x
coming before value. They correspond to f(x) <- value.

• We may have additional arguments, but any additional arguments must
be between x and value.

• The function must return the modified copy of x.
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I present a simple (yet stupid) example below, where the function changes the
values of vectors in particular positions:
`modify2<-` <- function(x, value) {
x[2] <- value
x

}

x <- 1:10
modify2(x) <- 100
x

## [1] 1 100 3 4 5 6 7 8 9 10
# With a position argument
`modify<-` <- function(x, pos = 1, value) {
x[pos] <- value
x

}

modify(x) <- 20
modify(x, 2) <- -2
x

## [1] 20 -2 3 4 5 6 7 8 9 10
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Object Oriented Programming
Object oriented programming (OOP) is a programming paradigm where
the central units in the program are “objects” with associated common data fields
(known as attributes) and procedures (known as methods). Many modern
programming languages, including Python, Java, JavaScript, and C++, support
OOP. R also supports OOP. However, R does not have a single OOP system,
but multiple. R comes with the S3, S4, and RC OOP systems, and packages for
other OOP systems (such as R6) do exist. Furthermore, OOP in R looks very
different from OOP in other programming languages.

R follows functional programming principles first and OOP principles second.
Many OOP practices in other language clash with functional programming
principles. For examples, methods are often defined with the objects and modify
the objects when called; this conflicts with the principle of code having non-
obvious side effects. The RC (and R6) OOP system most resembles OOP
programming in other languages, but veteran R programmers may be shy to use
these systems since the produce non-idiomatic code; that is, writing code using
these systems produces code that no longer looks like the rest of R, which makes
reasoning about the code’s behavior more difficult.

The most popular OOP system used in R is S3, followed by S4. S3 is the oldest
OOP system used in R, and also the most commonly used. The S3 system was
first presented in Statistical Models in S (known by the nickname “the white
book”) by the S language designer J. M. Chambers and coauthor Trevor Hastie.
Hadley Wickham, in Advanced R said of S3: “S3 is informal and ad hoc, but
there is a certain elegance in its minimalism: you can’t take away any part of
it and still have a useful OO [object oriented] system.” S3 is also the only OO
system used in the base and stats packages. Wickham advises to use S3 if no
compelling reason to use another system (probably S4) exists.

The S4 system came later, presented in Chambers’ book Programming with Data;
A Guide to the S Language (also known by the nickname “the green book”). S4
keeps the design philosophy of S3 but is less ad hoc and more structured. S4 is a
more defensive system and is harder to program with than S3 precisely because

37
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it is more structured, and thus less prone to errors and unintended consequences.
That said, S4 still resembles S3, so learning S3 is an important step to eventually
writing S4 code.

In this lecture I will only discuss the S3 system, since it’s both simple and
popular. If you continue working with R you’re likely to encounter the other
OOP systems; S4 comes to mind for me personally. There are plenty of resources
for learning those systems, such as Advanced R by Hadley Wickham.

Generic Functions
OOP in most programming languages, and in the RC paradigm, generally use
method dispatch for developing procedures associated with objects. That is, an
object comes with methods the programmer can call to interact with the data
in the object. S3, though, handles methods via generic functions. A generic
function is a function that, when called, can recognize that the object it was
called upon is a member of some class, which signifies the type of object being
worked on. The generic function will then call a function intended for working
with objects of that class.

Data frames, for example, are a particular class built upon lists. We can identify
the class of a function via the class() function.
dat <- data.frame(x = 1:10, y = rnorm(10))
print(dat)

## x y
## 1 1 -0.5535938
## 2 2 -0.2997420
## 3 3 2.6877685
## 4 4 -0.2160176
## 5 5 0.1709505
## 6 6 0.2378153
## 7 7 -1.1541512
## 8 8 -0.5155266
## 9 9 -0.8138550
## 10 10 -1.5297378
class(dat)

## [1] "data.frame"

R objects are often accompanied with metadata called attributes. These give
information about the objects that R functions use. We can look at the attributes
of an object with the attributes() function, which return all attributes as a
list. The attr() function accesses a single named attribute. All attributes need
to be named to distinguish them from other attributes.
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attributes(dat)

## $names
## [1] "x" "y"
##
## $class
## [1] "data.frame"
##
## $row.names
## [1] 1 2 3 4 5 6 7 8 9 10
# More games with attributes: making a matrix from a vector via the dimension
# attribute
(x <- rnorm(10))

## [1] 0.65585706 1.13678856 -0.17305632 -0.54889692 0.86632383
## [6] 0.02828175 -0.62173252 -0.75223397 -1.84525044 -1.31481747
attr(x, "dim") <- c(2, 5)
print(x) # Now behaves like a matrix

## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.6558571 -0.1730563 0.86632383 -0.6217325 -1.845250
## [2,] 1.1367886 -0.5488969 0.02828175 -0.7522340 -1.314817

I mention this because whether or not an R object belongs to a class is determined
by the class attribute, which is merely a string naming the class the object
belongs to. In S3 we set an object’s class by changing this string. For instance,
we can change dat to a list simply by changing the class string to list.
attr(dat, "class") <- "list"
print(dat)

## $x
## [1] 1 2 3 4 5 6 7 8 9 10
##
## $y
## [1] -0.5535938 -0.2997420 2.6877685 -0.2160176 0.1709505 0.2378153
## [7] -1.1541512 -0.5155266 -0.8138550 -1.5297378
##
## attr(,"class")
## [1] "list"
## attr(,"row.names")
## [1] 1 2 3 4 5 6 7 8 9 10

Changing the class of an object via class() is easier, though.
class(dat) <- "data.frame"
print(dat)
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## x y
## 1 1 -0.5535938
## 2 2 -0.2997420
## 3 3 2.6877685
## 4 4 -0.2160176
## 5 5 0.1709505
## 6 6 0.2378153
## 7 7 -1.1541512
## 8 8 -0.5155266
## 9 9 -0.8138550
## 10 10 -1.5297378

An implication of this is that we can manually construct a data frame like so:
xxx <- list(x = 1:10, y = rnorm(10))
attr(xxx, "row.names") <- c("alpha", "beta", "charlie", "delta", "eagle",

"falcon", "gopher", "henry", "iota", "jack")
class(xxx) <- "data.frame"
print(xxx)

## x y
## alpha 1 -0.4605271
## beta 2 -1.8124969
## charlie 3 -0.2506274
## delta 4 -2.1136238
## eagle 5 0.9616646
## falcon 6 0.4150049
## gopher 7 0.1641286
## henry 8 -0.8526285
## iota 9 -0.8526306
## jack 10 -0.2574480

Notice, though, that print() behaved differently depending on whether class
was "list" or "data.frame". This behavior follows from print() being a
generic function. This is revealed by looking at the source code for print():
print

## function (x, ...)
## UseMethod("print")
## <bytecode: 0x55cdf609cee0>
## <environment: namespace:base>

The immediate call to the function UseMethod() declares print() as a generic
function. See, methods in R are not stored with data like in other languages
(and RC/R6) but with functions. We can see all the methods associated with a
generic function via the methods() function.
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methods(print)

## [1] print.abbrev*
## [2] print.acf*
## [3] print.AES*
## [4] print.anova*
## [5] print.Anova*
## [6] print.anova.loglm*
## [7] print.aov*
## [8] print.aovlist*
## [9] print.ar*
## [10] print.Arima*
## [11] print.arima0*
## [12] print.AsIs
## [13] print.aspell*
## [14] print.aspell_inspect_context*
## [15] print.bibentry*
## [16] print.Bibtex*
## [17] print.browseVignettes*
## [18] print.by
## [19] print.bytes*
## [20] print.changedFiles*
## [21] print.check_code_usage_in_package*
## [22] print.check_compiled_code*
## [23] print.check_demo_index*
## [24] print.check_depdef*
## [25] print.check_details*
## [26] print.check_details_changes*
## [27] print.check_doi_db*
## [28] print.check_dotInternal*
## [29] print.check_make_vars*
## [30] print.check_nonAPI_calls*
## [31] print.check_package_code_assign_to_globalenv*
## [32] print.check_package_code_attach*
## [33] print.check_package_code_data_into_globalenv*
## [34] print.check_package_code_startup_functions*
## [35] print.check_package_code_syntax*
## [36] print.check_package_code_unload_functions*
## [37] print.check_package_compact_datasets*
## [38] print.check_package_CRAN_incoming*
## [39] print.check_package_datasets*
## [40] print.check_package_depends*
## [41] print.check_package_description*
## [42] print.check_package_description_encoding*
## [43] print.check_package_license*
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## [44] print.check_packages_in_dir*
## [45] print.check_packages_used*
## [46] print.check_po_files*
## [47] print.check_pragmas*
## [48] print.check_Rd_contents*
## [49] print.check_Rd_line_widths*
## [50] print.check_Rd_metadata*
## [51] print.check_Rd_xrefs*
## [52] print.check_RegSym_calls*
## [53] print.check_S3_methods_needing_delayed_registration*
## [54] print.check_so_symbols*
## [55] print.check_T_and_F*
## [56] print.check_url_db*
## [57] print.check_vignette_index*
## [58] print.checkDocFiles*
## [59] print.checkDocStyle*
## [60] print.checkFF*
## [61] print.checkRd*
## [62] print.checkReplaceFuns*
## [63] print.checkS3methods*
## [64] print.checkTnF*
## [65] print.checkVignettes*
## [66] print.citation*
## [67] print.codoc*
## [68] print.codocClasses*
## [69] print.codocData*
## [70] print.colorConverter*
## [71] print.compactPDF*
## [72] print.condition
## [73] print.connection
## [74] print.correspondence*
## [75] print.CRAN_package_reverse_dependencies_and_views*
## [76] print.data.frame
## [77] print.Date
## [78] print.default
## [79] print.dendrogram*
## [80] print.density*
## [81] print.difftime
## [82] print.dist*
## [83] print.Dlist
## [84] print.DLLInfo
## [85] print.DLLInfoList
## [86] print.DLLRegisteredRoutines
## [87] print.document_context*
## [88] print.document_position*
## [89] print.document_range*
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## [90] print.document_selection*
## [91] print.dummy_coef*
## [92] print.dummy_coef_list*
## [93] print.ecdf*
## [94] print.eigen
## [95] print.factanal*
## [96] print.factor
## [97] print.family*
## [98] print.fileSnapshot*
## [99] print.findLineNumResult*
## [100] print.fitdistr*
## [101] print.formula*
## [102] print.fractions*
## [103] print.frame*
## [104] print.fseq*
## [105] print.ftable*
## [106] print.function
## [107] print.gamma.shape*
## [108] print.getAnywhere*
## [109] print.glm*
## [110] print.glm.dose*
## [111] print.hclust*
## [112] print.help_files_with_topic*
## [113] print.hexmode
## [114] print.HoltWinters*
## [115] print.hsearch*
## [116] print.hsearch_db*
## [117] print.htest*
## [118] print.html*
## [119] print.html_dependency*
## [120] print.infl*
## [121] print.integrate*
## [122] print.isoreg*
## [123] print.kmeans*
## [124] print.knitr_kable*
## [125] print.Latex*
## [126] print.LaTeX*
## [127] print.lda*
## [128] print.libraryIQR
## [129] print.listof
## [130] print.lm*
## [131] print.loadings*
## [132] print.loess*
## [133] print.logLik*
## [134] print.loglm*
## [135] print.lqs*
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## [136] print.ls_str*
## [137] print.mca*
## [138] print.medpolish*
## [139] print.MethodsFunction*
## [140] print.mtable*
## [141] print.NativeRoutineList
## [142] print.news_db*
## [143] print.nls*
## [144] print.noquote
## [145] print.numeric_version
## [146] print.object_size*
## [147] print.octmode
## [148] print.packageDescription*
## [149] print.packageInfo
## [150] print.packageIQR*
## [151] print.packageStatus*
## [152] print.pairwise.htest*
## [153] print.person*
## [154] print.polr*
## [155] print.POSIXct
## [156] print.POSIXlt
## [157] print.power.htest*
## [158] print.ppr*
## [159] print.prcomp*
## [160] print.princomp*
## [161] print.proc_time
## [162] print.qda*
## [163] print.quosure*
## [164] print.quosures*
## [165] print.raster*
## [166] print.Rcpp_stack_trace*
## [167] print.Rd*
## [168] print.recordedplot*
## [169] print.restart
## [170] print.RGBcolorConverter*
## [171] print.ridgelm*
## [172] print.rlang_box_done*
## [173] print.rlang_box_splice*
## [174] print.rlang_data_pronoun*
## [175] print.rlang_envs*
## [176] print.rlang_error*
## [177] print.rlang_fake_data_pronoun*
## [178] print.rlang_lambda_function*
## [179] print.rlang_trace*
## [180] print.rlang_zap*
## [181] print.rle
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## [182] print.rlm*
## [183] print.rms.curv*
## [184] print.roman*
## [185] print.sessionInfo*
## [186] print.shiny.tag*
## [187] print.shiny.tag.list*
## [188] print.simple.list
## [189] print.smooth.spline*
## [190] print.socket*
## [191] print.srcfile
## [192] print.srcref
## [193] print.stepfun*
## [194] print.stl*
## [195] print.StructTS*
## [196] print.subdir_tests*
## [197] print.summarize_CRAN_check_status*
## [198] print.summary.aov*
## [199] print.summary.aovlist*
## [200] print.summary.ecdf*
## [201] print.summary.glm*
## [202] print.summary.lm*
## [203] print.summary.loess*
## [204] print.summary.loglm*
## [205] print.summary.manova*
## [206] print.summary.negbin*
## [207] print.summary.nls*
## [208] print.summary.packageStatus*
## [209] print.summary.polr*
## [210] print.summary.ppr*
## [211] print.summary.prcomp*
## [212] print.summary.princomp*
## [213] print.summary.rlm*
## [214] print.summary.table
## [215] print.summary.warnings
## [216] print.summaryDefault
## [217] print.table
## [218] print.tables_aov*
## [219] print.terms*
## [220] print.ts*
## [221] print.tskernel*
## [222] print.TukeyHSD*
## [223] print.tukeyline*
## [224] print.tukeysmooth*
## [225] print.undoc*
## [226] print.vignette*
## [227] print.warnings
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## [228] print.xfun_raw_string*
## [229] print.xfun_strict_list*
## [230] print.xgettext*
## [231] print.xngettext*
## [232] print.xtabs*
## see '?methods' for accessing help and source code

Suppose print() is called on an object x with class "foo". The actual function
print() is a generic function, so it won’t do any printing. Instead, it will look
for a function called print.foo(). If it finds such a function, that function will
be called. Otherwise, print.default() will be called. Thus, when print() was
called on dat when dat had class "data.frame", print() called the function
print.data.frame() on dat.
print.data.frame

## function (x, ..., digits = NULL, quote = FALSE, right = TRUE,
## row.names = TRUE, max = NULL)
## {
## n <- length(row.names(x))
## if (length(x) == 0L) {
## cat(sprintf(ngettext(n, "data frame with 0 columns and %d row",
## "data frame with 0 columns and %d rows"), n), "\n",
## sep = "")
## }
## else if (n == 0L) {
## print.default(names(x), quote = FALSE)
## cat(gettext("<0 rows> (or 0-length row.names)\n"))
## }
## else {
## if (is.null(max))
## max <- getOption("max.print", 99999L)
## if (!is.finite(max))
## stop("invalid 'max' / getOption(\"max.print\"): ",
## max)
## omit <- (n0 <- max%/%length(x)) < n
## m <- as.matrix(format.data.frame(if (omit)
## x[seq_len(n0), , drop = FALSE]
## else x, digits = digits, na.encode = FALSE))
## if (!isTRUE(row.names))
## dimnames(m)[[1L]] <- if (isFALSE(row.names))
## rep.int("", if (omit)
## n0
## else n)
## else row.names
## print(m, ..., quote = quote, right = right, max = max)
## if (omit)
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## cat(" [ reached 'max' / getOption(\"max.print\") -- omitted",
## n - n0, "rows ]\n")
## }
## invisible(x)
## }
## <bytecode: 0x55cdfaac7530>
## <environment: namespace:base>

This is the reason why R objects’ actual structure as a list or vector gets
obfuscated when the object is printed; the object has a class attribute for which
a print() method exists, causing that method to be called and the function to
appear to behave differently.

For example, functions such as t.test() and prop.test() return lists of
class "htest", and since there is a print() method called print.htest(), that
function is called whenever these objects are printed.
x <- rnorm(10)
res <- t.test(x)
print(res)

##
## One Sample t-test
##
## data: x
## t = 1.8984, df = 9, p-value = 0.09012
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## -0.07536256 0.86194657
## sample estimates:
## mean of x
## 0.393292
class(res)

## [1] "htest"
class(res) <- NULL # Deleting the class attribute; now res is just a list
print(res)

## $statistic
## t
## 1.898388
##
## $parameter
## df
## 9
##
## $p.value
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## [1] 0.09012002
##
## $conf.int
## [1] -0.07536256 0.86194657
## attr(,"conf.level")
## [1] 0.95
##
## $estimate
## mean of x
## 0.393292
##
## $null.value
## mean
## 0
##
## $stderr
## [1] 0.2071715
##
## $alternative
## [1] "two.sided"
##
## $method
## [1] "One Sample t-test"
##
## $data.name
## [1] "x"

S3 objects can be members of multiple classes; in such cases, the class attribute
is a character vector with length greater than one. The order of the strings in
the vector matter, as generic functions will look through the vector starting
from first and ending at last when looking for a method to call. The moment a
matching class is found, all other class memberships are ignored. This behavior
allows S3 to support the OOP notion of inheritence, where class A inherits
from class B if every member of class A is also a member of class B. This means
that any methods that work for class B also work for class A.

For instance, consider data.table objects from the data.table library (which
you should look into; it’s my preferred library for “replacing” R’s bare bones
data frames). This library produces data.frame-like data structures, but with
an interface that’s easier to use.
library(data.table)
dtab <- data.table(x = 1:1000, y = rnorm(1000))
print(dtab)

## x y
## 1: 1 0.4825888
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## 2: 2 1.6628911
## 3: 3 1.8131992
## 4: 4 0.6434752
## 5: 5 0.7516509
## ---
## 996: 996 1.8417046
## 997: 997 -1.0216248
## 998: 998 0.6574799
## 999: 999 0.2680119
## 1000: 1000 1.4658343
class(dtab)

## [1] "data.table" "data.frame"

Above, dtab is both a "data.table" and a "data.frame", but if we reverse
the ordering of the classes in class attribute vector, we get different print()
behavior.
print(dtab[1:10,])

## x y
## 1: 1 0.4825888
## 2: 2 1.6628911
## 3: 3 1.8131992
## 4: 4 0.6434752
## 5: 5 0.7516509
## 6: 6 0.6794129
## 7: 7 3.0876051
## 8: 8 -0.1324895
## 9: 9 1.3270360
## 10: 10 -0.5232304
class(dtab) <- rev(class(dtab))
print(dtab[1:10,])

## x y
## 1 1 0.4825888
## 2 2 1.6628911
## 3 3 1.8131992
## 4 4 0.6434752
## 5 5 0.7516509
## 6 6 0.6794129
## 7 7 3.0876051
## 8 8 -0.1324895
## 9 9 1.3270360
## 10 10 -0.5232304
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class(dtab) <- rev(class(dtab)) # Restoring dtab to its original state

Many of the functions you use are generic functions. These functions include
print(), summary(), plot(), mean(), and many more. Extending a generic
function for a new class (or even just changing its behavior for an existing class)
is also easy. If foo() is a generic function and we want a method for objects
of class bar, we merely need to write the function foo.bar(). (This is why
we discourage using . in names; we want to keep that character only in the
names of function methods. Otherwise, we can’t tell if print.data.frame()
is a method of print() for objects of class data.frame, or if it’s a method of
the non-existant generic function print.data() for objects of class frame, or if
it’s just a stand-alone function print.data.frame().) We can call foo.bar()
without ever calling foo(), but this is discouraged since these functions never
check that their input object is actually of the intended class.

This, by the way, marks one problem with the S3 OO system: object assumptions
are never defined and almost never checked. Changing an object’s class is as
simple as changing the class string. Thus we can get unintended consequences,
such as with this malicious code:
# Despite not being produced by the appropriate function, this object gets
# assigned to class htest anyway
not_htest <- list(x = "a", y = 2)
print(not_htest)

## $x
## [1] "a"
##
## $y
## [1] 2
class(not_htest) <- "htest"
print(not_htest) # This time print.htest() was called, and fails miserably

##
##
##
## data:

Programmers have to trust users to not abuse their OO systems, and simple
trust is never a good thing in programming.

Suppose we want a new generic function. For example, let’s create a generic
function collapse(), which attempts to “collapse” objects into a length-one
vector. We first declare that the function collapse() is generic like so:
collapse <- function(x) UseMethod("collapse")

The responsible thing to do is define a default method that will be called when
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objects without a class for which a collapse() method exists are passed to
collapse().
collapse.default <- function(x) {x[[1]]}

Now we can define some methods for specific classes of objects. These methods
are what make the collapse() function “useful”.
collapse.numeric <- function(x) {sum(x)}
collapse.integer <- function(x) {collapse.numeric(x)}
collapse.logical <- function(x) {collapse.numeric(x)}
collapse.character <- function(x) {paste0(x, collapse = "")}
collapse.list <- function(x) {collapse(c(unlist(x)))}
collapse.data.frame <- function(x) {collapse.list(x)}

Notice the resulting behavior:
collapse(1:10)

## [1] 55
collapse(1:10 <= 5)

## [1] 5
collapse(c("a", "b", "c"))

## [1] "abc"
collapse(res) # A plain list

## [1] "1.8983882539705890.0901200216705836-0.07536256226954690.8619465694774080.39329200360393100.207171532367702two.sidedOne Sample t-testx"
collapse(dat) # Our data frame from before

## [1] 53.01391
collapse(dtab) # A data.table but also a data.frame

## [1] 500504.1
collapse(iris$Species) # A factor object; no method exists for factors

## [1] setosa
## Levels: setosa versicolor virginica

(Actually the above code swept something under the rug: many of the objects
created above did not have a class attribute. What they did have was a base
type, revealed with the function typeof(), which is what the class() function
actually returns. These types are built into R and predate even S3, since they
are fundamentally how R works. We can treat these as if they are a class anyway,
though.)
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Creating a Class
Creating a class is as simple as creating some object (often a list, the most
flexible R data structure) and giving it a class attribute. We then could throw
on some methods for existing generic functions. I could leave the discussion at
that, but let’s instead see a worked example for creating a new class. We will
also see some advanced techniques like operator overloading.

In this example, we will be creating a class to emulate an account, like a
banking account. In our program we have a simple model for what it means
to be an account: an account is an ordered list of transactions, starting with
an initial transaction that is the initial amount of money the account starts
with. After defining an account, we should define a transaction. Here, we
will define a transaction, at minimum, to consist of a date and an amount.
Amounts below zero represent withdrawals, while amounts above zero represent
deposits. However, we may want to augment our transactions with a “memo”
field, which could list a transaction counterparty or simply be a reminder for why
the transaction exists. Similarly, we should augment our account with a name
attribute and an owner attribute to help distinguish different accounts, such as
checking and savings, and to allow for the concept of people being associated
with accounts.

Thus our accounting OO system should include two classes of objects: accounts
and transactions. Since accounts are built from transactions, we will first work on
transaction objects. We start by creating a function that produces transactions
objects, which we call a constructor function.
transaction <- function(date, amount, memo = "") {
obj <- list(date = as.Date(date),

amount = as.numeric(amount),
memo = as.character(memo)

)
class(obj) <- "transaction"
obj

}

Recall functions such as is.numeric() or is.data.frame()? I consider writing
such a function for a new class a good programming practice. So let’s define
such a function here.
is.transaction <- function(x) {class(x) == "transaction"}

Let’s create a transaction now, and see what happens:
a <- transaction("2010-01-01", 10, memo = "Hello, world!")
is.transaction(a)

## [1] TRUE



OBJECT ORIENTED PROGRAMMING 53

a

## $date
## [1] "2010-01-01"
##
## $amount
## [1] 10
##
## $memo
## [1] "Hello, world!"
##
## attr(,"class")
## [1] "transaction"

Let’s go ahead and write a print() method for our object, for pretty printing.
print.transaction <- function(x, space = 10) {
tdate <- as.character(x$date)
datestring <- paste0(" ", tdate, ":")
formatstring <- paste0("%+", space[[1]], ".2f") # See sprintf() to explain
amountstring <- sprintf(formatstring, x$amount)
if (x$memo == "") {
memostring <- ""

} else {
memostring <- paste0("(", x$memo, ")")

}
cat(datestring, amountstring, memostring, "\n")

}

Then when we print the transaction we get a much nicer output.
a

## 2010-01-01: +10.00 (Hello, world!)

Users may want to access date, amount, and memo fields and modify them easily;
we will create helper functions and allow for easy modification of them.
transaction_date <- function(trns) {
trns$date

}

`transaction_date<-` <- function(trns, value) {
trns$date <- as.Date(value)
trns

}

amount <- function(trns) {
trns$amount
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}

`amount<-` <- function(trns, value) {
trns$amount <- as.numeric(value)
trns

}

memo <- function(trns) {
trns$memo

}

`memo<-` <- function(trns, value) {
trns$memo <- as.character(value)
trns

}

Let’s see these functions in action:
transaction_date(a)

## [1] "2010-01-01"
amount(a)

## [1] 10
memo(a)

## [1] "Hello, world!"
transaction_date(a) <- "2020-01-01"
amount(a) <- -20
memo(a) <- "Vacation money"

a

## 2020-01-01: -20.00 (Vacation money)

Okay, the transaction object looks good so far. Let’s next start creating an
account object. This again will be built off of a list. We will start again with a
constructor function and an is-type function.
account <- function(start, owner, init = 0, title = "Account") {

obj <- list(
title = as.character(title),
owner = as.character(owner),
transactions = list(transaction(start, init, "Initial"))

)
class(obj) <- "account"
obj
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}

is.account <- function(x) {class(x) == "account"}

acc <- account("2010-01-01", "John Doe")
acc

## $title
## [1] "Account"
##
## $owner
## [1] "John Doe"
##
## $transactions
## $transactions[[1]]
## 2010-01-01: +0.00 (Initial)
##
##
## attr(,"class")
## [1] "account"
is.account(acc)

## [1] TRUE

Before carrying on, we should think about the list of transactions more. This
list should be sorted so that the initial amount is always the first element of
the list and the remaining elements are sorted in order of date. We also should
not have transactions before the initial date. We should write a sorting function
that, given the list of transactions, will put them in the proper order, and fail if
there is any transaction with a date prior to the initial date.

The function sort() is a generic function, so we could use it for sorting the
transaction list. Before we do that, though, let’s write functions that pull
important information from accounts. We’ll start with account title and owner.
account_title <- function(account) {

account$title
}

`account_title<-` <- function(account, value) {
account$title <- as.character(value)
account

}

account_owner <- function(account) {
account$owner

}



56 LECTURE 3

`account_owner<-` <- function(account, value) {
account$owner <- as.character(value)
account

}

account_transactions <- function(account) {
account$transactions

}

`account_transactions<-` <- function(account, value) {
account$transactions <- value
account

}

We’ll additionally create functions that check that all objects in the
transactions list are transaction-class objects, and functions that pull all
transaction dates, amounts, and memos.
all_transactions <- function(account) {
all(sapply(account_transactions(account), is.transaction))

}

account_dates <- function(account) {
if (!all_transactions(account)) stop("Malformed account object")
Reduce(c, lapply(account_transactions(account), transaction_date))

}

account_trans_amounts <- function(account) {
if (!all_transactions(account)) stop("Malformed account object")
sapply(account_transactions(account), amount)

}

account_memos <- function(account) {
if (!all_transactions(account)) stop("Malformed account object")
sapply(account_transactions(account), memo)

}

transaction_count <- function(account) {
length(account_transactions(account))

}

Many of these functions seem simple, to the point that we may question why
they exist. In fact, it seems that if our objective is to save time typing, we
should not use these functions (or at least use shorter names). But there’s
good reason to have functions like these. First, these functions are abstractions.
If we decide to change how account objects store their data, many of these
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functions will still work so long as earlier functions are changed to account
for the knew design. Thus, we’ve made our program more flexible. Second,
this should be easier for programmers to read. They only need to know that
the function account_transactions() gets a list of transactions from the ac-
count, without knowing how exactly that works; also, they don’t know how
all_transactions() works, but they can reason that the function checks that
everything in a list is a transaction-class object. Third, by providing users
with these interface functions, we’ve given users the tools they need to write
safe code that doesn’t accidentally break our object. The user can be reas-
sured that account_title() and account_owner() will handle the title and
owner attributes of the object properly. Additionally, the user can be reassured
that account_title() and account_owner() will always work the same way
in future versions of the code, while account$title or account$owner depend
on the specific structure of the object and thus are not safe to use, since they
could change in the future. This allows the user to write robust code that’s less
likely to break due to unforseen changes. Additionally, we as developers of the
object gain license to change the specific structure of the object so long as these
functions work the same for all future versions of the code.

Now that we have these helper functions, we can write a sort() method.
sort.account <- function(x, decreasing = FALSE, ...) {

# There might be multiple entries with memo Initial; design code for that
memo_Initial <- which(account_memos(x) == "Initial")
if (length(memo_Initial) == 0) {
date_Initial <- min(account_dates(x))
true_Initial <- which.min(account_dates(x))

} else {
date_Initial <- account_dates(x)[memo_Initial]
true_Initial <- which((account_dates(x) == min(date_Initial)) &

(account_memos(x) == "Initial"))
}
tcount <- transaction_count(x)
nix <- (1:tcount)[-true_Initial]
ordered_nix <- nix[order(account_dates(x)[nix], decreasing = decreasing, ...)]
if (decreasing) {
final_order <- c(ordered_nix, true_Initial)

} else {
final_order <- c(true_Initial, ordered_nix)

}
account_transactions(x) <- account_transactions(x)[final_order]
x

}

If there is no transaction with memo line "Initial", or if there is a transaction
before the "Initial" transaction, we consider the object malformed, and we
want to detect that. Let’s write code detecting this.
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bad_Initial <- function(account) {
if (!all_transactions(account)) stop("Not all transactions of right class")
if (!("Initial" %in% account_memos(account))) stop("No Initial transaction")

memo_Initial <- which(account_memos(account) == "Initial")
date_Initial <- min(account_dates(account)[memo_Initial])
sort(account_dates(account))[1] < date_Initial

}

Currently the print() method produces ugly output; let’s write a better method:
print.account <- function(x, presort = FALSE) {
if (presort) {
x <- sort(x)

}
cat("Title:", account_title(x))
cat("\nOwner:", account_owner(x))
cat("\nTransactions:\n----------------------------------------------------\n")
for (t in account_transactions(x)) {
print(t)

}
}
acc

## Title: Account
## Owner: John Doe
## Transactions:
## ----------------------------------------------------
## 2010-01-01: +0.00 (Initial)

We would also like a summary() method. The purpose of print() is to give
us the information stored in the object. With summary() we would like basic
information such as how much money is currently in the account, the number
of transactions, the account origination date, recent transactions, and perhaps
more. What we should do, though, is return a list with a special class, such
as summary.account, so that a print() method is responsible for presenting
summary information to the user while the summary() method is responsible for
collecting it. This allows the user to save the information summary() obtains.
summary.account <- function(object, recent = 5) {

if (bad_Initial(object)) warning("account object malformed!")
res <- list()
res$title <- account_title(object)
res$owner <- account_owner(object)
res$balance <- sum(account_trans_amounts(object))
res$tcount <- transaction_count(object)
res$rtrans <- account_transactions(sort(object,
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decreasing = TRUE)
)[1:min(recent, res$tcount)]

class(res) <- "summary.account"
res

}

print.summary.account <- function(x, prefix = "\t") {
cat("\n")
cat(strwrap(x$title, prefix = prefix), sep = "\n")
cat("\n")
cat("Owner: ", sprintf("%20s", x$owner), "\n", sep = "")
cat("Transactions: ", sprintf("%13s", x$tcount), "\n", sep = "")
cat("Balance: ", sprintf("%18.2f", x$balance), "\n", sep = "")
cat("\nRecent Transactions:\n----------------------------------------------------\n")
for (t in x$rtrans) {
print(t)

}
}

summary(acc)

##
## Account
##
## Owner: John Doe
## Transactions: 1
## Balance: 0.00
##
## Recent Transactions:
## ----------------------------------------------------
## 2010-01-01: +0.00 (Initial)

We could write methods for many more functions, such as plot(), but what we
need now is a way to add transactions to the account. For this, we will overload
the + operator. Operator overloading is the practice of taking some operator,
such as + or * or &, and extending its meaning to a context for which a use was
not originally forseen. We do this by treating + as a generic function.
`+.account` <- function(x, y) {
account_transactions(x) <- c(account_transactions(x), account_transactions(y))
sort(x)

}

One unfortunate feature of this code is that + is not quite commutative; x +
y is different from y + x. While the transactions are the same, the title and
owner of the account depends on order. We would need more intelligent code to
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fix this.

Ideally we would like to add transactions to accounts, but there is no way to
currently do that. We should create a function as.account() that can easily
turn transactions into accounts. We should also make the function generic; we
might think of other objects in the future we could coerce into accounts.
as.account <- function(x, ...) UseMethod("as.account")
as.account.transaction <- function(x, title = "Transaction", owner = "noone") {
res <- account(start = transaction_date(x), init = amount(x), owner = owner,

title = title)
memo(account_transactions(res)[[1]]) <- memo(x)
res

}

Now if we want to add transactions to the account, we can do so like so:
acc + as.account(a)

## Title: Account
## Owner: John Doe
## Transactions:
## ----------------------------------------------------
## 2010-01-01: +0.00 (Initial)
## 2020-01-01: -20.00 (Vacation money)

Let’s now add some fictitious transactions to the account. We will store them in
a data frame then add them to the account.
dat <- data.frame("date" = seq(as.Date("2010-01-02"), as.Date("2010-01-31"),

by = "day"),
"amount" = rnorm(31 - 1),
"memo" = paste("Transaction", 1:(31 - 1)))

acc <- acc + Reduce(`+`, lapply(1:nrow(dat), function(i) {
r <- dat[i, ]
as.account(transaction(date = r$date, amount = r$amount,

memo = r$memo))
}))

acc

## Title: Account
## Owner: John Doe
## Transactions:
## ----------------------------------------------------
## 2010-01-01: +0.00 (Initial)
## 2010-01-02: -0.93 (Transaction 1)
## 2010-01-03: -1.69 (Transaction 2)
## 2010-01-04: +0.87 (Transaction 3)
## 2010-01-05: -1.71 (Transaction 4)
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## 2010-01-06: -2.05 (Transaction 5)
## 2010-01-07: +0.72 (Transaction 6)
## 2010-01-08: +0.50 (Transaction 7)
## 2010-01-09: -0.45 (Transaction 8)
## 2010-01-10: -2.26 (Transaction 9)
## 2010-01-11: -0.24 (Transaction 10)
## 2010-01-12: -1.06 (Transaction 11)
## 2010-01-13: -0.27 (Transaction 12)
## 2010-01-14: +0.35 (Transaction 13)
## 2010-01-15: +0.21 (Transaction 14)
## 2010-01-16: +1.32 (Transaction 15)
## 2010-01-17: +1.18 (Transaction 16)
## 2010-01-18: +0.50 (Transaction 17)
## 2010-01-19: -0.73 (Transaction 18)
## 2010-01-20: -0.25 (Transaction 19)
## 2010-01-21: +1.56 (Transaction 20)
## 2010-01-22: -0.27 (Transaction 21)
## 2010-01-23: -0.14 (Transaction 22)
## 2010-01-24: -0.96 (Transaction 23)
## 2010-01-25: -1.78 (Transaction 24)
## 2010-01-26: -2.16 (Transaction 25)
## 2010-01-27: -0.75 (Transaction 26)
## 2010-01-28: +0.58 (Transaction 27)
## 2010-01-29: +1.17 (Transaction 28)
## 2010-01-30: -0.27 (Transaction 29)
## 2010-01-31: -1.70 (Transaction 30)
summary(acc)

##
## Account
##
## Owner: John Doe
## Transactions: 31
## Balance: -10.71
##
## Recent Transactions:
## ----------------------------------------------------
## 2010-01-31: -1.70 (Transaction 30)
## 2010-01-30: -0.27 (Transaction 29)
## 2010-01-29: +1.17 (Transaction 28)
## 2010-01-28: +0.58 (Transaction 27)
## 2010-01-27: -0.75 (Transaction 26)

Let’s end by creating a plot() method for accounts.
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plot.account <- function(x, y, ...) {
if (bad_Initial(x)) stop("Malformed account object")
x <- sort(x)
unique_dates <- unique(account_dates(x))
date_trans_sum <- sapply(unique_dates, function(d) {
idx <- which(account_dates(x) == d)
sum(account_trans_amounts(x)[idx])

})
plot(unique_dates, cumsum(date_trans_sum), type = "l",

main = account_title(x), xlab = "Date", ylab = "Balance", ...)
}

plot(acc)
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And there’s so much more we could start doing with this construct, such as
writing functions to read transactions and form accounts from CSV files, extend
the generic function as.account(), add an as.transaction() generic functions
and give it methods, etc. We should end the lecture here, though, as we now
have a sensible and functioning class system, which is what we wanted.
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One-Way Analysis of Variance (ANOVA)
Procedures such as the two-sample t-test exist to compare the means of two
distinct populations. But what if we want to compare the means of more than
just two populations? When doing so, we often wish to discern:

• whether there is a difference in the means of any of the populations’ means;
and

• if there is a difference, which means are different.

