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Preface

These lecture notes were written by me to accompany John Verzani’s Using R for Introductory Statistics
(2nd ed.), to be delivered in lectures teaching students how to program with R in the programming lab
accompanying a lecture section focusing on the statistical methods themselves. No knowledge of programming
is assumed; my objective was to teach basic R programming well enough to use R for statistical analyses.

These notes are not intended to stand alone; I like Verzani’s book and I believe that these notes should
supplement it, not replace it. For those taking the programming lab for the University of Utah’s Mathematics
Department statistics courses, I would insist on reading Verzani’s book in addition to these lecture notes.
However, these notes could serve as a light weight introduction to R and statistical programming.

These lecture notes were used for an eight-week intensive course on statistics, with the lab covering R
programming. The first two lectures focus almost exclusively on R programming. After this, lectures focus
more on statistical topics. The third lecture discusses R for probability; the fourth, visualization; the fifth, a
light introduction to multivariate analysis (a more complete discussion is meant for a later course); finally,
the last lectures cover inferential statistics and confidence intervals, starting with computationally intensive
methods (Lecture 6) and then showing how the analytical methods are implemented in R (Lectures 7 & 8).

These were the first lecture notes I wrote for the R programming lab. I normally do not teach eight-week
courses, so I had to adapt these lecture notes to a different schedule. Not only that, while I taught both
the lecture and lab portions of the class in the intensive summer classes (and thus knew exactly what was
covered in the lecture session), I had to adjust my lectures to account for the speed of the lecture section
instructors during regular semesters. Thus, another version of these notes exists for a fourteen-week schedule,
and they include more material inserted to account for the difference in pace between the lab and lecture
sections. Perhaps consider checking out that collection of lecture notes as well.

In any case, I hope that you find these notes useful, and wish you the best of luck.

Curtis Miller
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Lecture 1

R Basics

Using R as a Calculator

Lots of work in R is done via the interpreter. You can use the interpreter as a calculator, and thus can do
some simple calculations.
# Some basic arithmetic
2 + 2

## [1] 4
1 - 7

## [1] -6
2 * 3

## [1] 6
(1 + 1) * 3

## [1] 6
2^3

## [1] 8
10/2

## [1] 5
# One can also use functions for more advanced calculations
sqrt(9)

## [1] 3
exp(3)

## [1] 20.08554
# A familiar built-in value
pi

## [1] 3.141593

When using a computer as a calculator, though, you may observe behavior that seems. . . strange.
# Be aware that any time you use computers for calculation you may get the
# 'wrong' answer. This is due to floating-point arithmetic and how computers

7



8 LECTURE 1

# see numbers.
sqrt(2)^2

## [1] 2
# What's this?
sqrt(2)^2 - 2

## [1] 4.440892e-16

(For an explanation of this phenomenon, watch this video by Computerphile on floating-point numbers.)

Obviously, though, we want to use R for more than a glorified calculator.

Variables

As with any programming language, R can store information in variables. R has a few ways to store
variables, with the <-, ->, and = operators (there are a few others that I won’t discuss here).
# One way to create a variable
var1 <- 1
# Another way to create a variable
var2 = 2
# A third way, this time where the variable is on the RIGHT side of the
# assignment operator!
var3 <- 3
# What do you get?
var1 + var2

## [1] 3
var2 * var3

## [1] 6

There are rules as to how variables can be named. In addition to not being reserved words, they can only use
alpha-numeric characters (letters and numbers), or the _ or . characters. Also, they cannot begin with a
number (so while var1 is legal, 1var is not). Variables are case-sensitive; var1 is not the same as Var1 or
VAR1.
# These are all valid names for variables
var1 <- 10
variable_number_2 <- 20
variable.number.3 <- 30 # <---- I would suggest avoiding this style of variable naming, though; use '_' instead
variableNumber4 <- 40

# None of these are the same
var1 <- 10
Var1 <- 230
VAR1 <- -5

var1 + 1

## [1] 11
Var1 + 1

## [1] 231

https://www.youtube.com/watch?v=PZRI1IfStY0
https://stat.ethz.ch/R-manual/R-devel/library/base/html/Reserved.html


R BASICS 9

VAR1 + 1

## [1] -4

As a side note, notice that a line break will usually begin a new command. This is not always true! If a
command is not finished from R’s perspective, it will see the contents of the next line as being part of the same
command. This can sometimes be confusing, while other times it can be used to your advantage. Furthermore,
you can use the ; character to separate commands on the same line, or explicitly end a command like in
C-based programming languages like C, C++, or Java (though this is usually not done). Aside from this, R
generally ignores white space (space, tabs, new lines, etc.).
# Because there is nothing after the '+' on the first line, R looks for the
# rest of the command on the second line.
5 +
5

## [1] 10
# It could even be a few lines down! (DON'T EVER DO THIS!!!!)
10 +

1

## [1] 11

R variables are untyped, but that does not mean that the object they reference is untyped. Some basic types
you will encounter early (and there are many, many others) include:

• Numeric, like 124 or 3.14159
• Character, like "hello bobby" or "124" or 'cmiller@math.utah.edu'
• Boolean, either TRUE or FALSE
• Vectors, which are a collection of objects of all the same type
• Functions, which you can think of as being a “mini program”, like log, sqrt, mean, or help
• Data frames, which store datasets in memory in a tabular format

# A numeric variable
num_var <- 124
# Character data
char_var <- "hello"
# Boolean
bool_var <- TRUE
# A vector of data
data_vec <- c(1, 20, 6, 2)
# Another vector of data
data_vec2 <- c("hello", "world")

# There are functions for type checking
not_a_number <- "124"
is.numeric(not_a_number)

## [1] FALSE
is.character(not_a_number)

## [1] TRUE
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# Sometimes you can force a variable of one type to be another type.
is_a_number <- as.numeric(not_a_number)
is.numeric(is_a_number)

## [1] TRUE

Packages

The true power of R is in its packages. R has an ever-growing community of users and developers, many of
whom write free packages to extend R’s functionality. These packages are made available to all R users on
websites like CRAN (the Comprehensive R Archive Network) or GitHub.

Packages from CRAN are easily downloaded and installed using the install.packages() function, like so:
# Install the "UsingR" package for Verzani's book
install.packages("UsingR")

Once you install a new package, you can load it into the R environment using require() or library().
library(UsingR)
# Alternatively, you could use require("UsingR")

Today there are well over 7000 packages on CRAN alone, and this growth is likely to continue.

Data sets

Datasets in R are usually stored in vectors (for univariate data) or data frames (for multivariate data). For
now, we will work with built-in data sets or those included in packages. If a dataset isn’t already in the R
environment but does exist in some package, it can be brought in using the data() function. The head()
function allows us to view only a few observations from a dataset (in order to prevent our screen from being
flooded with all the data), and the str() function gives us a further description of the dataset.
# Let's load in a univeriate dataset containing the lengths of major North
# American rivers
data(rivers)
# We can see a few of the observations to get a glimpse at the nature of the
# data.
head(rivers)

## [1] 735 320 325 392 524 450
# We can see more information via str()
str(rivers)

## num [1:141] 735 320 325 392 524 ...
# Just for fun, what is the combined length of all these rivers?
sum(rivers)

## [1] 83357
# Let's have even more fun by seeing what proportion of this total length
# each river accounts for.
rivers/sum(rivers)

## [1] 0.008817496 0.003838910 0.003898893 0.004702664 0.006286215
## [6] 0.005398467 0.017503029 0.001619540 0.005578416 0.007197956
## [11] 0.003958876 0.004030855 0.003359046 0.003778927 0.010437036

https://cran.r-project.org/
https://github.com/
https://rpubs.com/filipstachura/rpackages
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## [16] 0.010868913 0.002423312 0.003946879 0.003479012 0.011996593
## [21] 0.007197956 0.006058279 0.017395060 0.010077138 0.014911765
## [26] 0.010676968 0.004198808 0.004882613 0.003431026 0.003359046
## [31] 0.006298211 0.008637547 0.004678671 0.002999148 0.003922886
## [36] 0.002759216 0.003179097 0.010197104 0.002519285 0.007557854
## [41] 0.003119114 0.002759216 0.004318773 0.008757513 0.007197956
## [46] 0.003670957 0.004678671 0.005038569 0.003491009 0.008517581
## [51] 0.004078842 0.002603261 0.003371043 0.004222801 0.003107118
## [56] 0.002999148 0.005638399 0.008157683 0.006838058 0.004198808
## [61] 0.003598978 0.006718092 0.010796934 0.007497871 0.003982869
## [66] 0.028168000 0.014048010 0.044507360 0.027772113 0.030387370
## [71] 0.009357343 0.003359046 0.004918603 0.005518433 0.003119114
## [76] 0.003059131 0.005170532 0.004198808 0.009117411 0.007413894
## [81] 0.004054848 0.011768658 0.015667550 0.005998296 0.008349629
## [86] 0.007257939 0.002999148 0.004930600 0.012644409 0.008817496
## [91] 0.002795206 0.005218518 0.005878331 0.003718944 0.005518433
## [96] 0.004594695 0.004498722 0.015235673 0.006538143 0.005338484
## [101] 0.022613578 0.004558705 0.003598978 0.004558705 0.004522716
## [106] 0.005098552 0.003311060 0.002519285 0.009597274 0.005038569
## [111] 0.004198808 0.004318773 0.006454167 0.013196252 0.014455895
## [116] 0.003766930 0.002843193 0.007317922 0.004318773 0.006478160
## [121] 0.012452464 0.005086555 0.003718944 0.003598978 0.005326487
## [126] 0.003610974 0.003215087 0.007437888 0.002579267 0.007821779
## [131] 0.010796934 0.006298211 0.002951162 0.004318773 0.006346198
## [136] 0.005998296 0.008637547 0.003239080 0.005158535 0.008049714
## [141] 0.021233970
# Let's look at our first ever data frame, the famous iris dataset
head(iris)

## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 5.1 3.5 1.4 0.2 setosa
## 2 4.9 3.0 1.4 0.2 setosa
## 3 4.7 3.2 1.3 0.2 setosa
## 4 4.6 3.1 1.5 0.2 setosa
## 5 5.0 3.6 1.4 0.2 setosa
## 6 5.4 3.9 1.7 0.4 setosa
str(iris)

## 'data.frame': 150 obs. of 5 variables:
## $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
## $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
## $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
## $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
## $ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
# You can think of this as being a table or matrix. In fact, it's a
# combination of equal-length vectors. We can get the Sepal.Length vector
# using the $ operator
iris$Sepal.Length

## [1] 5.1 4.9 4.7 4.6 5.0 5.4 4.6 5.0 4.4 4.9 5.4 4.8 4.8 4.3 5.8 5.7 5.4
## [18] 5.1 5.7 5.1 5.4 5.1 4.6 5.1 4.8 5.0 5.0 5.2 5.2 4.7 4.8 5.4 5.2 5.5
## [35] 4.9 5.0 5.5 4.9 4.4 5.1 5.0 4.5 4.4 5.0 5.1 4.8 5.1 4.6 5.3 5.0 7.0
## [52] 6.4 6.9 5.5 6.5 5.7 6.3 4.9 6.6 5.2 5.0 5.9 6.0 6.1 5.6 6.7 5.6 5.8
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## [69] 6.2 5.6 5.9 6.1 6.3 6.1 6.4 6.6 6.8 6.7 6.0 5.7 5.5 5.5 5.8 6.0 5.4
## [86] 6.0 6.7 6.3 5.6 5.5 5.5 6.1 5.8 5.0 5.6 5.7 5.7 6.2 5.1 5.7 6.3 5.8
## [103] 7.1 6.3 6.5 7.6 4.9 7.3 6.7 7.2 6.5 6.4 6.8 5.7 5.8 6.4 6.5 7.7 7.7
## [120] 6.0 6.9 5.6 7.7 6.3 6.7 7.2 6.2 6.1 6.4 7.2 7.4 7.9 6.4 6.3 6.1 7.7
## [137] 6.3 6.4 6.0 6.9 6.7 6.9 5.8 6.8 6.7 6.7 6.3 6.5 6.2 5.9

Comments

You may have noticed already the # symbol in the code. This is called a comment. The R interpreter
completely ignores comments. They are used for annotating code. Commenting is not optional; it’s essential
to understanding code when it is read (and I promise you, it will be). You can’t write good code without
comments. Consequently, I require you to write good, extensive comments in your homework!
# Hi! I'm a comment! R doesn't care about me, but that's okay. I'm very
# useful for understanding code, and if you forget to add me, an angry
# programmer will come to your house and punch you in the face!

# Here, I'm saying that the following code makes a histogram of the rivers
# data, using relative frequency, a custom main title, a custom x-axis
# label, a bin count based on the square root of the size of the dataset,
# right-inclusive classes, and a beautiful rainbow fill because we're classy
# people who thinks this looks good (even though it doesn't)
hist(rivers, breaks = ceiling(length(rivers)), freq = FALSE, right = FALSE,

main = "Histogram for the Lengths of Rivers", xlab = "River Length", col = rainbow(ceiling(length(rivers))))

Histogram for the Lengths of Rivers
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Help

R has many, many functions. In 2014, there were approximately 182,393 R functions that could be used
(most of them in packages). There is no way anyone could remember all of them.

Fortunately, it’s easy to access documentation in R, especially if you are using RStudio. The help() function
will look up documentation for a string entered. This is made even easier by just typing ? and the name of
the package/function/dataset you want to see documentation for.
# Here's how to access the documentation of the mean() function
help("mean")
# Or even easier:
?mean

Univariate Data Analysis

Vectors

Univariate data is usually stored as vectors. The most basic function for creating a vector is the c() function,
where the arguments of the function (separated by commas) become the contents of the vector. It generally
doesn’t matter what the type of data the contents of the vector are so long as they are all the same.
# A numeric vector of fictitious data
num_vec <- c(10, 13, -1, 0.02, 0, -3.31)
# A vector of character data
char_vec <- c("joe", "phil", "jan", "denise", "tom")
# A vector of boolean values
bool_vec <- c(TRUE, TRUE, FALSE)
# A vector of functions? WHAT IS THIS MADNESS?
func_vec <- c(mean, sum, sd)
# But this does not create a vector of vectors; all vectors are flattened into one vector (it is possible to make a vector of vectors, but it's tricky)
not_a_vec_of_vecs <- c(c(1,2,3),c(4,54),c(10,2,-6))

# If I want to see the contents of a vector, just type its name into the interpreter
not_a_vec_of_vecs

## [1] 1 2 3 4 54 10 2 -6

If you don’t specify the type of data you are storing in a variable, or if one has not already been assigned, R
will think it’s a vector.
im_a_vector <- 5
is.vector(im_a_vector)

## [1] TRUE

To access the contents of a vector, you can use [] notation, like vec[x]. x identifies the elements of the
vector you want. This is called indexing.

Some notes about x:

• Items in a vector can always be found via an integer. vec[1] will get the first element of the vector,
and vec[5] the fifth. Also, instead of specifying what indices you do want, you can specify the indices
you don’t want with negative integers. For example, vec[-1] is vec with all except for vec[1]. vec[0]
is an empty vector that is of the same type as vec.

• Some vectors have named elements. In that case, you can access elements of the vector by name, using
a character string. For example, if cities is a vector of city populations which is indexed with city

http://www.r-bloggers.com/r-now-contains-150-times-as-many-commands-as-sas/
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names, cities["Salt Lake City"] will find the population of Salt Lake City in the vector. If you
want to see the names of the elements, use the names() function. (Not surprisingly, the object returned
by names() is also a vector, specifically a character vector.)

• x can be another vector, and thus you can index a vector with another vector so long as the values
contained in x are a valid means of indexing. We could index a vector with vec[c(1,2,3)] or
cities[c("Salt Lake City", "Provo")].

• x could be a vector of booleans. Every TRUE in x will lead to the element in vec corresponding to
where the TRUE is located in x will be included, and every element in vec where x is FALSE will not be
included. (While this implies that x must be the same length as vec, this is not necessarily true; if x is
shorter, the contents of x will be recycled until R has made a decition for each element of vec whether
to include it or not. I discuss recycling more later.)

• vec[] will return the entire vector vec. This is sometimes useful.
# You can assign names to elements using name = value notation in c()
friendly_vector <- c(jon = 1, tony = 4, janet = 5)
names(friendly_vector)

## [1] "jon" "tony" "janet"
friendly_vector[1]

## jon
## 1
friendly_vector[c(2,3)]

## tony janet
## 4 5
friendly_vector[-2]

## jon janet
## 1 5
friendly_vector["tony"]

## tony
## 4
friendly_vector[c("jon", "tony")]

## jon tony
## 1 4
friendly_vector[c(TRUE, TRUE, FALSE)]

## jon tony
## 1 4
# You can rename elements in a vector like so:
names(friendly_vector) <- c("jack", "jill", "dick")
friendly_vector["jack"]

## jack
## 1

You can also use indexing to change the values of a vector, or even expand it. vec[x] <- val will replace
the contents of vec at x with val if val is the same type as the rest of the data in vec and x is any valid
means of indexing vec. x could consist of indices that do not already exist in vec, in which case those indices
will be added to vec, thus expanding it. If x consists of integer indices outside the range of existing integer
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indices, these other indices will be created as well and filled with NA’s.

You can also delete values from the vector with vec[x] <- NULL
# friendly_vector was defined in an earlier code block
# Change existing values
friendly_vector["jack"] <- 16
friendly_vector[2] <- 19
friendly_vector

## jack jill dick
## 16 19 5
# Adding new values
friendly_vector[4] <- 21
friendly_vector

## jack jill dick
## 16 19 5 21
friendly_vector["danielle"] <- 0
friendly_vector

## jack jill dick danielle
## 16 19 5 21 0
friendly_vector[c(6, 7, 8)] <- 12
friendly_vector

## jack jill dick danielle
## 16 19 5 21 0 12 12 12
friendly_vector[20] <- 18

While vectors must contain data of one type, there is a special type that can be included in any vector: NA.
This value represents “missing information”. NA isn’t like other values and needs to be handled with care.
The function is.na() identifies these values in vectors.
not_finished <- c(1, 4, 5, NA, 2, 2)
not_finished

## [1] 1 4 5 NA 2 2
# If I want to access the non-NA parts of the vector, I can do so like this
not_finished[!is.na(not_finished)]

## [1] 1 4 5 2 2

There are other special types in R resembling but dfferent from NA. NULL is a lot like NA but usually means
that something in R is unavailable (whereas NA is more akin to missing data in a dataset). Inf and -Inf are
special values denoting infinity and negative infinity respectively. These are, in some sense, numeric, and
represent values that are very large (or very small, in the case of -Inf), and can occur when dividing non-zero
numbers by zero. NaN effectively means “not a number”, and occurs when some numerical error occurs, like
dividing zero by zero. Again, these cases must be handled with care, and there are special functions like
is.na() for detecting them in vectors.

There are other ways to create vectors other than with the c() function. Some common ways are listed below:

• The : constructor can be used to create sequences. For example, 1:10 will create a vector of numbers
from 1 to 10, incrementing by 1. 10:0 creates a vector starting at 10 and ending at 0, decrementing by
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1. You can also replace the endpoints with variables, or expressions in parentheses, like 1:n or 1:(2 +
2).

• Sometimes you may want to create a sequence but want more control over incrementation, or how many
elements in the vector you want. In this case, use the seq() function. You can make a sequence of
numbers incrementing by 2 going from 1 to 100 with seq(1, 100, by = 2), or a sequence of numbers
between 0 and 1 with length 100 with seq(0, 1, length = 100). (See help("seq") to see all the
many ways to create sequences with seq().)

• The rep() function can make vectors with repeating elements. Let’s say I want to repeat the character
values “"a", "b", and "c" three times total. I can do so with rep(c("a", "b", "c"), times = 3).
Alternatively, if I wanted to repeat these values each three times, I would do so with rep(c("a", "b",
"c"), each = 3). (See help("rep") to see all the many ways to create sequences with rep().)

• Sometimes I want to create character vectors where I have pasted together strings from separate
vectors. For example, if I want a character vector containing the names of one hundred treatments, it
may be tedious to type c("Treatment 1", "Treatment 2", ..., "Treatment 100"). The paste()
function makes this much easier. I can create such a vector with paste("Treatment", 1:100); each
of the elements from both vectors will be pasted together into a new vector. By default, these elements
will be separated with a space character, but I can change this behavior by specifying the sep parameter
in paste(). For example, if I want "Treatment_1" rather than "Treatment 1", I can do so with
paste("Treatment", 1:100, sep = "_").

I demonstrate these techniques below.
# Create a vector of numbers from 1 to 10
1:10

## [1] 1 2 3 4 5 6 7 8 9 10
# In reverse
10:1

## [1] 10 9 8 7 6 5 4 3 2 1
# Getting creative
1:(2 + 2)

## [1] 1 2 3 4
# Another way to make a sequence
seq(-1, 1, by = 0.5)

## [1] -1.0 -0.5 0.0 0.5 1.0
# Yet another way to make a sequence
seq(0, 20, length = 3)

## [1] 0 10 20
# A repeating sequence of letters
rep(c("a", "b", "c"), times = 3)

## [1] "a" "b" "c" "a" "b" "c" "a" "b" "c"
# A sequence of repeating letters
rep(c("a", "b", "c"), each = 3)

## [1] "a" "a" "a" "b" "b" "b" "c" "c" "c"
# A quick way to make a character vector
paste("Treatment", 1:5)

## [1] "Treatment 1" "Treatment 2" "Treatment 3" "Treatment 4" "Treatment 5"
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You can do mathematical operations with vectors, such as +, -, *, /, ˆ, and others. Operations are often
applied component-wise, using R’s recycling behavior. Recycling occurs when two vectors are not of equal
length. Let’s say you have a vector vec1 that is longer than vec2, and you do an operation such as vec1
+ vec2. Let’s say length(vec1) == 12 and length(vec2) == 4. At first, the resulting vector will add,
component-wise, each element from each vector; think vec1[1] + vec2[1], vec1[2] + vec2[2], vec1[3]
+ vec2[3], and vec1[4] + vec2[4]. After the fourth index, though, there are no more elements in vec2,
so R will start from the beginning of vec2 and keep going, resulting in vec1[5] + vec2[1], vec1[6] +
vec2[2], and so on. R will continue to do this until it has reached the end of vec1. You would get the same
result for vec2 + vec1; it doesn’t matter which side of + has the longer vector. If the longer vector is not a
multiple of the shorter vector, though, R will throw a warning message.
vec1 <- c(0, 0, 10, -1, 5, 6)
# R treats "1" as a vector of length 1, and thus recycles
vec1 + 1

## [1] 1 1 11 0 6 7
vec1 * 2

## [1] 0 0 20 -2 10 12
vec1 ^ 2

## [1] 0 0 100 1 25 36
vec2 <- 1:2
# Another case of recycling behavior
vec1 + vec2

## [1] 1 2 11 1 6 8
# Same result if I switch the order
vec2 + vec1

## [1] 1 2 11 1 6 8
# R will complain if the length of the longer vector is not a multiple of the length of the shorter object, though it will still produce a result
vec1 / 1:4

## Warning in vec1/1:4: longer object length is not a multiple of shorter
## object length

## [1] 0.000000 0.000000 3.333333 -0.250000 5.000000 3.000000
vec1 ^ vec2

## [1] 0 0 10 1 5 36
# Does NOT get same result because ^ is not commutative
vec2 ^ vec1

## [1] 1.0 1.0 1.0 0.5 1.0 64.0

Of course, when working with vectors of the same length, recycling isn’t a concern.
# These vectors are the same length, so no need to worry about recycling
vec1 <- 1:3
vec2 <- 10:12
vec1 + vec2

## [1] 11 13 15
vec1 * vec2

## [1] 10 22 36
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vec1 ^ vec2

## [1] 1 2048 531441
# That said, it's not hard to guess what will happen when one of the objects is length one (like a vector)
(1:10) ^ 2 # First ten squares

## [1] 1 4 9 16 25 36 49 64 81 100
2 ^ (1:10) # First ten powers of two

## [1] 2 4 8 16 32 64 128 256 512 1024

Recycling occurs elsewhere in R. We saw recycling behavior when indexing a vector with a vector of booleans
earlier. There are other instances in R as well.

Some functions are vector-valued. For example, when passed a vector, sqrt() will take the square root of
every element in the vector.
vec <- 1:5
sqrt(vec)

## [1] 1.000000 1.414214 1.732051 2.000000 2.236068
exp(vec)

## [1] 2.718282 7.389056 20.085537 54.598150 148.413159
vec[3] <- NA
# Creates a vector of booleans
is.na(vec)

## [1] FALSE FALSE TRUE FALSE FALSE

Another important set of operators are logical operators, which return boolean data. Such operators include:

• ==: This detects equality (notice that this is not =, which is an assignment operator). If or when the
object on the left equals the object on the right, the result will be TRUE; otherwise, it will be FALSE.
For vectors, this does not return whether the two vectors are identical, but when one vector is equal to
the other component-wise.

• < and >: These detects “less” or “greater than”, like in mathematics. This is intended for numeric data,
but can be used for other types of data as well (although rarely, and probably not well).

• <= and >=: These detect “less than or equal to” or “greater than or equal to”.
• !=: This detects “not equal to”, and is the opposite of ==.
• &: This is logical “and”, and is true when the boolean or statment on the left is true and the boolean

or statement on the right is true. Thus, (1 == 1) & (2 >= 1) == TRUE and (1 == 2) & (2 >= 1)
== FALSE.

• |: This is logical “or”, and is true when the boolean or statement on the left is true or the boolean or
statement on the right is true. Thus, (1 == 1) | (2 >= 1) == TRUE and (1 == 2) | (2 >= 1) ==
TRUE.

• !: This is logical “not”, negating any truth statement. So !TRUE == FALSE and !(1 == 2) == TRUE.
• %in%: This logical operator is unique compared to the others considered here, since this is actually a

function. The argument on the right-hand side of this operator must be a vector, and this operator
whether elements on the left-hand side are in the vector on the right-hand side (in logic, this is x ∈ S
where S is a set). Thus, 3 %in% c(1,2,3) == TRUE and 3 %in% c(1, 2) == FALSE.

Like other operators, these utilize recycling and may return vectors. Examples are shown below.
vec1 <- c(1, 4, 21, 22, -5)
vec2 <- c(1, 2, 3, 4, -5)
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# True only in the first and last positions
vec1 == vec2

## [1] TRUE FALSE FALSE FALSE TRUE
vec1 < 4 # True for first and last elements

## [1] TRUE FALSE FALSE FALSE TRUE
vec2 <= 4 # True in first, second, and last elements

## [1] TRUE TRUE TRUE TRUE TRUE
!(vec1 <= 4) # Inverse of above

## [1] FALSE FALSE TRUE TRUE FALSE
# %% is the modulus operator, returning the remainder when the number on the
# left is divided by the number on the right. vec1 %% 2 == 0 is a way to
# detect even numbers (since the remainder when dividing an even number by 2
# must be zero).
(vec1 > 20) & !(vec1%%2 == 0) # Only true in third position

## [1] FALSE FALSE TRUE FALSE FALSE
(vec1 > 20) | !(vec1%%2 == 0) # Not true in second or fourth

## [1] TRUE FALSE TRUE TRUE TRUE
1:4 %in% vec1 # One and four are in vec1

## [1] TRUE FALSE FALSE TRUE
# Some useful functions are the any() and all() functions, which take
# boolean vectors as arguments and return whether anywhere the vector is
# true or whether the vector is true everywhere, respectively. In other
# words, any() will 'or' all elements of the vector, and all() will 'and'
# all elements in the vector.
any(1:4 %in% vec1) # Is there a number between 1 and 4 in vec1?

## [1] TRUE
all(1:4 %in% vec1) # Are all numbers between 1 and 4 in vec1?

## [1] FALSE

Many other functions return logical data, notably the is.object() family of functions like is.vector() or
is.na().

While a vector of booleans for when a condition is true is nice, sometimes you may not want whether a
statement is true for each element of a vector, but for which elements of a vector a statement is true. In this
case, the which() function will tell you the indices of where an input vector is TRUE.
which(c(TRUE, FALSE, FALSE, TRUE, FALSE))

## [1] 1 4
which(15:25 > 20)

## [1] 7 8 9 10 11
# I'm going to create a dataset with NA's, and use which() to find the NA's
# and also the 'good' data
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data_vec <- 1:100
data_vec[c(21, 33, 49, 61, 62)] <- NA
which(is.na(data_vec)) # Where are the NA's

## [1] 21 33 49 61 62
which(!is.na(data_vec)) # Where is the non-NA data?

## [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
## [18] 18 19 20 22 23 24 25 26 27 28 29 30 31 32 34 35 36
## [35] 37 38 39 40 41 42 43 44 45 46 47 48 50 51 52 53 54
## [52] 55 56 57 58 59 60 63 64 65 66 67 68 69 70 71 72 73
## [69] 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
## [86] 91 92 93 94 95 96 97 98 99 100
# How much data is NA?
length(which(is.na(data_vec)))

## [1] 5
# Alternatively, I can sum a boolean vector to find the same answer (FALSE
# is treated as 0 and TRUE as 1)
sum(is.na(data_vec))

## [1] 5

A special type of vector not discussed earlier is a factor vector, which is similar to a character vector but
requires that each value of the vector be in a list of levels, which describe the values a factor vector can take.
(R also views vactors differently internally than character vectors.) Factor vectors are thus used for storing
categorical data. You can create a factor with the factor() function.

When manipulating factor data, there is an additional restriction to the ones discussed already: you cannot
add a value that is not in the levels of the factor (aside from NA). You would have to add the value to the
levels of the factor first, then add the value. Also, beware that changing the levels will also change the values
stored in the factor. You can set the levels of a factor with levels(x) <- y, where x is the factor vector
and y a vector representing the new levels of the factor.
# Create a factor of color data
color_data <- c("blue", "red", "blue", "blue", "blue", "red", "red", "blue")
# Create the factor, declaring the levels; notice that I included a category
# that is not in the data vector
colcat1 <- factor(color_data, levels = c("red", "green", "blue"))
colcat1

## [1] blue red blue blue blue red red blue
## Levels: red green blue
# If I do not declare the levels, R will use the values stored in the vector
# to guess what they are
colcat2 <- factor(color_data)
# Now I change data; for the first, no complaint if I add 'green'
colcat1[1] <- "green"
colcat1

## [1] green red blue blue blue red red blue
## Levels: red green blue
# But 'green' is not in the levels of colcat2, so an warning is issued and
# NA is added instead
colcat2[1] <- "green"
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## Warning in `[<-.factor`(`*tmp*`, 1, value = "green"): invalid factor level,
## NA generated
colcat2

## [1] <NA> red blue blue blue red red blue
## Levels: blue red
# I can see the levels of these with levels()
levels(colcat1)

## [1] "red" "green" "blue"
levels(colcat2)

## [1] "blue" "red"
# I can rearrange all the categories by changing the levels
levels(colcat1) <- c("blue", "red", "green")
colcat1

## [1] red blue green green green blue blue green
## Levels: blue red green
# Here I add a new level to those specified for colcat2
levels(colcat2)[3] <- "green"
# Now I can add 'green' to colcat2 without complaint
colcat2[1] <- "green"
colcat2

## [1] green red blue blue blue red red blue
## Levels: blue red green

Functions

Functions are one of the most important objects in R. In fact, R follows a programming paradigm called
functional programming, where most operations are seen as the evaluation of functions. You can think of
functions as miniature programs for performing certain tasks.