A naïve first attempt would perform two-sample t-tests for every combination of
two populations. If there are K populations, there would be

(
K
2
)
tests. Aside

for there being many separate tests (and thus a lot of work), when one conducts
many tests like this, the chances of making a Type I error on any test are high,
often much higher than the specified Type I error rate α. The Bonferroni
correction would suggest we divide the significance level by the number of tests
done, thus rejecting one of the null hypotheses if the p-value drops below α/

(
K
2
)
.

This correction, however, is quite drastic, perhaps too conservative.

Another solution, at least for determining whether any of the means are different,
is to perform what’s known as a “overall” test. In this case, it would determine
whether any of the means are different from each other. Depending on the result
of the overall test, we would then look to determine which means differ. (If the
test does not reject the null hypothesis of no difference we would not proceed
with a detailed analysis.)

Analysis of variance (ANOVA) is a statistical procedure looking to address
the first issue: whether there is a difference in means among the populations.
Later we will look at the other issue.

Suppose there are K populations; thus, there are K means, µ1, µ2, · · · , µK .
ANOVA seeks to decide between:

H0 : µ1 = · · · = µK = µ

63
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HA : there exists i, j s.t. µi 6= µj

However, the ANOVA procedure is seen as doing more than just deciding between
two hypotheses. In fact, we’re estimating the statistical model:

xik = µk + εik

where i ∈ {1, . . . , nk} and n1 + · · · + nK = N . The model listed above is the
one-way ANOVA model, since the populations differ in only one aspect.

ANOVA assumes that for all i and k, εik ∼ N(0, σ2). We call the terms εik
the residuals of the model. The normality of the residuals matters for smaller
sample sizes, but less so for larger sample sizes. But the assumption of common
variance matters a great deal, regardless of sample size. Thus we must always
check it. Statisticians often use box plots to judge whether the common variance
assumption is appropriate.

Let x̄k = 1
nk

∑nk

i=1 xik and x̄· = 1
N

∑K
k=1

∑nk

i=1 xik SSE =
∑K
k=1

∑nk

i=1(xik−x̄k)2

and SSTr =
∑K
k=1(x̄k− x̄·)2. Let νn = K−1 and νd = N−K be the numerator

and denominator degrees of freedom, respectively. Then the ANOVA test statistic
is:

f = SSE/νn
SSTr/νd

The distribution of f if H0 is true is the F -distribution Fνn,νd
distribution, the

F distribution with numerator degrees of freedom νn and denominator degrees
of freedom νd. The p-value is P (Fνn,νd

> f).

A number of R functions can perform ANOVA, particularly oneway.test(),
aov(), and lm().

oneway.test()

Consider the iris data set. Due to the assumption that the populations have
a common variance, we should check with a boxplot whether the assumption
seems plausiable.
boxplot(Sepal.Width ~ Species, data = iris)
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The spread of the data sets are similar; furthermore, the boxplot does suggest
that there could be a difference in means. We instruct oneway.test() to perform
ANOVA via a command resembling oneway.test(x ~ f, data = d), where
x is the variable we test, f identifies the populations, and d is a data frame
containing the variables x and f (in long-form format). Note that x must be
numeric and f must be a factor variable. This holds throughout the lecture.
oneway.test(Sepal.Length ~ Species, data = iris)

##
## One-way analysis of means (not assuming equal variances)
##
## data: Sepal.Length and Species
## F = 138.91, num df = 2.000, denom df = 92.211, p-value < 2.2e-16

aov()

aov() performs ANOVA but is more general purpose and tends to produce
output resembling that from other statistics programs. The call to aov() is
similar to the call to oneway.test().
res <- aov(Sepal.Length ~ Species, data = iris)
print(res)

## Call:
## aov(formula = Sepal.Length ~ Species, data = iris)
##
## Terms:
## Species Residuals
## Sum of Squares 63.21213 38.95620
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## Deg. of Freedom 2 147
##
## Residual standard error: 0.5147894
## Estimated effects may be unbalanced
summary(res)

## Df Sum Sq Mean Sq F value Pr(>F)
## Species 2 63.21 31.606 119.3 <2e-16 ***
## Residuals 147 38.96 0.265
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

lm()

ANOVA is understood as being a particular instance of a linear model. Linear
models will be discussed later, but for now we can see how lm(), the primary
function for estimating linear models, can be used for estimating the ANOVA
model parameters and performing the ANOVA test.

When using lm(), the call is lm(x ~ f - 1, data = d).
res2 <- lm(Sepal.Length ~ Species - 1, data = iris)
print(res2)

##
## Call:
## lm(formula = Sepal.Length ~ Species - 1, data = iris)
##
## Coefficients:
## Speciessetosa Speciesversicolor Speciesvirginica
## 5.006 5.936 6.588
summary(res2)

##
## Call:
## lm(formula = Sepal.Length ~ Species - 1, data = iris)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.6880 -0.3285 -0.0060 0.3120 1.3120
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## Speciessetosa 5.0060 0.0728 68.76 <2e-16 ***
## Speciesversicolor 5.9360 0.0728 81.54 <2e-16 ***
## Speciesvirginica 6.5880 0.0728 90.49 <2e-16 ***
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## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5148 on 147 degrees of freedom
## Multiple R-squared: 0.9925, Adjusted R-squared: 0.9924
## F-statistic: 6522 on 3 and 147 DF, p-value: < 2.2e-16

We should interpret the results found here as only an estimate of the aforemen-
tioned ANOVA model. We should not read anything into the statistical tests
performed. The reason why is because effectively all that’s being done is testing
whether the means of any of the populations are zero, which generally isn’t of
interest in this context.

The above command estimated the aforementioned ANOVA model verbatim,
but different formulations of the ANOVA model exist. For instance, we could
say:

xi1 = β1 + εi1

xik = β1 + βk + εik

We interpret µ1 = β1 and µk = β1 +βk, or βk = µk−µ1. We would then rewrite
our hypotheses as:

H0 : β2 = · · · = βK = 0

HA : βk 6= 0 for some k

The lm() call lm(x ~ f, data = d) estimates the parameters of this model
and perform the ANOVA test.
res3 <- lm(Sepal.Length ~ Species, data = iris)
print(res3)

##
## Call:
## lm(formula = Sepal.Length ~ Species, data = iris)
##
## Coefficients:
## (Intercept) Speciesversicolor Speciesvirginica
## 5.006 0.930 1.582
summary(res3)
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##
## Call:
## lm(formula = Sepal.Length ~ Species, data = iris)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.6880 -0.3285 -0.0060 0.3120 1.3120
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.0060 0.0728 68.762 < 2e-16 ***
## Speciesversicolor 0.9300 0.1030 9.033 8.77e-16 ***
## Speciesvirginica 1.5820 0.1030 15.366 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5148 on 147 degrees of freedom
## Multiple R-squared: 0.6187, Adjusted R-squared: 0.6135
## F-statistic: 119.3 on 2 and 147 DF, p-value: < 2.2e-16

Finding the Differences
Rejecting the null hypothesis of no difference provides useful information; we
know that at least some of the population means are different. However, we also
need to determine which means are different, and by how much they differ.

One idea is to compute confidence intervals for differences in means and see
which intervals include 0. Any intervals not including zero suggest that the corre-
sponding two populations differ in their means. But if we compute t confidence
intervals as we have done before, then we run into the same multiple hypothesis
testing problem we had before. Again, we could look to the Bonferroni correction
for guidance, but the original problem of being perhaps too conservative still
stands.

A less conservative approach is the Tukey honest significant difference approach.
With this approach, a single Type I error rate α is chosen to represent the
probability of any rejection of the null hypothesis of no difference being an error.
Then for every pair of populations we compute a confidence interval for the
difference in means. We can then use these intervals to determine by how much
means of different populations differ.

Recall the object res above formed by a call to aov(). This object is of class
aov and the function TukeyHSD() can accept it as an argument. TukeyHSD()
can then compute the desired confidence intervals.

Let’s demonstrate:
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TukeyHSD(res)

## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = Sepal.Length ~ Species, data = iris)
##
## $Species
## diff lwr upr p adj
## versicolor-setosa 0.930 0.6862273 1.1737727 0
## virginica-setosa 1.582 1.3382273 1.8257727 0
## virginica-versicolor 0.652 0.4082273 0.8957727 0

The printed output is certainly informative but plots are nice to have. Fortunately
plotting these intervals is also easy.
plot(TukeyHSD(res))
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Differences in mean levels of Species

We see that 0 is in none of these intervals. This means that there’s significant
evidence that every pair of population means are different, with virginica and
setosa flowers having the greatest difference in sepal length and versicolor and
virginica the least difference.

There are of course parameters we can set if we want, say, different confidence
levels. See the function documentation for more details.
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Lecture 5

R Package Development
You have been installing and loading packages almost as soon as you learned the
basics of R. The strength of R is in its package community, providing packages
implementing tools for data cleaning and management, computing algorithms
and data structures, and both common and esoteric statistical procedures.
Additionally packages are often written by experts in the respective topic (maybe
even the procedure’s inventor) and the quality of the code is checked and enforced
by CRAN, a repository maintained on a volunteer basis. The R language could
remain relevant for years–dacades, perhaps–based only on the strength of its
package ecosystem (and low price and open source nature).

Today I will introduce you to package development. You may believe that
you will never be an R “programmer” and simply will write enough R code to
complete the statistical analysis you have been tasked with. While many people
reading these lecture notes won’t publish a package on CRAN (though you may
be surprised!), several reasons exist for everyone to learn package development.

As of this writing I am an academic statistician who studies and develops novel
statistical methods. This fact alone would justify me personally writing packages:
I can distribute the methods I develop to a wider audience. (As of this writing
I have one package on CRAN, CPAT: a package for change point hypothesis
testing, developed as part of recent research projects.) However, even when my
research topics are vague, I start writing code and organizing files in anticipation
of a package eventually emerging, and even when I’m still conducting research
I use the R package structure as the organizational basis of my code and files.
That is, I conduct research via package development.

Why conduct research via package development? First, package development
encourages good coding and project management habits. Good coding habits
include:

• Following the DRY principle: don’t repeat yourself. This means identifying
repeated idioms in code and turning those idioms into generalized functions.

• Sufficiently abstracting code with functions. Abstraction brings two bene-
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fits. One, it hides implementation details, making those details easier to
change rather than harder, since they need to be changed only in a handful
of places. Second, your code is easier to read and reason about since the
code largely consists of well-named functions with well-defined jobs that
code readers can investigate only if they feel the need to do so. If this is
done well, then there’s no need to extensively comment your code; the code
explains itself. Some may even say the code itself is the documentation.

• Documenting your code. In package development, this generally means
writing documentation for functions that: gives the function a title and
description; explains input parameters, what’s assumed about them, and
how they’re used; describing function output; any other important infor-
mation about how the function works (such as what algorithms are used,
potential errors, etc.); and some not-too-complicated examples demonstrat-
ing how the function should be used. In my own work, rarely will I put
comments in code or function bodies; the function documentation is all
that I need. (Also, I set up my text editor, Vim, to build templates for
function documentation automatically.)

• Keeping code short. Here, “short” can mean no more than one “screen”.
That is, an entire body of code can be seen without scrolling. This is not a
hard rule; when you feel you must break this rule, do so. But short bodies
of code are easier to understand than long bodies of code. Keep code short
by hiding execution details in function calls.

• Keeping source files at a manageable size. By source files, I don’t mean .Rmd
files (which is how you’ve been submitting your code so far) but .R files, the
original R scripts, which consist only of valid R code (though perhaps code
for other programs and languages exists in the form of special comments).
All functions in a file should be closely related and serve a common purpose.
Perhaps one file contains a class definition and related methods, another
generic function definitions, another functions implementing a statistical
test, another plotting functions, another functions just for data management
and cleaning. When splitting code across files, we neither want “tower”
files with all the code nor “pancake” files where 1000 files contain only one
function each.

• Writing code tests. In programming, errors are great; they tell us im-
mediately something is wrong. Far worse are mistakes that never reveal
themselves and thus causing us to sell garbage results. We write code tests
to make sure that code functions as we intend it, and so that changes we
make don’t have unintended consequences. Additionally, we can give our
tests to other users for them to read, run, and verify that our code works
as intended.

• Flexible code with replicable results. We can modify our code for new
contexts and to meet the new demands of our employers/clients, and others
can run the same code and get the same results.

Bad coding habits include:

• Copy/paste programming. Sure, it was quick to copy/paste the first time,
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but if you need to change that original procedure, you now need to change
all 1000 instances of that idiom.

• Long “spaghetti” code that only the original author can read (but probably
not a few years later after the original project ended and she forgot
everything) with things happening many pages prior to when it became
interesting, repeats itself to the point of dulling the senses, and littered
with the worst kind of comments: the out-of-date comment that never
was changed to reflect important changes in the code and thus misleads
readers.

• Code without any documentation or explanation, so no one knows what it
does without careful reading. That takes time.

• Single source files with all the code of a project that gets executed via
source() for the analysis and thus doesn’t allow for easy modification. A
small change near the end of the file would mean the entire project needs to
be re-run, which takes hours. That or someone opens the file and carefully
does just the part that needs to change, which invites errors.

• Untested code that gets changed and suddenly produces subtle bugs that
takes days to diagnose when a problem should have been flagged much
earlier and closer to the original violated assumption.

• Code that’s so rigid and convoluted you don’t dare change it and risk break-
ing its delicate structure, even when the client just wants one additional
statistical test done.

Remember, kids: computer scientists develope the standards they did and the
tools they use for good reasons that apply beyond software development. Ignore
them at your own peril.

Second, you may discover that code initially written for one specific task is
actually generally useful. Both yourself and others can take advantage of all the
work you did in the future and save time. Furthermore, this code was put in a
package, which means its easily accessed!

Third, package development can be an important part of reproducible re-
search. You may have heard that reproducibility is an important part of
scientific research. Here, we want to be sure that the original analysis itself can
be reproduced by anyone with the code and the same results can be obtained.
This can allow others to diagnose any problems in our work (or verify that the
work was done correctly) and perhaps modify, say, the input data, to replicate
the research project and ensure that the results are robust.

I personally use package development as an important part of my own research
pipeline. I combine it with a Linux/Unix development environment (turns out
the black screen of death is extremely useful when you take the time to learn
it, far more useful than GUIs), executable shell scripts (I use R Markdown or
LaTeX only for writing documentation or presenting results, not for actually
obtaining results), GNU make for defining file dependencies and tracking what
has changed and what needs to be changed (bringing my project up to date after
making changes is as easy as typing make at the command line, and anything
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that needs to be changed will be changed while the rest is untouched), and of
course version control. (I won’t be teaching version control in this class but you
really should learn some tool, such as git. Did you make a change that broke
everything? Should have used version control. Experiments with your code
didn’t pan out? Should have used version control. Delete important lines or
even an entire file? Should have used version control. Your folder is filled with
files with minor name changes just for trying out little changes? Should have
used version control.)

You may think you won’t ever work on a project that gets big enough to warrant
a package. Well, projects have a tendency to get bigger and more involved that
initially thought. One day you’ll open your laptop and discover that the “quick
project” you were doing has several associated files and a single script thousands
of lines long. Then you’ll wish you had a package to manage all this code. In
short: do it right at the beginning. You’ll save yourself trouble.

Starting a Package in RStudio
I personally do not use RStudio for writing packages. I write my code (including
these lecture notes) in a text editor called Vim. When I want to make a package,
I create the necessary files and folders manually, and when I need to build the
package I go to the “black screen of death” and type the necessary commands
myself. But many people like GUIs so I will show how to use RStudio for starting
a package, managing files, and building the package.

You may need to install additional software to get started. Specifically, you may
need GNU software development tools (in particular a C/C++ compiler) and a
LaTeX installation. Getting these tools depends on your platform (Windows,
Mac OS X, Unix/Linux), so prior to proceeding visit this document for further
instructions. (You shouldn’t need to pay for anything.) Additionally there
are two packages you should install that help with the development process:
devtools and roxygen2. The former is a toolbox for development and you
may even already have it installed to facilitate installing packages from GitHub.
roxygen2 allows for writing documentation by recognizing certain comments
with special syntax as documentation. While you’re at it, install testthat; it’s
the package we will use for writing tests, though we won’t discuss tests in the
current lecture.

Okay, let’s start making a package. Recall the code we wrote implementing a
class representing a financial account a few lectures ago. Let’s turn that code
into a package, calling the package account. When we start RStudio we may
have a screen resembling the following:

Open the File menu and click New Project.

Projects have a rigid directory structure and care a great deal about what files
are in what folders. Since we have a fresh new package we want a fresh new

https://support.rstudio.com/hc/en-us/articles/200486498-Package-Development-Prerequisites
https://support.rstudio.com/hc/en-us/articles/200486498-Package-Development-Prerequisites
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Figure 1: RStudio start

directory. Click New Directory in the pop-up window.

When asked what type of project we’re starting, click R Package.

We should now see in our pop-up window queries about package details. Name
the package “account”. If you want you can choose which directory the new
directory should be placed in.

The window should close and now RStudio should resemble the screen below.

RStudio created a basic package with minimal structure. The most essential
files and folders have been made, and we will be modifying them. RStudio even
gave us a starting R file with some tips.

Additionally the directory RStudio created looks like this:

The file hello.R RStudio created is in the R/ subdirectory. I will explain package
subdirectories more later. Let’s first check that our package can be built and
installed by pressing (on Windows/Linux) Ctrl+Shift+B. When you do you
should see output in one of the RStudio panes resembling the following:

Additionally, in the R console, you should see library(account) run. If all
went smoothly, you should be able to type hello() in the console and have R
respond with [1] "Hello, world!".

What just happened is RStudio executed programs (specifically R CMD build and
R CMD install) that built and installed the package account, then restarted
R and loaded in the package. Since the package is currently extremely minimal,
there should have been no problem. That doesn’t mean there’s no problems,
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Figure 2: Click File->New Project
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Figure 3: Click New Directory

though. In fact, in its current form, this package would certainly not be accepted
to CRAN. This isn’t just because the package doesn’t really do anything.

Press Ctrl+Shift+E to test the package. RStudio then runs R CMD check, which
will run various tests on the package to make sure that it adheres to selected
standards and appears to be an acceptably functional package. We get output
resembling the following:

Near the bottom we should see the following:

In this run, there was a warning and a note. When checking packages, there are
three types of flags: errors, warnings, and notes. Errors signify a problem that
will cause the package to fail to build or install. Warnings appear for issues that
won’t necessarily cause the package to fail to build or install but are considered
bad practice and need to be addressed. Finally, notes signify issues less serious
than warnings; they call attention to those issues. Sometimes notes will be
thrown just because a package is new.

If we were thinking of submitting our package to CRAN, there would have to
be no errors or warnings at all when the package is checked via R CMD check
--as-cran (which is a check with more tests to see the package meets CRAN
standards). While there can be notes they need to be brought to a minimum,
and you may need to defend your package in the presence of the note to the
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Figure 4: Click R Package

CRAN volunteer checking the submission. In general, though, get in the habit
of dealing with errors, warnings, and notes immediately and to the best of your
ability. Eliminate all errors and warnings and think about how to handle the
notes.

In this case we see that a warning was thrown because R CMD check could not
understand the package license. (The note is more mysterious; it could have been
an issue local to the circumstances of my writing these notes at my grandparents’
house in rural Idaho without Internet access. We can probably ignore it.) This
brings us to the first important package file: DESCRIPTION.

DESCRIPTION

DESCRIPTION is simply a structured plain text file with the package’s metadata.
This include the package’s name, description, version, author, maintainer, and
dependencies. Below is the DESCRIPTION file generated by RStudio:

Package: account
Type: Package
Title: What the Package Does (Title Case)
Version: 0.1.0
Author: Who wrote it
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Figure 5: Name the package

Figure 6: New RStudio screen
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Figure 7: New R file

Figure 8: Package directory
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Figure 9: Package build

Figure 10: Package check
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Figure 11: Package problems

Maintainer: The package maintainer <yourself@somewhere.net>
Description: More about what it does (maybe more than one line)

Use four spaces when indenting paragraphs within the Description.
License: What license is it under?
Encoding: UTF-8
LazyData: true

Many of these fields are self-explanatory and we can easily fill them out. Some
fields we may never need to edit (such as Encoding and LazyData). That said,
let’s explain some of these fields:

• Package: The name of the package. Make it short and sensible. Bonus
points if there’s some logic to the naming scheme you use for packages
(such as all lower case, all upper case, lowerCamelCase, UpperCamelCase,
etc.; programmers fight holy wars over naming conventions).

• Type: This is an R package.
• Title: The title of the package (a short description, not even a sentence).
• Version: The package version number. Version numbering matters and

signals a lot about the state and stability of the package, so here are
some conventions. When the package is initially born, the version number
should be 0.0.0.9000. The first number in the version number indicates
“major version” level, the second “minor version” level, and third “patch
version” level. In this case we threw on a fourth number, 9000, as a big
number to get readers’ attention. This number alerts any reader that this
version of the package is currently under development and could change
on even a daily basis; it’s as unstable as a package can get. When we are
no longer developing this version, we will drop the 9000 and simply use
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version 0.0.1 or 0.1.0, depending on our opinion on how developed the
package is. The former number would signal that the package is in alpha
development stage; important features in the package are missing and most
of its features should not be considered stable. The latter indicates a beta
development stage; the package can be safely used and the features there
are considered somewhat stable, but the package is missing important
features that should eventually be put in. A 1.0.0 release would be a
stable release; all planned features are present and the interface is stable.
As we update our package we would increment each of these three numbers
depending on how significant the changes made were. We would change
the last number for minor patches and bug fixes. Changing the middle
number signifies noticeable changes in the package’s functionality, but
nothing drastic. Changing the first number indicates major changes in the
package’s functionality, perhaps even breaking backwards compatibility.

• Author: Give yourself credit! Also, provide an e-mail in angle brackets,
like Joe Diamond <joe@arkhampi.com>.

• Maintainer: The initial author of the package may not be the current
maintainer of the package (the person fixing bugs and releasing updates),
but often the author and maintainer lines have a lot of overlap.

• Description: What does the package provide? What does it do? Why is
it here? Put that information here.

• License: Under what legal license is the package released under? Under
what legal conditions may others use, copy, or distribute this package?
Is this package proprietary or free and open source? If this is a personal
package that you don’t plan on releasing to the world, you’re welcome to
ignore this field. But you probably shouldn’t, though; if you don’t provide
a license then it’s harder for you yourself to safely share your package
with others. R recognizes a number of values for this field, including
common open source licenses (GPL-2, GPL-3, MIT, CC0) and also the value
file LICENSE (or in the case of the MIT license, MIT + file LICENSE,
since MIT is merely a license template). If file LICENSE is used, R will
expect a plain text file in the base directory of the package called LICENSE,
containing the licensing information. If your package is proprietary, you
would use this option. Note that CRAN needs some open source license in
order to distribute your package.

• Encoding: The file encoding. You’ll edit this if you know what you’re
doing.

• LazyData: Should data be lazy loaded? See above.

Some additional fields not shown above but often appearing in packages:

• Imports: The other packages this package must have in order to function.
We will be leaving this field blank for now, but below is an example of how
it’s used:

Imports:
dplyr,
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ggplot2,
data.table

• Depends: Dependencies of the package. We should put at minimum R (>=
current.version.number), but it’s possible that packages will be listed
here in a manner similar to how they were listed in Imports. The difference
between listing a package under Depends and listing one under Imports is
that a package listed under Depends will also be loaded to the namespace
via a command like library() in addition to our package. Imports, in
comparison, does not attach the other package to the namespace but loads
without attaching. (The package is available but users can’t access its
content without ::.)

• Suggests: Similar to Imports, but the packages listed are not essential;
the package may work better if these are present, though.

• VignetteBuilder: Packages that build vignettes (which we will discuss
later).

• RdMacros: Packages with macros for .Rd files. See Encoding above. (I
only mention it because the packages I used for citation management
require editing this field.)

Many other fields for the DESCRIPTION file exist, though they don’t need to be
present in order for the file to be valid. Look them up if you need them.

We already have enough information to update our DESCRIPTION file, though.
Here’s the new DESCRIPTION; copy and paste the text below to replace the old
file.

Package: account
Type: Package
Title: Data Structures for Managing Banking Accounts
Version: 0.1.0
Author: Curtis Miller <cmiller@math.utah.edu>
Maintainer: Curtis Miller <cmiller@math.utah.edu>
Description: This package implements an S3 class for representing and managing

bank accounts, with accompanying helper functions and methods.
Depends: R (>= 3.6.0)
License: CC0
Encoding: UTF-8
LazyData: true

Other Files in the Base Directory
I next describe other important files in the package’s base directory. All of these
are plain text files. NAMESPACE and .Rbuildignore are essential, while others
don’t need to be present, though including them is considered good practice.
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NAMESPACE

The NAMESPACE file is a plain text file with content resembling R code. This file
controls what objects or packages from other packages are imported and what
the package should make available to users loading the package via library().
The file defines what objects are public (available on package attachment or
via ::) and what objects are private (used only internally in the package, not
intended to be used by package users, and can be used only via :::).

If you are using roxygen2 you may not need to edit this file yourself. In this
lecture we won’t use roxygen2. That said, we will edit this file later.

.Rbuildignore

This file lists regular expression (regex) patterns identifying files that R should
ignore when building the package. R will assume that every file in the package
directory matters to the package. If it doesn’t recognize a file, an error will be
thrown and the package won’t build. The answer though isn’t that we shouldn’t
put irrelevant files in the package directory, but instead that we should inform
R that these files need to be ignored during package building. So we list those
files here.

RStudio populated this file with the following:

^.*\.Rproj$
^\.Rproj\.user$

The first line says ignore any file that ends with .Rproj (an RStudio project file)
and the second to ignore the file .Rproj.user in the base directory. These are
regular expressions. Many resources exist for learning regular expressions but
for now I will give you two basic ways to add files:

• If you want to list a specific file to be ignored, include the line ˆfilename$.
You must include ˆ at the beginning and $ at the end. ˆ in regex means
“beginning of line” and $ means “end of line”. Failing to include these could
lead to any file with the string filename in its path being matched and
thus excluded from the build. Above filename is assumed to be in the
base directory of the package; if you want to list a file in a subdirectory,
use ˆpath/to/filename$ instead (always use / for file paths, even on
Windows systems, where \\ is customary). If your file name include a .
(even if it’s to separate an extension from the main file name), escape the .
with a backslash, like so: ˆfilename\.ext$ to match file filename.ext.
(. has a special meaning in regex, meaning “zero or more instances of”.)

• If you want to exclude an entire directory, use ˆdirectory/ or
ˆpath/to/directory/.

• If you want to exclude all files with a certain extension, use ˆ.*\.ext$,
where ext is the extension you want to exclude (such as txt or csv). In
regex, .* means “match zero or more things”, and \. means a literal
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period. This line will match files not just in the base directory but any
subdirectory in the package.

For more nuanced patterns, study regex, and realize that the string being
matched is the entire file path beyond the package directory.

We will be adding more files to the package directory we want ignored, so we
will add the following lines to .Rbuildignore:

^README\.md$
^NEWS\.md$

README.md

This file is a Markdown file describing the package, going into more depth than
what was written in DESCRIPTION. This file is meant to be read by humans,
and it’s formatted using Markdown syntax. (R Markdown is a special flavor of
Markdown; if you can write documents in R Markdown, you can write Markdown
files.) This file is meant for new users. In README.md I recommend:

• Describing the package, what it’s for, and why people should use it;
• How people can get and install the package (and any prerequisites); and
• How people should use the package, including perhaps example code.

README.md should not be too long and any examples included in it as simple as
possible. This will be the README.md file of our package:

# account
*Version 0.1.0*

**account** is a package providing functions and class definitions for handling
accounts resembling traditional banking accounts. If installing from the base
directory of the package and the **devtools** package is installed, **account**
can be installed using `devtools::install()`.

Below are examples of using **account**.

```r
library(account)

# Creating an account
my_account <- account(title = "My Personal Account",

owner = "Joe Diamond",
start = "1925-01-01",
init = 1000)

# Adding a transaction to the account
my_account <- my_account + account_transaction("1925-01-02",

-10,
"Ammo for guns")
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print(my_account)

# Example account object
accdemo
summary(accdemo)
plot(accdemo)
```

NEWS.md

This file is a Markdown document intended for existing users of the package. This
file tracks changes to the package made with each version of the package, such
as any functions that were changed or implementation changes made between
versions, along with any bug fixes.

Our package is brand new so there’s not much news. We will get NEWS.md started
with the following:

# account News

## Version 0.1.0
*2019-12-31*
---

- Package **account** created
- S3 classes `account`, `transaction`, and `summary.account` with associated
constructor functions defined

- `print()`, `summary()`, `sort()`, `plot()`, and `+` methods for `account`
objects created

- Generic function `as.account()` created
- `print()` and `as.account()` methods for `transaction` objects created
- `print()` method for `summary.account` objects created
- `account` helper functions `account_title()`, `account_owner()`,

`account_transactions()`, with associated assignment versions (such as
`account_title<-()`) created

- `account` helper functions `bad_Initial()`, `all_transactions()`,
`account_dates()`, `account_trans_amounts()`, `account_memos()`,
`transaction_count()`, `account_new_transaction()`,
`account_delete_transaction()`, and `is.account()` created

- `transaction` helper functions `transaction_date()`, `amount()`, `memo()`,
with associated assignment versions (such as `amount<-()`) created

- `transaction` helper function `is.transaction()` created
- Function `read_csv_account()` created
- Example `account` object `accdemo` created
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Package Directory Structure
R packages use a well-defined directory structure, with files in certain files being
used in specific ways. Below are descriptions of the directories and what goes in
them.

R/

The R/ directory is the most important directory of the package. It contains the
code for all the R objects you’re providing the users of your package. The files
in the directory should all be .R files (that is, R source files, or “scripts”, even
though these scripts should do nothing other than create objects and maybe
document them).

If we wanted we could put all our package code in a single .R file, we could.
In fact, if all our package does is provide a couple functions, this may be a
perfectly reasonable organization. But if your package is more involved, you
should spread your code out over multiple files, where the code in a file serves a
common purpose. The order in which these files are loaded should not matter.
If it does, something is terribly wrong.

RStudio go you started with the file hello.R in the R/ directory, listed below:
# Hello, world!
#
# This is an example function named 'hello'
# which prints 'Hello, world!'.
#
# You can learn more about package authoring with RStudio at:
#
# http://r-pkgs.had.co.nz/
#
# Some useful keyboard shortcuts for package authoring:
#
# Build and Reload Package: 'Ctrl + Shift + B'
# Check Package: 'Ctrl + Shift + E'
# Test Package: 'Ctrl + Shift + T'

hello <- function() {
print("Hello, world!")