In R, functions have two parts:

• Arguments are the values passed to the function for evaluation. In the statement f(x, y), the
variables between the parentheses, x and y, are the arguments of the function. A function will typically
expect an argument to be of a particular type and may throw an error when that type is not received,
but the expected type could be anything from a vector to a data frame to even another function. Some
functions have many arguments but have default values assigned to most of them so that the user
specifies those arguments only if they wish to change the function’s default behavior.

• The body of a function is the part of the function that performs computations (involving the parameters)
and possibly returning an output. The output of the function is either the last value computed (and
not assigned to a variable) or a value returned by the return() function.

To create a named function, use the syntax my_func <- function(arguments) { function body }. Below
I create a function.
# Let's create a function that returns the length of the longest vector
# passed to it. It will take two vectors x and y as arguments, and return
# the length of the longer vector
longest_length <- function(x, y) {
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l1 <- length(x) # This is a local variable that will be visible only in the function, not the rest of R
l2 <- length(y)
max(l1, l2) # This is the last unevaluated computation and thus is returned by the function

}
# Note that longest_length is a variable storing a function, and
# longest_length() is a function call

# Testing it out
vec1 <- c("bob", "jim", "margaret", "danny")
vec2 <- c(22, -9)
longest_length(vec1, vec2)

## [1] 4
# Functions will check the position of objects passed and assign them to the
# arguments in the same position in the function definition. Alternatively
# (and very useful when there are many arguments not all of which are
# specified), you can use = to set specific arguments by name.
longest_length(y = vec2, x = vec1)

## [1] 4

Functions are extremely important objects in R and the key to R programming. Appendix A of the Verzani
textbook discusses function programming in more detail.

Visually Exploring a Dataset

R has many techniques built-in for visually analyzing datasets, and many packages that do so even better,
such as the very popular ggplot2 package (I used ggplot2 for all the graphics for my first report on Utah’s
gender gap in wages written for Voices for Utah Children, which you can read here). Here I will discuss how
to make a few basic graphics for visually analyzing a dataset.

Stem-and-leaf plot

Use the stem() function to create a stem-and-leaf plot.
stem(rivers)

##
## The decimal point is 2 digit(s) to the right of the |
##
## 0 | 4
## 2 | 011223334555566667778888899900001111223333344455555666688888999
## 4 | 111222333445566779001233344567
## 6 | 000112233578012234468
## 8 | 045790018
## 10 | 04507
## 12 | 1471
## 14 | 56
## 16 | 7
## 18 | 9
## 20 |
## 22 | 25
## 24 | 3

http://utahchildren.org/newsroom/press-releases/item/553-utah-s-gender-opportunity-an-examination-of-the-difference-between-the-earnings-of-utah-men-and-women
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## 26 |
## 28 |
## 30 |
## 32 |
## 34 |
## 36 | 1

The display suggests that the rivers dataset is very right-skewed. Let’s see if this agrees with other plots.

Dotplot

You can use stripchart() to make dotplots. The default behavior of this function doesn’t produce a
very useful plot (truth be told, plotting functions in other packages make better dotplots in general than
stripchart()), so set method = "stack" to enable stacking. I also set pch = 20 to change the plotting
character used from the default square to a filled-in circle, which is easier to read.

Many R plotting functions have parameters main, xlab, and ylab. These are so you set the title of the plot,
and the names of the labels. I do so in the plot I create as well.
# Make a dotplot of the rivers data
stripchart(rivers, method="stack", pch = 20,

# Adding axis labels
main = "Length of North American Rivers",
xlab = "Length")

0 500 1000 1500 2000 2500 3000 3500

Length of North American Rivers

Length

The rivers dataset is slightly large, with 141 observations. The plots used so far may not result in very
good graphics for datasets like this. I next consider graphics that may handle larger datasets better.
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Histogram

The hist() function creates histograms in R. Calling hist(x) for some dataset x will create a histogram R
thinks is appropriate. R will automatically choose classes and the number of classes to used based on built-in
algorithms. I show an example below:
hist(rivers)
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rivers

F
re

qu
en

cy

0 1000 2000 3000 4000

0
20

40
60

80

We can change the parameters of the hist() function to have more control over the result. For example:

• R automatically chooses axis names and the main title, which usually are not very good names. We
can change these defaults to reasonable labels by setting the main, xlab, and ylab parameters.

• By default, R will plot the frequency rather than the relative frequency of each class. The result is
indistinguishable until you wish to overlay a histogram with a smooth curve or otherwise be more
creative with the chart. Set freq = FALSE to show relative frequencies, or probabilities.

• R creates left-inclusive histograms by default. If we want right-inclusive histograms, set right = TRUE.

• The breaks parameters is used for setting where the break points are located. If we set breaks to an
integer, this will tell R how many classes to use. For example, if we want

√
n classes for the rivers

dataset, we can do so by setting breaks = round(sqrt(length(x))). (That said, the method R uses
for determining how many classes to use is usually better than the

√
n rule.)

• Do we really like white bars in our histogram? The col parameter can change their color. For example,
set col = "gray" for gray bars.

There are many more parameters for the hist() function than this; I invite you to read the function’s
documentation for more details. Here is another histogram for the rivers dataset, this one changing some
parameters.
hist(rivers, main = "Distribution of the Lengths of Major North American Rivers",

xlab = "Length of River",
freq = FALSE,
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right = TRUE,
breaks = round(sqrt(length(rivers))), # Using the sqrt(n) rule
col = "gray")

Distribution of the Lengths of Major North American Rivers
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Density Curve

A density curve is another way to view a distribution where the end result is a smooth curve, It can be
interpreted like a histogram, but it avoids disadvantages that come with choosing discrete classes. You can
create a density curve with plot(density(x)).
plot(density(rivers), main = "Distribution of Lengths of Rivers")
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# It is possible to superimpose a density plot on top of a histogram to see the relationship. Just be sure that the histogram is showing relative frequencies rather than frequencies. Here is an example.
hist(rivers, main = "Distribution of the Lengths of Major North American Rivers",

xlab = "Length of River",
freq = FALSE,
right = TRUE,
breaks = round(sqrt(length(rivers))), # Using the sqrt(n) rule
col = "gray",
ylim = c(0, 0.0025)) # ylim sets the limits of the vertical axis

lines(density(rivers))
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Distribution of the Lengths of Major North American Rivers
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Boxplot

You can create a boxplot in R with the boxplot() function.
boxplot(rivers)
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One of the major advantages of boxplots is being able to compare distributions of different samples. To do so,
issue a call to boxplot() of the form boxplot(x ~ y), where x is a data vector with all samples combined,
and y is a character or factor vector identifying the sample each element of x belongs to.
# I will be working with the iris dataset for this example
# Looking at the data
str(iris)
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## 'data.frame': 150 obs. of 5 variables:
## $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
## $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
## $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
## $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
## $ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
iris$Sepal.Length

## [1] 5.1 4.9 4.7 4.6 5.0 5.4 4.6 5.0 4.4 4.9 5.4 4.8 4.8 4.3 5.8 5.7 5.4
## [18] 5.1 5.7 5.1 5.4 5.1 4.6 5.1 4.8 5.0 5.0 5.2 5.2 4.7 4.8 5.4 5.2 5.5
## [35] 4.9 5.0 5.5 4.9 4.4 5.1 5.0 4.5 4.4 5.0 5.1 4.8 5.1 4.6 5.3 5.0 7.0
## [52] 6.4 6.9 5.5 6.5 5.7 6.3 4.9 6.6 5.2 5.0 5.9 6.0 6.1 5.6 6.7 5.6 5.8
## [69] 6.2 5.6 5.9 6.1 6.3 6.1 6.4 6.6 6.8 6.7 6.0 5.7 5.5 5.5 5.8 6.0 5.4
## [86] 6.0 6.7 6.3 5.6 5.5 5.5 6.1 5.8 5.0 5.6 5.7 5.7 6.2 5.1 5.7 6.3 5.8
## [103] 7.1 6.3 6.5 7.6 4.9 7.3 6.7 7.2 6.5 6.4 6.8 5.7 5.8 6.4 6.5 7.7 7.7
## [120] 6.0 6.9 5.6 7.7 6.3 6.7 7.2 6.2 6.1 6.4 7.2 7.4 7.9 6.4 6.3 6.1 7.7
## [137] 6.3 6.4 6.0 6.9 6.7 6.9 5.8 6.8 6.7 6.7 6.3 6.5 6.2 5.9
iris$Species

## [1] setosa setosa setosa setosa setosa setosa
## [7] setosa setosa setosa setosa setosa setosa
## [13] setosa setosa setosa setosa setosa setosa
## [19] setosa setosa setosa setosa setosa setosa
## [25] setosa setosa setosa setosa setosa setosa
## [31] setosa setosa setosa setosa setosa setosa
## [37] setosa setosa setosa setosa setosa setosa
## [43] setosa setosa setosa setosa setosa setosa
## [49] setosa setosa versicolor versicolor versicolor versicolor
## [55] versicolor versicolor versicolor versicolor versicolor versicolor
## [61] versicolor versicolor versicolor versicolor versicolor versicolor
## [67] versicolor versicolor versicolor versicolor versicolor versicolor
## [73] versicolor versicolor versicolor versicolor versicolor versicolor
## [79] versicolor versicolor versicolor versicolor versicolor versicolor
## [85] versicolor versicolor versicolor versicolor versicolor versicolor
## [91] versicolor versicolor versicolor versicolor versicolor versicolor
## [97] versicolor versicolor versicolor versicolor virginica virginica
## [103] virginica virginica virginica virginica virginica virginica
## [109] virginica virginica virginica virginica virginica virginica
## [115] virginica virginica virginica virginica virginica virginica
## [121] virginica virginica virginica virginica virginica virginica
## [127] virginica virginica virginica virginica virginica virginica
## [133] virginica virginica virginica virginica virginica virginica
## [139] virginica virginica virginica virginica virginica virginica
## [145] virginica virginica virginica virginica virginica virginica
## Levels: setosa versicolor virginica
boxplot(iris$Sepal.Length ~ iris$Species)
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Bar Chart

For a categorical dataset, we can create a bar chart using the barchart() function. This is a natural way to
visualize categorical data.
# Shows the cloudiness of different days in Central Park
barchart(central.park.cloud)
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Numerical Summaries

A numerical summary tries to describe some aspect of a dataset using numbers. Two classes of numerical
summaries include measures of location and measures of spread. There are many other numerical summaries
(the textbook used in this lab describes measures of skewness and kurtosis in addition to measures of location
and spread), but we will focus on these two.

First, a great way to obtain appropriate numerical summaries for a dataset is with the summary() function.
This is a generic function that changes its behavior depending on the object passed to it. If x is a numeric
vector, summary(x) will compute the five-number summary of x (minimum, first quartile, median, third
quartile, maximum) in addition to the mean of x. On the other hand, if x is a factor or character vector,
summary(x) will compute the frequency of each category in x. Thus, if you have a dataset you are unfamiliar
with, summary() is a good way to see some basic information about it.
# Some basic information about rivers, a numeric dataset
summary(rivers)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 135.0 310.0 425.0 591.2 680.0 3710.0
# Frequencies for cloud conditions in central.park.cloud, a factor vector
summary(central.park.cloud)

## clear partly.cloudy cloudy
## 11 11 9

Of course it is possible to compute specific numeric summaries.

The mean of a dataset is defined as:

x̄ =
∑n
i=1 xi
n

where xi is the ith observation and n the size of the dataset. The mean can be computed in R using the
mean() function. To obtain the trimmed mean, you can set the trim parameter to a value between 0 and
0.5; this sets how much of the data to “trim” from either end of the ordered dataset. If trim = 0 (the
default), no data is trimmed from either end, but if trim = 0.5, as much data is possible is trimmed from
either end and the median is computed.
# The mean executive pay (in $10,000's)
mean(exec.pay)

## [1] 59.88945
# There are very large outliers, though; what happens to the mean if we trim
# 10% of the data from either side of the (ordered) dataset?
mean(exec.pay, trim = 0.1)

## [1] 29.96894

The median is the number that splits the dataset in half after being ordered. You can compute the median
in R using the median() function.
# The median executive pay; compare to the mean or trimmed mean
median(exec.pay)

## [1] 27

The (100α)th percentile is the number such that 100α% of the dataset lies below and 100(1−α)% above the
number. The quantile() function in R computes percentiles (also referred to as quantiles). quantile(x) will
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effectively find the five-number summary of the dataset x, including the first and third quartiles. Alternatively,
one can call quantile(x, p), where p is a vector (or perhaps just a number that will be interpreted as a
vector) specifying with percentiles are wanted (these are numbers between 0 and 1).

The fivenum() function will find five-number summaries outright, but one may as well call quantile() with
the default parameters (the presentation is better anyway).
# The five-number summary using fivenum
fivenum(exec.pay)

## [1] 0.0 14.0 27.0 41.5 2510.0
# The same information using quantile
quantile(exec.pay)

## 0% 25% 50% 75% 100%
## 0.0 14.0 27.0 41.5 2510.0
# What is the 99th percentile of executive pay?
quantile(exec.pay, .99)

## 99%
## 906.62
# The deciles of exec.pay, breaking the dataset into 10 parts
quantile(exec.pay, seq(0, 1, by = .1))

## 0% 10% 20% 30% 40% 50% 60% 70% 80% 90%
## 0.0 9.0 12.6 16.0 22.0 27.0 31.0 38.0 48.0 91.4
## 100%
## 2510.0

Now let’s discuss measures of spread. The range of a dataset is the difference between the largest and
smallest values:

range = max
i
xi −min

i
xi

R’s range() function will find the maximum and minimum of the dataset, but won’t difference them. This
is not a problem, though; simply call diff() on the result of range to subtract the minimum from the
maximum, like diff(range(x)), where x is the dataset.
# The largest and smallest executive pay
range(exec.pay)

## [1] 0 2510
# The range
diff(range(exec.pay))

## [1] 2510

Another (more common) means for numerically describing the spread of a dataset is with the standard
deviation or its square, the variance. The variance is defined as follows:

s2 = 1
n− 1

n∑
i=1

(xi − x̄)2

The standard deviation is merely the square root of the variance.
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s =
√
s2

In R, the function var() finds a dataset’s variance, and sd() finds the standard deviation.
# The variance of exec.pay
var(exec.pay)

## [1] 42867.03
# We could take the square root of the variance to get the standard
# deviation
sqrt(var(exec.pay))

## [1] 207.0435
# Or we could just use sd
sd(exec.pay)

## [1] 207.0435

For categorical data, the simplest way to numerically summarize the data is with a table. We can create one
with the table() function
table(central.park.cloud)

## central.park.cloud
## clear partly.cloudy cloudy
## 11 11 9
# Create a frequency table by dividing a table by the sample size (i.e. the
# length of the data vector)
table(central.park.cloud)/length(central.park.cloud)

## central.park.cloud
## clear partly.cloudy cloudy
## 0.3548387 0.3548387 0.2903226
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R Data Structures

As mentioned before, vectors are hardly the only data structure in R. There are other very important data
structures R uses.

Lists

A list is a generalized vector in R. An R vector requres that all data saved stored in the vector be of the same
type. A list has no such requirement. You can easily create lists with numbers, strings, vectors, functions,
and other lists all in one object. Lists in R are created with the list() function, where each element of the
list is separated with a , (note that lists don’t flatten vectors like c() does; every item separated by a comma
gets its own index in the list).
# Let's make a list of mixed type!
l1 <- list(1, "fraggle rock", c("henry", "margaret", "donna"), list(1:2, paste("Test",

1:10)))
l1

## [[1]]
## [1] 1
##
## [[2]]
## [1] "fraggle rock"
##
## [[3]]
## [1] "henry" "margaret" "donna"
##
## [[4]]
## [[4]][[1]]
## [1] 1 2
##
## [[4]][[2]]
## [1] "Test 1" "Test 2" "Test 3" "Test 4" "Test 5" "Test 6" "Test 7"
## [8] "Test 8" "Test 9" "Test 10"
# This list has no names for its elements; we could specify some using
# names()
names(l1) <- c("num", "char", "vec", "inner_list")
# We can also assign names when we create the list
l2 <- list(char = "monday", vec = c("and", "but", "or"))
l2

33
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## $char
## [1] "monday"
##
## $vec
## [1] "and" "but" "or"

How do we reference the objects stored in a list? We have a few options:

• If we wish that the object returned by the reference also be a list, we can use single-bracket notation
like we did with vectors, like li[x] where x is any means for selecting elements of the list (number,
string, vector, boolean vector, etc.).

• If we the object stored at x, we can use double bracket notation, like l1[[x]] where x is either a number
or a string (x cannot be a vector in this case). The difference between l1[x] and li[[x]] may be subtle,
but it’s very important. li[x] is a list, and l1[[x]] is an object stored in a list. (This difference is
also true for vectors; vec[x] is a vector, and vec[[x]] is an object stored in a vector. Rarely does this
make a difference, but sometimes it does, like when the vector is a vector of functions.)

• If the elements of the list are named, instead of referencing them with l1[["x"]] (x is the name of the
element), we can use $ notation, like l1$x. This is usually how named elements are referenced.

# This is a list
l1[1:3]

## $num
## [1] 1
##
## $char
## [1] "fraggle rock"
##
## $vec
## [1] "henry" "margaret" "donna"
is.list(l1[1:3])

## [1] TRUE
# This is item stored in the third position of the list
l1[[3]]

## [1] "henry" "margaret" "donna"
# This is not a list
is.list(l1[[3]])

## [1] FALSE
# Notice the difference
l1[3]

## $vec
## [1] "henry" "margaret" "donna"
# We can also reference by name
l2["vec"]

## $vec
## [1] "and" "but" "or"
l2[["vec"]]

## [1] "and" "but" "or"
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# An alternative way to reference the contents of an element by name
l2$vec

## [1] "and" "but" "or"

More complex objects in R are often simply lists with a specific structure, thus making lists very important.

Matrices

An R matrix is much like an R vector (in fact, internally they are the same, with matrices having additionaly
attributes for dimension). A matrix is two-dimensional, with a row and column dimension. Like a vector,
matrices only allow data of a single type. There are a few ways to make matrices in R:

• The rbind() function takes an arbitrary number of vectors as inputs (all of equal length), and creates
a matrix where each input vector is a row of the matrix. cbind() is exactly like rbind() except that
the vectors become columns rather than rows.

• The matrix() function takes a single vector input and turns that vector into a matrix. You can set
either the nrow parameter or the ncol parameter to the number of rows or columns respectively that
you desire your matrix to have (it is not necessary to specify both, though not illegal either so long as
the product of the dimensions equals the length of the input vector). By default, R will fill the matrix
by column; this means that it will fill the first column with the first contents of your input vector in
sequence, then the next column with remaining elements, and so on until the matrix is filled and the
contents of the input vector “exhausted.”" Changing the byrow parameter to byrow = TRUE changes
this behavior, and R will fill the matrix by rows rather than columns.

Both the rows and the columns of a matrix can be named, though you don’t use the names() function
for seeing or changing these names. Instead, use the rownames() or colnames() function for accessing or
modifying the row names and column names, respectively.

You can get the dimensions of a matrix with the dim() function. nrow() returns the number of rows of a
matrix, and ncol() the number of columns. length() returns the number of elements in the matrix (so the
product of the dimensions).
# Using rbind to make a matrix
mat1 <- rbind(c("jim bridger", "meadowbrook", "elwood"), c("copper hills", "kearns",

"west jordan"), c("university of utah", "byu", "westminster"), c("slcc",
"snow", "suu"))

# Likewise with cbind
mat2 <- cbind(c("jim bridger", "meadowbrook", "elwood"), c("copper hills", "kearns",

"west jordan"), c("university of utah", "byu", "westminster"), c("slcc",
"snow", "suu"))

mat1

## [,1] [,2] [,3]
## [1,] "jim bridger" "meadowbrook" "elwood"
## [2,] "copper hills" "kearns" "west jordan"
## [3,] "university of utah" "byu" "westminster"
## [4,] "slcc" "snow" "suu"
mat2

## [,1] [,2] [,3] [,4]
## [1,] "jim bridger" "copper hills" "university of utah" "slcc"
## [2,] "meadowbrook" "kearns" "byu" "snow"
## [3,] "elwood" "west jordan" "westminster" "suu"



36 LECTURE 2

dim(mat1) # The dimensions of mat1

## [1] 4 3
nrow(mat1) # The number of rows of mat1

## [1] 4
ncol(mat1) # The number of columns of mat1

## [1] 3
length(mat1) # The number of elements stored in mat1

## [1] 12
# Using matrix()
mat3 <- matrix(1:10, nrow = 2)
mat4 <- matrix(1:10, nrow = 2, byrow = FALSE)
mat3

## [,1] [,2] [,3] [,4] [,5]
## [1,] 1 3 5 7 9
## [2,] 2 4 6 8 10
mat4

## [,1] [,2] [,3] [,4] [,5]
## [1,] 1 3 5 7 9
## [2,] 2 4 6 8 10
# Naming matrix dimensions
rownames(mat3) <- c("odds", "evens")
colnames(mat3) <- c("first", "second", "third", "fourth", "fifth")
mat3

## first second third fourth fifth
## odds 1 3 5 7 9
## evens 2 4 6 8 10
# Internally, matrices are glorified vectors
as.vector(mat1)

## [1] "jim bridger" "copper hills" "university of utah"
## [4] "slcc" "meadowbrook" "kearns"
## [7] "byu" "snow" "elwood"
## [10] "west jordan" "westminster" "suu"

To access the elements of the matrix, you could do so with mat[x], where x is a vector. This will treat the
matrix mat like a vector. Sometimes this is the behavior you want, but most of the time you probably wish
to access the data using the matrix’s rows and columns (otherwise you would have made a vector).

R uses the notation [,] for referencing elements in a matrix. Thus you can reference objects in a matrix with
mat[x,y], where x is a vector specifying the desired rows, and y a vector specifying the desired columns.
All the rules for referencing elements of a vector apply to x and y, with the additional rule that leaving a
dimension blank will lead to everything in that dimension being included. Thus, mat[,y] results in a matrix
with all the rows of mat and columns determined by y, and mat[x,] a matrix with all the columns of mat
and rows determined by x.
# Get the (1,2) entry of mat1
mat1[1, 2]
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## [1] "meadowbrook"
# The first row of mat1; notice that this is a vector
mat1[1, ]

## [1] "jim bridger" "meadowbrook" "elwood"
# The second column of mat1; notice that this is also a vector
mat1[, 2]

## [1] "meadowbrook" "kearns" "byu" "snow"
# We can preserve the matrix structure (in other words, not turn the result
# into a vector) by adding an additional comma and specifying the option
# drop=FALSE
mat1[1, , drop = FALSE]

## [,1] [,2] [,3]
## [1,] "jim bridger" "meadowbrook" "elwood"
mat1[, 2, drop = FALSE]

## [,1]
## [1,] "meadowbrook"
## [2,] "kearns"
## [3,] "byu"
## [4,] "snow"
# A small 2x3 submatrix of mat1
mat1[1:2, 1:3]

## [,1] [,2] [,3]
## [1,] "jim bridger" "meadowbrook" "elwood"
## [2,] "copper hills" "kearns" "west jordan"
# The third odd number in 1 to 10
mat3["odds", "third"]

## [1] 5
# The first and third even numbers in 1 to 10
mat3["evens", c("first", "third")]

## first third
## 2 6

Matrices generalize to arrays, and can have more than two dimensions. For example, if arr is a three-
dimensional array, we may access an element in it with arr[1, 4, 3]. We will not discuss arrays any further
than this.

Data Frames

An R data frame stores data in a tabular format. Technically, a data frame is a list of vectors of equal
length, so a data frame is a list. But since each “column” of the data frame has equal length, it also looks
like a matrix where each column can differ in type (so one column could be numeric data, another character
data, yet another factor data, etc.). Thus we can reference the data in a data frame like it is a list or like it is
a matrix.

• The matrix style of referencing data frame data is like df[x,y], where x is the rows of the data frame
and y the columns. All the rules for using this notation with matrices apply to data frames. The result
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is another data frame.

• The list style for referencing a data frame references only the columns, not the rows. So df[x] will
select the columns of df specified by x, and the result is another data frame. df[[x]] refers to the
vector stored in df[[x]]; this is a vector, not a data frame. More commonly, though, we refer to a
column of a data frame we want with the dollar notation; rather than use df[["x"]], we use df$x to
get the column vector x in df.

To create a data frame, we have options:

• We could use the data.frame() function, where each vector passed will become a column in the data
frame.

• We could use the as.data.frame() function on an object easily coerced into a data frame, like a matrix
or a list.

Some examples are shown below.
# Making a data frame with data.frame
df1 <- data.frame(numbers = 1:5, letters = c("a", "b", "c", "d", "e"))
df1

## numbers letters
## 1 1 a
## 2 2 b
## 3 3 c
## 4 4 d
## 5 5 e
# Notice that the character vector was automatically made a factor vector!
str(df1)

## 'data.frame': 5 obs. of 2 variables:
## $ numbers: int 1 2 3 4 5
## $ letters: Factor w/ 5 levels "a","b","c","d",..: 1 2 3 4 5
colnames(mat2) <- c("elementary", "high school", "university", "local")
# Make a data frame out of a matrix If we don't want to turn character
# strings into factors, set stringsAsFactors to FALSE (this also works in
# data.frame)
df2 <- as.data.frame(mat2, stringsAsFactors = FALSE)
df2

## elementary high school university local
## 1 jim bridger copper hills university of utah slcc
## 2 meadowbrook kearns byu snow
## 3 elwood west jordan westminster suu
str(df2)

## 'data.frame': 3 obs. of 4 variables:
## $ elementary : chr "jim bridger" "meadowbrook" "elwood"
## $ high school: chr "copper hills" "kearns" "west jordan"
## $ university : chr "university of utah" "byu" "westminster"
## $ local : chr "slcc" "snow" "suu"
newlist <- list(first = c("Tamara", "Danielle", "John", "Kent"), last = c("Garvey",

"Wu", "Godfrey", "Morgan"))
# Making a data frame from a list
df3 <- as.data.frame(newlist, stringsAsFactors = FALSE)
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Working with Data Frames

Data frames are such a key tool for R users that packages are written solely for the accessing and manipulation
of data in data frames. Thus they deserve more discussion.

Often we wish to work with multiple variables stored in a data frame, but while the $ notation is convenient,
even it can grow tiresome with complicated computations. The function with() can help simplify code. The
first argument of with() is a data frame, and the second argument is a command to evaluate.
d <- mtcars[1:10, ]
# We wish to know which cars have mpg within the first and third quartile.
# Here's a first approach that is slightly cumbersome
d[d$mpg > quantile(d$mpg, 0.25) & d$mpg < quantile(d$mpg), ]

## mpg cyl disp hp drat wt qsec vs am gear carb
## Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
## Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
# We can use the with function to clean things up
d[with(d, mpg > quantile(mpg, 0.25) & mpg < quantile(mpg)), ]

## mpg cyl disp hp drat wt qsec vs am gear carb
## Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
## Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4

Often users don’t want all the data in a data frame, but only a subset of it. The which() could be used to get
the desired rows and a vector the desired columns, but this can quickly become cumbersome. Alternatively,
use the subset() function for this task. The data frame is the first argument passed to subset(). Next,
pass information to the subset parameter to decide on what rows to include, or the select parameter to
choose the columns. Names of variables in the data frame can be used in subset() like in with(); you don’t
need to use $ notation to choose the variable from within the data frame. Additionally, unlike when selecting
with vectors, you can use : to choose all columns between two names, not just numbers, and you can use -
in front of a vector of names to declare columns you don’t want.
names(mtcars)

## [1] "mpg" "cyl" "disp" "hp" "drat" "wt" "qsec" "vs" "am" "gear"
## [11] "carb"
# Notice that I do not list the names as strings
subset(mtcars, select = c(mpg, cyl), subset = mpg > quantile(mpg, 0.9))

## mpg cyl
## Fiat 128 32.4 4
## Honda Civic 30.4 4
## Toyota Corolla 33.9 4
## Lotus Europa 30.4 4
# Other ways to select columns Using : on column names selects columns
# between the names on either side
subset(mtcars, select = hp:qsec, subset = !is.na(mpg) & mpg > quantile(mpg,

0.25) & mpg < quantile(mpg, 0.75) & cyl == 8)

## hp drat wt qsec
## Hornet Sportabout 175 3.15 3.440 17.02
## Merc 450SE 180 3.07 4.070 17.40
## Merc 450SL 180 3.07 3.730 17.60
## Dodge Challenger 150 2.76 3.520 16.87
## Pontiac Firebird 175 3.08 3.845 17.05
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## Ford Pantera L 264 4.22 3.170 14.50
# Using - on a vector of names selects all columns except those in a vector
subset(mtcars, select = -c(drat, wt, qsec), subset = !is.na(mpg) & mpg > quantile(mpg,

0.25) & mpg < quantile(mpg, 0.75) & cyl == 8)

## mpg cyl disp hp vs am gear carb
## Hornet Sportabout 18.7 8 360.0 175 0 0 3 2
## Merc 450SE 16.4 8 275.8 180 0 0 3 3
## Merc 450SL 17.3 8 275.8 180 0 0 3 3
## Dodge Challenger 15.5 8 318.0 150 0 0 3 2
## Pontiac Firebird 19.2 8 400.0 175 0 0 3 2
## Ford Pantera L 15.8 8 351.0 264 0 1 5 4
# Here is the above without using subset; notice how complicated the command
# is
mtcars[!is.na(mtcars$mpg) & mtcars$mpg > quantile(mtcars$mpg, 0.25) & mtcars$mpg <

quantile(mtcars$mpg, 0.75) & mtcars$cyl == 8, !(names(mtcars) %in% c("drat",
"wt", "qsec"))]

## mpg cyl disp hp vs am gear carb
## Hornet Sportabout 18.7 8 360.0 175 0 0 3 2
## Merc 450SE 16.4 8 275.8 180 0 0 3 3
## Merc 450SL 17.3 8 275.8 180 0 0 3 3
## Dodge Challenger 15.5 8 318.0 150 0 0 3 2
## Pontiac Firebird 19.2 8 400.0 175 0 0 3 2
## Ford Pantera L 15.8 8 351.0 264 0 1 5 4

There are many other details about working with data frames that are common parts of an analysts workflow,
such as reshaping a data frame (keeping the same information stored in a data frame but changing the data
frame’s structure) and merging (combining information in two data frames). Read the textbook for more
information and examples of these very important ideas. The entire process of bringing data into a workable
format is called data cleaning, a significant and often underappreciated part of an analyst’s job.

Applying a Function Over a Collection

Often we wish to apply a function not to a single object or variable but instead a collection so we can get
multiple values. For example, if we want all powers of two from one to ten, we could do so with the following:
2^1:10

## [1] 2 3 4 5 6 7 8 9 10

A similar idea is that we could take the square root of numbers between 0 and 1 with:
sqrt(seq(0, 1, by = 0.1))

## [1] 0.0000000 0.3162278 0.4472136 0.5477226 0.6324555 0.7071068 0.7745967
## [8] 0.8366600 0.8944272 0.9486833 1.0000000

It may not be this simple though. For example, suppose we have a data frame, which I construct below:
library(MASS)
cdat <- subset(Cars93, select = c(Min.Price, Price, Max.Price, MPG.city, MPG.highway,

EngineSize, Horsepower, RPM))
head(cdat)

## Min.Price Price Max.Price MPG.city MPG.highway EngineSize Horsepower



APPLYING A FUNCTION OVER A COLLECTION 41

## 1 12.9 15.9 18.8 25 31 1.8 140
## 2 29.2 33.9 38.7 18 25 3.2 200
## 3 25.9 29.1 32.3 20 26 2.8 172
## 4 30.8 37.7 44.6 19 26 2.8 172
## 5 23.7 30.0 36.2 22 30 3.5 208
## 6 14.2 15.7 17.3 22 31 2.2 110
## RPM
## 1 6300
## 2 5500
## 3 5500
## 4 5500
## 5 5700
## 6 5200

I want the mean of all the variables in cdat. mean(cdat) will not work; the mean() function does not know
how to handle the different variables in a data frame.