}

You’re expected to delete this file and put something useful in the R/ directory.
In our case, we will take the functions we wrote for modeling banking accounts
from a previous lecture (plus a couple others to round the package out). The
files and their code are listed below. I’ve chosen to organize the files around the
classes and function augmenting them. Copy them verbatim.
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transaction.R

This file includes transaction(), the function for making transaction-class
objects, along with associated methods.
transaction <- function(date, amount, memo = "") {

obj <- list(date = as.Date(date),
amount = as.numeric(amount),
memo = as.character(memo)

)
class(obj) <- "transaction"
obj

}

is.transaction <- function(x) {class(x) == "transaction"}

print.transaction <- function(x, space = 10) {
tdate <- as.character(x$date)
datestring <- paste0(" ", tdate, ":")
formatstring <- paste0("%+", space[[1]], ".2f") # See sprintf() to explain
amountstring <- sprintf(formatstring, x$amount)
if (x$memo == "") {
memostring <- ""

} else {
memostring <- paste0("(", x$memo, ")")

}
cat(datestring, amountstring, memostring, "\n")

}

as.account.transaction <- function(x, title = "Transaction", owner = "noone") {
res <- account(start = transaction_date(x), init = amount(x), owner = owner,

title = title)
memo(account_transactions(res)[[1]]) <- memo(x)
res

}

transactionHelpers.R

This file includes functions that are meant to work with transaction-class
objects.
transaction_date <- function(trns) {
trns$date

}

`transaction_date<-` <- function(trns, value) {
trns$date <- as.Date(value)
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trns
}

amount <- function(trns) {
trns$amount

}

`amount<-` <- function(trns, value) {
trns$amount <- as.numeric(value)
trns

}

memo <- function(trns) {
trns$memo

}

`memo<-` <- function(trns, value) {
trns$memo <- as.character(value)
trns

}

account.R

This file includes account(), the function for making account-class objects,
along with associated methods.
account <- function(start, owner, init = 0, title = "Account") {

obj <- list(
title = as.character(title),
owner = as.character(owner),
transactions = list(transaction(start, init, "Initial"))

)
class(obj) <- "account"
obj

}

is.account <- function(x) {class(x) == "account"}

sort.account <- function(x, decreasing = FALSE, ...) {
# There might be multiple entries with memo Initial; design code for that
memo_Initial <- which(account_memos(x) == "Initial")
if (length(memo_Initial) == 0) {
date_Initial <- min(account_dates(x))
true_Initial <- which.min(account_dates(x))

} else {
date_Initial <- account_dates(x)[memo_Initial]
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true_Initial <- which((account_dates(x) == min(date_Initial)) &
(account_memos(x) == "Initial"))

}
tcount <- transaction_count(x)
nix <- (1:tcount)[-true_Initial]
ordered_nix <- nix[order(account_dates(x)[nix], decreasing = decreasing, ...)]
if (decreasing) {
final_order <- c(ordered_nix, true_Initial)

} else {
final_order <- c(true_Initial, ordered_nix)

}
account_transactions(x) <- account_transactions(x)[final_order]
x

}

print.account <- function(x, presort = FALSE) {
if (presort) {
x <- sort(x)

}
cat("Title:", account_title(x))
cat("\nOwner:", account_owner(x))
cat("\nTransactions:\n----------------------------------------------------\n")
for (t in account_transactions(x)) {
print(t)

}
}

`+.account` <- function(x, y) {
account_transactions(x) <- c(account_transactions(x), account_transactions(y))
sort(x)

}

plot.account <- function(x, y, ...) {
if (bad_Initial(x)) stop("Malformed account object")
x <- sort(x)
unique_dates <- unique(account_dates(x))
date_trans_sum <- sapply(unique_dates, function(d) {
idx <- which(account_dates(x) == d)
sum(account_trans_amounts(x)[idx])

})
plot(unique_dates, cumsum(date_trans_sum), type = "l",

main = account_title(x), xlab = "Date", ylab = "Balance", ...)
}
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accountHelpers.R

This file includes functions that are meant to work with account-class objects.
account_title <- function(account) {
account$title

}

`account_title<-` <- function(account, value) {
account$title <- as.character(value)
account

}

account_owner <- function(account) {
account$owner

}

`account_owner<-` <- function(account, value) {
account$owner <- as.character(value)
account

}

account_transactions <- function(account) {
account$transactions

}

`account_transactions<-` <- function(account, value) {
account$transactions <- value
account

}

all_transactions <- function(account) {
all(sapply(account_transactions(account), is.transaction))

}

account_dates <- function(account) {
if (!all_transactions(account)) stop("Malformed account object")
Reduce(c, lapply(account_transactions(account), transaction_date))

}

account_trans_amounts <- function(account) {
if (!all_transactions(account)) stop("Malformed account object")
sapply(account_transactions(account), amount)

}

account_memos <- function(account) {
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if (!all_transactions(account)) stop("Malformed account object")
sapply(account_transactions(account), memo)

}

transaction_count <- function(account) {
length(account_transactions(account))

}

bad_Initial <- function(account) {
if (!all_transactions(account)) stop("Not all transactions of right class")
if (!("Initial" %in% account_memos(account))) stop("No Initial transaction")

memo_Initial <- which(account_memos(account) == "Initial")
date_Initial <- min(account_dates(account)[memo_Initial])
sort(account_dates(account))[1] < date_Initial

}

account_new_transaction <- function(...) {
as.account(transaction(...))

}

account_delete_transaction <- function(account, date = NULL, memo = NULL) {
if (is.null(date) && is.null(memo)) {

stop("Must specify at least one of date or memo")
}

if (!is.null(date)) {
filter_dates <- which(account_dates(account) == as.Date(date))

} else {
filter_dates <- 1:transaction_count(account)

}

if (!is.null(memo)) {
filter_memos <- which(account_memos(account) == memo)

} else {
filter_memos <- 1:transaction_count(account)

}

final_filter <- intersect(filter_dates, filter_memos)
if (length(final_filter) == 0) {

warning("No transactions with date/memo combination")
return(account)

} else {
account_transactions(account)[final_filter] <- NULL
return(account)
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}
}

summary.account.R

This file includes summary.account(), the function for making summary.account-
class objects, along with associated methods. (I treat summary.account() as
both a method of summary() and as a constructor of an object.)
summary.account <- function(object, recent = 5) {

if (bad_Initial(object)) warning("account object malformed!")
res <- list()
res$title <- account_title(object)
res$owner <- account_owner(object)
res$balance <- sum(account_trans_amounts(object))
res$tcount <- transaction_count(object)
res$rtrans <- account_transactions(sort(object,

decreasing = TRUE)
)[1:min(recent, res$tcount)]

class(res) <- "summary.account"
res

}

print.summary.account <- function(x, prefix = "\t") {
cat("\n")
cat(strwrap(x$title, prefix = prefix), sep = "\n")
cat("\n")
cat("Owner: ", sprintf("%20s", x$owner), "\n", sep = "")
cat("Transactions: ", sprintf("%13s", x$tcount), "\n", sep = "")
cat("Balance: ", sprintf("%18.2f", x$balance), "\n", sep = "")
cat("\nRecent Transactions:\n----------------------------------------------------\n")
for (t in x$rtrans) {
print(t)

}
}

Generics.R

This file defines generic functions, along with any methods for external classes.
as.account <- function(x, ...) UseMethod("as.account")

as.account.data.frame <- function(x, title = "Account", owner = "noone",
datecol = 1, amountcol = 2, memocol = 3) {

if (length(x) < 3) stop("Too few columns to contain valid transactions")
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dat <- data.frame("date" = as.character(x[[datecol]]),
"amount" = as.numeric(x[[amountcol]]),
"memo" = as.character(x[[memocol]]),
stringsAsFactors = FALSE)

acc <- Reduce(`+.account`, lapply(1:nrow(dat), function(i) {
r <- dat[i, ]
account_new_transaction(date = r$date, amount = r$amount,

memo = r$memo)
}))
account_owner(acc) <- owner
account_title(acc) <- title
acc

}

as.account.matrix <- function(x, ...) {
as.account(as.data.frame(x, stringsAsFactors = FALSE), ...)

}

read_csv_account.R

File containing the function read_csv_account().
read_csv_account <- function(file, title = "Account", owner = "noone",

datecol = 1, amountcol = 2, memocol = 3, ...) {
dat <- read.csv(file = file, ...)
as.account(dat, title = title, owner = owner, datecol = datecol,

amountcol = amountcol, memocol = memocol)
}

When we create these files our R/ directory in RStudio should look like so:

Figure 12: R directory

Now if we build the package and load it all these files are available to us.

Remember: these files should only create R objects (usually functions). These are
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not executable scripts that themselves run functions. That said, with roxygen2,
you will likely be writing the documentation in these files too.

data/

The data/ directory contains data sets used in the package. These could be
data sets used in examples, they could be important for how certain functions
work, or they could even be the reason for the existence of the package. Data
sets should be stored in R data files with the .RData extension. The objects
stored in these files can be just about anything.

Our package does have an example object, accdata. We will create this object
ourselves. Below I’ve created a CSV file containing our example account.

date,amount,memo
1925-10-08,0.55,Initial
1925-10-14,694.81,Deposit
1925-10-14,-200.00,Withdrawal
1925-10-16,-21.25,Fee (service)
1925-10-16,-1.50,Check to General Store
1925-10-20,-2.99,Electric Bill
1925-10-21,-300.00,Withdrawal
1925-10-22,-100.00,Withdrawal
1925-10-23,-29.08,Check to General Store
1925-10-24,2.99,Deposit
1925-10-27,-6.77,Check to American Telephone & Telegraph
1925-10-28,694.81,Deposit
1925-10-30,50.00,Transfer from savings
1925-11-03,-33.55,Check to Arkham Insurance
1925-11-03,-100.00,Check to Joey Vigil
1925-11-06,-710.49,Mortgage payment
1925-11-07,-5.00,Fee (overdraft)
1925-11-08,-5.00,Fee (monthly)
1925-11-10,150.00,Transfer from savings
1925-11-14,694.81,Deposit
1925-11-14,-200.00,Withdrawal
1925-11-16,-21.25,Fee (service)
1925-11-17,-2.36,Check to General Store
1925-11-17,-40.00,Check to Ye Olde Magick Shoppe
1925-11-18,-1.22,Check to Velma's Diner
1925-11-20,-2.99,Electric Bill
1925-11-22,-200.00,Withdrawal
1925-11-23,-30.44,Check to General Store
1925-11-27,-6.81,Check to American Telephone & Telegraph
1925-11-28,694.81,Deposit
1925-11-30,-19.65,Check to General Store
1925-12-01,-150.00,Withdrawal
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1925-12-03,-33.55,Check to Arkham Insurance
1925-12-06,-710.49,Mortgage payment
1925-12-08,-5.00,Fee (monthly)

Let’s create a directory, data-raw, in the main directory of the package, then save
this data in the file accdata.csv. Also, add the following line to .Rbuildignore:

^data-raw/

This directory simply contains raw data. We don’t absolutely need it, but it’s
nice to have these files around in case we need them. Create directory data/ in
the main package directory. Then try executing the following (be sure the file
path makes sense relative to your working directory):
accdata <- read_csv_account("data-raw/accdata.csv",

title = "Personal Checking Accounting",
owner = "Joe Diamond")

save(accdata, file = "data/accdata.RData")

Now that the file accdata.Rda has our object accdata and has it saved in
the data/ directory, when we load a fresh R session, we should be able to use
accdata when we load the account package. You can confirm this by issuing the
command rm(list = ls()) (to clear everything in the global namespace) and
then in RStudio typing Ctrl+Shift+F10 (on Windows/Linux), then rebuilding
and loading the account package.

man/

The man/ directory contains documentation for R objects. These are generally
.Rd files, which are plain text files filled with syntax that strongly resembles
LaTeX. RStudio populated this directory with a file already, hello.Rd, listed
below:

\name{hello}
\alias{hello}
\title{Hello, World!}
\usage{
hello()
}
\description{
Prints 'Hello, world!'.
}
\examples{
hello()
}

This is the documentation for the function hello() that we deleted. If you were
to type ?hello in the console, you would see a rendered version of this file.
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We will be using roxygen2 for managing documentation, in which case we can
mostly ignore the contents of this directory. The packages we will be using will
automatically populate this directory. That said, we should delete hello.Rd,
since we don’t want documentation for a function that doesn’t exist.

vignettes/

The vignettes/ directory contains files for generating vignettes, which is long-
form documentation of a package. In short, a vignette is like a tutorial, paper, or
book chapter. This is where extensive tutorials would be placed, or explanations
for statistical methods or algorithms used in the package. Many of the packages
you work with have vignettes. Try typing browseVignettes("roxygen2"),
browseVignettes("devtools"), or browseVignettes("dplyr") (assuming
you have these packages installed). If you want to learn more about how to use
a package, vignettes are a good place to start.

The documentation that we will provide with functions serves as user manuals
that should explain everything a user needs to be able to use the function,
explaining what each parameter does and the results. Vignettes, in comparison,
contain big picture documentation. The examples provided with functions are
often terse, enough to see how the function should be used. Vignettes may
demonstrate package use with complete analyses.

We can choose a vignette engine that controls how vignettes are rendered. Many
package authors are academics already familiar with LaTeX and so prefer writing
vignettes in LaTeX. However, if you’re not interested in learning LaTeX (you
should, though; it’s really useful), you can tell R that you want knitr to be the
vignette engine and write your documentation in R Markdown.

Let’s create a vignette introducing our package. We will make the following
changes:

1. Create in the package’s base directory a vignettes/ directory.
2. In the DESCRIPTION file, add the following lines:

Suggests: knitr
VignetteBuilder: knitr

3. In the new vignettes/ directory, create the file IntroToaccount.Rmd.

Copy and paste the following into the file IntroToaccount.Rmd. This will be
our basic vignette.

---
title: "Intro to account"
author: "Curtis Miller"
date: "2020-02-14"
output: rmarkdown::html_vignette
vignette: >
%\VignetteIndexEntry{Intro to account}
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%\VignetteEngine{knitr::rmarkdown}
\usepackage[utf8]{inputenc}

---

# Introduction

The **account** package was developed to introduce R S3 programming. It
implements tools useful for modelling banking accounts.

Try typing the following after installing the package:

```r
library(account)
acc <- account(start = "2020-01-01", title = "My Account", init = 1000,

owner = "John Smith")
print(acc)
```

*To be continued...*

When we knit this file, the vignette should build when the package builds and
we should see it when we type browseVignettes("account"). However I have
personally had issues with vignettes apparently not being added when I build
and install a package on Windows systems using Ctrl+Shift+B. You may need
to build the package source and manually install it yourself to see that vignettes
are in fact installed correctly and for browseVignettes() to work. See the
section “Distributing Packages” section for more details.

tests/

The tests/ directory contains tests that will be run when the package is
checked. We will discuss test writing in a later leture, when we discuss the
testthat package.

Other Directories
Other important directories that may appear in packages:

• inst/ contains files that should be copied into the top-level package
directory when the package is installed. I myself have used this directory
to put files containing references for citations in function documentation.
The CITATION file, containing information on how to cite the package, is
put here as well.

• src/ contains the source code for compiled code from languages such as
C/C++. This is beyond the scope of this course. (I have written C++
code for my packages and I’m far from alone; this directory is definitely
used.)
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• exec/ contains executable scripts. These might be needed for the package
itself to function, but I have used this mostly as a place to put executable
R scripts used in research projects.

• po/ contains translations for messages. If you need your package to also
be friendly to Chinese users, you may be interested in working with this
directory. But it’s beyond the scope of this course.

• tools/ contains auxiliary files needed for configuration or generating
scripts.

• demo/ contains package demos, which are .R files that are executable
(unlike those in R/). Demos are basically long examples. Vignettes and
examples are better.

Things to Never Do in Packages
Writing code for packages is different from writing non-package code. If you’re
not going to distribute your package, you could perhaps ignore these rules, but
breaking these rules would prevent the package from being accepted to CRAN,
as breaking these rules is considered anti-social.

• Never load another package using library() or require() in your package.
Dependencies on other packages needs to be handled via Depends and
Imports in the DESCRIPTION file.

• Never call q() or quit() in a package. This will quit the user’s session.
• Don’t start external software in examples or tests unless the software is

explicitly closed afterwords.
• Don’t write to the user’s home filespace or anywhere else in the filesystem

save for the temporary directory R creates for itself when running. Don’t
install into the system’s R installation either.

• Do not modify the global environment.

Read the CRAN repository policies to see what other behaviors might be consider
“anti-social” and should not be done in packages.

Distributing Packages
When we tell RStudio to build and install a package via hotkeys, RStudio is
taking the following steps:

1. It builds a package binary, the source file, a .tar.gz file, containing the
package.

2. It installs the package from this file.

R packages are distributed via .tar.gz files. Users of Linux should be familiar
with these files, known as tarballs; they’re simply compressed files containing
other files, similar to .zip files that probably most of you have used. In fact,
when packages are installed via install.packages(), what actually happens

https://cran.r-project.org/web/packages/policies.html
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is R downloads the corresponding tarball from CRAN and installs it, running
the system commands (specifically, R CMD install) necessary to install the
package.

Packages exist for sharing and distributing code, so we need to learn how to
vproduce the installation tarball. In RStudio click on the Build menu, then
click Build Source Package.

Figure 13: Build source

R will then build a tarball called account_0.1.0.tar.gz in the directory hosting
the directory we’ve been using to build the package. We can in fact install the
package in this file directly by clicking Tools in RStudio then clicking Install
Packages.

When we do a popup window will appear. Tell R to install the package from a
package archive file. This may prompt another popup window to appear; if not,
click Browse. Select the file in the resulting file browser, or you can type the file
path directly if a file browser was not used.

(This workflow installs any R package in the form of a tarball, not just ones we
build.) After installation the package should be available for use.

If you’re interested in submitting your package to CRAN, you will need to submit
the tarball to them. But before you submit a package to CRAN, you should test
the package with the CRAN checks and make sure that there were no errors or
warnings in the check, and be prepared to explain any notes that are thrown as
well (if they cannot be eliminated). We will not discuss submitting packages to
CRAN in depth in this course.
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Figure 14: Install packages

Figure 15: Install packages popup
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roxygen2
roxygen2 is an R package for package development primarily doing two things:
documenting objects in your package and managing NAMESPACE. This is done
via special comments near the R code. Thus the advantages of roxygen2 are
an easier interface than writing .Rd files and managing NAMESPACE directly and
keeping these important package features near the relevant code itself.

roxygen2 recognizes comments starting with #'. Below is an example of a
function with an accompanying roxygen2 comment:
#' Add Together Two Numbers
#'
#' @param x A number
#' @param y A number
#' @return The sum of \code{x} and \code{y}
#' @examples
#' add(1, 1)
add <- function(x, y) {
x + y

}

The formatting above matters. The first like is effectively the title of the function.
Then x and y are listed as parameters, followed by the descriptions “A number”,
describing what the parameter is for. Then a description of the return value
is provided. The documentation ends with an example. Everything after the
@examples marker is executable R code. This matters; when the package is
being checked, all examples will be run. If examples produce errors, an error
in the package check will be thrown. If examples take too long, a warning may
be thrown. The purpose of the examples are to demonstrate how the function
works.

Special tags are declared using the syntax @tag. roxygen2 recognizes these tags
and will convert them to appropriate .Rd code or modify NAMESPACE as needed.
The tags above are mostly what you need to write function documentation

103
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(there’s one more useful tag, @export, that we will see later).

Be sure that you have roxygen2 installed. In RStudio, reload into the workspace
the account package (perhaps look under File->Recent Projects). Create a
file called add.R in the R/ directory, then copy and paste the above code into the
file (we will be deleting this file later; it doesn’t belong in our package). Then in
R run the command devtools::document(). R runs the appropriate roxygen2
commands, and the file add.Rd should appear in the man/ subdirectory. Below
are the contents of the file.

% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/add.R
\name{add}
\alias{add}
\title{Add Together Two Numbers}
\usage{
add(x, y)
}
\arguments{
\item{x}{A number}

\item{y}{A number}
}
\value{
The sum of \code{x} and \code{y}
}
\description{
Add Together Two Numbers
}
\examples{
add(1, 1)
}

The necessary documentation was made. Now rebuild and install account.
When we type ?add at the command line we get documentation for the function
add():

We could also type example(add) and the example we wrote would be run.

The result is a file resembling LaTeX but is understood by R as a documentation
file. roxygen2 ultimately produces these files and so when writing function
documentation these files’ conventions are respected. In particular, we may
need to invoke commands that mark text as bold, italic, as code, or as item-
ized/enumerated lists, and so on. Calls to these commands resembles the format
\command{input}, \command{input1}{input2}, or \command[param]{input}.

See the corresponding chapter of R Packages for a brief list of some useful
commands (along with a more detailed discussion of using roxygen2, such as
other tags to use). Below are commands I use frequently:

http://r-pkgs.had.co.nz/man.html
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Figure 16: Resulting formatted documentation
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• \code{} for formatting text to look like code
• \emph{} for italics
• \strong{} for bold
• \link{} for linking to other documentation pages, either internal or exter-

nal to the package. \code{\link{function}} provides a link to a page
referenced by function (probably the function’s name) while formatting
the text to look like code, while \code{\link[package]{function}} does
the same except that function is in the package package.

• \eqn{} allows for LaTeX-style mathematical formulas and equations.
\deqn{} is similar except that the equation is printed in display mode
rather than inline mode.

• \dontrun{} is used to mark code in examples as code not to be run,
such as \dontrun{sum("An error!")}. This could be because the code
would produce errors (this would result in errors during package checks)
or because the code would take a very long time to run.

• \insertRef{}{} is a macro provided by the package Rdpack for citation
and reference management. See the Rdpack vignette “Inserting references
in Rd and roxygen2 documentation” for more information. I’m not going
to discuss this further other than to make a point: documentation needs
to be handled like academic work. This means that if you’re implementing
a published procedure or algorithm, or even just refer to a published work
in the documentation, you should cite the publication. Failure to do so is
plagiarism. Remember: citations are not just to make sure people are
appropriately credited. They also give your users something else to refer to
in order to learn more about the methods available in the package. (In this
course, don’t worry about citations, but in the real world, always cite.) On
the flip side, if you use a package in your own papers or research, including
R packages (or even just R itself), you should cite the package you use.
The function citation("packagename") will even print out the citation
information.

NAMESPACE Management
When a function or object should be made available for users to use, add the
line #' @export to the documentation. roxygen2 is also for managing the
NAMESPACE file, and will update the file so that objects that should be made
available to the user are in fact available. However, by default objects are
not available (at least not without using :::), so we need to decleare objects
accessable to the user via @export. Any objects not exported are visable
internally to the package and can be used in package code without any special
syntax, but will not be available to users. Thus use @export only for the code
that is necessary to use the package by users.

There is nothing that must be done to make an object internal only, but adding
#' @keywords internal can be useful; this tag would notify roxygen2 and
the R package builder that this function is internal, so while documentation

https://cran.r-project.org/web/packages/Rdpack/vignettes/Inserting_bibtex_references.pdf
https://cran.r-project.org/web/packages/Rdpack/vignettes/Inserting_bibtex_references.pdf
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for the function should still be made, it should not be included in the general
documentation index or the PDF manual accompanying the package, and the
examples for the function should not be run in the automated tests. The
documentation still exists, though, and users of the package coming from a
development angle can still read it; since most users won’t be interested, though,
the documentation should not be prominent.

Right now the NAMESPACE file for account has a single line that effectively means
“export everything named”. We don’t want this. Delete NAMESPACE. Then add
the line #' @export right before the line #' examples in R/add.R. Execute
devtools::document() in the console. In addition to documentation files being
rebuilt, a new NAMESPACE file is created, with the following lines:

# Generated by roxygen2: do not edit by hand

export(add)

The add() function is now visible to package users. In fact, it’s the only function
available to users; all the others are invisible and can only be accessed via
account:::. We will determine which functions to export later.

You may delete R/add.R and man/add.Rd; add() has nothing to do with ac-
count’s main functionality and should be removed.

Documenting Functions
See the above discussion for documenting R functions; there’s not much more
to add, at least for these lecture notes. That said, functions that modify in
place (such as names<-()) likely don’t need special documentation; document
the original function names() and mention the ability to modify in place, with
examples.

Documenting S3 Classes
S3 classes are so loosely defined there’s no special documentation for them.
Hopefully you write a constructor function for these objects; document the
constructor like you would any function, but be sure there’s adequate discussion
of the structure of what’s returned.

S3 generic functions are also just functions and can be documented like any
other function. Generic function methods, again, are just like any other function.
However, you may want to consider adding a “See also” section via the tag
@seealso and refer to the function methods so that users can see how the generic
function should be used.

Should you @export objects meant to work with S3 classes, such as constructors,
generics, and methods? If you want users to be able to create instances of a
class using the constructor, you should export it. In fact, you’re less likely to
introduce bugs if you default to exporting every method you write, even methods
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for generic functions that are not exported. If you have a method for a generic
in an imported package, you should import the generic from the foreign package
then export the method.

Documenting Data Sets
For data sets tags such as @param and @return are meaningless. I generally
use two tags for documenting data sets: @format and @source. @format should
include a description of how the data set is structured. For example with a
data frame, you should describe how many rows and columns are along with
describing what data is in each column, what type of data it is, and other
important information (such as units, how the data was collected, etc.). @source
may be just a URL to an internet source the data was obtained from (wrapped
in \url{}), or perhaps a paper citation if the data set was published. Just
describe where the data came from. (Perhaps also consider providing @examples
and include demo analyses of the data set.)

The data set lives in a .RData file in the data/ directory so we can’t put the
comments right above it. Instead, we would place the comments right before a
character string naming the data set. For example:
#' Data Set
#'
#' An awesome data set
#'
#' @format Univariate \code{numeric} vector
#'
#' @source \url{http://www.some.url/}
"awesome_data"

Package-Level Documentation
Often packages come with an overview documentation file. There is no object
that goes with a package; we work around this by documenting NULL. Thus we
can have a documentation file for the package that looks like so:
#' foo: A package for bar
#'
#' The foo package provides bar and baz.
#'
#' @docType package
#' @name foo
NULL

The @docType tag manually marks this documentation as package-level doc-
umentation , and the @name tag names the documentation file (normally this
would automatically be detected for functions).
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When managing NAMESPACE, the package-level documentation comments make
for a great place to place the tag @import to import other packages. We can
import the package dplyr via a comment line #' @import dplyr. If we use
dplyr a lot in our package we should do this. Additionally, if there is a specific
function we wish to import, we should add a line resembling #' importFrom
package function.

account Example Documentation
Let’s demonstrate documentation by properly documenting the objects in the
account package. I’m also going to give each .R file some header and organiza-
tional comments. I personally like header comments as they immediately give
code readers a description of what’s in the file. Section comments demarcate
sections of related code.

I use the following format:
################################################################################
# FileName.R
# Author
# Date
################################################################################
# This is a brief description of the file
################################################################################

################################################################################
# SECTION
################################################################################

You can take the following code listings and directly copy and paste them into the
corresponding files in R/. Note that there is a new .R file, Data.R, documenting
both data sets and the overall package.

transaction.R

This file includes transaction(), the function for making transaction-class
objects, along with associated methods.
################################################################################
# transaction.R
# Curtis Miller
# 2020-01-06
################################################################################
# Defines the transaction class constructor with associated methods.
################################################################################

################################################################################
# CONSTRUCTOR
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################################################################################

#' Bank Account Transactions Class Constructor
#'
#' This is the constructor function for \code{transaction}-class objects, which
#' represent financial transactions in an account.
#'
#' @param date Any input that can be understood by \code{\link[base]{as.Date}}
#' to represent a date
#' @param amount Numeric representing the transaction amount; values below zero
#' are withdrawals while values above zero are deposits
#' @param memo Optional memo field
#' @return A \code{transaction}-class object, which is a
#' \code{\link[base]{list}} with the following entries:
#' \describe{
#' \item{\code{date}}{A \code{Date}-class object representing the date
#' of the transaction}
#' \item{\code{amount}}{The amount of the transaction (a numeric)}
#' \item{\code{memo}}{A character string, an associated note with the
#' transaction}
#' }
#' @export
#' @examples
#' transaction("2010-01-01", 1000, "Initial")
#' transaction("2010-01-02", -20)
transaction <- function(date, amount, memo = "") {
obj <- list(date = as.Date(date),

amount = as.numeric(amount),
memo = as.character(memo)

)
class(obj) <- "transaction"
obj

}

################################################################################
# HELPERS
################################################################################

#' Detect \code{transaction}-class Objects
#'
#' Detects whether an input object is a \code{\link{transaction}}-class object.
#'
#' @param x An input object
#' @return A logical value, \code{TRUE} if \code{x} is a
#' \code{\link{transaction}}-class object, \code{FALSE} otherwise
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#' @export
#' @examples
#' is.transaction("not a transaction")
#' is.transaction(transaction("2010-01-01", 11))
is.transaction <- function(x) {class(x) == "transaction"}

################################################################################
# METHODS
################################################################################

#' Print \code{transaction}-class Objects
#'
#' Print \code{\link{transaction}}-class objects, recognizing their structure.
#'
#' @param x A \code{\link{transaction}}-class object to print.
#' @param space Specify the space preceding the \code{Date} field
#' @export
#' @examples
#' print(transaction("2010-01-01", 1000, "Initial"))
print.transaction <- function(x, space = 10) {
tdate <- as.character(x$date)
datestring <- paste0(" ", tdate, ":")
formatstring <- paste0("%+", space[[1]], ".2f") # See sprintf() to explain
amountstring <- sprintf(formatstring, x$amount)
if (x$memo == "") {
memostring <- ""

} else {
memostring <- paste0("(", x$memo, ")")

}
cat(datestring, amountstring, memostring, "\n")

}

#' Form an \code{account}-class Object from a \code{transaction}-class Object
#'
#' Using an input \code{\link{transaction}}-class object, construct a
#' \code{\link{account}}-class object.
#'
#' @param x The \code{\link{transaction}}-class object to convert
#' @param title A character string representing the resulting
#' \code{\link{account}}-class object's title
#' @param owner A character string representing the resulting
#' \code{\link{account}}-class object's owner
#' @return An \code{\link{account}}-class object with the input
#' \code{\link{transaction}} \code{x} as the only transaction in the
#' account (\strong{beware:} most functions working with
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#' \code{\link{account}}-class objects expect the object to have a
#' transaction with the memo field \code{"Initial"}, which this
#' function does not guarantee)
#' @seealso \code{\link{as.account}}, \code{\link{account}}
#' @export
#' @examples
#' u <- transaction("2010-01-01", 1000, "Initial")
#' as.account(u, title = "My Account", owner = "John Doe")
as.account.transaction <- function(x, title = "Transaction", owner = "noone") {
res <- account(start = transaction_date(x), init = amount(x), owner = owner,

title = title)
memo(account_transactions(res)[[1]]) <- memo(x)
res

}

transactionHelpers.R

This file includes functions that are meant to work with transaction-class
objects. Here I needed to use the @rdname tag to put the documentation
of multiple functions in the same file. This tag, along with the similar tag
@describeIn, allows the documentation of similar functions to be put in the
same .Rd file, thus potentially allowing for cleaner documentation. (Use sparingly,
though, when the functions are highly similar.) Common fields are appended
onto the original object’s documentation.
################################################################################
# transactionHelpers.R
# Curtis Miller
# 2020-01-06
################################################################################
# Helper functions for working with transaction-class objects
################################################################################

################################################################################
# DATES
################################################################################

#' Get and Manipulate \code{transaction}-Class Object Dates
#'
#' Functions to get or set dates associated with \code{\link{transaction}}-class
#' objects.
#'
#' @param trns The \code{\link{transaction}}-class object
#' @return If anything, the date of the transaction
#' @export
#' @seealso \code{\link{transaction}}
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#' @examples
#' u <- transaction("2010-01-01", 1000, "Initial")
#' transaction_date(u)
transaction_date <- function(trns) {
trns$date

}

#' @param value Any input that can be understood by \code{\link[base]{as.Date}}
#' to mean a date
#' @export
#' @rdname transaction_date
#' @examples
#' transaction_date(u) <- "2010-01-02"
#' print(u)
`transaction_date<-` <- function(trns, value) {

trns$date <- as.Date(value)
trns

}

################################################################################
# AMOUNTS
################################################################################

#' Get and Manipulate \code{transaction}-Class Object Amounts
#'
#' Functions to get or set amounts associated with \code{\link{transaction}}-class
#' objects.
#'
#' @param trns The \code{\link{transaction}}-class object
#' @return If anything, the amount of the transaction
#' @export
#' @seealso \code{\link{transaction}}
#' @examples
#' u <- transaction("2010-01-01", 1000, "Initial")
#' amount(u)
amount <- function(trns) {
trns$amount

}

#' @param value Numeric for the new amount of the transaction
#' @export
#' @rdname amount
#' @examples
#' amount(u) <- 2000
#' print(u)
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`amount<-` <- function(trns, value) {
trns$amount <- as.numeric(value)
trns

}

################################################################################
# MEMOS
################################################################################

#' Get and Manipulate \code{transaction}-Class Object Memos
#'
#' Functions to get or set memos associated with \code{\link{transaction}}-class
#' objects.
#'
#' @param trns The \code{\link{transaction}}-class object
#' @return If anything, the memo of the transaction
#' @export
#' @seealso \code{\link{transaction}}
#' @examples
#' u <- transaction("2010-01-01", 1000, "Initial")
#' memo(u)
memo <- function(trns) {
trns$memo

}

#' @param value The new memo of the transaction
#' @export
#' @rdname memo
#' @examples
#' memo(u) <- "Nothing"
#' print(u)
`memo<-` <- function(trns, value) {
trns$memo <- as.character(value)
trns

}

account.R

This file includes account(), the function for making account-class objects,
along with associated methods.
################################################################################
# account.R
# Curtis Miller
# 2020-01-06
################################################################################
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# Defines a constructor and methods for account-class objects.
################################################################################

################################################################################
# CONSTRUCTOR
################################################################################

#' Financial Account Class Constructor
#'
#' This is the constructor function for \code{account}-class objects, which
#' represent financial accounts with a sequence of transactions.
#'
#' @param start Any object that \code{\link[base]{as.Date}} can understand as a
#' date, representing the start date of the account
#' @param owner A character string representing the owner of the account
#' @param init The initial amount of money in the account
#' @param title A character string titling the account
#' @return An \code{account}-class object, which is a \code{\link[base]{list}}
#' with the following entries:
#' \describe{
#' \item{\code{title}}{A character string representing the account
#' title}
#' \item{\code{owner}}{A character string representing the owner of
#' the account}
#' \item{\code{transactions}}{A \code{\link[base]{list}} of
#' \code{\link{transaction}}-class objects
#' representing the account's transactions}
#' }
#' @seealso \code{\link{as.account}}
#' @export
#' @examples
#' (acc <- account(start = "2010-01-01", owner = "John Doe",
#' title = "My Account", init = 1000))
#' acc <- acc + as.account(transaction("2010-01-02", -300, "Withdrawal"))
#' acc <- acc + as.account(transaction("2010-01-03", -500, "Withdrawal"))
#' acc <- acc + as.account(transaction("2010-01-04", 500, "Deposit"))
#' acc <- acc + as.account(transaction("2010-01-04", -20, "Check"))
#' summary(acc)
account <- function(start, owner, init = 0, title = "Account") {
obj <- list(
title = as.character(title),
owner = as.character(owner),
transactions = list(transaction(start, init, "Initial"))

)
class(obj) <- "account"
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obj
}

################################################################################
# HELPERS
################################################################################

#' Detect \code{account}-class Objects
#'
#' Detects whether an input object is a \code{\link{account}}-class object.
#'
#' @param x An input object
#' @return A logical value, \code{TRUE} if \code{x} is a
#' \code{\link{account}}-class object, \code{FALSE} otherwise
#' @export
#' @examples
#' is.account("not an account")
#' acc <- account(start = "2010-01-01", owner = "John Doe",
#' title = "My Account", init = 1000)
#' is.account(acc)
is.account <- function(x) {class(x) == "account"}

################################################################################
# METHODS
################################################################################

#' Sort \code{account}-class Object Transactions by Date
#'
#' Sorts an \code{\link{account}}-class objects so that the transactions in the
#' account have ordered dates, with the initial transaction being placed first.
#'
#' @param x The \code{\link{account}}-class object to sort
#' @param decreasing Logical; if \code{TRUE}, then transactions are sorted in
#' descending order (most recent transactions first)
#' @param ... Other arguments to pass to \code{\link[base]{order}}
#' @return The sorted \code{\link{account}} object
#' @export
#' @examples
#' acc <- account(start = "2010-01-01", owner = "John Doe",
#' title = "My Account", init = 1000)
#' acc <- acc + as.account(transaction("2010-01-02", -300, "Withdrawal"))
#' acc <- acc + as.account(transaction("2010-01-03", -500, "Withdrawal"))
#' acc <- acc + as.account(transaction("2010-01-04", 500, "Deposit"))
#' acc <- acc + as.account(transaction("2010-01-04", -20, "Check"))
#' sort(acc, decreasing = TRUE)
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sort.account <- function(x, decreasing = FALSE, ...) {
# There might be multiple entries with memo Initial; design code for that
memo_Initial <- which(account_memos(x) == "Initial")
if (length(memo_Initial) == 0) {
date_Initial <- min(account_dates(x))
true_Initial <- which.min(account_dates(x))

} else {
date_Initial <- account_dates(x)[memo_Initial]
true_Initial <- which((account_dates(x) == min(date_Initial)) &

(account_memos(x) == "Initial"))
}
tcount <- transaction_count(x)
nix <- (1:tcount)[-true_Initial]
ordered_nix <- nix[order(account_dates(x)[nix], decreasing = decreasing, ...)]
if (decreasing) {
final_order <- c(ordered_nix, true_Initial)