We may instead try a for loop, like so:
# Make an empty vector
cdat_means <- c()
# This starts a for loop
for (vec in cdat) {

# For ever vector in cdat (called vec in the body of the loop), the code in
# the loop will be executed Compute the mean of vec, and add it to
# cdat_means
cdat_means <- c(cdat_means, mean(vec))

}
names(cdat_means) <- names(cdat)
cdat_means

## Min.Price Price Max.Price MPG.city MPG.highway EngineSize
## 17.125806 19.509677 21.898925 22.365591 29.086022 2.667742
## Horsepower RPM
## 143.827957 5280.645161

A good R programmer will try to avoid for loops as much as possible. One reason is that for loops in R
are slow, unlike in other languages. Since R is an interpreted language and also includes many features for
interacting with R and writing code easier, R programs are going to be slower than in other languages. This
is the price R pays for being interactive and much easier to write code for than compiled languages like C,
C++, or Java. (A lot of R functions run fast because the function is actually an interface for a function
written in C, C++, or FORTRAN.) Another reason R programmers avoid for loops is that there is often an
alternative not using a loop that easier to both write and understand.

How could we rewrite the above code without using for? We could use the function sapply() and the call
sapply(v, f), where v is either a vector or list with the items you wish to iterate over, and f is a function
to apply to each item. (Remember that a data frame is a list of vectors of equal length.) A vector is returned
containing the result.
# A function to check if a number is even
even <- function(x) {

# If x is divisible by 2 (the remainder is 0 when x is divided by 2), x is
# even and the result is TRUE. Otherwise, the result is FALSE.
x%%2 == 0

}

# Which numbers between 1 and 10 are even?
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sapply(1:10, even)

## [1] FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE
# The means of the vectors in cdat (remember that a data frame is a list of
# equal length vectors)
sapply(cdat, mean)

## Min.Price Price Max.Price MPG.city MPG.highway EngineSize
## 17.125806 19.509677 21.898925 22.365591 29.086022 2.667742
## Horsepower RPM
## 143.827957 5280.645161
# We can pass sapply an anonymous function, which is an unnamed function
# passed as an argument to some other function, used for some evaluation. I
# illustrate below by passing to sapply a function that computes the range
# of each of the variables in cdat.
sapply(cdat, function(vec) {

diff(range(vec))
})

## Min.Price Price Max.Price MPG.city MPG.highway EngineSize
## 38.7 54.5 72.1 31.0 30.0 4.7
## Horsepower RPM
## 245.0 2700.0

The lapply() function works exactly like the sapply() function, except lapply() returns a list rather than
a vector.

Alternatively, if we have a function f(x) that knows how to work with an object x, we could vectorize f so
it can work on a vector or list of objects like x. We can use the Vectorize() function for this task with a
call like vf <- Vectorize(f), where f is the function to vectorize, and vf is the new, vectorized version of
f. The example below does what we did for cdat with both a for loop and sapply(), but now does so with
a vectorized version of mean().
vmean <- Vectorize(mean)
vmean(cdat)

## Min.Price Price Max.Price MPG.city MPG.highway EngineSize
## 17.125806 19.509677 21.898925 22.365591 29.086022 2.667742
## Horsepower RPM
## 143.827957 5280.645161

Now suppose you have a data frame d, which contains information from different samples representing
different populations. You wish to apply a function f() to data stored in d$x, and d$y determines which
sample each row of the data frame (and thus, each entry of d$x) came from. You want f() to be applied
to the data in each sample, separately. You can do so with the aggregate() function in a call of the form
aggregate(x ~ y, data = d, f). I illustrate with the iris dataset below.
# The struture of iris
str(iris)

## 'data.frame': 150 obs. of 5 variables:
## $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
## $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
## $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
## $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
## $ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
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# The mean sepal length by species of iris
aggregate(Sepal.Length ~ Species, data = iris, mean)

## Species Sepal.Length
## 1 setosa 5.006
## 2 versicolor 5.936
## 3 virginica 6.588
# The five-number summary of sepal length for each species of iris
aggregate(Sepal.Length ~ Species, data = iris, quantile)

## Species Sepal.Length.0% Sepal.Length.25% Sepal.Length.50%
## 1 setosa 4.300 4.800 5.000
## 2 versicolor 4.900 5.600 5.900
## 3 virginica 4.900 6.225 6.500
## Sepal.Length.75% Sepal.Length.100%
## 1 5.200 5.800
## 2 6.300 7.000
## 3 6.900 7.900

Let’s now consider matrices. Perhaps we have a matrix and we wish to apply a function across the rows of
the matrix or the columns of the matrix. The apply() function allows us to do just that in a call of the form
apply(mat, m, f), where mat is the matrix with data, f the function to apply, and m the margin to apply
f() over. For matrices, a value of 1 for m will lead to the function being applied across rows, and a value of 2
across columns. I illustrate with a data set recording the ethnicity of selected Utah publich schools (to see
how this data set was created, view the source code of this document).

## Loading required package: methods
school_race_dat

## Entheos Academy Kearns Entheos Academy Magna
## Native American 0 0
## Asian 4 5
## Black 1 5
## Hispanic 145 201
## Pacific Islander 15 3
## White 334 273
## Multiple Race 23 15
## Jim Bridger School Sunset Ridge Middle Copper Hills High
## Native American 4 5 9
## Asian 6 25 50
## Black 12 19 42
## Hispanic 216 322 551
## Pacific Islander 12 28 28
## White 314 1124 1924
## Multiple Race 7 50 102
## Thomas Jefferson Jr High Kearns High
## Native American 11 39
## Asian 13 49
## Black 17 53
## Hispanic 260 937
## Pacific Islander 42 99
## White 394 1138
## Multiple Race 2 10
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# Get row sums
apply(school_race_dat, 1, sum)

## Native American Asian Black Hispanic
## 68 152 149 2632
## Pacific Islander White Multiple Race
## 227 5501 209
# Column sums
apply(school_race_dat, 2, sum)

## Entheos Academy Kearns Entheos Academy Magna Jim Bridger School
## 522 502 571
## Sunset Ridge Middle Copper Hills High Thomas Jefferson Jr High
## 1573 2706 739
## Kearns High
## 2325
# Row sums and column sums are actually used frequently, so there are
# specialized functions for these
rowSums(school_race_dat)

## Native American Asian Black Hispanic
## 68 152 149 2632
## Pacific Islander White Multiple Race
## 227 5501 209
colSums(school_race_dat)

## Entheos Academy Kearns Entheos Academy Magna Jim Bridger School
## 522 502 571
## Sunset Ridge Middle Copper Hills High Thomas Jefferson Jr High
## 1573 2706 739
## Kearns High
## 2325

Using External Data

R would not be very useful if we had no way of loading in and saving data. R has means for reading data
from spreadsheets such as .xls or .xlsx files made by Microsoft Excel. Functions for reading Excel files can
be found in the xlsx or gdata packages.

Common plain-text formats for reading data include the comma-separated values format (.csv), tab-separated
values format (.tsv), and the fixed-width format (.fwf). These files can be read in using the read.csv(),
read.table(), and the read.fwf() functions (with read.csv() being merely a front-end for read.table()).
All of these functions parse a plain-text data file and return a data frame with the contents. Keep in mind
that R will guess what type of data is stored in the file. Usually it makes a good guess, but this is not
guaranteed and you may need to do some more data cleaning or give R more instructions on how to interpret
the file.

In order to load a file, you must specify the location of the file. If the file is on your hard drive, there are a
few ways to do so:

• You could use the file.choose() command to browse your system and locate the file. Once done, you
will have a text string describing the location of the file on your system.
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• Any R session has a working directory, which is where R looks first for files. You can see the current
working directory with getwd(), and change the working directory with setwd(path), where path is a
string for the location of the directory you wish to set as the new working directory.

Let’s assume we’re loading in a .csv file (the approach is similar for other formats). The command df <-
read.csv("myfile.csv") instructs R to read myfile.csv (which is presumably in the working directory,
since we did not specify a full path; if it were not, we would either change the working directory or pass
the full path to the function, which may look something like read.csv("C:/path/to/myfile.csv"), or
read.csv("/path/to/myfile.csv"), depending on the system) and store the resulting data frame in df.
Once done, df will now be ready for us to use.

Suppose that the data file is on the Internet. You can pass the url of the file to read.csv() and R will read
the file online and make it available to you in your session. I demonstrate below:
# Total Primary Energy Consumption by country and region, for years 1980
# through 2008; in Quadrillion Btu (CSV Version). Dataset from data.gov,
# from the Department of Energy's dataset on total primary energy
# consumption. Download and load in the dataset
energy <- read.csv("http://en.openei.org/doe-opendata/dataset/d9cd39c5-492e-4e82-8765-12e0657eeb4e/resource/3c42d852-567e-4dda-a39c-2bfadf309da5/download/totalprimaryenergyconsumption.csv",

stringsAsFactors = FALSE)
# R did not parse everything correctly; turn some variables numeric
energy[2:30] <- lapply(energy[2:30], as.numeric)
# We want energy data for North American countries, from 2000 to 2008
us_energy <- subset(energy, select = X2000:X2008, subset = Country %in% c("Canada",

"United States", "Mexico"))
us_energy

## X2000 X2001 X2002 X2003 X2004 X2005 X2006
## 2 13.07669 12.87847 13.10786 13.52061 13.83128 14.16374 13.81736
## 4 6.37958 6.32931 6.32936 6.50563 6.48998 6.80188 7.36271
## 6 99.25385 96.53415 98.03879 98.31384 100.49743 100.60722 99.90566
## X2007 X2008
## 2 14.07179 14.02923
## 4 7.27651 7.30898
## 6 101.67563 99.53011

Naturally you can export data frames into common formats as well. write.csv(), write.table(), and
write.fwf() will write data into comma-separated value, tab-separated value, and fixed width formats.
Their syntax is similar. To save a .csv file, issue the command write.csv(df, file = "myfile.csv"),
where df is the data frame to save and file where to save it, which could be just a file name (resulting in
the file being saved in the working directory), or an absolute path.
my_data <- data.frame(var1 = 1:10, var2 = paste("word", 1:10))
write.csv(my_data, file="my_data.csv")

There are other formats R can read and write to. The foreign package allows R to read data files created
for other statistical software packages such as SAS or Stata. The XML package allows R to read XML and
HTML files. You can also read JSON files or data stored in Google Sheets. Refer to the textbook for more
information.
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Lecture 3

Random Number Generation

Computers cannot create random numbers. They are Turing-complete, and a Turing machine is deterministic,
not random. Instead, computers generate pseudo-random numbers. They start with a seed, an initial number
in a sequence, and from there generate further numbers in the sequence that, without knowing the initial
seed, appear to be random. That said, if the seed were known along with the generating process, the random
sequence could be recreated exactly. Usually the system time is used to initialize a random number generator,
since this may look random to a user. In R, you can use the set.seed() function to set a random seed.
With no parameters, R will reset the random seed. If you wish to set the seed to a specific (numeric) value,
you can do so with set.seed(seed). (You do not have to set a seed; R will automatically pick one at the
start of a session, though if you want reproducible results, you should set the seed and communicate what it
is.) For this document, I set the seed below.
set.seed(52716)

Random number generators generate uniformly distributed random numbers. Once they can generate random
numbers from the uniform distribution, random numbers following other distributions can be generated as
well, so only one random number generator is needed.

The sample() function allows for some basic random value generation. Two arguments are required. The first
is a vector containing the values that could be generated. This is your sample space, the possible values
that could be generated by the random process. The second is the number of random values to generate.
The call sample(x, size) will generate a random vector consisting of values from x of length size.
# Here I simulate the classic ball-in-bag probability model where random
# balls are pulled from a bag, without replacement. There are 32 red balls
# and 16 blue balls. I pull five balls from the bag.
sample(rep(c("red", "blue"), times = c(32, 16)), 5)

## [1] "blue" "red" "red" "red" "red"

By default, sample() will use a model where random values are generated without replacement. This
means that once a value is observed, it cannot be observed again (in the ball-and-bag model, this equates to
pulling a ball from the bag and not putting the ball back in; once drawn, it cannot be drawn again). This
naturally means that you must have size < length(x), or an error will be thrown; you can’t draw random
values when you run out! To switch to a model with replacement (i.e. balls are put back in the bag after
being drawn), set the parameter replace = TRUE.
# A model without replacement
ball_pull1 <- sample(rep(c("red", "blue"), times = c(32, 16)), 32 + 16)
ball_pull1

## [1] "red" "red" "red" "red" "blue" "blue" "blue" "blue" "red" "red"
## [11] "blue" "red" "red" "red" "red" "red" "blue" "blue" "red" "red"
## [21] "red" "red" "red" "blue" "red" "red" "red" "blue" "red" "red"
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## [31] "blue" "red" "blue" "blue" "red" "red" "red" "blue" "red" "red"
## [41] "blue" "red" "red" "red" "red" "blue" "red" "blue"
# Since I pulled all balls out of the bag, I get exactly 32 reds and 16
# blues
table(ball_pull1)

## ball_pull1
## blue red
## 16 32
# Now with replacement
ball_pull2 <- sample(rep(c("red", "blue"), times = c(32, 16)), 32 + 16, replace = TRUE)
ball_pull2

## [1] "red" "red" "red" "blue" "red" "red" "red" "red" "blue" "red"
## [11] "red" "red" "red" "red" "red" "blue" "red" "red" "red" "red"
## [21] "red" "red" "red" "red" "red" "blue" "red" "red" "blue" "red"
## [31] "red" "red" "red" "red" "red" "red" "blue" "red" "red" "blue"
## [41] "red" "red" "blue" "red" "blue" "red" "red" "blue"
# While close to the true frequencies, I don't see red balls exactly 32
# times, or blue balls exactly 16 times.
table(ball_pull2)

## ball_pull2
## blue red
## 10 38

By default, sample() will assume that each element in x is equally likely. This can be changed by setting
prob to a vector assigning probabilities to each outcome.
# We can change the sampling with replacement model by making the sample
# space only c('red', 'blue'), and setting the probability of seeing these
# respective values to those consistent with our model.
sample(c("red", "blue"), 5, replace = TRUE, prob = c(32/48, 16/48))

## [1] "red" "red" "red" "red" "blue"

Families of Distributions

R facilitates both description and simulation of random variables from various families of probability
distributions, using similar formats. Each family will have four R functions associated with it, preceded by a
character and followed by the identifier of the family.

• d functions are associated with the probability density function (pdf) or probability mass function (pmf)
of a distribution. An input vector of quantiles will get the value of the pdf/pmf at those quantiles.

• p functions are associated with the cumulative distribution function (cdf) of a probability distribution.
Thus they describe the probability P (X ≤ x), or the probability of being less than the input. This is
often referred to as the lower tail of the distribution. If instead you want the upper tail, or P (X > x),
you can set lower.tail = FALSE in a p function to obtain the upper tail.

• q functions are associated with the quantiles of the probability distribution, and thus are the inverse of
the cdf. There is likewise a lower.tail parameter for the q function.

• r functions generate random values drawn from the distribution.

I give examples below for some distributions, starting with some discrete distributions.
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Bernoulli

A Bernoulli random variable is a random variable that is either 1 or 0, and is described by the probability of
obtaining 1, often denoted p. Thus we denote a Bernoulli random variable with:

X ∼ Ber(p)

Note that if p = 1
2 , this is the model of a single fair coin flip.

Bellow, I plot the pdf’s and cdf’s of a random variable X ∼ Ber( 1
2 ), and also simulate some values.

# I will be plotting a lot of pmf's in this document, so I create a function
# to help save effort. The first argument, q, represents the quantiles of
# the random variable (the values that are possible). The second argument
# represents the value of the pmf at each q (and thus should be of the same
# length); in other words, for each q, p is the probability of seeing q
plot_pmf <- function(q, p) {

# This will plot a series of horizontal lines at q with height p, setting
# the y limits to a reasonable heights
plot(q, p, type = "h", xlab = "x", ylab = "probability", main = "pmf", ylim = c(0,

max(p) + 0.1))
# Usually these plots have a dot at the end of the line; the point function
# will add these dots to the plot created above
points(q, p, pch = 16, cex = 2)

}

# Plot the pmf of a Bernoulli rv
ber_q <- c(0, 1)
ber_pmf <- dbinom(ber_q, 1, 0.5)
plot_pmf(ber_q, ber_pmf)
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# Plot the cdf of a Bernoulli rv
ber_q2 <- seq(-1, 2, length = 1000)
ber_cdf <- pbinom(ber_q2, 1, 0.5)
# Plot the cdf with a line plot
plot(ber_q2, ber_cdf, type = "l", xlab = "x", ylab = "probability", main = "cdf",

ylim = c(0, 1.1))
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# The quartiles of a Bernoulli distribution
qbinom(seq(0, 1, by = 0.25), 1, 0.5)

## [1] 0 0 0 1 1
# Generate 10 random values from a Bernoulli distribution
rbinom(10, 1, 0.5)

## [1] 1 0 0 1 1 0 0 0 1 1

Binomial

A binomial random variable is specified by two parameters, n and p, and is denoted by:

X ∼ BINOM(n, p)

Binomial random variables represent the number of times n Bernoulli random variables are 1 when the
probability of seeing 1 is p (another way to think of this is that if a coin flip is a Bernoulli random variable,
then the number of times the coin lands heads-up when flipped n times is a binomial random variable).

The functions for the binomial distribution are dbinom(), pbinom(), qbinom(), and rbinom(). All of these
have arguments size and prob for specifying the parameters n and p of the binomial distribution respectively.



FAMILIES OF DISTRIBUTIONS 51

# Let's consider a model where a fair coin is flipped five times. The pmf
# of the binomial rv:
binom_q <- 0:5
binom_pmf <- dbinom(binom_q, size = 5, prob = 0.5)
plot_pmf(binom_q, binom_pmf)
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# The cdf of a binomial rv
binom_q2 <- seq(-1, 6, length = 1000)
binom_cdf <- pbinom(binom_q2, size = 5, prob = 0.5)
plot(binom_q2, binom_cdf, type = "l", xlab = "x", ylab = "probability", main = "cdf",

ylim = c(0, 1.1))
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# The quartiles of this binomial rv
qbinom(seq(0, 1, by = 0.25), size = 5, prob = 0.5)

## [1] 0 2 2 3 5
# 10 simulated binomial rv
rbinom(10, size = 5, prob = 0.5)

## [1] 3 3 3 5 4 3 2 2 1 2

Geometric

A geometric random variable is specified by one parameter, p, and is denoted by:

X ∼ GEOM(p)

This random variable represents how many times a Bernoulli random variable with parameter p is created
until a 1 is seen. (In other words, the number of times a coin is flipped until it lands heads-up is a geometric
random variable). The name comes from the fact that the pmf of a geometric random variable is a geometric
series, or p(x) = p(1− p)x−1.

The functions for working with geometric random variables are dgeom(), pgeom(), qgeom(), and rgeom().
All of these have an argument prob used to represent the parameter p of the geometric distribution.
# In these examples we will work with a geometric rv where p = 1. I now show
# part of its pmf
geom_q <- 0:20
geom_pmf <- dgeom(geom_q, prob = 0.1)
plot_pmf(geom_q, geom_pmf)
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# The cdf of this variable
geom_q2 <- seq(-1, 21, length = 1000)
geom_cdf <- pgeom(geom_q2, prob = 0.1)
plot(geom_q2, geom_cdf, type = "l", xlab = "x", ylab = "probability", main = "cdf",

ylim = c(0, 1.1))
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# Quartiles of a geometric rv
qgeom(seq(0, 1, by = 0.25), prob = 0.1)

## [1] 0 2 6 13 Inf
# 10 simulated geometric rv's
rgeom(10, prob = 0.1)

## [1] 19 3 11 8 10 4 14 13 11 0

Poisson

A Poisson random variable is specified by one parameter, λ, and is denoted by:

X ∼ POI(λ)

Poisson random variables are used to model counts of an event that occur in a finite frame of time. They
are, in some sense, the inverse of a geometric random variable; while a geometric random variable represents
the length of time to see one “success”, a Poisson random variable represents how many “successes” given a
certain length of time. The parameter λ represents the average “success” rate. Some examples of Poisson
random variables include:

• The number of calls a call center receives in a work day.
• How many goals a soccer team scores in a game.
• The number of deaths from horse kicks in the Prussian army annually.

The R functions for working with Poisson random variables are dpois(), ppois(), qpois(), and rpois().
The argument lambda corresponds to the parameter λ.
# For these examples, the average success rate is 4. Creating a pmf:
pois_q <- 0:20
pois_pmf <- dpois(pois_q, lambda = 4)
plot_pmf(pois_q, pois_pmf)
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# Creating a cdf
pois_q2 <- seq(-1, 21, length = 1000)
pois_cdf <- ppois(pois_q2, lambda = 4)
plot(pois_q2, pois_cdf, type = "l", xlab = "x", ylab = "probability", main = "cdf",

ylim = c(0, 1.1))
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# Quartiles of the Poisson rv
qpois(seq(0, 1, by = 0.25), lambda = 4)

## [1] 0 3 4 5 Inf
# Simulating Poisson rv's
rpois(10, lambda = 4)

## [1] 4 5 2 4 4 5 3 3 2 0

Uniform

The first continuous random variable I consider here is a uniformly distributed random variable, which is
described by two parameters, a and b, and represented with:

X ∼ UNIF(a, b)

a is the smallest value possible a uniformly distributed rv could take, and b the largest. Every number
between a and b is equally weighted. It is a very important random variable, since it describes the probability
for any random variable the probability that the random variable is a certain quantile of its distribution.
Additionally, computers simulate uniform random variables, and using them you can simulate every other
random variable.

The dunif(), punif(), qunif(), and runif() functions are used for working with uniform rv’s in R. They
all have arguments min and max that correspond to parameters a and b mentioned above.

Being a continuous random variable, rather than having a pmf, a probability density function (pdf) is used
for describing the random variable.
# Throughout I will set a = 0 and b = 1. This could be considered the
# standard Uniform random variable. The pdf of a uniform rv:
unif_q <- seq(-1, 2, length = 1000)
unif_pdf <- dunif(unif_q, min = 0, max = 1)
plot(unif_q, unif_pdf, type = "l", xlab = "x", ylab = "density", main = "pdf",

ylim = c(0, max(unif_pdf) + 0.1))
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# The cdf of a uniform rv
unif_cdf <- punif(unif_q, min = 0, max = 1)
plot(unif_q, unif_cdf, type = "l", xlab = "x", ylab = "probability", main = "cdf",

ylim = c(0, 1.1))
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# Quartiles of a uniform rv
qunif(seq(0, 1, by = 0.25), min = 0, max = 1)

## [1] 0.00 0.25 0.50 0.75 1.00
# Simulated uniform rv's
runif(10, min = 0, max = 1)

## [1] 0.7562467 0.9696724 0.8479128 0.2943741 0.9111995 0.2399134 0.7144876
## [8] 0.3392606 0.8428848 0.8038884

Exponential

The exponential distribution is specified by a parameter µ and is described by:

X ∼ EXP(µ)

µ describes both the mean and the standard deviation of an exponential random variable. These are used to
model waiting times, such as how long it takes a server to service a a customer and move on to the next
one in the queue. Thus, µ is the average length of time to service one customer and move on to the next.
One could also consider instead 1

µ , which is the rate at which customers are serviced. So if a call center
takes on average half a minute to service a customer, the average rate at which it services its customers is
two customers per minute. (You may notice some similarity between an exponential random variable and a
geometric random variabe; the exponential rv is the continuous version of the geometric rv.)

The function dexp(), pexp(), qexp(), and rexp() are used for working with exponential random variables
in R. You do not directly specify the mean wait time, µ, in R; instead you specify the rate, 1

µ , with the rate
argument. Thus if you wanted a mean of µ = 6, you would set rate = 1/6.
# Here we will model an exponential rv where the mean is 6. This means that
# the rate is 1/6. The pdf of an exponential rv:
exp_q <- seq(-1, 12, length = 1000)
exp_pdf <- dexp(exp_q, rate = 1/6)
plot(exp_q, exp_pdf, type = "l", xlab = "x", ylab = "density", main = "pdf",

ylim = c(0, max(exp_pdf) + 0.1))
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# The cdf of an exponential rv
exp_cdf <- pexp(exp_q, rate = 1/6)
plot(exp_q, exp_cdf, type = "l", xlab = "x", ylab = "probability", main = "cdf",

ylim = c(0, 1.1))
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# Quartiles of an exponential rv
qexp(seq(0, 1, by = 0.25), rate = 1/6)

## [1] 0.000000 1.726092 4.158883 8.317766 Inf
# Simulated exponential rv's
rexp(10, rate = 1/6)

## [1] 4.181027 1.381246 2.254482 2.814817 1.777893 15.998047 13.546735
## [8] 13.562386 4.017361 4.070043

Normal

The Normal distribution is specified by two parameter, µ and σ, and is described by:

X ∼ N(µ, σ)

µ is the mean of a Normal rv, and σ is the rv’s standard deviation. The Normal distribution describes the
distribution of “errors”, or now far away some random variable is from its mean. It is perhaps the most
important distribution in probability and statistics.

The functions dnorm(), pnorm(), qnorm(), and rnorm() are used for working with Normal rv’s. They have
two arguments, mean and sd, used for specifying the parameters µ and σ, respectively.
# We will set the mean to 10 and the standard deviation to 2 when working
# with Normal rv's in this example. The pdf of a Normal rv:
norm_q <- seq(4, 16, length = 1000)
norm_pdf <- dnorm(norm_q, mean = 10, sd = 2)
plot(norm_q, norm_pdf, type = "l", xlab = "x", ylab = "density", main = "pdf",

ylim = c(0, max(norm_pdf) + 0.1))
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# The cdf of a Normal rv:
norm_cdf <- pnorm(norm_q, mean = 10, sd = 2)
plot(norm_q, norm_cdf, type = "l", xlab = "x", ylab = "probability", main = "cdf",

ylim = c(0, 1.1))
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# The quartiles of a Normal rv
qnorm(seq(0, 1, by = 0.25), mean = 10, sd = 2)

## [1] -Inf 8.65102 10.00000 11.34898 Inf
# Simulated Normal rv's
rnorm(10, mean = 10, sd = 2)

## [1] 12.541297 11.221620 7.411588 13.483226 12.046666 8.065685 10.076769
## [8] 10.338442 7.755875 6.666931

Central Limit Theorem

One of the most important theorems in all of statistics is the central limit theorem. This theorem describes
the distribution of the sample mean as the sample size grows large. Let Xi be a random variable with mean µ
and standard deviation σ. For every i such that 1 ≤ i ≤ n (n representing the sample size), Xi is independent
and identically distributed, or iid (meaning that every data point is drawn from the exact same distribution
and do not depend on the value of other Xi in the data set). Let X = 1

n

∑n
i=1Xi be the sample mean of this

data set. Then:

X ∼ N
(
µ,

σ√
n

)
as n→∞

This is saying that if the above conditions hold, the distribution of the sample mean X begins to resemble
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the Normal distribution with larger sample sizes, regardless of the original distribution of Xi. This is the
basis of much of statistical inference.

We can show the central limit theorem at work in R. Let Xi ∼ EXP(5). Notice that µ = 5 and σ = µ = 5. If
the sample size is n, the central limit theorem says that the distribution of X should begin to resemble the
Normal distribution with mean µ = 5 and standard deviation:

σ√
n

= 5√
n

as n grows large.

Let’s consider samples of size 10, 50, 200, and 1000. I first generate 200 simulated means from samples for
each of these sizes.
# We will loop over the vector c(10, 50, 200, 500), each of these
# representing a sample size. lapply() applies a function (the second
# argument) to each element of this vector, and stores the result as a list,
# which we will call sim_means. The (anonymous) function will take only one
# argument, n, representing the sample size. It will return a vector of
# simulated means when the sample size is n.
sim_means <- lapply(c(5, 10, 20, 50), function(n) {

# I now simulate 200 data sets of size n from the exponential distribution,
# setting rate = 1/5 for exponentially distributed random variables with
# mean 5, and store the resulting data sets in a list called sim_data_sets.
# (I add a throwaway argument because something will be passed to the
# function, but I don't want to use it)
sim_data_sets <- lapply(1:200, function(throwaway) rexp(n, rate = 1/5))
# Return a vector containing means for each of these data sets.
sapply(sim_data_sets, mean)

})
# Let's look at what we just made
str(sim_means)

## List of 4
## $ : num [1:200] 3.51 4.13 2.59 2.91 4.67 ...
## $ : num [1:200] 5.38 3.29 5.43 2.68 4.21 ...
## $ : num [1:200] 4.01 2.83 6.64 6.62 7.09 ...
## $ : num [1:200] 7.06 5.27 5.61 4.31 4.78 ...
# First, I plot an estimated density function for simulated exponential
# random variables with mean 5 (rate 1/5)
plot(density(rexp(200, rate = 1/5)), xlab = "quantile", ylab = "density", main = "Estimated density curves",

col = "gray", type = "l", xlim = c(-5, 15), ylim = c(0, dnorm(5, mean = 5,
sd = 5/sqrt(50)) + 0.1))

# I add density curves for each of the simulated means
lines(density(sim_means[[1]]), col = "green")
lines(density(sim_means[[2]]), col = "blue")
lines(density(sim_means[[3]]), col = "purple")
lines(density(sim_means[[4]]), col = "red")
# Finally, add a Normal curve showing what the distribution of the final
# sample mean should be near according to the central limit theorem
clt_norm_q <- seq(0, 10, length = 1000)
lines(clt_norm_q, dnorm(clt_norm_q, mean = 5, sd = 5/sqrt(50)), col = "black")
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Lecture 4

Multivariate Visualization

A picture is worth a thousand words. This may be especially true in statistics. While plotting univariate or
even bivariate data is not too difficult, and we can learn much from such plots, multivariate data is much
more difficult to visualize effectively. We often have a number of variables in a data set and we want to learn
as much as we can about their relationships. We explore some techniques here.

One reason why many data analysts use R is because R can create graphics that are both informative and
visually appealing without too much effort or time (if you use the right packages and know what you are
doing). We will explore methods for visualizing multivariate data using three dominant plotting tools: base
R plotting, plotting using the lattice package, and plotting using the ggplot2 package.

Base R Plotting

R comes built in with functions for plotting, the primary one being the plot() function, which we have seen
before. It is a generic function that will often pick the right plot for the object passed to it. That said, we do
have control over how to make a plot using base R.

A scatterplot plots each data point as an ordered (x, y) pair, with x being the value of the variable
corresponding to x for each data point, and y the value for the corresponding y variable. Thus scatterplots
are useful for visualizing bivariate data.