} else {
final_order <- c(true_Initial, ordered_nix)

}
account_transactions(x) <- account_transactions(x)[final_order]
x

}

#' Print \code{account}-class Objects
#'
#' Print \code{\link{account}}-class objects, recognizing their structure.
#'
#' @param x A \code{\link{account}}-class object
#' @param presort Logical; if \code{TRUE}, the transactions in \code{x} are
#' sorted before printing
#' @seealso \code{\link{print.transaction}}
#' @export
#' @examples
#' acc <- account(start = "2010-01-01", owner = "John Doe",
#' title = "My Account", init = 1000)
#' acc <- acc + as.account(transaction("2010-01-02", -300, "Withdrawal"))
#' acc <- acc + as.account(transaction("2010-01-03", -500, "Withdrawal"))
#' acc <- acc + as.account(transaction("2010-01-04", 500, "Deposit"))
#' acc <- acc + as.account(transaction("2010-01-04", -20, "Check"))
#' print(acc)
print.account <- function(x, presort = FALSE) {

if (presort) {
x <- sort(x)

}
cat("Title:", account_title(x))
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cat("\nOwner:", account_owner(x))
cat("\nTransactions:\n----------------------------------------------------\n")
for (t in account_transactions(x)) {
print(t)

}
}

#' Addition of Accounts
#'
#' Overloading of the \code{+} operator to allow for addition between two
#' \code{\link{account}}-class objects
#'
#' @param x An \code{\link{account}}-class object
#' @param y See \code{x}
#' @return An \code{\link{account}}-class object resembling \code{x} except
#' including all transactions in \code{y} and sorted transactions
#' @export
#' @examples
#' acc <- account(start = "2010-01-01", owner = "John Doe",
#' title = "My Account", init = 1000)
#' acc <- acc + as.account(transaction("2010-01-02", -300, "Withdrawal"))
#' acc <- acc + as.account(transaction("2010-01-03", -500, "Withdrawal"))
#' acc <- acc + as.account(transaction("2010-01-04", 500, "Deposit"))
#' acc <- acc + as.account(transaction("2010-01-04", -20, "Check"))
#' print(acc)
`+.account` <- function(x, y) {
account_transactions(x) <- c(account_transactions(x), account_transactions(y))
sort(x)

}

#' Plot Account Balance
#'
#' Plot the balance of an \code{\link{account}}-class object.
#'
#' @param x The \code{\link{account}}-class object
#' @param y Not used
#' @param ... Additional arguments to pass to \code{\link[base]{plot}}
#' @return The result of \code{\link[base]{plot}}
#' @export
#' @examples
#' plot(accdata)
plot.account <- function(x, y, ...) {
if (bad_Initial(x)) stop("Malformed account object")
x <- sort(x)
unique_dates <- unique(account_dates(x))
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date_trans_sum <- sapply(unique_dates, function(d) {
idx <- which(account_dates(x) == d)
sum(account_trans_amounts(x)[idx])

})
plot(unique_dates, cumsum(date_trans_sum), type = "l",

main = account_title(x), xlab = "Date", ylab = "Balance", ...)
}

accountHelpers.R

This file includes functions that are meant to work with account-class objects.
Note that some functions here are not exported to the global namespace, as they
are meant for internal use only. Additionally, the tag @inheritParams is used
to copy the documentation of the parameters of one function directly to another
function. Specifically, #' @inheritParams foo when used in the documentation
for function bar() will cause the documentation of the parameters of foo()
that isn’t written (overridden) in the documentation of bar() to appear in
the documentation of bar(). This can be useful when two functions share
parameters, or one function inherits the parameters of another.
################################################################################
# accountHelpers.R
# Curtis Miller
# 2020-01-06
################################################################################
# Helper functions for working with account-class objects
################################################################################

################################################################################
# ACCOUNT FIELDS
################################################################################

#' Get or Set Account Title
#'
#' Get or set the title of an \code{\link{account}}-class object.
#'
#' @param account The \code{\link{account}}-class object
#' @return The title of \code{\link{account}}
#' @export
#' @examples
#' acc <- account(start = "2010-01-01", owner = "John Doe",
#' title = "My Account", init = 1000)
#' account_title(acc)
account_title <- function(account) {

account$title
}
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#' @param value The new title of the transaction
#' @export
#' @rdname account_title
#' @examples
#' account_title(acc) <- "Nothing"
#' print(acc)
`account_title<-` <- function(account, value) {
account$title <- as.character(value)
account

}

#' Get or Set Account Owner
#'
#' Get or set the owner of an \code{\link{account}}-class object.
#'
#' @param account The \code{\link{account}}-class object
#' @return The owner of \code{\link{account}}
#' @examples
#' acc <- account(start = "2010-01-01", owner = "John Doe",
#' title = "My Account", init = 1000)
#' account_owner(acc)
account_owner <- function(account) {
account$owner

}

#' @param value The new owner of the transaction
#' @export
#' @rdname account_owner
#' @examples
#' account_owner(acc) <- "noone"
#' print(acc)
`account_owner<-` <- function(account, value) {
account$owner <- as.character(value)
account

}

#' Get or Set Account Transactions
#'
#' Get or set the list of transactions associated with an
#' \code{\link{account}}-class object.
#'
#' Please avoid using this function for adding transactions to an
#' \code{\link{account}}-class object; other functions (such as overloaded
#' \code{+}) should be used instead as they provide a safer interface.
#'
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#' @param account The \code{\link{account}}-class object
#' @return The \code{\link[base]{list}} of the \code{\link{account}} object's
#' \code{\link{transaction}}s.
#' @examples
#' acc <- account(start = "2010-01-01", owner = "John Doe",
#' title = "My Account", init = 1000)
#' account_transactions(acc)
account_transactions <- function(account) {
account$transactions

}

#' @param value The new list of transactions
#' @export
#' @rdname account_transactions
`account_transactions<-` <- function(account, value) {
account$transactions <- value
account

}

################################################################################
# ACCOUNT COLLECTIVE PROPERTIES
################################################################################

#' Determine if Account's Transactions are \code{transaction}-class
#'
#' Check if an \code{\link{account}}-class object has appropriate transactions
#'
#' @param account The \code{\link{account}}-class object to check
#' @return If all objects in \code{account}'s transaction list are
#' \code{\link{transaction}}-class objects, then this returns
#' \code{TRUE}; otherwise, it returns \code{FALSE}
#' @keywords internal
#' @examples
#' acc <- account(start = "2010-01-01", owner = "John Doe",
#' title = "My Account", init = 1000)
#' account:::all_transactions(acc)
all_transactions <- function(account) {
all(sapply(account_transactions(account), is.transaction))

}

#' Get Dates of All Transactions in Account
#'
#' Extract the dates of all transactions in an \code{\link{account}}-class
#' object and return a vector containing the dates. (Note: dates not sorted.)
#'
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#' @param account The \code{\link{account}}-class object
#' @return A vector of \code{Date}s associated with transactions
#' @seealso \code{\link{transaction}}, \code{\link{transaction_date}}
#' @export
#' @examples
#' acc <- account(start = "2010-01-01", owner = "John Doe",
#' title = "My Account", init = 1000)
#' acc <- acc + account_new_transaction("2010-01-02", -300, "Withdrawal")
#' acc <- acc + account_new_transaction("2010-01-03", -500, "Withdrawal"))
#' acc <- acc + account_new_transaction("2010-01-04", 500, "Deposit"))
#' acc <- acc + account_new_transaction("2010-01-04", -20, "Check")
#' account_dates(acc)
account_dates <- function(account) {
if (!all_transactions(account)) stop("Malformed account object")
Reduce(c, lapply(account_transactions(account), transaction_date))

}

#' Get Amounts of All Transactions in Account
#'
#' Extract the amount of all transactions in an \code{\link{account}}-class
#' object and return a vector containing the amounts. (Note: not sorted.)
#'
#' @param account The \code{\link{account}}-class object
#' @return A numeric vector containing transaction amounts
#' @seealso \code{\link{transaction}}, \code{\link{amount}}
#' @export
#' @examples
#' acc <- account(start = "2010-01-01", owner = "John Doe",
#' title = "My Account", init = 1000)
#' acc <- acc + account_new_transaction("2010-01-02", -300, "Withdrawal")
#' acc <- acc + account_new_transaction("2010-01-03", -500, "Withdrawal"))
#' acc <- acc + account_new_transaction("2010-01-04", 500, "Deposit"))
#' acc <- acc + account_new_transaction("2010-01-04", -20, "Check")
#' account_trans_amounts(acc)
account_trans_amounts <- function(account) {
if (!all_transactions(account)) stop("Malformed account object")
sapply(account_transactions(account), amount)

}

#' Get Memos of All Transactions in Account
#'
#' Extract the memo of all transactions in an \code{\link{account}}-class
#' object and return a vector containing the memo. (Note: not sorted.)
#'
#' @param account The \code{\link{account}}-class object
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#' @return A character vector containing transaction memos
#' @seealso \code{\link{transaction}}, \code{\link{memo}}
#' @export
#' @examples
#' acc <- account(start = "2010-01-01", owner = "John Doe",
#' title = "My Account", init = 1000)
#' acc <- acc + account_new_transaction("2010-01-02", -300, "Withdrawal")
#' acc <- acc + account_new_transaction("2010-01-03", -500, "Withdrawal"))
#' acc <- acc + account_new_transaction("2010-01-04", 500, "Deposit"))
#' acc <- acc + account_new_transaction("2010-01-04", -20, "Check")
#' account_memos(acc)
account_memos <- function(account) {

if (!all_transactions(account)) stop("Malformed account object")
sapply(account_transactions(account), memo)

}

################################################################################
# ACCOUNT STATISTICS
################################################################################

#' Account Transaction Count
#'
#' Count the number of transactions in an \code{\link{account}}-class object
#'
#' @param account The \code{\link{account}}-class object
#' @return Integer representing the number of transactions in \code{account}
#' @export
#' @examples
#' acc <- account(start = "2010-01-01", owner = "John Doe",
#' title = "My Account", init = 1000)
#' acc <- acc + account_new_transaction("2010-01-02", -300, "Withdrawal")
#' acc <- acc + account_new_transaction("2010-01-03", -500, "Withdrawal"))
#' acc <- acc + account_new_transaction("2010-01-04", 500, "Deposit"))
#' acc <- acc + account_new_transaction("2010-01-04", -20, "Check")
#' transaction_count(acc)
transaction_count <- function(account) {
length(account_transactions(account))

}

#' Check For Bad \code{account} Initial Value
#'
#' Check that an \code{\link{account}}-class account has an initial transaction
#' (a transaction with the \code{"Initia"} memo) that is the earliest
#' transaction in the account.
#'
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#' @param account The \code{\link{account}}-class object
#' @return \code{TRUE} if there is a transaction with the assumed properties,
#' \code{FALSE} otherwise
#' @keywords internal
#' @examples
#' acc <- account(start = "2010-01-01", owner = "John Doe",
#' title = "My Account", init = 1000)
#' account:::bad_Initial(acc)
#' bcc <- as.account(transaction("2010-01-02", 100, "Nothing"))
#' account:::bad_Initial(bcc)
bad_Initial <- function(account) {
if (!all_transactions(account)) stop("Not all transactions of right class")
if (!("Initial" %in% account_memos(account))) stop("No Initial transaction")

memo_Initial <- which(account_memos(account) == "Initial")
date_Initial <- min(account_dates(account)[memo_Initial])
sort(account_dates(account))[1] < date_Initial

}

################################################################################
# MODIFICATION TOOLS
################################################################################

#' New Transaction to Add to Account
#'
#' Create an \code{\link{account}}-class object with a single transaction that
#' can then be added to another \code{\link{account}}-class object via the
#' overloaded operator \code{+}.
#'
#' @inheritParams transaction
#' @return An \code{\link{account}}-class object (with title
#' \code{"Transaction"} and owner \code{"noone"}) with a single
#' transaction, based on the passed parameters
#' @seealso \code{\link{account}}, \code{\link{transaction}}
#' @export
#' @examples
#' acc <- account(start = "2010-01-01", owner = "John Doe",
#' title = "My Account", init = 1000)
#' acc <- acc + account_new_transaction("2010-01-02", -300, "Withdrawal")
#' acc <- acc + account_new_transaction("2010-01-03", -500, "Withdrawal"))
#' acc <- acc + account_new_transaction("2010-01-04", 500, "Deposit"))
#' acc <- acc + account_new_transaction("2010-01-04", -20, "Check")
#' print(acc)
account_new_transaction <- function(...) {
as.account(transaction(...))
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}

#' Delete a Transaction from an Account
#'
#' Delete a transaction from an \code{\link{account}}-class object based on
#' matching specified lists of dates and memo fields. (At least one must be
#' specified.)
#'
#' @param account The \code{\link{account}}-class object
#' @param date An object convertible to a \code{Date} by
#' \code{\link[base]{as.Date}} representing dates to delete
#' @param memo A character vector containing memo fields based on which
#' matching transactions should be removed
#' @return An \code{\link{account}}-class object with transactions having
#' (simultaneously) matching \code{date} and \code{memo} fields removed
#' @seealso \code{\link{transaction}}
#' @export
#' @examples
#' acc <- account(start = "2010-01-01", owner = "John Doe",
#' title = "My Account", init = 1000)
#' acc <- acc + account_new_transaction("2010-01-02", -300, "Withdrawal")
#' acc <- acc + account_new_transaction("2010-01-03", -500, "Withdrawal"))
#' acc <- acc + account_new_transaction("2010-01-04", 500, "Deposit"))
#' acc <- acc + account_new_transaction("2010-01-04", -20, "Check")
#' print(acc)
#' acc <- account_delete_transaction(acc, date = "2010-01-04", memo = "Check")
#' acc <- account_delete_transaction(acc, memo = "Withdrawal")
#' print(acc)
account_delete_transaction <- function(account, date = NULL, memo = NULL) {
if (is.null(date) && is.null(memo)) {
stop("Must specify at least one of date or memo")

}

if (!is.null(date)) {
filter_dates <- which(account_dates(account) == as.Date(date))

} else {
filter_dates <- 1:transaction_count(account)

}

if (!is.null(memo)) {
filter_memos <- which(account_memos(account) == memo)

} else {
filter_memos <- 1:transaction_count(account)

}
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final_filter <- intersect(filter_dates, filter_memos)
if (length(final_filter) == 0) {
warning("No transactions with date/memo combination")
return(account)

} else {
account_transactions(account)[final_filter] <- NULL
return(account)

}
}

summary.account.R

This file includes summary.account(), the function for making summary.account-
class objects, along with associated methods.
################################################################################
# summary.account.R
# Curtis Miller
# 2020-01-06
################################################################################
# Summaries of account-class object, via a method that also is a constructor of
# account.summary-class objects, with associated methods
################################################################################

################################################################################
# CONSTRUCTOR
################################################################################

#' Account Summary
#'
#' Provide a summary of an \code{\link{account}}-class object, including title,
#' owner, balance, number of transactions, and recent transactions.
#'
#' @param object The \code{\link{account}}-class object
#' @param recent The number of recent transactions to include
#' @return A \code{summary.account}-class object, which is a list with the
#' following elements:
#' \describe{
#' \item{\code{title}}{The title of the account}
#' \item{\code{owner}}{The owner of the account}
#' \item{\code{balance}}{The balance of the account (sum of
#' transactions)}
#' \item{\code{tcount}}{Integer representing the number of
#' transactions in the account}
#' \item{\code{rtrans}}{A list of recent transactions}
#' }
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#' @export
#' @examples
#' summary(accdata)
summary.account <- function(object, recent = 5) {
if (bad_Initial(object)) warning("account object malformed!")
res <- list()
res$title <- account_title(object)
res$owner <- account_owner(object)
res$balance <- sum(account_trans_amounts(object))
res$tcount <- transaction_count(object)
res$rtrans <- account_transactions(sort(object,

decreasing = TRUE)
)[1:min(recent, res$tcount)]

class(res) <- "summary.account"
res

}

################################################################################
# METHODS
################################################################################

#' Print Summaries of Accounts
#'
#' Print the results of \code{summary(acc)} when \code{acc} is an
#' \code{\link{account}}-class object.
#'
#' @param x The \code{\link{account}}-class object
#' @param prefix The prefix character for the title of the summary
#' @export
#' @examples
#' print(summary(accdata))
print.summary.account <- function(x, prefix = "\t") {
cat("\n")
cat(strwrap(x$title, prefix = prefix), sep = "\n")
cat("\n")
cat("Owner: ", sprintf("%20s", x$owner), "\n", sep = "")
cat("Transactions: ", sprintf("%13s", x$tcount), "\n", sep = "")
cat("Balance: ", sprintf("%18.2f", x$balance), "\n", sep = "")
cat("\nRecent Transactions:\n----------------------------------------------------\n")
for (t in x$rtrans) {
print(t)

}
}
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Generics.R

This file defines generic functions, along with any methods for external classes.
################################################################################
# Generics.R
# Curtis Miller
# 2020-01-06
################################################################################
# Generic function declaration, with accompanying methods for external classes.
################################################################################

################################################################################
# GENERICS
################################################################################

#' Convert Objects to \code{account}-class Objects
#'
#' Convert objects to \code{\link{account}}-class objects.
#'
#' @param x The object to convert to an \code{\link{account}}-class object
#' @param ... Additional parameters for conversion
#' @return An \code{\link{account}}-class object
#' @seealso \code{\link{account}}, \code{\link{as.account.transaction}},
#' \code{\link{as.account.data.frame}}
#' @export
#' @examples
#' u <- transaction("2010-01-01", 100, "Initial")
#' as.account(u)
#' dframe <- data.frame(date = c("2010-01-01", "2010-01-02", "2010-01-03"),
#' amount = c(100, -20, -50),
#' memo = c("Initial", "Withdrawal", "Check"))
#' as.account(dframe)
as.account <- function(x, ...) UseMethod("as.account")

################################################################################
# METHODS
################################################################################

#' Convert Data Frame Data to an \code{account}-class Object
#'
#' Convert the information in a \code{\link[base]{data.frame}} to transactions
#' of an \code{\link{account}}-class object.
#'
#' @param x The \code{\link[base]{data.frame}} to convert
#' @param datecol An identifier for the column of \code{x} representing
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#' transaction dates
#' @param amountcol An identifier for the column of \code{x} representing
#' transaction amounts
#' @param memocol An identifier of the column of \code{x} representing
#' transaction memos
#' @inheritParams account
#' @return An \code{\link{account}}-class object
#' @seealso \code{\link{as.account}}, \code{\link{account}}
#' @export
#' @examples
#' dframe <- data.frame(date = c("2010-01-01", "2010-01-02", "2010-01-03"),
#' amount = c(100, -20, -50),
#' memo = c("Initial", "Withdrawal", "Check"))
#' as.account(dframe, title = "My Account", owner = "John Doe")
as.account.data.frame <- function(x, title = "Account", owner = "noone",

datecol = 1, amountcol = 2, memocol = 3) {
if (length(x) < 3) stop("Too few columns to contain valid transactions")
dat <- data.frame("date" = as.character(x[[datecol]]),

"amount" = as.numeric(x[[amountcol]]),
"memo" = as.character(x[[memocol]]),
stringsAsFactors = FALSE)

acc <- Reduce(`+.account`, lapply(1:nrow(dat), function(i) {
r <- dat[i, ]
account_new_transaction(date = r$date, amount = r$amount,

memo = r$memo)
}))
account_owner(acc) <- owner
account_title(acc) <- title
acc

}

#' Convert Matrix Data to an \code{account}-class Object
#'
#' Convert data stored in a \code{\link[base]{matrix}} into transactions of an
#' \code{\link{account}}-class object. This function will likely fail if not
#' given a matrix of character data. The matrix is converted into a
#' \code{\link[base]{data.frame}} then passed to
#' \code{\link{as.account.data.frame}}.
#'
#' @param x The \code{\link[base]{matrix}} to convert
#' @param ... Other arguments to pass to \code{\link{as.account}}
#' @return An \code{\link{account}}-class object
#' @seealso \code{\link{as.account.data.frame}}, \code{\link{as.account}},
#' \code{\link{account}}
#' @export
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#' @examples
#' dat <- cbind(c("2010-01-01", "2010-01-02", "2010-01-03"),
#' c("1000", "-100", "-20"),
#' c("Initial", "Withdrawal", "Check"))
#' as.account(dat)
as.account.matrix <- function(x, ...) {
as.account(as.data.frame(x, stringsAsFactors = FALSE), ...)

}

read_csv_account.R

File containing the function read_csv_account().
################################################################################
# read_csv_account.R
# Curtis Miller
# 2020-01-06
################################################################################
# Defining function for reading account data from a CSV file.
################################################################################

################################################################################
# FUNCTIONS
################################################################################

#' Read Account Information from a CSV File
#'
#' Read data to form an \code{\link{account}}-class object from a CSV file.
#'
#' @param file The connection from which data is to be read
#' @param title A character string titling the account
#' @param owner A character string representing the owner of the account
#' @param datecol An identifier for the column of \code{x} representing
#' transaction dates
#' @param amountcol An identifier for the column of \code{x} representing
#' transaction amounts
#' @param memocol An identifier of the column of \code{x} representing
#' transaction memos
#' @param ... Further arguments to pass to \code{\link[base]{read.csv}}
#' @return An \code{\link{account}}-class object
#' @seealso \code{\link{as.account.data.frame}}, \code{\link{account}}
#' @export
#' @examples
#' input_con <- textConnection(
#' "date, amount, memo
#' 2010-01-01,1000,Initial
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#' 2010-01-02,-20,Withdrawal
#' 2010-01-03,-300,Withdrawal"
#' )
#' read_csv_account(input_con)
read_csv_account <- function(file, title = "Account", owner = "noone",

datecol = 1, amountcol = 2, memocol = 3, ...) {
dat <- read.csv(file = file, ...)
as.account(dat, title = title, owner = owner, datecol = datecol,

amountcol = amountcol, memocol = memocol)
}

Data.R

File containing only documentation for the overall package account and the
data set accdata.
################################################################################
# Data.R
# Curtis Miller
# 2020-01-06
################################################################################
# Documentation for data sets and the package.
################################################################################

################################################################################
# PACKAGE
################################################################################

#' account: A package for modeling financial accounts
#'
#' The \strong{account} package provides classes and methods for modeling and
#' working with financial accounts, such as a banking account. The core of the
#' package is the associated functions for \code{\link{account}}-class objects,
#' with other functions providing convient summary and plotting features.
#'
#' @docType package
#' @name account-package
NULL

################################################################################
# DATA
################################################################################

#' Example \code{account}-class Object
#'
#' This data set is an \code{\link{account}}-class object for practicing working



132 LECTURE 6

#' with these objects. It contains fictitious transactions for a fictitious
#' account.
#'
#' @format An \code{\link{account}}-class object with title "Personal Checking
#' Account" and owner named Joe Diamond. The account has 35
#' transactions, starting with an initial balance of 0.55 on 1925-10-08
#' and ending with a balance of -106.61 on 1925-12-08.
"accdata"

After placing these files in R/ (or modifying when appropriate), rebuild the
package. Every major function should now be documented, and example()
should work as well.

Testing Using testthat
Testing is the process of ensuring that software works as intended. When devel-
oping packages, authors should write tests to ensure that important functions
work correctly. The package building software can run checks that will run
author-written tests, and throw an error if the tests fail. This is a good thing!
We don’t want to distribute code that works incorrectly, and not every bug will
automatically reveal itself in an error. Furthermore, extensive testing of even
internal functions (not public to the user) can reveal early where problems in
code emerged. Writing code without writing high-quality tests is like climbing a
cliff without wearing a harness; a small mistake can become a disaster. In fact,
programmers may write the tests before they write the code, treating the tests
as a specification of the software’s intended behavior.

We can write automatic tests, and test code lives in the tests/ subdirectory.
Once, R programmers would just put .R scripts directly in tests/, but there is
a package, testthat, that helps make writing informative tests easier. (In fact
R developers often use it just for assumption checking in general code.) Make
sure that you have installed testthat. To start using testthat for test writing,
try loading the devtools package and running the command use_testthat().
This command will do the following:

1. Create a tests/testthat/ subdirectory;
2. Add testthat to the Suggests: field in DESCRIPTION; and
3. Create a file tests/testthat.R that will run the tests written in

tests/testthat/.

Do this now in RStudio. These changes will be made, and the file
tests/testthat.R looks like the following:
library(testthat)
library(account)

test_check("account")
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All test scripts in tests/testthat/ should be .R scripts whose name begins
with test-. You may assume that any test in the script will load the testthat
library; calling library(testthat) is not necessary (but not an error either).
You must have the first command be context("a description"); otherwise
there’ no restrictions, but you will be filling the file with calls to functions from
testthat. You should also load your package using library() in the script;
testthat won’t do this automatically.

When writing a test, we call the function test_that(s, e). s is a string
describing the tests being conducted in the code block/expression e. We often
see something like:
test_that("code works right", {

expectations
})

For expectations we have a series of calls to expect functions. There is a
function called expect() that can be used to build custom expectations, but
most of the time you will be using the following functions:

• expect_equal(s, e) to check that s is equal to e up to some numerical
tolerance; for example, expect_equal(1 + 1, 2).

• expect_identical(s, e) is like expect_equal() except it expects iden-
tical results. If you’re working with numbers, unless you care a great deal
about numerical precision, you should use expect_equal().

• expect_error(s) checks that s throws an error, like expect_error(1
+ "a"). You can also match for specific error messages, such as
expect_error(1 + "a", "non-numeric argument").

• expect_warning(s) and expect_message(s) is essentially the same as
expect_error(), but meant for warnings and messages respectively.

• expect_is(s, e) checks that s inherits from e, like expect_is(1 +
1, "numeric") or expect_is(lm(Sepal.Length ~ Species, data =
iris), "lm").

• expect_match(s, e) is for character strings and checks that s matches the
string e, where e is a character string interpreted as a regular expression.
An example is expect_match("Hello", "e"); since "e" is in "Hello",
we have a match.

• expect_output(s, e) works like expect_match() except it’s capturing
the output of the expression s and sees if it matches e. An example is
expect_output(cat("Hello"), "e").

• expect_silent(s) simply tests that the expression s does not produce
any output, including errors, warnings, or messages.

With these expect functions, if the expectation is satisfied, nothing happens. If
it’s not satisfied, an error is produced. When all goes well, the tests are silent.

All told, testthat has a grouping of tests. Files contain tests, which themselves
contain expectations. Good grouping of expectations produces helpful tests.
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I personally like to adopt a file structure in tests/testthat/ resembling the
structure of R/, with similarly named files. I group tests based on functions,
then put expectations in tests that check important behaviors of the function.

Below are the test- files we will use for testing account. Copy and paste these
files into tests/testthat/.

test-transaction.R

Let’s start with writing tests for transactions. I recommend studying this file
closely. In fact, try running this file line-by-line interactively so that you can
check that each test passes. Inspect the commands tested both in and out of
the expectation. Maybe change a line to a mismatched expecation to see what
would happen when an expectation is not met and a test fails.
################################################################################
# test-transaction.R
################################################################################
# Curtis Miller
# 2020-01-09
################################################################################
# Tests for transaction-class objects and their methods
################################################################################

context("transaction objects")

################################################################################
# SETUP
################################################################################

library(account)
trt <- transaction("2010-01-01", 1000, "Initial")
trs <- transaction("2010-01-01", 1000, "Hello")
act1 <- as.account(trs)
act2 <- as.account(trt, title = "My Account", owner = "John Doe")

################################################################################
# CONSTRUCTOR
################################################################################

test_that("transaction constructor works properly", {
expect_is(trt, "transaction")
with(trt, {
expect_is(date, "Date")
expect_identical(date, as.Date("2010-01-01"))
expect_equal(amount, 1000)
expect_match(memo, "Initial")
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})
})

################################################################################
# HELPERS
################################################################################

test_that("is.transaction works properly", {
expect_true(is.transaction(trt))
expect_false(is.transaction(data.frame(x = 1:10)))

})

################################################################################
# METHODS
################################################################################

test_that("transaction-class objects print correctly", {
# The string produces regex string
expect_output(print(trt),

paste0(strrep(" ", 4), "2010-01-01:", strrep(" ", 3),
"\\+1000\\.00 \\(Initial\\)"))

expect_output(print(trt, space = 4),
paste0(strrep(" ", 4), "2010-01-01:", strrep(" ", 1),

"\\+1000\\.00 \\(Initial\\)"))
})

test_that("transaction-class objects are correctly turned into accounts", {
expect_is(act1, "account")
expect_match(account_title(act1), "Transaction")
expect_match(account_owner(act1), "noone")
expect_is(act2, "account")
expect_match(account_title(act2), "My Account")
expect_match(account_owner(act2), "John Doe")
expect_identical(account_dates(act1), as.Date("2010-01-01"))
expect_identical(account_memos(act1), "Hello")
expect_identical(account_trans_amounts(act1), 1000)

})

test-transactionHelpers.R

Next we will write tests explicitly for the helper functions of transaction-class
objects.
################################################################################
# test-transactionHelpers.R
################################################################################
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# Curtis Miller
# 2020-01-10
################################################################################
# Tests for transaction-class object helper functions
################################################################################

context("transaction-class object helper functions")

################################################################################
# SETUP
################################################################################

library(account)
trt <- transaction("2010-01-01", 1000, "Hello")

################################################################################
# FIELD ACCESS AND MODIFICATION
################################################################################

trt_temp <- trt
test_that("transaction_date() both gets and sets dates", {
expect_is(transaction_date(trt_temp), "Date")
expect_identical(transaction_date(trt_temp), as.Date("2010-01-01"))
expect_identical(transaction_date(trt_temp), trt_temp$date)
transaction_date(trt_temp) <- "2020-01-01"
expect_is(transaction_date(trt_temp), "Date")
expect_identical(transaction_date(trt_temp), as.Date("2020-01-01"))

})

trt_temp <- trt
test_that("amount() both gets and sets amounts", {
expect_equal(amount(trt_temp), 1000)
expect_identical(amount(trt_temp), trt_temp$amount)
amount(trt_temp) <- -20
expect_equal(amount(trt_temp), -20)

})

trt_temp <- trt
test_that("memo() both gets and sets memos", {

expect_match(memo(trt_temp), "Hello")
expect_identical(memo(trt_temp), trt_temp$memo)
memo(trt_temp) <- "world"
expect_match(memo(trt_temp), "world")

})
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test-account.R

This file contains basic tests for creating account-class objects as well as associ-
ated methods. Unfortunately there are no tests for plot.account(), since the
testthat framework is not well equipped for testing plots.
################################################################################
# test-account.R
################################################################################
# Curtis Miller
# 2020-01-10
################################################################################
# Tests for account objects and their methods
################################################################################

context("account objects")

################################################################################
# SETUP
################################################################################

library(account)
act1 <- account("2010-01-01", "John Doe")
act2 <- account(start = "2010-01-02", owner = "Jane Doe", init = 100,

title = "Jane's Account")
act3 <- act2
act3$transactions[[2]] <- transaction("2010-01-05", -20, "")
act3$transactions[[3]] <- transaction("2010-01-03", -30, "")
act4 <- act3
act4$transactions[[4]] <- transaction("2010-01-01", -10, "Error")
act5 <- act4
act5$transactions[[5]] <- transaction("2010-01-01", 0, "Initial")

################################################################################
# CONSTRUCTOR
################################################################################

test_that("account objects are constructed properly", {
expect_is(act1, "account")
with(act1, {

expect_match(title, "Account")
expect_match(owner, "John Doe")
expect_is(transactions, "list")
expect_equal(length(transactions), 1)
expect_is(transactions[[1]], "transaction")
with(transactions[[1]], {
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expect_equal(date, as.Date("2010-01-01"))
expect_equal(amount, 0)
expect_match(memo, "Initial")

})
})
expect_is(act2, "account")
with(act2, {
expect_match(title, "Jane's Account")
expect_match(owner, "Jane Doe")
expect_equal(length(transactions), 1)
expect_is(transactions[[1]], "transaction")
with(transactions[[1]], {
expect_equal(amount, 100)

})
})

})

################################################################################
# HELPERS
################################################################################

test_that("is.account() works properly", {
expect_true(is.account(act1))
expect_false(is.account(data.frame(x = 1:10)))

})

################################################################################
# METHODS
################################################################################

test_that("account objects are sorted correctly", {
expect_identical(account_dates(sort(act4)),

as.Date(c("2010-01-02", "2010-01-01", "2010-01-03",
"2010-01-05")))

expect_identical(account_dates(sort(act4, decreasing = TRUE)),
as.Date(c("2010-01-05", "2010-01-03", "2010-01-01",

"2010-01-02")))
expect_identical(account_dates(sort(act5)),

as.Date(c("2010-01-01", "2010-01-01", "2010-01-02",
"2010-01-03", "2010-01-05")))

expect_match(account_memos(sort(act5))[[1]], "Initial")
})

test_that("account objects print correctly", {
# Removing the following since it's hard to copy/paste including whitespace
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# expect_output(print(act3),
# # To get the following string, I already knew that print() worked as it
# # should, so I used dput(capture_output(print(act3))) then replaced \n with
# # new lines and finally escaped +, (, and ) with \\ (which translates to a
# # single \) since these character have special regular expression meanings
# "Title: Jane's Account
# Owner: Jane Doe
# Transactions:
# ----------------------------------------------------
# 2010-01-02: \\+100.00 \\(Initial\\)
# 2010-01-05: -20.00
# 2010-01-03: -30.00 ")
# expect_output(print(act3, presort = TRUE),
# "Title: Jane's Account
# Owner: Jane Doe
# Transactions:
# ----------------------------------------------------
# 2010-01-02: \\+100.00 \\(Initial\\)
# 2010-01-03: -30.00
# 2010-01-05: -20.00 ")
})

test_that("Addition of account objects works", {
act_temp <- act1 + act2
expect_is(act_temp, "account")
expect_match(account_title(act_temp), "Account")
expect_match(account_owner(act_temp), "John Doe")
expect_identical(account_dates(act_temp),

as.Date(c("2010-01-01", "2010-01-02")))
expect_equal(account_trans_amounts(act_temp), c(0, 100))

})

test-accountHelpers.R

Next we will write tests explicitly for the helper functions of account-class
objects. Notice that when testing the private functions they need to be called
using :::.
################################################################################
# test-accountHelpers.R
################################################################################
# Curtis Miller
# 2020-01-12
################################################################################
# Tests for account-class object helper functions
################################################################################
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context("account-class object helper functions")

################################################################################
# SETUP
################################################################################

library(account)
act1 <- account("2010-01-01", "John Doe")
act2 <- account(start = "2010-01-02", owner = "Jane Doe", init = 100,

title = "Jane's Account")
act3 <- act2
act3$transactions[[2]] <- transaction("2010-01-05", -20, "")
act3$transactions[[3]] <- transaction("2010-01-03", -30, "")
act4 <- act3
act4$transactions[[4]] <- transaction("2010-01-01", -10, "Error")
act5 <- act4
act5$transactions[[5]] <- transaction("2010-01-01", 0, "Initial")

################################################################################
# FIELD ACCESS AND MODIFICATION
################################################################################

act_temp <- act2
test_that("account_title() both gets and sets account titles", {

expect_match(account_title(act_temp), "Jane's Account")
expect_identical(account_title(act_temp), act_temp$title)
account_title(act_temp) <- "Temp"
expect_match(account_title(act_temp), "Temp")
account_title(act_temp) <- 19
expect_match(account_title(act_temp), "19")

})

act_temp <- act2
test_that("account_owner() both gets and sets account owner", {

expect_match(account_owner(act_temp), "Jane Doe")
expect_identical(account_owner(act_temp), act_temp$owner)
account_owner(act_temp) <- "noone"
expect_match(account_owner(act_temp), "noone")
account_owner(act_temp) <- 19
expect_match(account_owner(act_temp), "19")

})

act_temp <- act2
test_that("account_transaction() both gets and sets account transactions", {

expect_is(account_transactions(act_temp), "list")
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expect_identical(account_transactions(act_temp),
list(transaction("2010-01-02", 100, "Initial")))

expect_identical(account_transactions(act_temp), act_temp$transactions)
account_transactions(act_temp) <- list(transaction("2020-01-01", 300,

"Initial"))
expect_identical(account_transactions(act_temp),

list(transaction("2020-01-01", 300, "Initial")))
account_transactions(act_temp)[[2]] <- transaction("2020-01-02", -10, "")
expect_identical(account_transactions(act_temp)[[2]],

transaction("2020-01-02", -10, ""))
})

################################################################################
# PRIVATE FUNCTIONS
################################################################################

act_temp <- act3
test_that("all_transactions() detects all transactions or some not", {

expect_true(account:::all_transactions(act_temp))
account_transactions(act_temp)[[4]] <- "Bad!"
expect_false(account:::all_transactions(act_temp))

})

act_temp <- act4
test_that("bad_Initial() detects no Initial or misplace Initial; FALSE o.w.", {

expect_true(account:::bad_Initial(act_temp))
account_transactions(act_temp)[[4]] <- NULL
expect_false(account:::bad_Initial(act_temp))
account_transactions(act_temp)[[4]] <- "Bad!"
expect_error(account:::bad_Initial(act_temp))
account_transactions(act_temp)[[4]] <- NULL
account_transactions(act_temp)[[1]] <- NULL
expect_error(account:::bad_Initial(act_temp))

})

################################################################################
# COLLECTIVE PROPERTIES AND STATISTICS
################################################################################

test_that("account_dates() gets all dates", {
expect_identical(account_dates(sort(act3)),

as.Date(c("2010-01-02", "2010-01-03", "2010-01-05")))
})

test_that("account_trans_amounts() gets all transaction amounts", {
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expect_equal(account_trans_amounts(sort(act3)),
c(100, -30, -20))

})

test_that("account_memos() gets all account memos", {
expect_identical(account_memos(sort(act4)), c("Initial", "Error", "", ""))

})

test_that("transaction_count() correctly counts number of transactions", {
expect_equal(transaction_count(act3), 3)
expect_identical(transaction_count(act3), length(account_transactions(act3)))

})

################################################################################
# MODIFICATION TOOLS
################################################################################

test_that("account_new_transaction() produces simple accounts", {
expect_is(account_new_transaction("2010-01-10", -20, "Test"), "account")
expect_match(account_memos(

account_new_transaction("2010-01-10", -20, "Test")), "Test")
expect_equal(account_trans_amounts(

account_new_transaction("2010-01-10", -20, "Test")), -20)
expect_identical(account_dates(

account_new_transaction("2010-01-10", -20, "Test")),
as.Date("2010-01-10"))

expect_match(account_title(
account_new_transaction("2010-01-10", -20, "Test")),

"Transaction")
expect_match(account_owner(

account_new_transaction("2010-01-10", -20, "Test")),
"noone")

})

test_that("account_delete_transaction() deletes transactions", {
expect_error(account_delete_transaction(act4))
expect_warning(account_delete_transaction(act4, date = "2100-01-01",

memo = "Turkey"))
expect_warning(account_delete_transaction(act4, date = "2100-01-01"))
expect_warning(account_delete_transaction(act4, memo = "Turkey"))
expect_warning(account_delete_transaction(act4, date = "2010-01-02",

memo = "Error"))
# If warnings are not suppressed, this will be a problem
expect_identical(suppressWarnings(

account_delete_transaction(act4, date = "2010-01-02",
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memo = "Error")), act4)
act_temp <- act4
account_transactions(act_temp) <- account_transactions(act_temp)[-4]
expect_identical(account_delete_transaction(act4, memo = "Error"),

act_temp)
act_temp <- act4
account_transactions(act_temp) <- account_transactions(act_temp)[-(2:3)]
expect_identical(account_delete_transaction(act4, memo = ""),

act_temp)
act_temp <- act5
account_transactions(act_temp) <- account_transactions(act_temp)[1:3]
expect_identical(account_delete_transaction(act5, date = "2010-01-01"),

act_temp)
act_temp <- act5
account_transactions(act_temp) <- account_transactions(act_temp)[-5]
expect_identical(account_delete_transaction(act5, date = "2010-01-01",

memo = "Initial"),
act_temp)

})

test-summary.account.R

This file contains basic tests for creating summary.account-class objects as well
as associated methods. summary.account-class objects are produced by the
generic function summary(), so the function is both a method and an object
constructor.
################################################################################
# test-summary.account.R
################################################################################
# Curtis Miller
# 2020-01-12
################################################################################
# Tests for summary.account-class objects
################################################################################

context("summary.account objects")

################################################################################
# SETUP
################################################################################

library(account)

act <- account(start = "2010-01-02", owner = "Jane Doe", init = 100,
title = "Jane's Account")
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act2 <- act
act2$transactions[[2]] <- transaction("2010-01-05", -20, "")
act2$transactions[[3]] <- transaction("2010-01-03", -30, "")
act3 <- act2
act3$transactions[[4]] <- transaction("2010-01-01", -10, "Error")
act4 <- act3
act4$transactions[[5]] <- transaction("2010-01-01", 0, "Initial")
act4$transactions[[6]] <- transaction("2010-01-10", 21, "Deposit")

################################################################################
# CONSTRUCTOR
################################################################################

test_that("summary.account() works properly", {
expect_warning(summary(act3))
expect_error(summary(account_new_transaction("2010-01-01", 0)))
expect_equal(length(summary(act4)$rtrans), 5L)
act_sum <- summary(act4, recent = 2)
expect_is(act_sum, "summary.account")
expect_match(act_sum$title, "Jane's Account")
expect_match(act_sum$owner, "Jane Doe")
expect_equal(act_sum$balance, 61)
expect_equal(act_sum$tcount, 6L)
expect_equal(length(act_sum$rtrans), 2)
expect_true(all(sapply(act_sum$rtrans, class) == "transaction"))
expect_identical(act_sum$rtrans, account_transactions(act4)[c(6, 2)])

})

################################################################################
# METHODS
################################################################################

test_that("account-class object summaries print correctly", {
act_sum <- summary(act4, recent = 2)
# Removing the following since it's hard to copy/paste including whitespace

# expect_output(print(act_sum),
# "
# \\tJane's Account
#
# Owner: Jane Doe
# Transactions: 6
# Balance: 61.00
#
# Recent Transactions:
# ----------------------------------------------------
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# 2010-01-10: \\+21.00 \\(Deposit\\)
# 2010-01-05: -20.00 ")
})

test-Generics.R

Here we write tests for our generic functions. There is only one generic function,
as.account(), and generic functions usually don’t do much; they only call
UseMethod(). Thus we’re not testing the generic function so much as we’re
testing the methods associated with the generic function.
################################################################################
# test-Generics.R
################################################################################
# Curtis Miller
# 2020-01-13
################################################################################
# Tests for generic functions
################################################################################

context("Generic functions")

################################################################################
# SETUP
################################################################################

library(account)

mat1 <- cbind(date = c("2010-01-01", "2010-01-02"),
amount = c("100", "-20"),
memo = c("Initial", ""))

mat2 <- mat1[, c(2, 1, 3)]
df1 <- as.data.frame(mat1, stringsAsFactors = FALSE)
df2 <- as.data.frame(mat2, stringsAsFactors = FALSE)
t_list <- list(transaction("2010-01-01", 100, "Initial"),

transaction("2010-01-02", -20))
acc <- account("2010-01-01", owner = "noone", title = "Account")
account_transactions(acc) <- t_list

################################################################################
# DATA FRAME TO ACCOUNT
################################################################################

acc_temp <- acc
test_that("as.account() converts data frames to account-class objects", {

expect_identical(as.account(df1), acc_temp)
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expect_identical(as.account(df2, datecol = 2, amountcol = 1, memocol = 3),
acc_temp)

expect_identical(as.account(df2, datecol = "date", amountcol = "amount",
memocol = "memo"), acc_temp)

account_title(acc_temp) <- "TA"
account_owner(acc_temp) <- "Jack"
expect_identical(as.account(df1, title = "TA", owner = "Jack"), acc_temp)

})

acc_temp <- acc
test_that("as.account() converts matrix to account-class objects", {
expect_identical(as.account(mat1), acc_temp)
expect_identical(as.account(mat2, datecol = 2, amountcol = 1, memocol = 3),

acc_temp)
expect_identical(as.account(mat2, datecol = "date", amountcol = "amount",

memocol = "memo"), acc_temp)
account_title(acc_temp) <- "TA"
account_owner(acc_temp) <- "Jack"
expect_identical(as.account(mat1, title = "TA", owner = "Jack"), acc_temp)

})

test-read_csv_account.R

Finally we test read_csv_account(). This should be able to read a file from
disk and convert it to an account-class object. While it should be possible to
provide a file for testing, we will content ourselves with working with a string
connection.
################################################################################
# test-read_csv_account.R
# Curtis Miller
# 2020-01-13
################################################################################
# Testing functions for reading account objects
################################################################################

context("Reading accounts from files")

################################################################################
# SETUP
################################################################################

library(account)

input_str1 <- "date,amount,memo
2010-01-01,1000,Initial
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2010-01-02,-20,Withdrawal
2010-01-03,-300,Withdrawal"

input_str2 <- "memo,date,amount
Initial,2010-01-01,1000
Withdrawal,2010-01-02,-20
Withdrawal,2010-01-03,-300"

acc <- account(title = "Account", owner = "noone", start = "2010-01-01")
account_transactions(acc) <- list(
transaction("2010-01-01", 1000, "Initial"),
transaction("2010-01-02", -20, "Withdrawal"),
transaction("2010-01-03", -300, "Withdrawal")

)

################################################################################
# READING FILES
################################################################################

test_that("read_csv_account() can read CSV files", {
expect_identical(read_csv_account(textConnection(input_str1)), acc)
expect_identical(read_csv_account(textConnection(input_str2), datecol = 2,

amountcol = 3, memocol = 1), acc)
expect_identical(read_csv_account(textConnection(input_str2),

datecol = "date", amountcol = "amount",
memocol = "memo"), acc)

expect_match(account_title(read_csv_account(textConnection(input_str1),
title = "test")), "test")

expect_match(account_owner(read_csv_account(textConnection(input_str1),
owner = "Joe")), "Joe")

})

Once these files are in the right subdirectory, you can run the tests using
devtools::test() or the shortcut keys Ctrl+Shift+T. These will cause the
tests to execute, and in one of the RStudio panes you’d see the following output:

These are the results of the tests. The output says how many checks passed, how
many didn’t pass, and how many were skipped. If a test was passed, there will be
output explaining why it didn’t pass and, if possible, how far from expectations
the resulting output was. In this case, some tests were skipped since their code
was commented out (they were tests for printing), and the output reports which
were skipped.

Writing tests and developing test cases is an art of its own. Just because your
tests pass does not mean there are not errors in the code; it just means your
tests can’t detect them. Good testing, though, can save you many hours of
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Figure 17: Testing

headache figuring out when and why your code went wrong. You don’t need
test code until your code breaks without you knowing it, so I recommend taking
testing seriously. I believe non-professional programmers, in particular, are too
lax when it comes to testing and assumption checking, and the result is hours
of wasted time tracking down bugs. In any sufficiently complex project (and it
doesn’t take much for a project to become “sufficiently” complicated) testing is
crucial.



Lecture 7

Statistical Intervals
A statistical interval is an interval computed using a sample intended to
capture some aspect of the population with some user-specified probability. In
this lecture I will discuss some statistical intervals and demonstrate how to
compute these intervals in R. When discussing intervals, remember that these
include bounds, which is viewed as an interval with one end point being infinite.

Every statistics student encounters confidence intervals and statistics instructors
drill students on what the proper interpretation of a confidence interval is.
Statisticians care so much about the interpretation of the confidence interval
because not only is the wrong interpretation simply wrong, there probably is
another interval with the mistaken interpretation that is computed differently
from the confidence interval. Here we see some of those other intervals.

Confidence Intervals
Every statistics student should learn how to compute the most common statistical
interval: the confidence interval. A 100C% confidence interval (CI) for some
parameter θ is an interval such that the probability the interval captures the
unknown parameter θ when computed from a random sample is C. You should
already know how to compute confidence intervals for many contexts, and I will
not repeat the discussion here.

Credible Intervals
The Bayesian 100C% credible interval is an interval such that the probability
a population parameter θ (here viewed as a random variable of its own) is a
specified C. Note that this is not the same interpretation as the confidence
intervals, with the subtle difference being that for credible intervals θ is viewed
as random while for confidence intervals θ is fixed and non-raondom, so talking
about the “probability” the parameter is in a fixed interval doesn’t make sense
(it’s either 1 or 0 depending on whether the parameter is or is not in the interval,
though the researcher doesn’t know which is the case).
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Computing Bayesian credible intervals requires adopting the Bayesian
prior/posterior mindset that goes beyond the scope of this course, so I will not
discuss these intervals. Furthermore, Bayesians will compute all of the following
intervals differently than the frequentists, so we will ignore Bayesianism from
now on.

Prediction Intervals
A 100C% prediction interval (PI) is an interval such that, if the interval
is computed from a random sample X1, . . . , Xn, the probability the interval
includes the observation Xn+1 is C. In short, it’s an interval that predicts where
a future observation will appear based on existing observations. Contrast this
with CIs which only try to describe the uncertainty associated with the value of
a parameter θ; CIs predict nothing.

Two comments on PIs: first, distributional assumptions matter more to PIs than
to CIs. Asymptotic theory allows us to approximate distributions of statistics
with some limiting distribution (for example, approximate the distribution of the
sample mean with the Normal distribution), but since we’re concerned with the
behavior of a single observation, we can’t neglect that observation’s distribution
and substitute a limiting distribution like we could with a statistic’s distribution.
Second, while prediction intervals can narrow as we collect more data, these
intervals don’t “go to zero,” unlike confidence intervals, since an individual
observation always has some natural variation not going to zero that must be
accounted for.

Let’s start, for instance, with constructing a prediction interval for an observation
from a Normal distribution with known standard deviation σ. Throughout this
lecture assume data is i.i.d.. Then X̄ = 1

n

∑n
i=1Xi ∼ N

(
µ, σ√

n

)
. Also, Xn+1 ∼

N(0, σ), and since X̄ and Xn+1 are independent of each other, Xn+1 − X̄ ∼
N
(

0, σ
√

1 + 1
n

)
. Thus we can say

Xn+1 − X̄

σ
√

1 + 1
n

∼ N(0, 1).

We can then form an equal-tail interval by noticing:

P

−z∗ ≤ Xn+1 − X̄

σ
√

1 + 1
n

≤ z∗
 = P

(
X̄ − z∗σ

√
1 + 1

n
≤ Xn+1 ≤ X̄ + z∗σ

√
1 + 1

n

)
= C

where z∗ = z1−C/2. In short, the equal-tailed PI is x̄± z∗σ
√

1 + 1
n .
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Suppose that σ is not known. The resulting calculation is similar to that
listed above, and the resulting interval is x̄± t∗s

√
1 + 1

n , where s is the sample
standard deviation and t∗ = tn−1,1−C/2 is the corresponding critical value of the
t-distribution with n− 1 degrees of freedom.

Below is a function for computing the prediction interval for Normally distributed
data. It also allows for one-sided intervals, and uses an interface resembling
t-test.
pi_norm <- function(x, conf.level = 0.95, alternative = "two.sided") {
alpha <- 1 - conf.level
n <- length(x)
xbar <- mean(x)
err <- sd(x) * sqrt(1 + 1 / n)
crit <- switch(alternative,

"two.sided" = qt(alpha / 2, df = n - 1, lower.tail = FALSE),
"less" = -qt(alpha, df = n - 1, lower.tail = FALSE),
"greater" = qt(alpha, df = n - 1, lower.tail = FALSE),
# Below is the "default" switch, triggered if none of the above
stop("alternative must be one of two.sided, less, greater"))

interval <- switch(alternative,
"two.sided" = c(xbar - crit * err, xbar + crit * err),
"less" = c(xbar + crit * err, Inf),
"greater" = c(-Inf, xbar + crit * err),
stop("How did I get here?"))

attr(interval, "conf.level") <- conf.level
interval

}

Let’s demonstrate by predicting the weight of a cabbage. The data set cabbages
(MASS) contains data from a cabbage field trial (in kilograms). Here I collect
the weights of cabbages from one cultivator.
library(MASS)
cabbage_weight <- subset(cabbages, subset = Cult == "c39")$HeadWt
qqnorm(cabbage_weight)
qqline(cabbage_weight)
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pi_norm(cabbage_weight, conf.level = 0.9)

## [1] 1.516780 4.296554
## attr(,"conf.level")
## [1] 0.9

The procedure above, though, is for Normal data. It would never be appropriate
to use it for non-Normal data, not even for large sample sizes. So what should
we do when our data is not Normally distributed? We have two options:

1. If we know the distribution the data came from, we should use an interval
designed for that distribution. This is the parameteric approach.

2. Use a procedure that assumes very little about the distribution. This is
the non-parametric approach.

Computing nonparametric intervals can be done if one assumes the data was
drawn from a continuous distribution (it can be done if this not true too but the
math is much harder due to the need to account for ties) using the procedure
listed here. These intervals are not exact prediction intervals since you may not
be able to get an interval for the exact confidence level specified, but they involve
few assumptions and we should be able to get close to our desired confidence
level. These intervals use the order statistics of the data for their bounds.

The function below can conservatively estimate a prediction interval using a
suggested confidence rate. (Only two-sided intervals are allowed by this code.)
no_param_pi <- function(x, conf.level = 0.95) {
n <- length(x)
x <- sort(x)

https://en.wikipedia.org/wiki/Prediction_interval#Non-parametric_methods
https://en.wikipedia.org/wiki/Prediction_interval#Non-parametric_methods
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j <- max(floor((n + 1) * (1 - conf.level) / 2), 1)
conf.level <- (n + 1 - 2 * j)/(n + 1)
interval <- c(x[j], x[n + 1 - j])
attr(interval, "conf.level") <- conf.level
interval

}

Notice the result of the following:
no_param_pi(rnorm(1000))

## [1] -1.983822 1.939687
## attr(,"conf.level")
## [1] 0.95005

The confidence level is slightly higher than the specified 95% but close enough;
being lower can happen if there’s not enough data. Furthermore, the resulting
prediction interval is close to the interval (−2, 2); recall that the probability
that a Normal random variable is within two standard deviations of its mean is
roughly 95%, so this interval appears to function as it should.

Here we use it on the cabbage data:
no_param_pi(cabbage_weight)

## [1] 1.6 4.3
## attr(,"conf.level")
## [1] 0.9354839

Due to the limitations of the data set, we don’t get a 95% confidence interval;
the procedure was forced to just use the maximum and the minimum of the data
set as the prediction interval. Nevertheless, it’s close to a 95% interval.

Replication Intervals
Prediction intervals need not be just for a single observation; they could be for
any quantity we estimate from future data. For example, we could compute
a prediction interval for a future sample mean, of any sample size. When we
set the sample size of the future sample mean equal to the sample size of the
computed sample mean, I like to call the resulting prediction interval a 100C%
replication interval (RI) since this interval can be interpreted as an interval
attempting to capture the value of sample means in replication studies.

Let’s revisit again the Normal case. Let X̄1,n = 1
n

∑n
i=1Xi represent the observed

sample mean and X̄2,m = 1
m

∑n+m
i=n+1Xi the future sample mean for a sample of

sizem; both of these are treated as random variables, but to construct the interval
we will be computing X̄1,n. Since X̄1,n ∼ N

(
µ, σ√

n

)
and X̄2,m ∼ N

(
µ, σ√

m

)
and the two random variables are independent, then
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X̄1,n − X̄2,m

σ
√

1
n + 1

m

∼ N(0, 1).

And in fact the distributional logic developed above applies to this random
variable, so we can get a confidence interval even when σ is not known, and
obtain the interval x̄± t∗s

√
1
n + 1

m for predicting the value of X̄2,m, with t∗ as
before. In fact, if we say m = n, then our interval will be x̄±

√
2t∗ s√

n
.

Since these intervals are based on the behavior of averages, we can say not only
that these intervals will go to zero as we increase our sample sizes m and n,
but also that the intervals should work well regardless of the underlying data
distribution if both m and n are sufficiently large. These are unlike the earlier
prediction intervals, but as with confidence intervals, this is because the objects
under study are averages.

Below is a function for computing these replication intervals.
repint <- function(x, m = length(x), conf.level = 0.95,

alternative = "two.sided") {
alpha <- 1 - conf.level
n <- length(x)
xbar <- mean(x)
err <- sd(x) * sqrt(1 / m + 1 / n)
crit <- switch(alternative,

"two.sided" = qt(alpha / 2, df = n - 1, lower.tail = FALSE),
"less" = -qt(alpha, df = n - 1, lower.tail = FALSE),
"greater" = qt(alpha, df = n - 1, lower.tail = FALSE),
# Below is the "default" switch, triggered if none of the above
stop("alternative must be one of two.sided, less, greater"))

interval <- switch(alternative,
"two.sided" = c(xbar - crit * err, xbar + crit * err),
"less" = c(xbar + crit * err, Inf),
"greater" = c(-Inf, xbar + crit * err),
stop("How did I get here?"))

attr(interval, "conf.level") <- conf.level
interval

}

Here we apply the interval to the cabbage data:
repint(cabbage_weight)

## [1] 2.481725 3.331609
## attr(,"conf.level")
## [1] 0.95
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Translated into English, we would say that, with 95% confidence, a fu-
ture mean in a replication study (using the same sample size) should lie
between r round(repint(cabbage_weight)[[1]], digits = 2) and r
round(repint(cabbage_weight)[[2]], digits = 2).

Tolerance Intervals
A tolerance interval (TI) is an interval that contains at least 100K% of the
population with 100C% confidence. Let’s unpack that statement. The objective
of the interval is to create an interval that will contain not only a single future
observation but 100K% of all observations (present and future) for some user-
selected K ∈ (0, 1). We wish to get such an interval with 100C% confidence,
with C being the user-specified confidence level that’s appeared in the other
intervals. This interval, however, will likely be wider than the true population
interval that contains 100K% of population values due to measurement error,
and as a result we should say that the resulting interval contains at least 100K%
of the population values with our specified confidence level.

Unlike PIs, TIs are not trying to predict a future observation but estimate an
interval. They’re interval estimates for intervals. But like PIs, TIs can be highly
parametric (with distributional assumptions mattering even for large sample
sizes) and should not be expected to go to zero for large sample sizes since the
underlying interval they’re trying to capture isn’t length zero itself.

The R package tolerance provides functions for computing both parametric
and nonparametric tolerance intervals. For Normal data, we can use the function
normtol.int(). Let’s demonstrate by computing a tolerance interval for cabbage
weight, requiring that the interval capture 90% of cabbage weights. We will
make this a 99% confidence interval.
library(tolerance)
normtol.int(cabbage_weight, alpha = 1 - 0.99, P = 0.9, side = 2)

## alpha P x.bar 2-sided.lower 2-sided.upper
## 1 0.01 0.9 2.906667 0.9813193 4.832014

(Note the parameter alpha and P, which correspond to 1−C and K in the above
presentation, respectively.) Additionally, we can compute nonparametric TIs
using the function nptol.int(). Like with nonparametric PIs, nonparametric
TIs depend heavily on sample quantiles. (This is in fact an important theme in
nonparametric statistics in general.)
nptol.int(cabbage_weight, alpha = 1 - 0.99, P = 0.9, side = 2)

## alpha P 2-sided.lower 2-sided.upper
## 1 0.01 0.9 1.6 4.3
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Lecture 8

Linear Regression Models
A linear regression model is a statistical model of the form:

yi = β0 + β1x1i + · · ·+ βkxki + εi.

The term yi is the response variable or dependent variable, while the vari-
ables x1i, . . . , xki are called explanatory variables, independent variables,
or regressors. The terms β0, β1, . . . , βk are called the coefficients of the model,
and εi is the error or residual term. The term β0 is often called the intercept
of the model since it’s the predicted value of yi when all the explanatory variables
are zero.

Simple linear regression refers to a linear regression model with only one
explanatory variable:

yi = β0 + β1xi + εi.

This model corresponds to the one-dimensional lines all math students studied in
basic algebra, and it’s easily visualized. Additionally, when estimating the model
via least-squares estimation, it’s easy and intuitive to write the answer. (Actually
the least-squares solution for the full model isn’t hard to write either after one
learns some linear algebra, but matrices may scare novice statistics students.)
However, the model is generally too simple and real-world applications generally
include more than one regressor.

Generally statisticians treat the term εi as the only source of randomness in
linear regression models; regressors may or may not be random. Thus most
assumption concern the behavior of εi, and include assuming that E[εi] = 0 and
Var(εi) = σ2. We may say more about the errors, such as that the errors are
i.i.d. and maybe Normally distributed.
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Estimating Simple Linear Regression Models
The models listed above are population models. Our objective is to estimate
the parameters of these models. Let β̂0 and β̂1 denote estimates of β0 and β1,
respectively. The predicted value of y given an input x is:

ŷ = β̂0 + β̂1x.

We call ε̂i = yi − ŷi the estimated residual of the model. The question now
is how one should estimate the coefficients of the model. The most popular
approach is least-squares minimization, where β̂0 and β̂1 are picked such
that the sum of square errors:

SSE(β̂0, β̂1) =
N∑
i=1

(yi − ŷi)2

is minimized. Suppose r is the sample correlation, sx is the sample standard
devitation of the explanatory variable, sy the sample standard deviation of the
response variable, x̄ the sample mean of the explanatory variable, and ȳ the
sample mean of the response variable. Then we have a simple solution for the
estimates of the coefficients of the least-squares line:

β̂1 = r
sy
sx

β̂0 = ȳ − β̂1x̄.

Practitioners also often wish to estimate the variance of the residuals, σ2, and
do so using σ̂2 = 1

n−2SSE(β̂1, β̂2). The term n− 2 is the degrees of freedom
of the simple linear regression model.

When estimating using least squares, the predicted value ŷ can be interpreted as
the expected value of the response variable y given the value of the explanatory
variable x. In fact, the predicted value of y at the mean of the explanatory
variables x̄ is ȳ. Regression models, however, don’t have to be estimated using the
least-squares principle; for example, we could adopt the least absolute deviation
principle, and the interpretation of ŷ would change if we did so. Additionally,
the coefficients of the model get interpretations; we say that if we increase an
input explanatory variable x by one unit, then we expect y to be β1 units higher.
(The intercept term is generally less interesting in regression models, but its
interpretation is clear; it’s the expected value of y when x = 0.) It’s because of
interpretations like these that we may rescale the data, replacing xi with xi−x̄

sx

and yi with yi−ȳ
sy

. Then we would interpret β1 as being how many standard
deviations y changes by when we change x by one standard deviation. This is a
more universally interpretable model.
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Linear models are in fact quite expressive; many interesting models can be
written as linear models. For instance, consider the model:

yi = γ0γ
xi
1 ηi.

In this model, ηi is the multiplicative residual, and is assumed to be non-negative
with mean 1. If we take the natural log of both sides of this equation, we obtain
the mode:

ln(yi) = ln(γ0) + ln(γ1)xi + ln(ηi).

This is in fact the linear model we’ve already been considering, but one for
ln(yi) rather than yi directly. This is known as a log transformation, a useful
and popular trick. The interpretations of the coefficients change, though: a
unit increase in the exogenous variable causes us to expect a β1% change in yi.
There’s also the model:

yi = β0 + β1 ln(xi) + εi.

In this model a 1% change in the regressor leads to an expected increase of β1
of the response. There’s also the model:

ln(yi) = β0 + β1 ln(xi) + εi.

Here, a 1% increase in xi would cause us to expect a β1% increase in yi. These
interpretations matter, and are a part of model building.

In R, linear models are estimated using the function lm(). If x is the explanatory
variable and y the response variable and both are in a data set d, we estimate
the model using lm(y ~ x, data = d). Generally we save the results of the fit
for later use.

Let’s estimate a linear regression model for the sepal length of iris flowers using
the sepal width. We can do so with the following:
(fit <- lm(Sepal.Length ~ Sepal.Width, data = iris))

##
## Call:
## lm(formula = Sepal.Length ~ Sepal.Width, data = iris)
##
## Coefficients:
## (Intercept) Sepal.Width
## 6.5262 -0.2234
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We don’t need to explicitly tell R to include an intercept term; lm() automatically
includes one. In general you should include intercept terms in your regression
models even if the theoretical model you’re estimating does not have an intercept
term, since doing so helps ensure the residuals of the model have mean zero.
However, if you really want to exclude the intercept term (and thus be fitting
the model yi = βxi + εi), you can suppress intercept term estimation like so:
lm(Sepal.Length ~ Sepal.Width - 1, data = iris)

##
## Call:
## lm(formula = Sepal.Length ~ Sepal.Width - 1, data = iris)
##
## Coefficients:
## Sepal.Width
## 1.869

R will print out a basic summary of a lm() fit when the fit object (an object of
class lm) is printed. We can see more information using summary().
summary(fit)

##
## Call:
## lm(formula = Sepal.Length ~ Sepal.Width, data = iris)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.5561 -0.6333 -0.1120 0.5579 2.2226
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.5262 0.4789 13.63 <2e-16 ***
## Sepal.Width -0.2234 0.1551 -1.44 0.152
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8251 on 148 degrees of freedom
## Multiple R-squared: 0.01382, Adjusted R-squared: 0.007159
## F-statistic: 2.074 on 1 and 148 DF, p-value: 0.1519

We will discuss later the meaning of this information. That said, while this
information is nice, it’s not. . . pretty. There is a package called stargazer,
though, that is meant for making nice presentations of regression results.
library(stargazer)

##
## Please cite as:
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## Hlavac, Marek (2018). stargazer: Well-Formatted Regression and Summary Statistics Tables.

## R package version 5.2.2. https://CRAN.R-project.org/package=stargazer
stargazer(fit, type = "text")

##
## ===============================================
## Dependent variable:
## ---------------------------
## Sepal.Length
## -----------------------------------------------
## Sepal.Width -0.223
## (0.155)
##
## Constant 6.526***
## (0.479)
##
## -----------------------------------------------
## Observations 150
## R2 0.014
## Adjusted R2 0.007
## Residual Std. Error 0.825 (df = 148)
## F Statistic 2.074 (df = 1; 148)
## ===============================================
## Note: *p<0.1; **p<0.05; ***p<0.01

Actually, stargazer() can print out these regression tables in other formats,
particularly LaTeX and HTML. This makes inserting these tables into other
documents (specifically, papers) easier. (If you want to put your table into
a word processor such as Microsoft Word, try HTML format, and save in an
HTML document; the text processor may be able to convert the HTML table
into something it understands. Or you could just man up and learn LaTeX; it
looks better anyway.)
stargazer(fit) # Default is LaTeX

##
## % Table created by stargazer v.5.2.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu
## % Date and time: Fri, Feb 14, 2020 - 05:42:03 PM
## \begin{table}[!htbp] \centering
## \caption{}
## \label{}
## \begin{tabular}{@{\extracolsep{5pt}}lc}
## \\[-1.8ex]\hline
## \hline \\[-1.8ex]
## & \multicolumn{1}{c}{\textit{Dependent variable:}} \\
## \cline{2-2}
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## \\[-1.8ex] & Sepal.Length \\
## \hline \\[-1.8ex]
## Sepal.Width & $-$0.223 \\
## & (0.155) \\
## & \\
## Constant & 6.526$^{***}$ \\
## & (0.479) \\
## & \\
## \hline \\[-1.8ex]
## Observations & 150 \\
## R$^{2}$ & 0.014 \\
## Adjusted R$^{2}$ & 0.007 \\
## Residual Std. Error & 0.825 (df = 148) \\
## F Statistic & 2.074 (df = 1; 148) \\
## \hline
## \hline \\[-1.8ex]
## \textit{Note:} & \multicolumn{1}{r}{$^{*}$p$<$0.1; $^{**}$p$<$0.05; $^{***}$p$<$0.01} \\
## \end{tabular}
## \end{table}
stargazer(fit, type = "html")

##
## <table style="text-align:center"><tr><td colspan="2" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left"></td><td><em>Dependent variable:</em></td></tr>
## <tr><td></td><td colspan="1" style="border-bottom: 1px solid black"></td></tr>
## <tr><td style="text-align:left"></td><td>Sepal.Length</td></tr>
## <tr><td colspan="2" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left">Sepal.Width</td><td>-0.223</td></tr>
## <tr><td style="text-align:left"></td><td>(0.155)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td style="text-align:left">Constant</td><td>6.526<sup>***</sup></td></tr>
## <tr><td style="text-align:left"></td><td>(0.479)</td></tr>
## <tr><td style="text-align:left"></td><td></td></tr>
## <tr><td colspan="2" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left">Observations</td><td>150</td></tr>
## <tr><td style="text-align:left">R<sup>2</sup></td><td>0.014</td></tr>
## <tr><td style="text-align:left">Adjusted R<sup>2</sup></td><td>0.007</td></tr>
## <tr><td style="text-align:left">Residual Std. Error</td><td>0.825 (df = 148)</td></tr>
## <tr><td style="text-align:left">F Statistic</td><td>2.074 (df = 1; 148)</td></tr>
## <tr><td colspan="2" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left"><em>Note:</em></td><td style="text-align:right"><sup>*</sup>p<0.1; <sup>**</sup>p<0.05; <sup>***</sup>p<0.01</td></tr>
## </table>

There’s a lot of stargazer() parameters you can modify to get just the right
table you want, and I invite you to read the function’s documentation for yourself
if you’re planning on publishing your regression models; for now it makes no
sense to discuss this when we’re not even sure what we’re modifying!