We can make scatterplots using base R with plot(x, y), where x and y are numeric vectors containing
the x and y coordinates to plot, respectively. The plot created by default will be a scatter plot, though
there are many parameters for plot() that will change not only whether a scatterplot is drawn but other
characteristics of the resulting plot, such as the extent of the axes, the character of the points, axis labels,
and many others.

Suppose we wished to compare the sepal length of iris flowers to the petal length of iris flowers in the iris
data set. We could do so in base R with the following:
plot(iris$Sepal.Length, iris$Sepal.Width)

65
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This plot gives us some basic information about these variables, but a lot is not shown. In particular, we
know that there are three species of iris included in the iris data set, and we would like to display this
information on the chart. We could do so using the following:
with(iris,

# First, the scatter plot
plot(Sepal.Length, Sepal.Width,

# Make the color depend on the species
col = as.numeric(Species),
# Also make the character depend on the species
pch = as.numeric(Species),
# Some labels to make the plot more informative
xlab = "Length", ylab = "Width", main = "Dimensions of the sepal of iris flowers"
)

)
# Add a legend to the plot
legend(

# The first two arguments are the coordinates of the legend on the plot
6.1, 4.4,
# The next argument is the species of flower to label
c("setosa", "versicolor", "virginica"),
# The colors used for encoding
col = 1:3,
# The character used for encoding
pch = 1:3

)
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We kept the scatterplot, but distinguished different species by color. To further differentiate points, we also
changed the shape of the points and made them depend on species. In other words, we doubly encoded the
species information in both the shape and color of the points in the scatterplot.

Suppose we don’t want all the species on the same plot. Versicolor and virginica flowers are intermixed,
making them difficult to distinguish in the plot. We may try to create three plots side-by-side by changing
the settings of a function called par(), which controls how plots are created. The following code does so:
width_range <- range(iris$Sepal.Width)
length_range <- range(iris$Sepal.Length)
# Manually split into three datasets
iris_setosa <- subset(iris, subset = Species == "setosa")
iris_versicolor <- subset(iris, subset = Species == "versicolor")
iris_virginica <- subset(iris, subset = Species == "virginica")
# The par function controls plotting parameters like margin size, borders,
# and many others. For this purpose, we would like to use margin to allow us
# to plot multiple plots, specifically in a 1x3 grid. The parameter we can
# set with par to control this is mfrow, which we set with a length 2 vector
# with the first coordinate being the number of rows, and the second
# coordinate being the number of columns. First, save the current par
# settings:
old_par <- par()
# Now, change the settings
par(mfrow = c(1, 3))
# After setting this way, we call plots as usual, but when they are made
# they will be added to the 1x3 graphic left-to-right, top-to-bottom. I
# also use formula notation to create the plot here. To make a (x,y) plot,
# use y ~ x.
plot(Sepal.Width ~ Sepal.Length, data = iris_setosa, ylim = width_range, xlim = length_range,

main = "setosa")
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plot(Sepal.Width ~ Sepal.Length, data = iris_versicolor, ylim = width_range,
xlim = length_range, main = "versicolor")

plot(Sepal.Width ~ Sepal.Length, data = iris_virginica, ylim = width_range,
xlim = length_range, main = "virginica")
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# You should reset par to its original settings once done, or you will
# continue to get plots using these settings, which may not be what you
# want.
par(old_par)

## Warning in par(old_par): graphical parameter "cin" cannot be set

## Warning in par(old_par): graphical parameter "cra" cannot be set

## Warning in par(old_par): graphical parameter "csi" cannot be set

## Warning in par(old_par): graphical parameter "cxy" cannot be set

## Warning in par(old_par): graphical parameter "din" cannot be set

## Warning in par(old_par): graphical parameter "page" cannot be set

Now, suppose that a third variable we wish to plot is numerical rather than categorical. We may use a
bubbleplot to do so, where we create a scatterplot but each point in the scatterplot is a circle with area
representing the value of a third variable. (Note that the third variable must be encoded by area, not
diameter! This is because people percieve area, not diameter, and using diameter to encode information
rather than area will create plots that are confusing and misleading.) We can create a bubble chart in R by
making the cex parameter in plot(), which controls the size of points, dependant on one of the variables in
the data set.

The following plot is a bubbleplot that shows states average teacher salary, average total SAT score, and
encodes the percentage of SAT takers as the area of the bubbles.
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# The SAT data is in UsingR
library(UsingR)
plot(total ~ salary, data = SAT,

# filled circles
pch = 16,
# rgb is a function for creating colors via RGB values. The alpha parameter controls transparency. I make the circles semi-transparent.
col=rgb(red = 0, green = 0, blue = 0, alpha = 0.250),
# cex controls the size (length) of the points. The following makes the points' area dependant on the perc variable in SAT, with division by 10 just to keep sizes under control
cex = sqrt(perc/10))

30 35 40 45 50

85
0

90
0

95
0

10
00

11
00

salary

to
ta

l

So far, we have seen ways to visualize three variables together, basing our graphics on scatterplots. What
about data sets with more than three variables?

A scatterplot matrix creates multiple scatterplots in a grid (matrix), each showing a different combination
of variables. The variables become the rows and columns of the matrix, and the plot in a particular row and
column of the matrix represents a particular combination of the variables.

The pairs() function will create scatterplot matrices. The first argument passed to it is a data frame
containing the data to be plotted, and other parameters can change details about how the plot is made. I
create a scatterplot matrix for the iris dataset below.
pairs(iris[c("Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width")],

# Make color depend on species
col = iris$Species)
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Another way to visualize multivariate data is with a parallel coordinate plot. This plot will display
variables as vertical axis lines and data points as lines connecting the axes. The point where a data point line
intersects an axis represents the value of that variable for that data point.

The parcoord() function (in the MASS package) creates parallel coordinate plots. The first argument is a
data frame containing the data to be plotted, and other parameters control other features of the resulting
plot. An example for the iris data is shown below.
library(MASS)
parcoord(iris[c("Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width")],

col = iris$Species)

Sepal.Length Sepal.Width Petal.Length Petal.Width

A heatmap is a matrix where the rows are data points, columns are variables, and in each cell of the matrix



BASE R PLOTTING 71

the value of a variable for an observation is represented in color. The hue or intensity of the color depends on
the value of the variable.

The heatmap() function will create heatmaps in R. The first argument is the numeric matrix with the data
to plot. I create a heatmap for the mtcars data set below.
heatmap(as.matrix(mtcars), Rowv = NA, Colv = NA)
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# This is not a useful plot; the heatmap function thinks that all the
# observations are in the same units. What I will do is create a numeric
# matrix with the standardized value of each variable, where I subtract the
# mean of each variable from each observation, then divide by the standard
# deviation.
plotmat <- sapply(mtcars, scale)
rownames(plotmat) <- rownames(mtcars)
heatmap(plotmat, Rowv = NA, Colv = NA)
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Plotting with base R has the advantage that all installations of R include the base R systems. All other
plotting implementations are best seen as useful user interfaces for the existing base R system (particularly a
plotting system called grid, which is the basis of lattice and ggplot2). Additionally, plot() is a generic
function that can be programmed to create the most useful plot for the object passed to it.

That said, many data analysts prefer to use packages such as lattice or ggplot2 for much of their graphical
work, avoiding base R plotting. Unless there is a convenience function or plot() method for whatever plot
you wish to make, it can be unacceptably tedious to make plots using only base R, especially if they are
complex plots. The legend we created for the second iris scatterplot, for example, needed a legend, which
we created manually in a manner both tedious and not very robust to changes in the plot.

lattice Plotting

One of the first packages made to make plotting in R easier was the lattice package, which is now included
with standard R installations. lattice aims to make creating graphics for multivariate data easier, and relies
on R’s formula notation to do so.

We can create a basic scatterplot in lattice using xyplot(y ~ x, data = d), where y is the y-variable, x
the x-variable, and d the data frame containing the data.
library(lattice)
xyplot(Sepal.Width ~ Sepal.Length, data = iris)
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What if we wish to create multiple plots, breaking up the plots by different categorical variables? We can do
so with xyplot(y ~ x | c, data = d), where all is as before but c is a categorical variable with which we
break up the plots.
xyplot(Sepal.Width ~ Sepal.Length | Species, data = iris)
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# Compare to the solution with base R

The aim of lattice is to create complex graphics using a single function call. Thus we can create other
interesting graphics in lattice that we could make in base R. Some examples are shown below.
# Lattice comparative dotplot of iris petal length
dotplot(Species ~ Petal.Length, data = iris)
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# Lattice comparative boxplot, which resembles the base R comparative
# boxplot in style
bwplot(Species ~ Petal.Length, data = iris)
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# For the Cars93 data set, let's look at price depending on the type of car
# and the origin of the car
dotplot(Price ~ Type | Origin, data = Cars93)
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bwplot(Price ~ Type | Origin, data = Cars93)
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# We can also make histograms and density plots, though since these do not
# lend well to comparison, we must leave the left side of the formula blank.
histogram(~Price | Origin, data = Cars93)
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densityplot(~Price | Origin, data = Cars93)
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ggplot2 Plotting

A more recent plotting system than either base R’s plotting functions or lattice is ggplot2, by Hadley
Wickham. Again, ggplot2 builds on existing graphical systems in R (specifically, grid, just like lattice), but
graphics are built using what one may call a mini-language based on Wilkinson’s The Grammar of Graphics.
This means that one does not learn ggplot2 without additionally learning graphical theory; the two are
intertwined here. While it takes some effort to learn ggplot2, perhaps more so than lattice, once learned, it
allows for complex yet visually appealing graphics to be created in a natural way. (ggplot2 is my preferred
system for creating graphics, and the one I used to make the graphics in this report.)

ggplot2 has two primary functions for creating graphics,qplot() and ggplot(). qplot() is intended for
making quick plots in a manner similar to plot() in base R, though it’s not a generic plotting function like
plot(). ggplot() is more involved than qplot(), requiring that data be stored in a data frame in order for
it to be plotted. That said, ggplot() is the go-to plotting function for more involved plots. I will cover both
of these functions here.

qplot()

The first two arguments passed to qplot() are the data to be plotted. For example, I can make a scatterplot
with qplot() as follows:
library(ggplot2)
qplot(iris$Sepal.Length, iris$Sepal.Width)

http://www.utahchildren.org/images/pdfs/2015/GenderGap.pdf
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# The $ notation gets annoying after a while. Thankfully, we have a data
# argument to clean things up.

It’s easier to add complexity to this plot. Additionally, qplot() will add a legend automatically (as opposed
to the headache of manually adding a legend in base R plotting). Below I color each point based on species,
and also change the shape of the point again based on species.
qplot(iris$Sepal.Length, iris$Sepal.Width, color = iris$Species, shape = iris$Species)
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If I want to make a different plot, I need to change the geom, the visual channel through which information
is communicated, as shown below when making a histogram, density plot, or comparative box plot.
# The $ notation gets annoying after a while. Thankfully, we have a data
# argument to clean things up.
qplot(Petal.Length, data = iris, geom = "histogram")

## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
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qplot(Petal.Length, data = iris, geom = "density")
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# If I only want one box, I could do so with the following;, where group
# goes first (I made a dummy grou, '')
qplot("", Petal.Length, data = iris, geom = "boxplot")
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# If I want a comparative boxplot, I would do so by specifying population
# first, data second
qplot(Species, Petal.Length, data = iris, geom = "boxplot")
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ggplot2 allows graphics to be themed. Color and shape choices are made automatically by default (though
they can be changed), and the decision is made based on the current theme being used. Using different
themes may lead to different choices in, say, color, being made. This is advantageous since one can worry
about how information is being communicated without necessarily worrying about some of the specifics (e.g.,
we can tell R to communicate groups by color without thinking about what colors are being used).

The default theme used by both qplot() and ggplot() is theme_grey(). Other themes are included in
ggplot2. The package ggthemes includes more themes (often based on graphics created in publications such
as The Economist, The Wall Street Journal, other software packages such as Microsoft Excel, or emulating
particular famous authors such as Edward Tufte), and it is possible for you to create your own original theme.
You can change a theme by “adding” it to a graphic. (ggplot2 overloads the + operator to have a particular
meaning when “adding” things to a gg- or ggplot-class object).
# Unlike with base R plots or lattice graphics, we can store plots made with
# ggplot in objects, as I demonstrate below:
p <- qplot(Sepal.Length, Sepal.Width, data = iris, color = Species, shape = Species)
# We can view the plot either with print(p) or by calling the object
# directly (i.e. just p). The default theme_grey() theme
print(p)
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# Other themes:
p + theme_bw()
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p + theme_classic()
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p + theme_dark()
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p + theme_minimal()
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ggplot()

ggplot() is the main function of ggplot2, with qplot() being merely a simplified version of ggplot().
Unlike qplot(), which can accept data in the form of vectors, data passed to ggplot() must be a data frame!
This restriction allows ggplot() to create graphics in a consistent way (you can even design a graphic on
one data set, then simply swap that data set out with another and have the graphic still work.)

Three important building blocks for building graphics using ggplot() (aside from theme elements, like
specific colors used, labels, or titles) are aesthetics, geoms, and stats. Aesthetics, controlled by the aes()
function, determine the visual channels through which information is transmitted (position, color, shape, etc.).
Geoms determine how visual information is rendered; in other words, it translates aesthetics into graphics. A
few functions, such as geom_point(), geom_line(), and many others, “add” geoms to a graphic. Finally,
stats allow data summaries, such as histograms or density plots, to be created and then drawn, and come in
the form of functions such as stat_summary(), stat_quantile(), and many others.

Let’s visualize the iris data set, this time using ggplot().
# Notice that I layer on geoms with +, which has been overloaded to work appropriately for ggplot2 objects
p <- ggplot(iris) + # Create the basic plot object

geom_point(aes(x = Petal.Length, y = Petal.Width, shape = Species, color = Species)) + # Create a dot plot with sepal lenght being x, petal width y, and species both shape and color
xlab("Petal Length") + # Add axis labels
ylab("Petal Width") +
ggtitle("Petal Length and Petal Width of Iris Flowers")

# Let's see the result!
print(p)
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# Let's add a stat that creates a 2D density plot
p + stat_density2d(aes(x = Petal.Length, y = Petal.Width, group = Species, color = Species))
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# Now let's look just at iris sepal length. We initialize a basic object and swap out geoms to look at different plots.
# First, create the basic object:
q <- ggplot(iris, aes(y = Sepal.Length, x = Species, color = Species)) +

xlab("Species") +
ylab("Sepal Length") +
ggtitle("Comparison of Sepal Length Among Iris Flowers")

# I first look at a boxplot
q + geom_boxplot()
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# An alternative to the boxplot is the violin plot
q + geom_violin(aes(fill = Species))
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# Or we can plot jittered data
q + geom_jitter(width = .25)
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# Here is a more complex, layered graphic
q + geom_violin(alpha = .6) +

geom_jitter(width = .25, alpha = .4) +
stat_summary(size = 1, fun.data = median_hilow)
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Graphics that would be very difficult to make in base R or even lattice are almost effortless in ggplot2!

Like lattice, ggplot2 allows for splitting plots based on a variable. This is called faceting, and is controlled
primarily by the facet_grid() function, added to a plot like any other function in ggplot2. face_grid(y
~ x) will break plots up according to the categorical variables x and y, where each row represents a different
value for x and each column a different value for y. If you don’t wish to facet according to two variables,
replace either x or y with a ., like . ~ y. I demonstrate faceting first on iris, then on Cars93.
# Create a plot as normal
ggplot(iris, aes(x = Sepal.Length, y = Sepal.Width, color = Species)) + geom_point() +

# Create different plots for different species
facet_grid(. ~ Species)
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# Create a facet grid for price of cars depending on origin and drive train
p1 <- ggplot(Cars93, aes(x = Price))
p1 + geom_histogram() + facet_grid(Origin ~ DriveTrain)

## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
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# We could try other plots as well
p1 + geom_dotplot() + facet_grid(Origin ~ DriveTrain)

## `stat_bindot()` using `bins = 30`. Pick better value with `binwidth`.
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p1 + geom_density() + facet_grid(Origin ~ DriveTrain)
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Lecture 5

Distribution Comparison

A common problem is determining whether two distributions of two samples are the same. While statistical
tests can help answer this question, visualization techniques are also quite effective. Many of the plots we
have seen can be adapted to compare distributions from independent samples.