That said, we may want specific information from our model. lm() returns a
list with the class lm, and we can examine this list to see what information is
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already available to us:
str(fit)

## List of 12
## $ coefficients : Named num [1:2] 6.526 -0.223
## ..- attr(*, "names")= chr [1:2] "(Intercept)" "Sepal.Width"
## $ residuals : Named num [1:150] -0.644 -0.956 -1.111 -1.234 -0.722 ...
## ..- attr(*, "names")= chr [1:150] "1" "2" "3" "4" ...
## $ effects : Named num [1:150] -71.566 -1.188 -1.081 -1.187 -0.759 ...
## ..- attr(*, "names")= chr [1:150] "(Intercept)" "Sepal.Width" "" "" ...
## $ rank : int 2
## $ fitted.values: Named num [1:150] 5.74 5.86 5.81 5.83 5.72 ...
## ..- attr(*, "names")= chr [1:150] "1" "2" "3" "4" ...
## $ assign : int [1:2] 0 1
## $ qr :List of 5
## ..$ qr : num [1:150, 1:2] -12.2474 0.0816 0.0816 0.0816 0.0816 ...
## .. ..- attr(*, "dimnames")=List of 2
## .. .. ..$ : chr [1:150] "1" "2" "3" "4" ...
## .. .. ..$ : chr [1:2] "(Intercept)" "Sepal.Width"
## .. ..- attr(*, "assign")= int [1:2] 0 1
## ..$ qraux: num [1:2] 1.08 1.02
## ..$ pivot: int [1:2] 1 2
## ..$ tol : num 1e-07
## ..$ rank : int 2
## ..- attr(*, "class")= chr "qr"
## $ df.residual : int 148
## $ xlevels : Named list()
## $ call : language lm(formula = Sepal.Length ~ Sepal.Width, data = iris)
## $ terms :Classes 'terms', 'formula' language Sepal.Length ~ Sepal.Width
## .. ..- attr(*, "variables")= language list(Sepal.Length, Sepal.Width)
## .. ..- attr(*, "factors")= int [1:2, 1] 0 1
## .. .. ..- attr(*, "dimnames")=List of 2
## .. .. .. ..$ : chr [1:2] "Sepal.Length" "Sepal.Width"
## .. .. .. ..$ : chr "Sepal.Width"
## .. ..- attr(*, "term.labels")= chr "Sepal.Width"
## .. ..- attr(*, "order")= int 1
## .. ..- attr(*, "intercept")= int 1
## .. ..- attr(*, "response")= int 1
## .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv>
## .. ..- attr(*, "predvars")= language list(Sepal.Length, Sepal.Width)
## .. ..- attr(*, "dataClasses")= Named chr [1:2] "numeric" "numeric"
## .. .. ..- attr(*, "names")= chr [1:2] "Sepal.Length" "Sepal.Width"
## $ model :'data.frame': 150 obs. of 2 variables:
## ..$ Sepal.Length: num [1:150] 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
## ..$ Sepal.Width : num [1:150] 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
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## ..- attr(*, "terms")=Classes 'terms', 'formula' language Sepal.Length ~ Sepal.Width
## .. .. ..- attr(*, "variables")= language list(Sepal.Length, Sepal.Width)
## .. .. ..- attr(*, "factors")= int [1:2, 1] 0 1
## .. .. .. ..- attr(*, "dimnames")=List of 2
## .. .. .. .. ..$ : chr [1:2] "Sepal.Length" "Sepal.Width"
## .. .. .. .. ..$ : chr "Sepal.Width"
## .. .. ..- attr(*, "term.labels")= chr "Sepal.Width"
## .. .. ..- attr(*, "order")= int 1
## .. .. ..- attr(*, "intercept")= int 1
## .. .. ..- attr(*, "response")= int 1
## .. .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv>
## .. .. ..- attr(*, "predvars")= language list(Sepal.Length, Sepal.Width)
## .. .. ..- attr(*, "dataClasses")= Named chr [1:2] "numeric" "numeric"
## .. .. .. ..- attr(*, "names")= chr [1:2] "Sepal.Length" "Sepal.Width"
## - attr(*, "class")= chr "lm"

One thing we may want is the model’s coefficients: we can obtain them using
the coef() function (or use, say, fit$coefficients).
coef(fit)

## (Intercept) Sepal.Width
## 6.5262226 -0.2233611

We may also want the residuals of the model; we can get those using resid()
or fit$residuals.
resid(fit)

## 1 2 3 4 5 6
## -0.64445884 -0.95613937 -1.11146716 -1.23380326 -0.72212273 -0.25511441
## 7 8 9 10 11 12
## -1.16679494 -0.76679494 -1.47847547 -0.93380326 -0.29978662 -0.96679494
## 13 14 15 16 17 18
## -1.05613937 -1.55613937 0.16722169 0.15656612 -0.25511441 -0.64445884
## 19 20 21 22 23 24
## 0.02254948 -0.57745052 -0.36679494 -0.59978662 -1.12212273 -0.68913105
## 25 26 27 28 29 30
## -0.96679494 -0.85613937 -0.76679494 -0.54445884 -0.56679494 -1.11146716
## 31 32 33 34 35 36
## -1.03380326 -0.36679494 -0.41044220 -0.08810609 -0.93380326 -0.81146716
## 37 38 39 40 41 42
## -0.24445884 -0.82212273 -1.45613937 -0.66679494 -0.74445884 -1.51249211
## 43 44 45 46 47 48
## -1.41146716 -0.74445884 -0.57745052 -1.05613937 -0.57745052 -1.21146716
## 49 50 51 52 53 54
## -0.39978662 -0.78913105 1.18853284 0.58853284 1.06619674 -0.51249211
## 55 56 57 58 59 60
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## 0.59918842 -0.20081158 0.51086895 -1.09015600 0.72152453 -0.72314769
## 61 62 63 64 65 66
## -1.07950043 0.04386063 -0.03482822 0.22152453 -0.27847547 0.86619674
## 67 68 69 70 71 72
## -0.25613937 -0.12314769 0.16517178 -0.36781990 0.08853284 0.19918842
## 73 74 75 76 77 78
## 0.33218010 0.19918842 0.52152453 0.74386063 0.89918842 0.84386063
## 79 80 81 82 83 84
## 0.12152453 -0.24548379 -0.49015600 -0.49015600 -0.12314769 0.07685231
## 85 86 87 88 89 90
## -0.45613937 0.23320506 0.86619674 0.28750789 -0.25613937 -0.46781990
## 91 92 93 94 95 96
## -0.44548379 0.24386063 -0.14548379 -1.01249211 -0.32314769 -0.15613937
## 97 98 99 100 101 102
## -0.17847547 0.32152453 -0.86781990 -0.20081158 0.51086895 -0.12314769
## 103 104 105 106 107 108
## 1.24386063 0.42152453 0.64386063 1.74386063 -1.06781990 1.42152453
## 109 110 111 112 113 114
## 0.73218010 1.47787727 0.68853284 0.47685231 0.94386063 -0.26781990
## 115 116 117 118 119 120
## -0.10081158 0.58853284 0.64386063 2.02254948 1.75451621 -0.03482822
## 121 122 123 124 125 126
## 1.08853284 -0.30081158 1.79918842 0.37685231 0.91086895 1.38853284
## 127 128 129 130 131 132
## 0.29918842 0.24386063 0.49918842 1.34386063 1.49918842 2.22254948
## 133 134 135 136 137 138
## 0.49918842 0.39918842 0.15451621 1.84386063 0.53320506 0.56619674
## 139 140 141 142 143 144
## 0.14386063 1.06619674 0.86619674 1.06619674 -0.12314769 0.98853284
## 145 146 147 148 149 150
## 0.91086895 0.84386063 0.33218010 0.64386063 0.43320506 0.04386063

The advantage of using the functions rather than accessing the components
requested directly is that coef() and resid() are generic functions, and thus
work with objects that are not lm-class objects (such as glm-class objects or
objects provided in packages).

Seeing as we’re working in two dimensions, plotting simple linear regression lines
makes sense. The function abline() allows us to plot regression lines.
plot(Sepal.Length ~ Sepal.Width, data = iris, col = Species, pch = 20)
abline(fit)
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Do you notice something odd about this line? It’s a downward-sloping line,
but if we look at individual groups in the data, we see what appears to be a
positive relationship between sepal length and width. This is a phenomenon
known as Simpson’s paradox, where the trend line in subgroups differs with
the trend line across groups. In this case, setosa flower tend to have larger
sepal widths but lower length than the other flowers, yet there’s still a positive
relationship between the two. Perhaps instead we should disaggregate and look
at the regression line for only setosa flowers. Fortunately lm() provides an easy
interface for selecting a subset of a data set.
(fit <- lm(Sepal.Length ~ Sepal.Width, data = iris,

subset = Species == "setosa"))

##
## Call:
## lm(formula = Sepal.Length ~ Sepal.Width, data = iris, subset = Species ==
## "setosa")
##
## Coefficients:
## (Intercept) Sepal.Width
## 2.6390 0.6905
plot(Sepal.Length ~ Sepal.Width, data = iris, subset = Species == "setosa",

pch = 20)
abline(fit)
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That line makes much more sense.

What if we want to call a function on our variables or apply some transformation
to them? We can use function calls in formulas. For example, if we wanted to
attempt to fit a log model to our data, we could do so like so:
lm(log(Sepal.Length) ~ Sepal.Width, data = iris, subset = Species == "setosa")

##
## Call:
## lm(formula = log(Sepal.Length) ~ Sepal.Width, data = iris, subset = Species ==
## "setosa")
##
## Coefficients:
## (Intercept) Sepal.Width
## 1.1368 0.1375
lm(Sepal.Length ~ log(Sepal.Width), data = iris, subset = Species == "setosa")

##
## Call:
## lm(formula = Sepal.Length ~ log(Sepal.Width), data = iris, subset = Species ==
## "setosa")
##
## Coefficients:
## (Intercept) log(Sepal.Width)
## 2.202 2.287

However, for operations such as ˆ or * that have special meaning in formulas,
you should call such operations using I(), like so:
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lm(Sepal.Length ~ I(Sepal.Width ˆ 2), data = iris, subset = Species == "setosa")

##
## Call:
## lm(formula = Sepal.Length ~ I(Sepal.Width^2), data = iris, subset = Species ==
## "setosa")
##
## Coefficients:
## (Intercept) I(Sepal.Width^2)
## 3.8113 0.1005

A handy function is the scale() function which centers the data around its
mean and subtracts out the standard deviation.
# Showing what scale() does
with(iris, cbind(Sepal.Length, scale(Sepal.Width)))

## Sepal.Length
## [1,] 5.1 1.01560199
## [2,] 4.9 -0.13153881
## [3,] 4.7 0.32731751
## [4,] 4.6 0.09788935
## [5,] 5.0 1.24503015
## [6,] 5.4 1.93331463
## [7,] 4.6 0.78617383
## [8,] 5.0 0.78617383
## [9,] 4.4 -0.36096697
## [10,] 4.9 0.09788935
## [11,] 5.4 1.47445831
## [12,] 4.8 0.78617383
## [13,] 4.8 -0.13153881
## [14,] 4.3 -0.13153881
## [15,] 5.8 2.16274279
## [16,] 5.7 3.08045544
## [17,] 5.4 1.93331463
## [18,] 5.1 1.01560199
## [19,] 5.7 1.70388647
## [20,] 5.1 1.70388647
## [21,] 5.4 0.78617383
## [22,] 5.1 1.47445831
## [23,] 4.6 1.24503015
## [24,] 5.1 0.55674567
## [25,] 4.8 0.78617383
## [26,] 5.0 -0.13153881
## [27,] 5.0 0.78617383
## [28,] 5.2 1.01560199
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## [29,] 5.2 0.78617383
## [30,] 4.7 0.32731751
## [31,] 4.8 0.09788935
## [32,] 5.4 0.78617383
## [33,] 5.2 2.39217095
## [34,] 5.5 2.62159911
## [35,] 4.9 0.09788935
## [36,] 5.0 0.32731751
## [37,] 5.5 1.01560199
## [38,] 4.9 1.24503015
## [39,] 4.4 -0.13153881
## [40,] 5.1 0.78617383
## [41,] 5.0 1.01560199
## [42,] 4.5 -1.73753594
## [43,] 4.4 0.32731751
## [44,] 5.0 1.01560199
## [45,] 5.1 1.70388647
## [46,] 4.8 -0.13153881
## [47,] 5.1 1.70388647
## [48,] 4.6 0.32731751
## [49,] 5.3 1.47445831
## [50,] 5.0 0.55674567
## [51,] 7.0 0.32731751
## [52,] 6.4 0.32731751
## [53,] 6.9 0.09788935
## [54,] 5.5 -1.73753594
## [55,] 6.5 -0.59039513
## [56,] 5.7 -0.59039513
## [57,] 6.3 0.55674567
## [58,] 4.9 -1.50810778
## [59,] 6.6 -0.36096697
## [60,] 5.2 -0.81982329
## [61,] 5.0 -2.42582042
## [62,] 5.9 -0.13153881
## [63,] 6.0 -1.96696410
## [64,] 6.1 -0.36096697
## [65,] 5.6 -0.36096697
## [66,] 6.7 0.09788935
## [67,] 5.6 -0.13153881
## [68,] 5.8 -0.81982329
## [69,] 6.2 -1.96696410
## [70,] 5.6 -1.27867961
## [71,] 5.9 0.32731751
## [72,] 6.1 -0.59039513
## [73,] 6.3 -1.27867961
## [74,] 6.1 -0.59039513
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## [75,] 6.4 -0.36096697
## [76,] 6.6 -0.13153881
## [77,] 6.8 -0.59039513
## [78,] 6.7 -0.13153881
## [79,] 6.0 -0.36096697
## [80,] 5.7 -1.04925145
## [81,] 5.5 -1.50810778
## [82,] 5.5 -1.50810778
## [83,] 5.8 -0.81982329
## [84,] 6.0 -0.81982329
## [85,] 5.4 -0.13153881
## [86,] 6.0 0.78617383
## [87,] 6.7 0.09788935
## [88,] 6.3 -1.73753594
## [89,] 5.6 -0.13153881
## [90,] 5.5 -1.27867961
## [91,] 5.5 -1.04925145
## [92,] 6.1 -0.13153881
## [93,] 5.8 -1.04925145
## [94,] 5.0 -1.73753594
## [95,] 5.6 -0.81982329
## [96,] 5.7 -0.13153881
## [97,] 5.7 -0.36096697
## [98,] 6.2 -0.36096697
## [99,] 5.1 -1.27867961
## [100,] 5.7 -0.59039513
## [101,] 6.3 0.55674567
## [102,] 5.8 -0.81982329
## [103,] 7.1 -0.13153881
## [104,] 6.3 -0.36096697
## [105,] 6.5 -0.13153881
## [106,] 7.6 -0.13153881
## [107,] 4.9 -1.27867961
## [108,] 7.3 -0.36096697
## [109,] 6.7 -1.27867961
## [110,] 7.2 1.24503015
## [111,] 6.5 0.32731751
## [112,] 6.4 -0.81982329
## [113,] 6.8 -0.13153881
## [114,] 5.7 -1.27867961
## [115,] 5.8 -0.59039513
## [116,] 6.4 0.32731751
## [117,] 6.5 -0.13153881
## [118,] 7.7 1.70388647
## [119,] 7.7 -1.04925145
## [120,] 6.0 -1.96696410
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## [121,] 6.9 0.32731751
## [122,] 5.6 -0.59039513
## [123,] 7.7 -0.59039513
## [124,] 6.3 -0.81982329
## [125,] 6.7 0.55674567
## [126,] 7.2 0.32731751
## [127,] 6.2 -0.59039513
## [128,] 6.1 -0.13153881
## [129,] 6.4 -0.59039513
## [130,] 7.2 -0.13153881
## [131,] 7.4 -0.59039513
## [132,] 7.9 1.70388647
## [133,] 6.4 -0.59039513
## [134,] 6.3 -0.59039513
## [135,] 6.1 -1.04925145
## [136,] 7.7 -0.13153881
## [137,] 6.3 0.78617383
## [138,] 6.4 0.09788935
## [139,] 6.0 -0.13153881
## [140,] 6.9 0.09788935
## [141,] 6.7 0.09788935
## [142,] 6.9 0.09788935
## [143,] 5.8 -0.81982329
## [144,] 6.8 0.32731751
## [145,] 6.7 0.55674567
## [146,] 6.7 -0.13153881
## [147,] 6.3 -1.27867961
## [148,] 6.5 -0.13153881
## [149,] 6.2 0.78617383
## [150,] 5.9 -0.13153881
lm(scale(Sepal.Length) ~ scale(Sepal.Width), data = iris,

subset = Species == "setosa")

##
## Call:
## lm(formula = scale(Sepal.Length) ~ scale(Sepal.Width), data = iris,
## subset = Species == "setosa")
##
## Coefficients:
## (Intercept) scale(Sepal.Width)
## -1.3203 0.3635

Note that the interpretation of the coefficients when computed on scaled data
differs from the interpretation for unscaled data.

Above a line was plotted. This line represents the predicted sepal lengths given
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the sepal widths. It’s possible to get predicted values at specific points on the
line, for specific sepal widths. The function predict() (a generic function) gets
predicted values. To use it, one must give a data frame resembling the one from
which the model was estimated, except perhaps leaving out the variable we’re
attempting to predict.
predict(fit) # Returns predicted values at observed sepal widths

## 1 2 3 4 5 6 7 8
## 5.055715 4.710470 4.848568 4.779519 5.124764 5.331911 4.986666 4.986666
## 9 10 11 12 13 14 15 16
## 4.641421 4.779519 5.193813 4.986666 4.710470 4.710470 5.400960 5.677156
## 17 18 19 20 21 22 23 24
## 5.331911 5.055715 5.262862 5.262862 4.986666 5.193813 5.124764 4.917617
## 25 26 27 28 29 30 31 32
## 4.986666 4.710470 4.986666 5.055715 4.986666 4.848568 4.779519 4.986666
## 33 34 35 36 37 38 39 40
## 5.470009 5.539058 4.779519 4.848568 5.055715 5.124764 4.710470 4.986666
## 41 42 43 44 45 46 47 48
## 5.055715 4.227128 4.848568 5.055715 5.262862 4.710470 5.262862 4.848568
## 49 50
## 5.193813 4.917617
predict(fit, newdata = data.frame(Sepal.Width = c(2, 3, 4)))

## 1 2 3
## 4.019981 4.710470 5.400960

When making predictions, though, you should avoid extrapolation, which is
making predictions outside of the range of the data. Going slightly outside the
range of the data is fine, but well outside the range is a problem. We will talk
later about estimating prediction errors, but leaving the range of the data tends
to produce predictions with high error. More importantly, though, while a linear
model may be appropriate in a certain range of the data, the same linear model
may not be appropriate outside of the range; data might be locally linear rather
than globally linear. This means that outside of the range the model is likely to
be wrong, and a different model should be used. Since no data was observed in
that range, though, determining and estimating that model is hard.
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Simple Linear Regression Inference and Diagnos-
tics
Linear regression itself does not require statistics to be done and one needs few
assumptions for the ability to estimate a regression model. Statistics steps in
when one wants to study the properties of a regression model. Using statistics,
we can make statements about what the value of the population parameters
are, decide between competing models, express uncertainty in mean values and
predictions, and more. We will see techniques as well for assessing the quality of
a model.

For reference, here’s the regression model we are considering:

yi = β0 + β1x1i + · · ·+ βkxki + εi.

Residual Properties
Linear models fitted via lm() can be plotted using plot(). The result is a
sequence of four plots useful for assessing the quality of a linear model fit. This
is in addition to a basic plot visualizing the linear model with the data.
(fit <- lm(Sepal.Length ~ Sepal.Width, data = iris,

subset = Species == "setosa"))

##
## Call:
## lm(formula = Sepal.Length ~ Sepal.Width, data = iris, subset = Species ==
## "setosa")
##
## Coefficients:
## (Intercept) Sepal.Width
## 2.6390 0.6905
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old_par <- par()
par(mfrow = c(2, 2))
plot(fit)
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par(old_par)

## Warning in par(old_par): graphical parameter "cin" cannot be set

## Warning in par(old_par): graphical parameter "cra" cannot be set

## Warning in par(old_par): graphical parameter "csi" cannot be set

## Warning in par(old_par): graphical parameter "cxy" cannot be set

## Warning in par(old_par): graphical parameter "din" cannot be set

## Warning in par(old_par): graphical parameter "page" cannot be set

The meaning of these plots, from left to right and top to bottom:

1. We plot the estimated residuals of the model against the predicted value
of the observations in the data set, according to the model. What we want
to see is a “cloudy” shape, with no particularly strong patterns. Patterns
could indicate an inappropriate model form; a simple linear model may
not be appropriate and perhaps a different functional form is needed. We
would also want to see constant “spread” in the data. If it seems that
data is more spread out for some predicted values than others, this could
indicate a phenomenon known as heteroskedasticity in the data (where
the variance of the residuals depend on the data). We want the red line to
be roughly straight. My own opinion is that for the plot above, the line is
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straight enough and there’s no strong evidence of heteroskedasticity (that
is, the data is homoskedastic).

2. We create a Q-Q plot for the residuals of the data to see if they appear
to be Normally distributed. Statistical procedures often assume Normally
distributed residuals. We may be able to proceed without Normally
distributed residuals, but some common procedures (such as prediction
intervals) may fail.

3. This is a scale-location plot, which compares predicted values to the square
root of the absolute value of the residuals. This plot is useful for identifying
heteroskedasticity in the model. We want a “cloudy” shape with a roughly
straight and flat red line. That appears to be the case here.

4. Least-squares regression ties intimately to the concept of mean and standard
deviation, and as you should know from previous studies, means and
standard deviations are affected by strong outliers. The notion of “outlier”
is murkier in the regression context, yet still we care about “influential
points”. The final plot compares the residuals to their leverage. In short,
what we are looking for are points that fall outside a quantity known as
Cook’s distance, which manifests as a point in one of the corners on the
right-hand side of the plot outside of the Cook’s distance bands. Such
points seem to have a strong influence on the resulting regression line and
removing them could result in a regression line quite different from before.
In this case, while one observation gets close to the Cook’s distance band,
it doesn’t cross, and thus it doesn’t appear that there are strong outliers
“biasing” our regression estimates.

(The above plots actually work with standardized residuals, or the residuals
scaled to have variance 1.)

Compare the above model to a model estimated for home runs against at bats
in the batting (UsingR) data set.
library(UsingR)

## Loading required package: HistData

## Loading required package: Hmisc

## Loading required package: lattice

## Loading required package: survival

## Loading required package: Formula

## Loading required package: ggplot2

##
## Attaching package: 'Hmisc'

## The following objects are masked from 'package:base':
##
## format.pval, units
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##
## Attaching package: 'UsingR'

## The following object is masked from 'package:survival':
##
## cancer
(fit2 <- lm(HR ~ AB, data = batting))

##
## Call:
## lm(formula = HR ~ AB, data = batting)
##
## Coefficients:
## (Intercept) AB
## -2.94675 0.04067
old_par <- par()
par(mfrow = c(2, 2))
plot(fit2)
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par(old_par)

## Warning in par(old_par): graphical parameter "cin" cannot be set

## Warning in par(old_par): graphical parameter "cra" cannot be set

## Warning in par(old_par): graphical parameter "csi" cannot be set

## Warning in par(old_par): graphical parameter "cxy" cannot be set
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## Warning in par(old_par): graphical parameter "din" cannot be set

## Warning in par(old_par): graphical parameter "page" cannot be set

Model Inference
Given an lm() fit called fit, we can see tables containing statistical results for
our models using stargazer(fit) or summary(fit).
(inf <- summary(fit)) # Saving summary results; could be useful

##
## Call:
## lm(formula = Sepal.Length ~ Sepal.Width, data = iris, subset = Species ==
## "setosa")
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.52476 -0.16286 0.02166 0.13833 0.44428
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.6390 0.3100 8.513 3.74e-11 ***
## Sepal.Width 0.6905 0.0899 7.681 6.71e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2385 on 48 degrees of freedom
## Multiple R-squared: 0.5514, Adjusted R-squared: 0.542
## F-statistic: 58.99 on 1 and 48 DF, p-value: 6.71e-10
str(inf)

## List of 11
## $ call : language lm(formula = Sepal.Length ~ Sepal.Width, data = iris, subset = Species == "setosa")
## $ terms :Classes 'terms', 'formula' language Sepal.Length ~ Sepal.Width
## .. ..- attr(*, "variables")= language list(Sepal.Length, Sepal.Width)
## .. ..- attr(*, "factors")= int [1:2, 1] 0 1
## .. .. ..- attr(*, "dimnames")=List of 2
## .. .. .. ..$ : chr [1:2] "Sepal.Length" "Sepal.Width"
## .. .. .. ..$ : chr "Sepal.Width"
## .. ..- attr(*, "term.labels")= chr "Sepal.Width"
## .. ..- attr(*, "order")= int 1
## .. ..- attr(*, "intercept")= int 1
## .. ..- attr(*, "response")= int 1
## .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv>
## .. ..- attr(*, "predvars")= language list(Sepal.Length, Sepal.Width)
## .. ..- attr(*, "dataClasses")= Named chr [1:2] "numeric" "numeric"
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## .. .. ..- attr(*, "names")= chr [1:2] "Sepal.Length" "Sepal.Width"
## $ residuals : Named num [1:50] 0.0443 0.1895 -0.1486 -0.1795 -0.1248 ...
## ..- attr(*, "names")= chr [1:50] "1" "2" "3" "4" ...
## $ coefficients : num [1:2, 1:4] 2.639 0.6905 0.31 0.0899 8.5125 ...
## ..- attr(*, "dimnames")=List of 2
## .. ..$ : chr [1:2] "(Intercept)" "Sepal.Width"
## .. ..$ : chr [1:4] "Estimate" "Std. Error" "t value" "Pr(>|t|)"
## $ aliased : Named logi [1:2] FALSE FALSE
## ..- attr(*, "names")= chr [1:2] "(Intercept)" "Sepal.Width"
## $ sigma : num 0.239
## $ df : int [1:3] 2 48 2
## $ r.squared : num 0.551
## $ adj.r.squared: num 0.542
## $ fstatistic : Named num [1:3] 59 1 48
## ..- attr(*, "names")= chr [1:3] "value" "numdf" "dendf"
## $ cov.unscaled : num [1:2, 1:2] 1.689 -0.487 -0.487 0.142
## ..- attr(*, "dimnames")=List of 2
## .. ..$ : chr [1:2] "(Intercept)" "Sepal.Width"
## .. ..$ : chr [1:2] "(Intercept)" "Sepal.Width"
## - attr(*, "class")= chr "summary.lm"
library(stargazer)
stargazer(fit, type = "text")

##
## ===============================================
## Dependent variable:
## ---------------------------
## Sepal.Length
## -----------------------------------------------
## Sepal.Width 0.690***
## (0.090)
##
## Constant 2.639***
## (0.310)
##
## -----------------------------------------------
## Observations 50
## R2 0.551
## Adjusted R2 0.542
## Residual Std. Error 0.239 (df = 48)
## F Statistic 58.994*** (df = 1; 48)
## ===============================================
## Note: *p<0.1; **p<0.05; ***p<0.01

Let’s explain these tables.
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Coefficient Standard Errors

The estimated regression coefficients are statistics estimated from a sample, so
like other statistics you’ve seen (sample mean or sample proportion), they have
a standard error. The estimated standard error is given below:
vcov(fit)

## (Intercept) Sepal.Width
## (Intercept) 0.09610887 -0.027704441
## Sepal.Width -0.02770444 0.008081809

Actually I lied. When discussing regression models the notion of “standard error”
still exists but needs to change. See, we’re not estimating just one statistic, but
two: a slope and an intercept term. As a result, we need to account not just for
how the two statistics themselves vary but also how the statistics vary jointly.
That is, we need to account for correlation in the sample estimates.

The above matrix produced by the function vcov() is a covariance matrix,
where the entries on the diagonal of the matrix are variances of random variables
and the off-diagonal entries are the covariances between respective random
variables. (Since the covariance is a symmetric function, all covariance matrices
are symmetric. Additionally, since variances are non-negative, the diagonal
of a covariance matrix is non-negative. In fact there are many properties of
covariance matrices that are ultimately linear algebra discussions we won’t have
here.) in this case, the diagonal of the matrix produced by vcov() contains
squared standard errors of the coefficients while the off-diagonal entries are the
covariances between those parameter estimates. If we want correlations we can
call cov2cor() on the covariance matrix.
cov2cor(vcov(fit))

## (Intercept) Sepal.Width
## (Intercept) 1.0000000 -0.9940617
## Sepal.Width -0.9940617 1.0000000

For this correlation matrix, the diagonal entries are all 1 since random variables
are perfectly correlated with themselves. The interesting part is the off-diagonal
entries; here we see extremely strong negative correlations. Our interpretation
of this is that the intercept and the slope term of the regression line vary in
opposite directions; if the slope term is too small, the intercept term probably is
too large.

That said, if we want the standard errors of the coefficients without considering
their covariation, we can extract the diagonal of the covariance matrix using the
function diag() (which is also the function used for creating diagonal matrices
from vectors in R). Then we can take the square root of the result to get the
standard errors of the coefficients.
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coef_stderr <- function(...) {
sqrt(diag(vcov(...)))

}

coef_stderr(fit)

## (Intercept) Sepal.Width
## 0.31001431 0.08989888

Compare the above to the output of summary(fit).

t-Tests

Consider the following matrix:
inf$coefficients

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.6390012 0.31001431 8.512514 3.742438e-11
## Sepal.Width 0.6904897 0.08989888 7.680738 6.709843e-10

Notice the last two columns. We can perform hypothesis testing to determine
the value of the population coefficients corresponding with our estimates. That
is, we can decide between:

H0 : βj = βj0

and

HA :


βj < βj0

βj 6= βj0

βj > βj0

Assume that the standard errors εi in the regression model are i.i.d. and Normally
distributed with mean zero. Then we can decide between H0 and HA by using
the t-statistic:

t = β̂j − βk0

SE(β̂j)

where SE(β̂j) is the standard error of the statistic β̂j . Under the null hypothesis,
the t-statistic follows a t(n − k − 1) distribution; notice that the degrees of
freedom of the statistic is n−k−1, not n−1. Generally in statistics, the degrees
of freedom are n minus the number of parameters being estimated. In the simple
mean testing context, one parameter was estimated: the mean, µ. In fact, we
can view hypothesis testing in that context as inference for the mean model:
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yi = µ+ εi.

In linear regression, there are k + 1 parameters being estimated: the k slope
terms plus the intercept term. (If suppressing the constant, there would be k
parameters estimated, so the degrees of freedom would be n− k.)

Otherwise hypothesis tests regarding the value of regression coefficients are
exactly like the t-tests you’ve seen before. summary.lm() reports the results for
hypothesis tests checking whether the coefficients are zero or not. (That is, the
tests are two-sided and βj0 = 0.) This is the default hypothesis test in linear
regression models since it translates to whether an explanatory variables has a
linear effect on a response variable or not. If not, it may be inappropriate to
include the variable in the model.

The regression table returned by stargazer() more closely resembles regression
tables commonly seen in papers and books, with standard errors reported below
coefficient estimates and stars appearing beside the coefficients. More stars
appear for increasingly small p-values, and the cutoffs for the number of stars
shown should be listed nearby. (Notice that summary.lm() also uses stars but
at a different scale than that given by stargazer().)

Of course, we can do our own hypothesis tests for what values the coefficients
should be. First let’s compute t-statistics:
coef_tstat <- function(fit, beta0 = 0) {
se <- coef_stderr(fit)
beta <- coef(fit)
(beta - beta0) / se

}

coef_tstat(fit)

## (Intercept) Sepal.Width
## 8.512514 7.680738
coef_tstat(fit, beta0 = c(2, 1))

## (Intercept) Sepal.Width
## 2.061199 -3.442871

Then compute degrees of freedom.
deg_free <- function(fit) {
n <- length(resid(fit))
k <- length(coef(fit))
n - k

}

deg_free(fit)
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## [1] 48

Then we can test a one-side alternative hypothesis (in thise case, HA : β0 > 2)
like so:
pt(coef_tstat(fit, beta0 = 2)[1], df = deg_free(fit), lower.tail = FALSE)

## (Intercept)
## 0.02236164

Confidence Intervals

In mean models we compute confidence intervals for the mean. Naturally we
would like to compute confidence intervals for the population model coefficients
as well. However, since we’re estimating multiple parameters, the conversation
isn’t quite the same.

On the one hand we can consider an interval for each βj without concerning
ourselves with the values of the other coefficients. If we wanted a confidence
interval for just βj , we could compute one using

β̂j ± t∗SE(β̂j)

with t∗ be the corresponding critical value from a t distribution with n− k − 1
degrees of freedom.

The code below obtains confidence intervals for each of the parameters in the
model in this way.
coef_conf_int <- function(fit, conf.level = 0.95) {
beta <- coef(fit)
se <- coef_stderr(fit)
nu <- deg_free(fit)
tstar <- qt((1 - conf.level) / 2, df = nu, lower.tail = FALSE)
moe <- se * tstar
cbind(lower = beta - moe, upper = beta + moe)

}

coef_conf_int(fit)

## lower upper
## (Intercept) 2.0156757 3.2623268
## Sepal.Width 0.5097359 0.8712435

However, these are marginal confidence intervals that are valid when considering
the model parameters separately. The join confidence interval (where we hope
that both β0 and β1 fall into the region) is quite different. For starters, a
confidence “interval” doesn’t make sense when talking about something that is
essentially two-dimensional: the vector (β0, β1)>. Instead we need to talk about
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a confidence region, a set (this time in a two-dimensional plane) that hopefully
contains the values of the population parameters. (In general, these sets are
subsets of k+ 1 dimensional space; remember that k is the number of parameters
in the model excluding the intercept and residual standard deviation.) If we
were to use just the marginal confidence intervals found above, the resulting
region would be a square/cube/hypercube, but the probability the resulting
region would capture the parameter values would not be the confidence level.
Thus such a region is inappropriate.

Statisticians often consider a confidence ellipse (in high dimensions this would
be a hyperellipse, but we’ll still call it an ellipse). A confidence ellipse accounts
for the correlation in the sample estimates, and any point in the ellipse represents
a plausible combination of values for the true parameter coefficients.

The ellipse package allows for visualizing confidence ellipses. Below I show how
it can be used for visualizing a confidence ellipse.
library(ellipse)

##
## Attaching package: 'ellipse'

## The following object is masked from 'package:graphics':
##
## pairs
plot_conf_ellipse <- function(..., col = 1, add = FALSE) {
if (add) {
pfunc = lines

} else {
pfunc = plot

}
pfunc(ellipse(...), type = "l", col = col)

}

plot_conf_ellipse(fit)
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plot_conf_ellipse(fit, level = 0.99)
plot_conf_ellipse(fit, level = 0.95, add = TRUE, col = 2)
plot_conf_ellipse(fit, level = 0.90, add = TRUE, col = 3)
points(coef(fit)[1], coef(fit)[2], pch = 20)
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Our takeaway from the above plots is that the coefficient estimates for the
intercept and slope terms are highly correlated, and if the slope is too small, the
intercept is likely to be too large.
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R2

The R2 value, also known as the coefficient of determination, is a measure
of how well the regression line fits the data. If SSE =

∑n
i=1(yi − ȳ)2 and

SSR =
∑n
i=1(ŷi − ȳ)2, then

R2 = 1− SSR

SSE
.

The R2 value can be interpreted as the percentage of variation in the response
variable that can be explained by variation in the explanatory variable. In fact,
it turns out that in this simple linear regression context, R2 = r2, where r is the
correlation coefficient. In this way one can generalize the notion of correlation
to more than one variable (the other way is the covariance matrix).

We can extract R2 from the summary of a linear model like so:
inf$r.squared

## [1] 0.5513756

Despite the interpretation presented above, don’t get too excited about inter-
preting R2. Just because R2 is high doesn’t mean there is a causal relationship
between the variables; it just means there’s an association between them.

Adjusted R2 is interpreted like R2 but accounts for the number of parameters in
the model. It turns out that R2 cannot decrease as one adds more variables, so
one could increase R2 by adding irrelevant variables to the model. (The resulting
model would be considered overfitted, where errors in the estimated model are
small but the model behaves poorly out of sample.) Adjusted R2 is a penalized
version of R2 and equals R̄2 = 1− (1−R2) n−1

n−k−1 .

We can extract adjusted R2 using:
inf$adj.r.squared

## [1] 0.5420292

In the case of simple linear regression the distinction between the two metrics
matters little, but for more complex models we almost always consider adjusted
R2 rather than R2.

F -Test

The F test can be used to determine if additional coefficients in a regression
model in some sense “add value” to the model; more specifically, it checks if all
additional coefficients are zero or not. Here we would be using the F -test to
decide if the simple linear regression model is better than the mean model.

The F statistic is used for inference and can be extracted from the summary of
a linear model like so:
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inf$fstatistic

## value numdf dendf
## 58.99373 1.00000 48.00000

Inference with the F statistic is done using the f distribution, which depends on
two parameters: the numerator degrees of freedom and the denominator degrees
of freedom. If X is an f -distributed random variable, we say X ∼ f(νnum, νden),
where νnum and νden are the numerator and denominator degrees of freedom,
respectively. In this case, if we denote the observed f statistic with f̂ , the p-value
is computed via P (X > f̂).

Here is a visualization of the F distribution.
curve(df(x, df1 = 1, df2 = 48), from = 0, to = 6)
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curve(df(x, df1 = 3, df2 = 48), from = 0, to = 6)
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Below is a function that computes the p-value for the F test:
ftest_pval <- function(fit) {
f <- summary(fit)$fstatistic
pf(f[["value"]], df1 = f[["numdf"]], df2 = f[["dendf"]], lower.tail = FALSE)

}

ftest_pval(fit)

## [1] 6.709843e-10

The p-value for this model is very small, suggesting that the explanatory variable
belongs in our linear model for the response variable. (Well, whether it “belongs”
is a strong statement; there could be a better model not including this variable.)
For now the F -test doesn’t seem to offer any advantage over tests for just the
regression coefficients, but one should note that the two are not the same and
one is not a substitute for the other. Particularly, for models with multiple
explanatory variables, just because none of the explanatory variables’ regression
coefficients are statistically different from zero doesn’t mean that the mean
model is better than the regression model. On the flip side, a single statistically
significant coefficient in a large linear model could be a false positive; the result
of the F test would warn of this possibility. The F test again represents an
overall test for statistical significance while the t-tests would be individual tests
helping decide which coefficients are not zero.

The f -test can also be used to decide between a regression model and another
model with more explanatory variables. We will revisit such a test later.
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Point-Wise Inference

Our inference procedures so far have focused on the properties of the model, but
we can also have discussions about the value of the model at particular points, for
select values of the explanatory variables. If Y represents the response variable
understood as a random variable, we are studying the behavior of Y | |X = x,
where X is the explanatory variable viewed as a random variable. We would
like to address two particular questions:

• What is the expected value of Y given X = x? That is, what is the
conditional mean of Y when X = x? We will answer this with a point-wise
confidence interval.

• If we know X = x, what are plausible values of Y ? That is, we would
like to predict the value of Y given X = x; this is a point-wise prediction
interval.

Again we will assume that the residuals are Normally distributed. If the sample
size is large this won’t matter for point-wise confidence intervals, but this
assumption matters for prediction intervals at any sample size.

The function predict() when called on an lm-class object gives estimated
conditional means for regression models, but it also does more. It can also give
confidence and prediction intervals. Let’s write a function returning a closure
giving an easy interface to predict() for a given data set.
predict_func <- function(fit) {
response <- names(fit$model)[[1]]
explanatory <- names(fit$model)[[2]]
function(x, ...) {
dat <- data.frame(x)
names(dat) <- explanatory
predict(fit, dat, ...)

}
}

Let’s demonstrate the closure on the iris model.
sepal_line <- predict_func(fit)
sepal_line(2:4)

## 1 2 3
## 4.019981 4.710470 5.400960
with(iris, {
curve(sepal_line, from = min(Sepal.Width), to = max(Sepal.Width))

})
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Now note that the arguments being passed to sepal_line() other than the
first argument x are actually arguments for predict(). We just made a nicer
interface for predict(). Anyway, predict() is able to compute both point-
wise confidence and prediction intervals. We do so by setting the interval
argument to either "confidence" or "prediction", depending on our desires.
By default these are 95% intervals, but we can change the level by setting the
level argument.
sepal_line(2:4, interval = "confidence", level = 0.99) # Point-wise CIs

## fit lwr upr
## 1 4.019981 3.663961 4.376001
## 2 4.710470 4.573218 4.847722
## 3 5.400960 5.236004 5.565916
sepal_line(2:4, interval = "prediction", level = 0.99) # Point-wise PIs

## fit lwr upr
## 1 4.019981 3.287780 4.752182
## 2 4.710470 4.056096 5.364845
## 3 5.400960 4.740219 6.061701

Note that what’s returned is a matrix with three columns; the first is a column
with the value of the regression line at that point, the second column the lower
bound of the interval, the third the upper bound.

We would like to visualize these intervals. The function below will plot these
intervals along with the original data.
plot_fit <- function(fit, interval = "confidence", level = 0.95, len = 1000,

...) {
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fit_func <- predict_func(fit)
x_range <- c(min(fit$model[[2]]), max(fit$model[[2]]))
x_vals <- seq(from = x_range[[1]] * 0.9, to = x_range[[2]] * 1.1,

length = len)
interval_mat <- fit_func(x_vals, interval = interval, level = level)
y_range <- c(min(c(interval_mat[, 2], fit$model[[1]])),

max(c(interval_mat[, 3], fit$model[[1]])))
plot(fit$model[2:1], xlim = x_range, ylim = y_range, ...)
abline(fit)
lines(x_vals, interval_mat[, 2], col = "red")
lines(x_vals, interval_mat[, 3], col = "red")

}

plot_fit(fit, main = "Conditional CIs", pch = 20)
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plot_fit(fit, main = "Conditional PIs", pch = 20, interval = "prediction")
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Notice two things: one, the intervals are curved. The uncertainty of our estimates
increases as we approach the ends of the range of the explanatory variable. Two,
prediction intervals are wider than confidence intervals. Due to the nature of
what the two intervals try to describe, this should not be surprising.

When using these intervals, one should avoid extrapolation: using the intervals
to reach conclusions about the properties of the response interval well outside of
the observed range of the explanatory variable. Extrapolation is problematic for
two reasons: the standard errors of the statistics increase outside of this range,
perhaps becoming quite large; and the likelihood a linear model is appropriate
outside of this range becomes more uncertain. Regarding the latter point, it’s
possible that within some range of the explanatory variable the relationship
between the explanatory and response variables is roughly linear, while outside
this interval other forces, such as physical limitations, renders a linear model
inappropriate even as an approximation for the truth. While one may wander
slightly outside of the range of the explanatory variable, they should not wander
far, and with great caution.
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Lecture 10

Multiple Linear Regression
My presentation up to now has been focused on the simple linear model but has
suggested the possibility of multiple explanatory variables. In fact regression with
multiple variables is technically not much different from simple linear regression.
Much of what we’ve said transfers over, though the issues of model selection
become more interesting.

Estimation
Estimating a model with multiple explanatory variables is easy; just add those
variables into the model.

Let’s for example study the data set mtcars and examine the influence of
variables on the miles per gallon of a vehicle.
head(mtcars)

## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
## Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
## Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1
fit <- lm(mpg ~ disp + hp, data = mtcars)
summary(fit)

##
## Call:
## lm(formula = mpg ~ disp + hp, data = mtcars)
##
## Residuals:
## Min 1Q Median 3Q Max

193
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## -4.7945 -2.3036 -0.8246 1.8582 6.9363
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 30.735904 1.331566 23.083 < 2e-16 ***
## disp -0.030346 0.007405 -4.098 0.000306 ***
## hp -0.024840 0.013385 -1.856 0.073679 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.127 on 29 degrees of freedom
## Multiple R-squared: 0.7482, Adjusted R-squared: 0.7309
## F-statistic: 43.09 on 2 and 29 DF, p-value: 2.062e-09
library(stargazer)
stargazer(fit, type = "text")

##
## ===============================================
## Dependent variable:
## ---------------------------
## mpg
## -----------------------------------------------
## disp -0.030***
## (0.007)
##
## hp -0.025*
## (0.013)
##
## Constant 30.736***
## (1.332)
##
## -----------------------------------------------
## Observations 32
## R2 0.748
## Adjusted R2 0.731
## Residual Std. Error 3.127 (df = 29)
## F Statistic 43.095*** (df = 2; 29)
## ===============================================
## Note: *p<0.1; **p<0.05; ***p<0.01

In statistics, a variable that takes the values of either 0 or 1 depending on
whether a condition is true or not is called a dummy variable or indicator
variable. In the mtcars data set, the variables vs and am are indicator variables
tracking the shape of the engine of a car and whether a car has an automatic
transmission, respectively. These variables are already conveniently encoded as
0/1 variables.
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fit2 <- lm(mpg ~ disp + hp + am, data = mtcars)
stargazer(fit2, type = "text")

##
## ===============================================
## Dependent variable:
## ---------------------------
## mpg
## -----------------------------------------------
## disp -0.014
## (0.009)
##
## hp -0.041***
## (0.014)
##
## am 3.796**
## (1.424)
##
## Constant 27.866***
## (1.620)
##
## -----------------------------------------------
## Observations 32
## R2 0.799
## Adjusted R2 0.778
## Residual Std. Error 2.842 (df = 28)
## F Statistic 37.149*** (df = 3; 28)
## ===============================================
## Note: *p<0.1; **p<0.05; ***p<0.01

Oh, look at that! Our original model saved in fit had a statistically significant
coefficient for disp but that’s not the case for fit2. We will need to look
into this. It’s possible that the reason why this occured is because the original
model suffered from omitted variable bias (OMB), where two potential
regressors were correlated with each other but only one of them had a meaningful
effect on the response variable. But perhaps the issue instead is that the new
model suffers from multicollinearity, which means that there is a strong linear
relationship between two variables; in the case of perfect multicollinearity,
where one regressor is exactly a linear combination of the other variables (that
is, we could say that some variables z1, . . . , zp satisfy z1 = b1 + b2z2 + . . . +
bpzp for some coefficients b1, . . . , bp), the model cannot be estimated at all
(though often software detects this and simply removes variables until the perfect
multicollinearity is gone). A consequence of multicollinearity is large standard
errors in model coefficients, which makes precise estimation and inference difficult.
One can understand the phenomenon as struggling to distinguish the effects of
two variables that are strongly related to each other. A third possibility is that
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one of these variables are irrelevant and increase the standard errors of the
other coefficient estimates in the model. Here either omitted variable bias or
multicollinearity are likely producing these results, and we would need to decide
between them. (I’m inclined to believe the issue is OMB: am was an omitted
variable and disp actually might not belong in the model.)

Suppose we want to account for the cylinders in our model, along with the shape
of the engine. We could include cyl and vs as variables. Additionally, we could
allow for an interaction between the variables by multiplying cyl with vs. The
resulting model is estimated below:
fit3 <- lm(mpg ~ disp + hp + am + cyl * vs, data = mtcars)
stargazer(fit3, type = "text")

##
## ===============================================
## Dependent variable:
## ---------------------------
## mpg
## -----------------------------------------------
## disp -0.010
## (0.011)
##
## hp -0.038**
## (0.015)
##
## am 3.867**
## (1.651)
##
## cyl 0.417
## (1.050)
##
## vs 10.903*
## (6.058)
##
## cyl:vs -1.724
## (1.051)
##
## Constant 22.474***
## (6.060)
##
## -----------------------------------------------
## Observations 32
## R2 0.830
## Adjusted R2 0.789
## Residual Std. Error 2.766 (df = 25)
## F Statistic 20.357*** (df = 6; 25)
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## ===============================================
## Note: *p<0.1; **p<0.05; ***p<0.01

You probably have noticed that + in a formula does not mean literal additiona,
and * does not mean literal multiplication. Both operators have been overloaded
in the context of formulas. The effect of * here is to include terms in the model
for both the variables cyl and vs separately and a term representing the product
of these two variables. If we wanted literal multiplication in the model, we would
have to encapsulate that multiplication with the I() function. The model below
is equivalent to fit3.
stargazer(lm(mpg ~ disp + hp + am + cyl + vs + I(cyl * vs), data = mtcars),

type = "text")

##
## ===============================================
## Dependent variable:
## ---------------------------
## mpg
## -----------------------------------------------
## disp -0.010
## (0.011)
##
## hp -0.038**
## (0.015)
##
## am 3.867**
## (1.651)
##
## cyl 0.417
## (1.050)
##
## vs 10.903*
## (6.058)
##
## I(cyl * vs) -1.724
## (1.051)
##
## Constant 22.474***
## (6.060)
##
## -----------------------------------------------
## Observations 32
## R2 0.830
## Adjusted R2 0.789
## Residual Std. Error 2.766 (df = 25)
## F Statistic 20.357*** (df = 6; 25)
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## ===============================================
## Note: *p<0.1; **p<0.05; ***p<0.01

Perhaps we should incorporate cylinders in a different way, though; perhaps
cylinders should be treated as categorical variables. This could allow for non-
linear effects in the number of cylinders. We could force cylinders to be treated
as categorical variables by passing them as factors to the model, like so (note
that if the variable cyl was already a factor variable, as.factor() would not
be needed):
fit4 <- lm(mpg ~ disp + hp + am + as.factor(cyl), data = mtcars)
stargazer(fit4, type = "text")

##
## ===============================================
## Dependent variable:
## ---------------------------
## mpg
## -----------------------------------------------
## disp -0.015
## (0.011)
##
## hp -0.039**
## (0.015)
##
## am 3.334**
## (1.364)
##
## as.factor(cyl)6 -3.222*
## (1.589)
##
## as.factor(cyl)8 -1.011
## (3.033)
##
## Constant 29.004***
## (1.845)
##
## -----------------------------------------------
## Observations 32
## R2 0.837
## Adjusted R2 0.806
## Residual Std. Error 2.653 (df = 26)
## F Statistic 26.790*** (df = 5; 26)
## ===============================================
## Note: *p<0.1; **p<0.05; ***p<0.01

Linear models handle categorical variables by producing a dummy variable for
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the possible values of the categorical variable. Specifically, all categories but
one get a dummy variable that indicates whether the observation was in that
category or not. One category is omitted because otherwise the dummy variables
would become collinear with the intercept term; the group that does not get a
dummy variable become the baseline group. This is because the coefficients of
the other variables are effectively contrasts with the mean of the baseline group.
This follows from the interpretation of the coefficients of dummy variables: they
are the change in expected value when that variable is true or not. If we did not
want a baseline group, we would need to suppress the constant; then all groups
in the categorical variable will get a dummy variable.
stargazer(lm(mpg ~ disp + hp + am + as.factor(cyl) - 1, data = mtcars),

type = "text")

##
## ===============================================
## Dependent variable:
## ---------------------------
## mpg
## -----------------------------------------------
## disp -0.015
## (0.011)
##
## hp -0.039**
## (0.015)
##
## am 3.334**
## (1.364)
##
## as.factor(cyl)4 29.004***
## (1.845)
##
## as.factor(cyl)6 25.782***
## (2.542)
##
## as.factor(cyl)8 27.993***
## (4.237)
##
## -----------------------------------------------
## Observations 32
## R2 0.987
## Adjusted R2 0.984
## Residual Std. Error 2.653 (df = 26)
## F Statistic 328.109*** (df = 6; 26)
## ===============================================
## Note: *p<0.1; **p<0.05; ***p<0.01
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The coefficients of the factor variables in the new model can be interpreted as
the mean MPG for each count of cylinders, without yet accounting for the effects
of the other variables in the model.

Inference and Model Selection
All the statistical procedures discussed with simple linear regression apply in
the multivariate setting, including the diagnostic tools, but some issues should
be updated.

First, regarding the F -test. The F -test as described before still works as
marketed, but we can make additional F tests to help decide between models.
For instance, we could decide between

H0 : βk∗ = βk∗+1 = · · · = βk = 0

and

HA : H0 is false

for some k∗ ≥ 1. In other words, we can test whether a collection of new
regressors have predictive power when added to a smaller linear model.

We may, for example, want to test whether any of the coefficients in fit4 are
non-zero, comparing against the model contained in fit. To perform this test,
we should use the anova() function (another function that can perform anova())
like so:
anova(fit, fit4)

## Analysis of Variance Table
##
## Model 1: mpg ~ disp + hp
## Model 2: mpg ~ disp + hp + am + as.factor(cyl)
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 29 283.49
## 2 26 183.04 3 100.45 4.7564 0.008961 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The results of the above test suggest that some of the coefficients in the model
fit4 are not zero; one should necessarily conclude that fit4 is a better model
than fit, since fit is missing important variables.

Next, let’s consider the issue of confidence intervals. vcov() still works.
vcov(fit4)
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## (Intercept) disp hp am
## (Intercept) 3.405382437 -0.0127499444 -0.0067209058 -1.195577901
## disp -0.012749944 0.0001120357 -0.0000423764 0.006150034
## hp -0.006720906 -0.0000423764 0.0002208071 -0.009721922
## am -1.195577901 0.0061500337 -0.0097219220 1.859508755
## as.factor(cyl)6 0.266125814 -0.0052414970 -0.0083459097 0.460108720
## as.factor(cyl)8 2.673529289 -0.0188226829 -0.0231231395 0.792321864
## as.factor(cyl)6 as.factor(cyl)8
## (Intercept) 0.266125814 2.67352929
## disp -0.005241497 -0.01882268
## hp -0.008345910 -0.02312314
## am 0.460108720 0.79232186
## as.factor(cyl)6 2.523821471 3.26500050
## as.factor(cyl)8 3.265000500 9.20011728
cov2cor(vcov(fit4))

## (Intercept) disp hp am
## (Intercept) 1.00000000 -0.6527504 -0.2450972 -0.4751118
## disp -0.65275043 1.0000000 -0.2694259 0.4260889
## hp -0.24509720 -0.2694259 1.0000000 -0.4797848
## am -0.47511180 0.4260889 -0.4797848 1.0000000
## as.factor(cyl)6 0.09077677 -0.3117079 -0.3535394 0.2123890
## as.factor(cyl)8 0.47764509 -0.5862821 -0.5130310 0.1915604
## as.factor(cyl)6 as.factor(cyl)8
## (Intercept) 0.09077677 0.4776451
## disp -0.31170793 -0.5862821
## hp -0.35353943 -0.5130310
## am 0.21238901 0.1915604
## as.factor(cyl)6 1.00000000 0.6775748
## as.factor(cyl)8 0.67757481 1.0000000

Again, the confidence region is an elliptical space, but this time in k + 1 di-
mensional space, rather than two-dimensional space. Attempting to visualize
high-dimensional space directly is known to induce madness, so we may be better
off looking at pairs of relationships between coefficients. We can do so by telling
the ellipse() function we saw earlier which variables we wish to visualize.
library(ellipse)
plot_conf_ellipse <- function(..., col = 1, add = FALSE) {
if (add) {
pfunc = lines

} else {
pfunc = plot

}
pfunc(ellipse(...), type = "l", col = col)

}
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plot_conf_ellipse(fit4, which = c("(Intercept)", "disp"))
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Suppose we wish to predict values from our model, maybe also get point-wise
confidence intervals or prediction intervals. We will need to use the predict()
function as we did before. For what it’s worth, predict() works exactly the
same; it needs to be fed a data.frame containing the new values of the model’s
regressors, in a format imitating the original data. (You don’t need to manually
create automatically generated dummy variables, for example, or insert columns
for interaction variables.) Visualizing the predictions, though, will be more
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difficult due to the multivariate setting. (In general, if you want to learn more
about multivariate visualization techniques, consider taking a class dedicated to
visualization.)

While predict() has not changed, my function predict_func() should be
adapted to the new setting.
predict_func_multivar <- function(fit) {
function(..., interval = "none", level = 0.95) {
dat <- data.frame(...)
predict(fit, dat, interval = interval, level = level)

}
}

mtcar_pf <- predict_func_multivar(fit2)
mtcar_pf(disp = c(160, 150), hp = c(110, 80), am = c(0, 1))

## 1 2
## 21.06192 26.24082
mtcar_pf(disp = c(160, 150), hp = c(110, 80), am = c(0, 1),

interval = "confidence")

## fit lwr upr
## 1 21.06192 19.06074 23.06309
## 2 26.24082 24.09598 28.38566

Now let’s consider criteria for deciding between models. This is new to the
multivariate context; in simple linear regression there’s no interesting model
selection discussion to be had. But for multivariate models, we have to decide
which coefficients to include or exclude and in what functional form they should
appear. At first one may think that one should check the statistical significance
of model coefficients and F -tests and use those results to decide what model
is most appropriate for the data. This approach is mistaken. First, it’s path-
dependent; if we choose a different sequence of models to check we may end up
with different end results for coefficients. It also doesn’t inform us well regarding
how we should handle changing test results as we insert and delete coefficients;
coefficients that once weren’t significant could become significant after inserting
or deleting another regressor, or vice versa. Secondly, this is multiple hypothesis
testing; the hypothesis tests start to lose their statistical guarantees as we test
repeatedly.

Okay, how about checking the value of R2 or adjusted R2? While we should be
sensitive to the value of R2, we must use it with great caution. Perfectly valid and
acceptable statistical models have low R2 models, and bad models can have high
R2 values. We have two competing concerns: underfitting and overfitting.
Underfitting means our model has little predictive power and could be improved.
Models that have been overfitted, though, have excellent predictive power in
the observed sample, but say little about the general population and lose their
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predictive power when we feed them new, out-of-sample data. Attempting to
maximize R2 can easily lead to overfitting, and thus should be avoided. However,
a low R2 might indicate underfitting.

We need more tools for model selection. One useful tool is the Akaike infor-
mation criterion (AIC), a statistic intended to estimate the out-of-sample
predictive power of a model. We can obtain the AIC for a particular model
using the AIC() function.
AIC(fit)

## [1] 168.6186

There is no universal interpretation of the AIC itself (at least not one that’s
not heavily theoretical). The AIC should not be considered in isolation, though;
instead, we compare the AIC statistics of competing candidate models, selecting
the model that minimizes the AIC. We can even get a reasonable interpretation
of AICs when comparing two. If we have AIC1 and AIC2 for two different
models, then we can interpret the quantity

exp ((AIC1 −AIC2)/2)

as how many more times the model with AIC2 is likely to be true than the
model with AIC1. The function below performs this kind of analysis:
aic_compare <- function(fit1, fit2) {
exp((AIC(fit1) - AIC(fit2)) / 2)

}

aic_compare(fit, fit4)

## [1] 54.58818

That said, we are generally interested in just finding the model that minimizes
the AIC among a class of similar models. The function below can find such a
model, when given a list of models.
min_aic_model <- function(...) {
models <- list(...)
aic_list <- sapply(models, AIC)
best_model <- models[[which.min(aic_list)]]
best_model

}

best_fit <- min_aic_model(fit, fit2, fit3, fit4)
stargazer(best_fit, type = "text")

##
## ===============================================
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## Dependent variable:
## ---------------------------
## mpg
## -----------------------------------------------
## disp -0.015
## (0.011)
##
## hp -0.039**
## (0.015)
##
## am 3.334**
## (1.364)
##
## as.factor(cyl)6 -3.222*
## (1.589)
##
## as.factor(cyl)8 -1.011
## (3.033)
##
## Constant 29.004***
## (1.845)
##
## -----------------------------------------------
## Observations 32
## R2 0.837
## Adjusted R2 0.806
## Residual Std. Error 2.653 (df = 26)
## F Statistic 26.790*** (df = 5; 26)
## ===============================================
## Note: *p<0.1; **p<0.05; ***p<0.01
sapply(list(fit, fit2, fit3, fit4), function(l) {aic_compare(best_fit, l)})

## [1] 0.01831898 0.25140981 0.18120055 1.00000000

It seems that the fourth model seems to best describe the data. That said, some
of the coefficients in the model are not statistically different from zero. That’s
okay; sometimes a good model needs these regressors. However, be aware that
model selection via AIC is an asymptotic method; the sample size needs to be
large for the AIC to work well.

You may be tempted to write a script that tries just about every combination
of parameters and functional forms in a linear model, finds the one with the
smallest AIC, and returns it; it’s an automatic statistician that would put you
out of a job if your employers were aware of it. Resist the temptation! The
AIC is a tool to help pick models, but is not a substitute for human domain
knowledge. Left to its own devices, the AIC could select models that don’t
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have the best predictive power because they make no sense, and any subject
matter expert would say so. The most important model selection tool is human
knowledge of the problem. Lean heavily on it! Consider only models that make
sense. Consult experts in the subject before building models.

Polynomial Regression
Let’s back up and return to the univarate context, where we have one explanatory
variable and one response variable. Why should we consider models only of the
form y = a+ bx? Why not quadratic models, y = a+ bx+ cx2? Or higher-order
polynomials, y = β0 +β1x+β2x

2 + · · ·+βkxk? Well, we can in fact consider such
models, and we call the topic polynomial regression. These are regression
models of the form:

yi = β0 + β1xi + β2x
2
i + · · ·+ βkx

k
i + εi.

We can view these models as multivariate models; we just add the variables x,
x2, x3, and so on to our model. These variabes are not linearly related to each
other, so we can generally estimate such models.

Let’s demonstrate by simulating a data set that takes a cubic form on the interval
[−1, 1]. This will be a cubic function plus some noise.
x <- seq(-1, 1, length = 100)
y <- x - xˆ3 + rnorm(100, sd = 0.1)
plot(x, y, pch = 20)
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Clearly a model that is just a line is not appropriate for this data set; diagnostic
plots would reveal this.
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fit <- lm(y ~ x)
summary(fit)

##
## Call:
## lm(formula = y ~ x)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.44324 -0.13298 -0.01006 0.14424 0.31918
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.003444 0.018376 -0.187 0.852
## x 0.402583 0.031511 12.776 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1838 on 98 degrees of freedom
## Multiple R-squared: 0.6248, Adjusted R-squared: 0.621
## F-statistic: 163.2 on 1 and 98 DF, p-value: < 2.2e-16
old_par <- par()
par(mfrow = c(2, 2))
plot(fit)
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par(old_par)

## Warning in par(old_par): graphical parameter "cin" cannot be set

## Warning in par(old_par): graphical parameter "cra" cannot be set

## Warning in par(old_par): graphical parameter "csi" cannot be set

## Warning in par(old_par): graphical parameter "cxy" cannot be set

## Warning in par(old_par): graphical parameter "din" cannot be set

## Warning in par(old_par): graphical parameter "page" cannot be set
plot(x, y, pch = 20)
abline(fit)
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The problem is that the data should be about evenly distributed around the
line, but instead we see data being more likely to be above the line at the start
of the window, below in the first half, above in the second half, and below at
the very end. This indicates an inappropriate functional form, and we should
rectify the issue.

Notice the estimated values? We see that the estimated coefficient for the
intercept term is close to zero, and for the linear term close to 0.4. We know that
the value of these coefficients in the true model are zero and one, respectively,
but these parameters are not even close to the true values.
plot(c(0, fit$coefficients[[1]]), c(1, fit$coefficients[[2]]), pch = 20,

xlim = c(-0.1, 0.1), ylim = c(0.1, 1.1), xlab = expression(beta[0]),
ylab = expression(beta[1]))

plot_conf_ellipse(fit, add = TRUE)
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When the model is misspecified this way, the eventual “best” values for β0 and
β1 are 0 and 0.4 rather than the true values of 0 and 1. That is, if f(x) = x− x3

and f̂(x;β0, β1) = β0 + β1x, the regression model will estimate the values β0
and β1 that minimize

S(β0, β1) =
∫ 1

−1
(f(x)− f̂(x;β0, β1))2dx =

∫ 1

−1
(x− x3 − β0 − β1x)2dx.

Perhaps if we were to include a quadratic term? We can do so using the I()
function (we cannot call ˆ directly in a formula; this has special meaning in
formulas other than exponentiation).
fit2 <- lm(y ~ x + I(xˆ2))

predict_func <- function(fit) {
response <- names(fit$model)[[1]]
explanatory <- names(fit$model)[[2]]
function(x, ...) {
dat <- data.frame(x)
names(dat) <- explanatory
predict(fit, dat, ...)

}
}

summary(fit2)

##
## Call:
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## lm(formula = y ~ x + I(x^2))
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.4253 -0.1343 -0.0163 0.1473 0.3136
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.005798 0.027679 0.209 0.835
## x 0.402583 0.031640 12.724 <2e-16 ***
## I(x^2) -0.027175 0.060670 -0.448 0.655
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1845 on 97 degrees of freedom
## Multiple R-squared: 0.6256, Adjusted R-squared: 0.6179
## F-statistic: 81.05 on 2 and 97 DF, p-value: < 2.2e-16
fit2_func <- predict_func(fit2)
plot(x, y, pch = 20)
lines(x, fit2_func(x))
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Unfortunately the quadratic model is not a big improvement. But did you notice
that the resulting predicted line has a slight bend? There was an effort to fit the
line but it didn’t quite work. But of course it didn’t; the model is incorrect, and
the true value of the quadratic coefficient is zero. What we should do is insert a
cubic term.
fit3 <- lm(y ~ x + I(xˆ2) + I(xˆ3))
summary(fit3)
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##
## Call:
## lm(formula = y ~ x + I(x^2) + I(x^3))
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.252654 -0.058793 0.004324 0.074405 0.236314
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.005798 0.016115 0.360 0.720
## x 0.984863 0.046070 21.377 <2e-16 ***
## I(x^2) -0.027175 0.035324 -0.769 0.444
## I(x^3) -0.951376 0.068994 -13.789 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1074 on 96 degrees of freedom
## Multiple R-squared: 0.8744, Adjusted R-squared: 0.8705
## F-statistic: 222.8 on 3 and 96 DF, p-value: < 2.2e-16
fit3_func <- predict_func(fit3)
plot(x, y, pch = 20)
lines(x, fit3_func(x))
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Now our model has a good fit to the data, and the estimated coefficients are
close to the truth.
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Should we have included the quadratic term even when we believed it might be
wrong? The answer is yes. In general we won’t know what the true model is so
we must include all polynomial orders up to the highest order k.

Okay, but by that same reasoning we don’t know that there isn’t a fourth-order
term, or even higher, in our polynomial. Should we start including those terms
too? Let’s see what happens when we do.
fit4 <- lm(y ~ x + I(xˆ2) + I(xˆ3) + I(xˆ4))
summary(fit4)

##
## Call:
## lm(formula = y ~ x + I(x^2) + I(x^3) + I(x^4))
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.256735 -0.060422 0.001926 0.079165 0.228586
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.001794 0.020211 -0.089 0.929
## x 0.984863 0.046217 21.310 <2e-16 ***
## I(x^2) 0.047272 0.124120 0.381 0.704
## I(x^3) -0.951376 0.069214 -13.746 <2e-16 ***
## I(x^4) -0.085164 0.136077 -0.626 0.533
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1078 on 95 degrees of freedom
## Multiple R-squared: 0.8749, Adjusted R-squared: 0.8696
## F-statistic: 166.1 on 4 and 95 DF, p-value: < 2.2e-16
fit4_func <- predict_func(fit4)
plot(x, y, pch = 20)
lines(x, fit4_func(x))
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fit10 <- lm(y ~ x + I(xˆ2) + I(xˆ3) + I(xˆ4) + I(xˆ5) + I(xˆ6) + I(xˆ7) +
I(xˆ8) + I(xˆ9) + I(xˆ10))

summary(fit10)

##
## Call:
## lm(formula = y ~ x + I(x^2) + I(x^3) + I(x^4) + I(x^5) + I(x^6) +
## I(x^7) + I(x^8) + I(x^9) + I(x^10))
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.249021 -0.060430 0.002379 0.070313 0.250926
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.002911 0.029244 -0.100 0.921
## x 1.047155 0.167413 6.255 1.35e-08 ***
## I(x^2) 0.278990 0.836658 0.333 0.740
## I(x^3) -1.362420 1.868061 -0.729 0.468
## I(x^4) -1.989767 6.135962 -0.324 0.746
## I(x^5) 1.511401 6.592462 0.229 0.819
## I(x^6) 3.984659 17.075153 0.233 0.816
## I(x^7) -2.856686 8.983226 -0.318 0.751
## I(x^8) -2.335075 19.928445 -0.117 0.907
## I(x^9) 1.781664 4.139136 0.430 0.668
## I(x^10) -0.046110 8.226474 -0.006 0.996
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
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## Residual standard error: 0.1079 on 89 degrees of freedom
## Multiple R-squared: 0.8825, Adjusted R-squared: 0.8693
## F-statistic: 66.85 on 10 and 89 DF, p-value: < 2.2e-16
fit10_func <- predict_func(fit10)
plot(x, y, pch = 20)
lines(x, fit10_func(x))
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The quality of the fit is degrading. In my opinion, the last function is clearly
not the same as the true function. Below is a plot containing all three functions,
with the true function shown as a thick black line.
plot(x, y, pch = 20)
lines(x, x - xˆ3, lwd = 4)
fit1_func <- predict_func(fit)
lines(x, fit1_func(x), col = "blue", lwd = 2)
lines(x, fit2_func(x), col = "cyan", lwd = 2)
lines(x, fit3_func(x), col = "red", lwd = 2)
lines(x, fit4_func(x), col = "green", lwd = 2)
lines(x, fit10_func(x), col = "purple", lwd = 2)
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Eventually, if we were to keep adding higher-order terms to the polynomial, we
would have an exact fit to the data, where ŷi = yi. This is not good since the
resulting model would be a monstrosity far from the truth and with no predictive
power at all. Thus, when fitting polynomials to data, we want exactly as many
polynomial terms as we need and not one more.

That said, what if the true function is not a polynomial? I have exciting
news: polynomial regression can fit non-polynomial functions on compact (finite)
intervals! The reasons are beyond the scope of this course (go learn more analysis
and linear algebra), but any continuous, smooth function can be approximated
well by polynomials on compact intervals. Your job, as statistician, is to decide
how many polynomial terms you need. Too few and you have a bad fit for the
true function; too many and you risk overfitting. But tools such as the AIC can
be used to select the proper order of polynomial regression, too.

Here’s what the AIC has to say about the models considered here:
sapply(list(fit, fit2, fit3, fit4, fit10), AIC)

## [1] -51.06253 -49.26915 -156.48390 -154.89536 -149.15537

The AIC was minimized for model 3, the third-order polynomial and the correct
model order. This of course is not the end of polynomial order selection, but a
good first step.
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Lecture 11

Two-Way ANOVA
ANOVA was presented as a way to determine if the means of all populations
under consideration are the same. One way in which this idea manifests is as
testing whether a single set of mutually exclusive treatments have the same effect
on subjects or not. Researchers, though, would like to be able to apply multiple
classes of treatments to subjects.

For example, let’s consider the ToothGrowth data set.
head(ToothGrowth)

## len supp dose
## 1 4.2 VC 0.5
## 2 11.5 VC 0.5
## 3 7.3 VC 0.5
## 4 5.8 VC 0.5
## 5 6.4 VC 0.5
## 6 10.0 VC 0.5

On the one hand, different guinea pigs will be given different types of supplements:
orange juice (OJ) or vitamin C (VC). On the other hand, different dosages are
administered to the guinea pigs, either half, full, or double dose. We could view
these as two different kinds of treatments, which are not mutually exclusive
from each other. In terms of populations, we might say that while there are
different types of populations, we have classes of population types and there can
be overlap of populations when population types come from different classes.

We first need to ask: are there interactions among treatments? Non-interaction
effectively means that the effects of different treatments in some sense “add up”.
For example, doubling the dose of vitamin C has relatively the same effect as
doubling the dose of orange juice. But interaction would occur if, say, doubling
the dose of vitamin C would cause a reduction in tooth growth while doubling
the dose of orange juice caused an increase. A model including interactions is
harder to interpret than a model without one, though both can be handled.
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If we don’t have interactions in the model, then the two-way ANOVA model
looks like so:

xijk = µj + νk + εijk.

In this model µj is the effect of treatment j out of J total treatments in that
class while νk is the effect of treatment k out of K total treatments in that class.
A two-way ANOVA model with interactions would look like so:

xijk = µj + νk + γjk + εijk.

The γjk term is the interaction effect for that combination of populations. Aside
from these issues; two-way ANOVA makes the same assumptions as one-way
ANOVA: Normally distributed residuals with a constant variance.

We can try to determine if interaction effects exist by using an interaction plot.
Here is an interaction plot for the ToothGrowth data set.
with(ToothGrowth, interaction.plot(dose, supp, len))
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The x-axis tracks dosage while the y-axis tracks the mean of the variable len,
the amount of tooth growth in a guinea pig. Different lines are drawn for supp,
or the type of supplement used. We are looking to see if these lines cross. A
crossing of lines suggests that an increase of dosage for one type of supplement
has a different effect than it does for the other dosage. Ideally we would also
have roughly parallel lines. Here there may be a tiny crossing at double dosage,
though not dramatic. The lines are not quite parallel, unfortunately. It seems
that this interaction plot could be interpreted either way. If one were being
conservative, they would likely treat the data as having interactions, since a



TWO-WAY ANOVA 219

model allowing for interactions can cope if there are no interactions in truth; the
opposite direction is harder to say.

Let’s compare with the OrchardSprays data set, which contains the result of
an experiment assessing the potency of different orchard sprays in repelling
honeybees. If one treatment was the type of spray and the other the row position
of where the spray was used, we would get the following interaction plot:
with(OrchardSprays, interaction.plot(rowpos, treatment, decrease))
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There absolutely are interactions among the factors so a two-way ANOVA model
without interactions certainly would be inappropriate (though I should mention
that a different design was intended for the experiment).

We would like to estimate the two-way ANOVA model, either with or without
interactions. However, we can understand ANOVA, in general, as linear regression
with the regressors being dummy variables. We would have a sequence of dummy
variables for one class of treatments and a sequence of dummy variables for
another class of treatments. Thus we can use lm() to estimate two-way ANOVA
models like so:
(tf1 <- lm(len ~ supp + as.factor(dose), data = ToothGrowth))

##
## Call:
## lm(formula = len ~ supp + as.factor(dose), data = ToothGrowth)
##
## Coefficients:
## (Intercept) suppVC as.factor(dose)1 as.factor(dose)2
## 12.45 -3.70 9.13 15.49

(Notice we have to tell lm() we want dose to be treated as a factor variable;
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otherwise, it would be treated as quantitative, which we don’t want.) The
resulting model is phrased in terms of contrasts; the baseline group consists of
guinea pigs that got half a dose of vitamin C. Below we do some statistics for
the model.
summary(tf1)

##
## Call:
## lm(formula = len ~ supp + as.factor(dose), data = ToothGrowth)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.085 -2.751 -0.800 2.446 9.650
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 12.4550 0.9883 12.603 < 2e-16 ***
## suppVC -3.7000 0.9883 -3.744 0.000429 ***
## as.factor(dose)1 9.1300 1.2104 7.543 4.38e-10 ***
## as.factor(dose)2 15.4950 1.2104 12.802 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.828 on 56 degrees of freedom
## Multiple R-squared: 0.7623, Adjusted R-squared: 0.7496
## F-statistic: 59.88 on 3 and 56 DF, p-value: < 2.2e-16

The F -test performed can be viewed as a statistical test deciding between the
null hypothesis of no treatments having any effect on the response variables
and the alternative that at least one treatment has an effect on the response
variable. In this case the null hypothesis is rejected; there appears to be some
treatment effect, either among the supplement type or the dosage. Furthermore,
by examining the results of the tests for the coefficients, just about every possible
type of treatment has some effect.

How about allowing for interactions? We can introduce interaction terms like so:
(tf2 <- lm(len ~ supp * as.factor(dose), data = ToothGrowth))

##
## Call:
## lm(formula = len ~ supp * as.factor(dose), data = ToothGrowth)
##
## Coefficients:
## (Intercept) suppVC as.factor(dose)1
## 13.23 -5.25 9.47
## as.factor(dose)2 suppVC:as.factor(dose)1 suppVC:as.factor(dose)2
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## 12.83 -0.68 5.33
summary(tf2)

##
## Call:
## lm(formula = len ~ supp * as.factor(dose), data = ToothGrowth)
##
## Residuals:
## Min 1Q Median 3Q Max
## -8.20 -2.72 -0.27 2.65 8.27
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 13.230 1.148 11.521 3.60e-16 ***
## suppVC -5.250 1.624 -3.233 0.00209 **
## as.factor(dose)1 9.470 1.624 5.831 3.18e-07 ***
## as.factor(dose)2 12.830 1.624 7.900 1.43e-10 ***
## suppVC:as.factor(dose)1 -0.680 2.297 -0.296 0.76831
## suppVC:as.factor(dose)2 5.330 2.297 2.321 0.02411 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.631 on 54 degrees of freedom
## Multiple R-squared: 0.7937, Adjusted R-squared: 0.7746
## F-statistic: 41.56 on 5 and 54 DF, p-value: < 2.2e-16

The results of the new model are more difficult to interpret, both literally and
statistically. Additionally, only one potential interaction appears to possibly be
statistically significant: the interaction between the vitamin C supplement and
the dosage amount.

This begs the question: should we include interaction terms for dosage and
supplement or not? So far the results are not particularly conclusive. What
we should do is decide whether the coefficients for the interaction terms are
statistically different from zero or not. And while we are at it, we should
determine whether each type of treatment individually has an effect (not just
whether any treatment at all has an effect).

We can do this by using the F tests for comparing different linear models, with
one model being a particular instance of the other, as we did in the last lecture.
First we should introduce models representing one-way ANOVA models tracking
just supplement type and dosage, like so:
(tfs <- lm(len ~ supp, data = ToothGrowth))

##
## Call:
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## lm(formula = len ~ supp, data = ToothGrowth)
##
## Coefficients:
## (Intercept) suppVC
## 20.66 -3.70
(tfd <- lm(len ~ as.factor(dose), data = ToothGrowth))

##
## Call:
## lm(formula = len ~ as.factor(dose), data = ToothGrowth)
##
## Coefficients:
## (Intercept) as.factor(dose)1 as.factor(dose)2
## 10.61 9.13 15.49

Then we compare the model that includes terms for both supplement and dosage
to one of these two models. If adding additional terms for another treatment
have non-zero coefficients, then the other treatment has an effect on the response
variable.
anova(tfs, tf1) # Reject H0: Dosage has an effect

## Analysis of Variance Table
##
## Model 1: len ~ supp
## Model 2: len ~ supp + as.factor(dose)
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 58 3246.9
## 2 56 820.4 2 2426.4 82.811 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
anova(tfd, tf1) # Reject H0: Supplement type has an effect

## Analysis of Variance Table
##
## Model 1: len ~ as.factor(dose)
## Model 2: len ~ supp + as.factor(dose)
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 57 1025.78
## 2 56 820.43 1 205.35 14.017 0.0004293 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

If we want to see if there are interactions among dosage type and supplement,
we can do so by comparing the model with interactions to the one without.
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anova(tf1, tf2) # Reject H0: Interactions

## Analysis of Variance Table
##
## Model 1: len ~ supp + as.factor(dose)
## Model 2: len ~ supp * as.factor(dose)
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 56 820.43
## 2 54 712.11 2 108.32 4.107 0.02186 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

It does seem that there are interactions between dosage and supplement types.

ANOVA models are a particular class of linear model and can be understood as
such. ANOVA differs from linear regression mostly in presentation. That said,
people care a great deal about presentation, so let’s see how we can perform
two-way ANOVA with some of the other functions we’ve seen.

The aov() function we saw earlier is well-equipped for two-way ANOVA, and
can be called basically just like lm(). The advantage to using aov() is that it’s
specifically designed for ANOVA.
aov(len ~ supp + as.factor(dose), data = ToothGrowth) # No interactions

## Call:
## aov(formula = len ~ supp + as.factor(dose), data = ToothGrowth)
##
## Terms:
## supp as.factor(dose) Residuals
## Sum of Squares 205.350 2426.434 820.425
## Deg. of Freedom 1 2 56
##
## Residual standard error: 3.82759
## Estimated effects may be unbalanced
aov(len ~ supp * as.factor(dose), data = ToothGrowth) # Interactions

## Call:
## aov(formula = len ~ supp * as.factor(dose), data = ToothGrowth)
##
## Terms:
## supp as.factor(dose) supp:as.factor(dose) Residuals
## Sum of Squares 205.350 2426.434 108.319 712.106
## Deg. of Freedom 1 2 2 54
##
## Residual standard error: 3.631411
## Estimated effects may be unbalanced
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Lecture 12

Nonparametric Statistics
Nonparametric statistics concern statistical inference while making few as-
sumptions about the underlying distribution of the data. Note that this does
not mean there are no assumptions about the data; rather, it means we are
generally not assuming that the data comes from specific family of distributions.
Common assumptions for nonparametric methods are assumptions such as:

• The data was drawn from a continuous (i.e. not discrete) distribution.
• The distribution from which the data was drawn is symmetric.

Throughout this lecture the first assumption is generally assumed; these methods
don’t work as well with discrete data as they do with continuous data. The
second assumption may be assumed for certain tests.

Nonparametric methods’ commonly work with the quantiles of the data. Quanti-
ties such as the mean or variance may or may not exist for certain distributions.
However, quantiles or generalized notions of quantiles can always be defined
for any random variable, and for continuous random variables a unique number
can be assigned to every quantile. Since quantiles always exist, we can always
perform inference for them while making weak assumptions about the data.

Some will view a parametric test such as the sign test, sign-rank test, or the
Wilcoxon rank-sum test as equivalent to their parametric cousins such as the
t-test. This is not true since the nonparametric tests generally check quantiles
such as the median while t-tests and z-tests are tests for the mean. (Granted,
the mean and median of the Normal distribution or any symmetric distribution
are the same, but in general they are not necessarily the same.) If the research
question at hand is specifically for the mean and the data is not assumed to be
symmetric, then these nonparametric tests are inappropriate. The reverse is also
true; the z-test should not be used for inference about the median when the data
is not symmetric (the t-test is automatically inappropriate due to non-Normality,
but it’s equivalent to the z-test for large sample sizes).
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Sign Test
Let qp be the 100pth percentile of the data; automatically q0.5 is the median of
the data. We wish to decide between the hypotheses:

H0 : qp = qp0

HA :


qp > qp0

qp 6= qp0

qp < qp0

Let’s continue this discussion but specifically for the median. In order for a
number to be the median of a random variable, the probability that the random
variable exceeds that number needs to be 0.5. So if qp0 with p = 0.5 were in fact
the median, then P (Xi > qp0) = p = 0.5. If the true median was not qp0 though
this would not be true. If in fact the true median were greater than qp0 then
P (Xi > qp0) > p = 0.5. The converse could also be said; if the true median were
less than qp0 then P (Xi > qp0) < p = 0.5. This suggests that what we should
be tracking is whether an observation in the sample exceeds qp0 or not. (If an
observation exactly equals qp0, delete it.)

If T is a statistic that counts the number of times an observation exceeds qp0
then the if the null hypothesis is true the distribution of this statistic is known;
it counts the number of times the median is exceeded (a “success”) or not (a
“failure”), and thus follows a Bin(n, p) distribution. If the alternative hypothesis
states that the true median is greater than qp0 then large T would be evidence
in favor of the alternative; this would determine how we compute p-values.
Similar statements would be made for the other possible alternative hypotheses.
Ultimately the test reduces to a test for population proportion, where the original
continuous data is converted to binary data tracking whether the median under
the null hypothesis was exceeded or not; hence the term “sign test” since we’re
tracking the sign of Xi − qp0.

The function below implements the sign test.
sign.test <- function(x, q = 0, p = 0.5, alternative = "two.sided") {
res <- list()
res$data.name <- deparse(substitute(x))
res$estimate <- c("quantile" = quantile(x, p)[[1]])
x <- x[x != q] # Delete observations matching q exactly
res$method <- "Sign Test"
res$parameter <- c("p" = p)
res$alternative <- alternative
res$null.value <- c("quantile" = q)
res$statistic <- c("T" = sum(x > q))
n <- length(x)
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res$p.value <- binom.test(res$statistic, n, p = 1 - p,
alternative = alternative)$p.value

class(res) <- "htest"
res

}

We will demonstrate its use on simulated data.
(x <- rcauchy(10, location = 3, scale = 2)) # Cauchy distributed; t-test won't

## [1] 4.627787 2.288983 1.077072 3.205023 3.193945 3.896991 23.270197
## [8] 3.555012 4.521352 3.671545

# work
sign.test(x, q = 3)

##
## Sign Test
##
## data: x
## T = 8, p = 0.5, p-value = 0.1094
## alternative hypothesis: true quantile is not equal to 3
## sample estimates:
## quantile
## 3.613279
sign.test(x, q = 2, alternative = "greater")

##
## Sign Test
##
## data: x
## T = 9, p = 0.5, p-value = 0.01074
## alternative hypothesis: true quantile is greater than 2
## sample estimates:
## quantile
## 3.613279
sign.test(x, q = 2, alternative = "less")

##
## Sign Test
##
## data: x
## T = 9, p = 0.5, p-value = 0.999
## alternative hypothesis: true quantile is less than 2
## sample estimates:
## quantile
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## 3.613279
sign.test(x, q = 2, p = 0.25, alternative = "less") # Testing quartile

##
## Sign Test
##
## data: x
## T = 9, p = 0.25, p-value = 0.9437
## alternative hypothesis: true quantile is less than 2
## sample estimates:
## quantile
## 3.196715

Signed-Rank Test
The Wilcoxon signed-rank test is a non-parametric test for the median specifically
(as opposed to a general quantile) and is intended for data coming from a
symmetric distribution. Before using it, you should check this assumption; look
at histograms or density estimates and decide if the data appears reasonably
symmetric. The test is intended to have better power than the sign test while
not going as far as the t-test in assuming that the data is Normally distributed.
Since we are restricting ourselves to symmetric distributions, the signed-rank
test is equivalent to the t-test when the population has finite and well-defined
mean and variance; hopefully the test will have better power than the t-test, but
this is not guaranteed even for non-Normal data (the t-test is the most powerful
test when data is Normally distributed).

We will use the notation q0.5 = m. We have the same null and alternative
hypotheses as before, but the test statistic not only accounts for whether the
data is greater than the median or not (the “signed” part) but also the rank
of the data, where one ranks observations by how far away they are from the
supposed median (so the closest observation has a rank of 1 and the furthest
a rank of n). The test statstic will be T =

∑
i:xi>m0

rank(|xi −m0|). Suppose
that the alternative hypothesis says that the true median is greater than the
median under the null hypothesis. Then large T would serve as evidence against
the null hypothesis as observations above the median also tend to be some of
the most distant. We can come up with rejection regions for other alternative
hypotheses, and the distribution of the statistic under the null hypothesis is
known (but not necessarily simple). Thus we can do tests.

The R function for this test is wilcox.test(), with parameters similar to
t.test(). Here for example is a demonstration of wilcox.test() to determine
whether the median of the girth of trees is 12 or not.
plot(density(trees$Girth)) # Symmetric enough
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wilcox.test(trees$Girth, mu = 12)

## Warning in wilcox.test.default(trees$Girth, mu = 12): cannot compute exact
## p-value with ties

## Warning in wilcox.test.default(trees$Girth, mu = 12): cannot compute exact
## p-value with zeroes

##
## Wilcoxon signed rank test with continuity correction
##
## data: trees$Girth
## V = 323.5, p-value = 0.06263
## alternative hypothesis: true location is not equal to 12

Wilcoxon Rank-Sum Test
The two-sample t-test helps decide whether the means of two populations are
the same or not. The nonparametric equivalent of the two-sample t-test is the
Wilcoxon rank-sum test. The test works for two distributions that are identical
except for the location of the median. Let mX be the median of one population
and mY the median of the other. Then our null hypothesis says:

H0 : mX = mY

Our alternative is of the form:
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HA :


mX > mY

mX 6= mY

mX < mY

The R function for this test is wilcox.test() and takes two data sets. The
parameter alternative can be used to set which alternative hypothesis is tested.
# First, let's get the data into separate vectors
split_len <- split(ToothGrowth$len, ToothGrowth$supp)
OJ <- split_len$OJ
VC <- split_len$VC
# Perform statistical test
wilcox.test(OJ, VC, alternative = "greater")

## Warning in wilcox.test.default(OJ, VC, alternative = "greater"): cannot
## compute exact p-value with ties

##
## Wilcoxon rank sum test with continuity correction
##
## data: OJ and VC
## W = 575.5, p-value = 0.03225
## alternative hypothesis: true location shift is greater than 0
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Goodness-of-Fit Tests
A statistical test used to decide whether a data set came from a paricular
distribution or not is known as a goodness-of-fit test since it decides whether
the suggested distribution is a “good fit” for the data. Many goodness-of-fit
tests exist, and here we will study the chi-square (or χ2) tests. Here we look at
chi2 tests of two flavors: one deciding whether a categorical variable follows a
particular distribution or not, and one deciding whether two categorical variables
are independent or not.

I walked to 7-Eleven and bought a share-size bag of regular M&Ms, then counted
how many M&Ms there were of each color. Below is the data set.

Red Brown Green Yellow Orange Blue Total
21 5 10 16 15 36 103

The official distribution of M&M candy colors in 1997 is listed below:

Red Brown Green Yellow Orange Blue
.2 .3 .1 .2 .1 .1

Our question: Based off of our sample, should we believe that this is the
distribution of colors in the bag? To be more precise, there are K = 6 possible
categories (colors), we observe nk candies for color k and there are N =

∑K
k=1

n_k$ candies total. We have probabilities pk of observing each of these colors for
a randomly sampled candy and these probabilities are specified under the null
hypothesis: denote the null-hypothesis probabilities as pk0. We wish to decide
between the null hypothesis

H0 : p1 = p10, p2 = p20, . . . , pK = pK0
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and the alternative hypothesis which simply states that the null hypothesis is
false (two or more of the null hypothesis probabilities are incorrect). To do this
we compare the observed count of each category, nk, against the expected count
if the null hypothesis were true, given by Npk0. We make these comparisons
using the χ2 statistic:

K∑
k=1

(nk −Npk0)2

Npk0
.

If the null hypothesis is true, N is large, and Npk0 > 10, this statistic is well
approximated by a χ2 distribution with K − 1 degrees of freedom. If the null
hypothesis is false, we would expect to see at least one observed count far away
from its expected count, causing that term in the statistic to be large and thus
the overall statistic to be large. Thus large values of the χ2 statistic are evidence
against the null hypothesis and thus suggest rejecting it. This procedure together
is the χ2 test for goodness of fit, and the test can be performed in R using the
function chisq.test(). We give this function first the observed counts, then
the hypothesized distribution under then null hypothesis. It will then return the
results of the χ2 test.
counts <- c(21, 5, 10, 16, 15, 36)
dist <- c(.2, .3, .1, .2, .1, .1)

chisq.test(counts, dist)

## Warning in chisq.test(counts, dist): Chi-squared approximation may be
## incorrect

##
## Pearson's Chi-squared test
##
## data: counts and dist
## X-squared = 12, df = 10, p-value = 0.2851

In this case the null hypothesis was not rejected, though the function warned
that the assumptions (generally related to sample size) may not be satisfied and
thus the asymptotic approach to computing the statistic (that is, using the χ2

distribution) may not work. If this is in fact a concern then we can tell the
function to use simulation methods to get a distribution that may be better for
computing p-values. We can set the parameter B to tell the function how many
simulations to do, the larger the better (but the default should be good).
chisq.test(counts, dist, simulate.p.value = TRUE, B = 10000)

##
## Pearson's Chi-squared test with simulated p-value (based on 10000
## replicates)
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##
## data: counts and dist
## X-squared = 12, df = NA, p-value = 1

In any case it seems we can’t reject the null hypothesis based on this data set
(though another statistician reached a different conclusion).

If instead we wanted to test whether each color was equally likely or not, we can
leave the second parameter unspecified, as the default null hypothesis is equal
probability for all categories.
chisq.test(counts)

##
## Chi-squared test for given probabilities
##
## data: counts
## X-squared = 33.485, df = 5, p-value = 3.014e-06

In this case the null hypothesis was rejected; the true distribution of the data
certainly does not appear to assign equal probability to all colors.

Let’s now suppose we have two categorical variables and we want to determine
whether those random variables are independent or not. In R we could refer
to the Titanic data set, which tracks how many individuals died on the ship
Titanic along with perhaps relevant information such as their age, sex, and class
on the ship. We will have a two-way table tracking the number of people in each
class and how many did or did not survive. We will get this table like so:
(class_survive_titanic <- apply(Titanic, c(1, 4), sum))

## Survived
## Class No Yes
## 1st 122 203
## 2nd 167 118
## 3rd 528 178
## Crew 673 212

We wish to decide between the null hypothesis stating that the two variables
are independent and the alternative hypothesis stating that the null hypothesis
is false (they are not independent). In this case the observed counts will be
the counts in each cell. The expected counts are estimated counts if the null
hypothesis of independence were in fact true. Suppose that for variable A we
have J possible categories and the probability of the observation belonging to
category j is pj , and for variable B there are K possible categories and the
probability of observing category k is qk. If the independence hypothesis is
true then the probability that both category j and category k are observed
is pjqk. We do not know these probabilities, though. Let njk be the number
of observations falling in both categories j and k. Let Nj· =

∑K
k=1 njk and

https://qz.com/918008/the-color-distribution-of-mms-as-determined-by-a-phd-in-statistics/
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N·k =
∑J
j=1 njk. Let N =

∑J
j=1

∑K
k=1 njk. Then we would estimate pj with

p̂j = Nj·
N and q̂k = N·k

N . Our estimated count for the number of observations
that belong both to category j for variable A and category k for variable B if
the null hypothesis is true is Np̂j q̂k = Nj·N·k

N = ojk. Our test statistic will then
be

J∑
j=1

K∑
k=1

(njk − ojk)2

ojk
.

If the null hypothesis is true the approximate distribution of this statistic will
be a χ2 distribution with (J − 1)(K − 1) degrees of freedom. As before, if the
alternative is true, then we expect to see a cell count far away from what it
should be if the null hypothesis were true, and the statistic will be large.

The function chisq.test() can also perform the test for independence. We can
decide if class matters to surviving the Titanic disaster like so:
chisq.test(class_survive_titanic)

##
## Pearson's Chi-squared test
##
## data: class_survive_titanic
## X-squared = 190.4, df = 3, p-value < 2.2e-16

In this case the null hypothesis is soundly rejected; class does seem to matter.
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Beyond Linear Models
In this section we will explore models that are not linear models, in that they
are not linear in their parameters. Recall that linear models are models that
take the form:

yi = β0 + β1x1i + · · ·+ βkxki + εi.

They either take that form exactly or could take that form after some transfor-
mation (commonly a log transformation). Before looking at nonlinear models,
make sure that the model is not linear after a transformation. For instance, the
model:

yi = β0x
β1
i εi

is linear in the parameters after taking a log transform:

log(yi) = log(β0) + β1 log(xi) + log(εi).

But the model below is not linear in the parameters:

yi = β0e
β1xi + εi.

We will first talk about a particular nonlinear model: logistic regression. Then
we will discuss estimating nonlinear models in general.

Logistic Regression
Suppose yi ∈ {0, 1}; that is, yi is a Bernoulli random variable. We would like
to predict whether yi is either 0 or 1 using a set of regressors x1, . . . , xk. We
could try using the linear model above, but unfortunately the error terms will
not be i.i.d. and won’t even look remotely Normal. Additionally, the resulting
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model will produce strange “predictions”; we would interpret the model as
estimating the probability that yi = 1 based on x1, . . . , xk, but the model can
give probabilities above 1 or below 0. These are undesirable properties that call
for a different procedure.

Logisitic regression is a regression procedure that fixes these properties. Let
πi be the probability that yi = 1. Logistic regression estimates the model

πi = eβ0+β1x1i+···+βkxki+εi

1 + eβ0+β1x1i+···+βkxki+εi
= g(β0 + β1x1i + · · ·+ βkxki + εi).

The function g(x) = ex

1+ex is known as the logistic function, and it only takes
values between 0 and 1, and thus can produce probabilities.
curve(exp(x)/(1 + exp(x)), from = -5, to = 5)
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Another term for the model produced by logistic regression is logit models.

The predicted values from logistic regression are not 1 or 0 but the probability
that the response variable is 1 or 0 given the values of the regressors. If you
want to convert these probabilities into predictions, you would perhaps threshold
these probabilities so that probabilities above, say, 0.5 will be predictions that
yi = 1 and all others predict yi = 0.

The coefficients themselves are more difficult to interpret, but they can be
interpreted. Recall that if the probability an event A occurs is p, then the odds
that A occurs is p

1−p to 1. It turns out that the logistic regression model can be
rewritten as:

ln
(

πi
1− πi

)
= β0 + β1x1i + · · ·+ βkxki + εi.
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We call ln
(

πi

1−πi

)
the log-odds that yi = 1, and so we are estimating a linear

model to predict the log-odds that our response variable is 1. We could then say
that a unit increase in xji predicts that the log-odds will increase by βj , or that
the odds will increase by a factor of eβj . (And for what it’s worth, sometimes a
logit model is accompanied by a linear model since linear model parameters are
easily interpreted.)

Logit models must be estimated numerically, but the good news is that inference
procedures we saw before, including marginal t-tests and AIC inference, still
hold. In R, the function for estimating logit models is glm(), which can be
understood as meaning “generalized linear model”. glm() can actually estimate
a lot of models, including models where we have specific assumptions about
what the distribution of the response variables are (such as poisson or gamma),
and much can be said about it. Here, though, I will only show how to use it for
logistic regression.

If we want to estimate a logit model, our function call will resemble glm(y ~
x, data = d, family = binomial). The function call is almost identical to
lm(), but we have an additional parameter, family, that identifies the type of
regression model we’re estimating. By default, family = binomial performs
logistic regression.

Let’s demonstrate by building a logit model to predict whether an iris flower is
a member of the versicolor species or not. We will use the sepal length, sepal
width, petal length, and petal width for our predictions.
(fit <- glm(I(Species == "versicolor") ~ Sepal.Length + Sepal.Width +

Petal.Length + Petal.Width, data = iris, family = binomial))

##
## Call: glm(formula = I(Species == "versicolor") ~ Sepal.Length + Sepal.Width +
## Petal.Length + Petal.Width, family = binomial, data = iris)
##
## Coefficients:
## (Intercept) Sepal.Length Sepal.Width Petal.Length Petal.Width
## 7.3785 -0.2454 -2.7966 1.3136 -2.7783
##
## Degrees of Freedom: 149 Total (i.e. Null); 145 Residual
## Null Deviance: 191
## Residual Deviance: 145.1 AIC: 155.1
summary(fit)

##
## Call:
## glm(formula = I(Species == "versicolor") ~ Sepal.Length + Sepal.Width +
## Petal.Length + Petal.Width, family = binomial, data = iris)
##
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## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.1280 -0.7668 -0.3818 0.7866 2.1202
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 7.3785 2.4993 2.952 0.003155 **
## Sepal.Length -0.2454 0.6496 -0.378 0.705634
## Sepal.Width -2.7966 0.7835 -3.569 0.000358 ***
## Petal.Length 1.3136 0.6838 1.921 0.054713 .
## Petal.Width -2.7783 1.1731 -2.368 0.017868 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 190.95 on 149 degrees of freedom
## Residual deviance: 145.07 on 145 degrees of freedom
## AIC: 155.07
##
## Number of Fisher Scoring iterations: 5
exp(coef(fit))

## (Intercept) Sepal.Length Sepal.Width Petal.Length Petal.Width
## 1.601165e+03 7.824254e-01 6.101912e-02 3.719701e+00 6.214133e-02
class(fit)

## [1] "glm" "lm"

glm() produces glm-class objects, which inherit from lm-class objects. So func-
tions such as predict() or coef() work for these objects, and they have similar
structures.

Nonlinear Models
A nonlinear model is not linear in its coefficients, and many of these models take
the form:

yi = f(x1i, . . . , xk1;β0, β1, . . . , βr) + εi.

(Note that r and k may be different.) I gave an example of a nonlinear model
above, and this class of models is quite general. We still interpret β0, . . . , βr as
parameters of the model and f(· · · ;β0, . . . , βr) as a function giving predicted
values for yi since the residuals εi are still assumed to be i.i.d. with mean 0. In
fact the least-squares principle still holds since we want to pick β̂0, . . . , β̂r that
minimize
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SSE(β̂0, . . . , β̂r) =
n∑
i=1

(
yi − f(x1i, . . . , xki; β̂0, . . . , β̂r)

)2
.

In the case of linear models, the coefficients of the model can be solved for
explicitly, perhaps after invoking linear algebra. That is not the case in general
and generally one must resort to numerical techniques to estimate nonlinear
models. As for what form f itself takes, that’s a domain-specific problem; there
could be a physical or biological model that dictates the form of f , which is
known up to the parameters (which we as statisticians then try to estimate).

Numerical optimization procedures/numerical solvers are iterative and generally
need a set of starting parameters in order to work. This means that users of
these methods need to make an educated guess as to what the true parameters
are. Perhaps consider using plots to form guesses as to what the parameter
values are, getting parameter values that appear to be “close” to fitting the data.
(This is completely subjective, by the way.) Once you have a decent guess at the
parameter values, you can then use the numerical procedures to get the proper
fit.

The R function for nonlinear least squares estimation is nls(), whose function
calls often take the form nls(formula, data = d, start = v), where d is
often a data frame and v is a vector of initial guesses for the parameter values.
Due to the general nature of nonlinear least squares, formula generally resembles
y ~ f(variables, parameters), where f is a function. One could potentially
write the nonlinear relationship directly into the formula, but I would advise
defining the function f separately, outside of the formula.

Let’s see an example. The data set Indometh contains the results of a study
investigating the spread of the drug indomethacin (a drug for pain relief and
reducing the swelling around joints) through the bodies of six test subjects.
Below is a plot of the data.
plot(conc ~ time, data = Indometh, ylab = "Plasma Concentration (mcg/ml)",

xlab = "Time (hr)")
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This data does not look linear. We might consider a log transform of the variable
conc for blood concentration, but that doesn’t fix the problem either. We may
prefer a nonlinear model to describe the relationship between these variables.

We will use instead a linearly combined bi-exponential model. Let C represent
plasma concentration of the drug and t time. All other variables in the equation
below are model parameters we will need to estimate.

Ct = C0 + a1e
−b1t + a2e

−b2t

Since we have different subjects i and measurement “errors” εit, we instead
consider the following statistical model:

Cit = C0 + a1e
−b1t + a2e

−b2t + εit.

The R function below encapsulates the relationship between time and concentra-
tion.
doubexpfunc <- function(t, C0, a1, a2, b1, b2) {
C0 + a1 * exp(-b1 * t) + a2 * exp(-b2 * t)

}

curve(doubexpfunc(x, 0.125, 0.75, 1, 1.5, 1.1), from = 0, to = 8.25,
xlab = "Time (hr)", ylab = "Plasma Concentration (mcg/ml)")

points(conc ~ time, data = Indometh, pch = 20)
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Above is the function with a guess at the parameter values superimposed on the
data. Is the guess good? No, but it’s close enough for the numerical techniques.

We actually get an estimated fit using these initial guesses like so:
(fit <- nls(conc ~ doubexpfunc(time, C0, a1, a2, b1, b2), data = Indometh,

start = c(C0 = 0.125, a1 = 0.75, a2 = 1, b1 = 1.5, b2 = 1.1)))

## Nonlinear regression model
## model: conc ~ doubexpfunc(time, C0, a1, a2, b1, b2)
## data: Indometh
## C0 a1 a2 b1 b2
## 0.07393 2.53684 0.95687 3.01862 0.66572
## residual sum-of-squares: 1.872
##
## Number of iterations to convergence: 9
## Achieved convergence tolerance: 7.851e-06
summary(fit)

##
## Formula: conc ~ doubexpfunc(time, C0, a1, a2, b1, b2)
##
## Parameters:
## Estimate Std. Error t value Pr(>|t|)
## C0 0.07393 0.06461 1.144 0.2570
## a1 2.53684 0.54544 4.651 1.82e-05 ***
## a2 0.95687 0.74799 1.279 0.2057
## b1 3.01862 1.40640 2.146 0.0358 *
## b2 0.66572 0.46825 1.422 0.1602
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## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1752 on 61 degrees of freedom
##
## Number of iterations to convergence: 9
## Achieved convergence tolerance: 7.851e-06
class(fit)

## [1] "nls"
coef(fit)

## C0 a1 a2 b1 b2
## 0.07393449 2.53684071 0.95686744 3.01862352 0.66571921

A lot of the least-squares theory developed in the linear regression case carry
over to nonlinear regression. For example, we can perform inference for model
parameters using the t-test and assess the quality of the model fit with the AIC.
Below is a plot of the resulting fit.
fitted_doubexpfunc <- function(fit) {
C0 <- coef(fit)["C0"]
a1 <- coef(fit)["a1"]
a2 <- coef(fit)["a2"]
b1 <- coef(fit)["b1"]
b2 <- coef(fit)["b2"]
function(t) {
doubexpfunc(t, C0, a1, a2, b1, b2)

}
}

fit_func <- fitted_doubexpfunc(fit)
curve(fit_func(x), from = 0, to = 8.25, xlab = "Time (hr)",

ylab = "Plasma Concentration (mcg/ml)")
points(conc ~ time, data = Indometh, pch = 20)
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All told the fit looks rather good. (Note that predict() can also be used for
making predictions from the model.)

Be aware that nonlinear models are generally more complicated to estimate
than linear models, if only because in addition to asking questions about the
statistical quality about the model, practitioners should be sensitive to numerical
issues as well. For example, one may need to decide on the maximum number
of iterations for the solver, the desirable numerical tolerance, where to pick the
starting values, what to do when the gradient matrix is near-singular, and so on.
All told there are many more points of failure for nonlinear models that we will
not discuss here.
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Preface

These lecture notes were written by me to accompany John Verzani’s Using R
for Introductory Statistics (2nd ed.), to be delivered in lectures teaching students
how to program with R in the programming lab accompanying a lecture section
focusing on the statistical methods themselves. This is for the second semester
of a two-semester statistics course, so knowledge of basic statistical procedures
(t-test, t confidence intervals for the mean, etc.) and basic R usage (creating
variables, writing basic functions, working with lists and data frames, etc.) are
assumed.

These notes are not intended to stand alone; I like Verzani’s book and I believe
that these notes should supplement it, not replace it. For those taking the
programming lab for the University of Utah’s Mathematics Department statistics
courses, I would insist on reading Verzani’s book in addition to these lecture
notes. However, these notes could serve as a light weight introduction to R and
statistical programming.

I hope that you find these notes useful, and wish you the best of luck.

Curtis Miller
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