One way to do so is to create two stem-and-leaf plots back-to-back, sharing common stems but having
leaves from different data sets extending out in different directions. Base R will not do this, but the
stem.leaf.backback() function in the aplpack package can create such a chart. stem.leaf.backback(x,
y) will plot the distributions of the data in vectors x and y with a back-to-back stem-and-leaf plot. Here
we use this function to examine the distribution of tooth lengths of guinea pigs given different supplements,
contained in the ToothGrowth data set.
# library(aplpack)
str(ToothGrowth)

## 'data.frame': 60 obs. of 3 variables:
## $ len : num 4.2 11.5 7.3 5.8 6.4 10 11.2 11.2 5.2 7 ...
## $ supp: Factor w/ 2 levels "OJ","VC": 2 2 2 2 2 2 2 2 2 2 ...
## $ dose: num 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 ...
# The split function can split data vectors depending on a factor. Here,
# split will split len in ToothGrowth depending on the factor variable supp,
# creating a list with the two variables we want
len_split <- with(ToothGrowth, split(len, supp))
OJ <- len_split$OJ
VC <- len_split$VC
# stem.leaf.backback(OJ, VC, rule.line = 'Sturges')

We have seen comparative boxplots before; again, they can be quite useful for comparing distributions.
Calling boxplot(x, y) with two data vectors x and y will compare the distributions of the data in the
vectors x and y with a comparative boxplot.
boxplot(OJ, VC)

101
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We can also use density estimates to compare distributions, like so:
plot(density(OJ), lty = 1)
lines(density(VC), lty = 2)
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Model Formula Interface

You have seen this interface before, and now we discuss it in more detail. The interface is y ~ x, or more
descriptively, response ~ predictor. Loosely, we see the response variable as being dependent on the
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predictor, which could by a single variable, as in y ~ x, or a combination of variables, as in y ~ x + z.
(+ is overloaded to have a special meaning in the model formula interface, and thus does not necessarily
mean “addition”. If you wish to have + mean literal “addition”, use the function I(), as in y ~ I(x + z).)
Many function in R use the formula interface, and often include additional arguments such as data (for
specifying a data frame containing the data and variables described by the formula) and subset (used for
selecting a subset of the data, according to some logical rule). Functions that use this formula interface
include boxplot(), lm(), summary(), and lattice plotting functions.

Below I demonstrate using boxplot()’s formula interface for exploring the ToothGrowth data more simply.
# Here, I plot the tooth growth data depending on supplement when dose ==
# 0.5
boxplot(len ~ supp, data = ToothGrowth, subset = dose == 0.5)
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boxplot(len ~ supp + dose, data = ToothGrowth)
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Here I compare means of tooth lengths using the formula interface in summary(), provided in the package
Hmisc.
library(Hmisc)

## Loading required package: lattice

## Loading required package: survival

## Loading required package: Formula

## Loading required package: ggplot2

##
## Attaching package: 'Hmisc'

## The following objects are masked from 'package:base':
##
## format.pval, units
# First, the result of summary
summary(len ~ supp + dose, data = ToothGrowth)

## len N= 60
##
## +-------+---+--+--------+
## | | |N |len |
## +-------+---+--+--------+
## |supp |OJ |30|20.66333|
## | |VC |30|16.96333|
## +-------+---+--+--------+
## |dose |0.5|20|10.60500|
## | |1 |20|19.73500|
## | |2 |20|26.10000|
## +-------+---+--+--------+
## |Overall| |60|18.81333|
## +-------+---+--+--------+
# A nice plot of this information (though the table is very informative; a
# plot may not be necessary)
plot(summary(len ~ supp + dose, data = ToothGrowth))
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Paired Data

So far we have examined data that came from two independent samples. They may measure the same thing,
but they should still be regarded as distinct. Paired data is an entirely separate case. With paired data, two
variables were recorded for one observation. Usually we want to know what the relationship between the two
variables is, if any.

A good first step to studying paired data (in fact, you should consider it a necessary step!) is to visualize the
relationship between the variables with a scatterplot. You could do so with plot(y ~ x, data = d), where
x is the variable plotted along the horizontal axis of a scatterplot, y the variable plotted along the vertical
axis, and d the data set containing x and y (if applicable).

The data set fatcontains various measurements from people’s bodies. Let’s examine the relationship between
height and weight with a scatterplot.
library(UsingR)

## Loading required package: MASS

## Loading required package: HistData

##
## Attaching package: 'UsingR'

## The following object is masked from 'package:survival':
##
## cancer
plot(weight ~ height, data = fat)
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# Using a scatterplot, we immediately identified an outlier, an individual
# that, while not necessarily having an unusual weight, is much shorter than
# usual (probably an individual with dwarfism). There is also an individual
# who is unusually heavy, though having a typical height. We filter out
# those poiints in another plot
plot(weight ~ height, data = fat, subset = height > 60 & weight < 300)
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It’s a good idea to plot data before numerically analyzing it. Outliers and non-linear relationships between
variables are often easy to identify graphically, but can hide in numeric summaries.
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Correlation

The correlation between two variables measures the strength of their relationship. Without discussing
how correlation is computed, let r represent the correlation between two variables. It is always true that
−1 ≤ r ≤ 1. If r = 0, there is no linear relationship between the variables (there may still be a relationship,
just not a linear one). If |r| = 1, there is a perfect linear relationship between the variables; if plotted in
a scatterplot, the variables would fall along a perfectly straight line. sign(r) indicates the direction of the
relationship. If r > 0, there is a positive relationship between the variables; as one variable increases, the
other also tends to increase. If r < 0, there is a negative relationship between the variables; as one variable
increases, the other tends to decrease.

No real-world data set has a correlation that is perfectly zero, one, or negative one (unless engineered). A
rule of thumb is that if 0 ≤ |r| < .3, there is no correlation. If .3 ≤ |r| < .7, the correlation is weak. If |r| ≥ .7,
the correlation is strong.

Some illustrations of different correlations follow.
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Let’s compute a correlation. The cor() function will compute correlation for a data set, taking two data
vectors cor(x, y) and computing the correlation between x and y.
# The correlation of height and weight
cor(fat$height, fat$weight)

## [1] 0.3082785

Remember, we are computing linear correlation! There could be a linear correlation of 0, but a perfect
non-linear correlation!
x <- (-10):10
y <- x^2
plot(x, y)
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## [1] 0

One thing a researcher must always bear in mind when studying the correlation between variables is that
correlation is not causation! A causal relationship between the two variables in study may be responsible
for the correlation, but so could a causal relationship between each individual variable and a third, unobserved
variable (what we term a latent variable), a causal relationship running in the opposite direction of the
one observed (y causes x rather than x causing y), or a complex confounding relationship involving feedback
loops between the variables observed and unobserved latent variables (x causes y, which in turn causes x,
while also being caused by unobserved z while also causing z). Additionally, if there is a time component, a
correlation between two variables may be strong for no reason other than both variables trend (this may
translate simply into time being a latent, unaccounted-for variable, and both variables need to be detrended).

The website Spurious correlations contains many strong correlations that clearly are not causal (though they
are quite amusing). How do people discover these? The best explanation may be that when a very large
number of variables are observed, correlations will appear. Think of it this way: if every pair of variables in
a data set, generated independently, have a probability ε(n) of producing data sets that are not correlated
for data sets of size n, the probability that no correlations appear is roughly (ε(n))(

k
2) (keep in mind that(

k
2
)
grows very quickly in k). This number is approaching zero very fast, so it’s highly unlikely that no

correlations at all will appear in the data set. The situation is not hopeless, of course; increasing the sample
size n will increase ε(n) and make observing misleading sample correlations less likely. But the point remains;
it’s easier to find some correlation in data sets that track lots of variables than in data sets that track only a
handful, given the same sample size.

As an example, I generated a small data set using random variables I know are not correlated, yet the plot
demonstrates that sample correlations still manage to appear, even large ones.

http://www.tylervigen.com
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In general, identifying causality between variables is not easy. There are methods for doing so (they are
outside the scope of this course), but bear in mind that they usually must inject additional knowledge, be it
about the experiment and data collection method or subject matter knowledge, in order to identify causality.
Mathematics alone is not sufficient, and no single statistical analysis may have the final say on a subject. It
may take numerous replications and permutations of methodology along with clever argument and domain
area knowledge to establish a causal link.

Trend Lines

A trend line is a “best fit” line passing through data in a data set that shows what linear relationship between
data tends to prevail throughout the data set. Without going into detail about how this line is computed,
the trend line typically computed minimizes the squared (vertical) distance of each data point to the line
(this distance being called the residual or error).

We investigate here lines of the form ŷi = β0 + β1xi, where ŷi is the value of the y variable predicted by the
trend line for the value xi. β0 is the y-intercept of the trend line, and β1 the slope of the trend line. We can
compute the coefficients of the trend line using the R function lm(y ~ x, data = d), where y is the variable
being predicted (you may think “dependent variable”), x is the predicting variable (think “independent
variable”), and d is the data set containing both x and y (if applicable). We can save the output of lm()
by using a call akin to fit <- lm(y ~ x, data = d), and we can extract the coefficients of the trend line
from fit using coefficients(fit) or simply accessing them directly with fit$coefficients.

Below I demonstrate fitting a trend line to the height and weight data.
hw_fit <- lm(weight ~ height, data = fat)
coefficients(hw_fit)

## (Intercept) height
## 5.411832 2.473493

We can see the model, but we would like to plot the relationship on a line. After making a plot with plot(),
we can add a trendline with abline(fit), which adds the trend line stored in fit to the plot.
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plot(weight ~ height, data = fat)
abline(hw_fit)
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# Least-squares regression is sensitive to outliers, so let's compute the
# trend line when the outliers are left out
hw_fit2 <- lm(weight ~ height, data = fat, subset = height > 50 & weight < 300)
plot(weight ~ height, data = fat, subset = height > 50 & weight < 300)
abline(hw_fit2, col = "red", lwd = 2)
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Computation and analysis of trends is a topic discussed much more extensively in MATH 3080, and so I end
the discussion here.
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Categorical Bivariate Data

So far we have examined only relationships in quantitative data. We can also examine relationships between
categorical data.

Numerically we analyze categorical data with tables of counts, with each cell of the table containing a count
of the observations having a particular combination of the categorical variables in question. We usually
want to consider the joint distribution of the variables in question as well as the margins of the tables. The
xtabs() function can allow us to quickly construct join distribution tables using formula notation. xtabs(~
x + y, data = d) will construct a table depending on variables x and y, with data stored in d. One could
extend this table to as many variables as desired; for example, xtabs(~ x + y + z, data = d) constructs
a three-dimensional array examining the relationship between variables x, y, and z. When creating such an
array, you may want to use the ftable() function for viewing the information in the table in a more legible
format. For example, if we saved the results of the earlier xtabs() output in a variable tab, ftable(tab,
row.vars = 2, col.vars = c(1, 3)) will create a table where the variable associated with dimension 2
(y) will be shown in rows, and the variables associated with dimensions 1 and 3 (x and z) are shown in the
columns.

I demonstrate constructing tables this way below, exploring the Cars93 (MASS) data set.
# Two-way table exploring origin and type
tab1 <- xtabs(~Origin + Type, data = Cars93)
tab1

## Type
## Origin Compact Large Midsize Small Sporty Van
## USA 7 11 10 7 8 5
## non-USA 9 0 12 14 6 4
# A three-way table
tab2 <- xtabs(~Origin + Type + Cylinders, data = Cars93)
# The following output is hard to parse
tab2

## , , Cylinders = 3
##
## Type
## Origin Compact Large Midsize Small Sporty Van
## USA 0 0 0 0 0 0
## non-USA 0 0 0 3 0 0
##
## , , Cylinders = 4
##
## Type
## Origin Compact Large Midsize Small Sporty Van
## USA 7 0 4 7 4 0
## non-USA 8 0 3 11 4 1
##
## , , Cylinders = 5
##
## Type
## Origin Compact Large Midsize Small Sporty Van
## USA 0 0 0 0 0 0
## non-USA 0 0 1 0 0 1
##
## , , Cylinders = 6
##
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## Type
## Origin Compact Large Midsize Small Sporty Van
## USA 0 7 5 0 3 5
## non-USA 1 0 7 0 1 2
##
## , , Cylinders = 8
##
## Type
## Origin Compact Large Midsize Small Sporty Van
## USA 0 4 1 0 1 0
## non-USA 0 0 1 0 0 0
##
## , , Cylinders = rotary
##
## Type
## Origin Compact Large Midsize Small Sporty Van
## USA 0 0 0 0 0 0
## non-USA 0 0 0 0 1 0
# This is easier to read
ftable(tab2, row.vars = 2, col.vars = c(1, 3))

## Origin USA non-USA
## Cylinders 3 4 5 6 8 rotary 3 4 5 6 8 rotary
## Type
## Compact 0 7 0 0 0 0 0 8 0 1 0 0
## Large 0 0 0 7 4 0 0 0 0 0 0 0
## Midsize 0 4 0 5 1 0 0 3 1 7 1 0
## Small 0 7 0 0 0 0 3 11 0 0 0 0
## Sporty 0 4 0 3 1 0 0 4 0 1 0 1
## Van 0 0 0 5 0 0 0 1 1 2 0 0
# A four-way table
tab3 <- xtabs(~Origin + Type + Cylinders + Man.trans.avail, data = Cars93)
ftable(tab3, row.vars = c(2, 4), col.vars = c(1, 3))

## Origin USA non-USA
## Cylinders 3 4 5 6 8 rotary 3 4 5 6 8 rotary
## Type Man.trans.avail
## Compact No 0 2 0 0 0 0 0 0 0 0 0 0
## Yes 0 5 0 0 0 0 0 8 0 1 0 0
## Large No 0 0 0 7 4 0 0 0 0 0 0 0
## Yes 0 0 0 0 0 0 0 0 0 0 0 0
## Midsize No 0 4 0 4 1 0 0 0 0 3 1 0
## Yes 0 0 0 1 0 0 0 3 1 4 0 0
## Small No 0 0 0 0 0 0 0 0 0 0 0 0
## Yes 0 7 0 0 0 0 3 11 0 0 0 0
## Sporty No 0 0 0 0 0 0 0 0 0 0 0 0
## Yes 0 4 0 3 1 0 0 4 0 1 0 1
## Van No 0 0 0 4 0 0 0 0 0 2 0 0
## Yes 0 0 0 1 0 0 0 1 1 0 0 0

When faced with a table, one often wishesw to know the marginal distributions, which is the distribution of
just one of the variables without any knowledge of any other variables. We can obtain the margins of the
tables produced by xtabs() with margin.table(). The call margin.table(tbl, margin = i) will find the
marginal distribution of tbl for margin i, which may be 1 or 2 for a two-way table (corresponding to rows
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and columns, respectively), but could be higher for more complex tables. I demonstrate margin.table()
below:
margin.table(tab3, margin = 1)

## Origin
## USA non-USA
## 48 45
margin.table(tab3, margin = 2)

## Type
## Compact Large Midsize Small Sporty Van
## 16 11 22 21 14 9
margin.table(tab3, margin = 3)

## Cylinders
## 3 4 5 6 8 rotary
## 3 49 2 31 7 1

We have a few options for visualizing data in a two-way table (tables with more dimensions would be more
complex and more demanding from visualization techniques). One way would be with a stacked bar plot,
where the height of the bar corresponds to the marginal distribution of one variable and sub-bars denote
the breakdown for the second category. Better though would be side-by-side bar plots, which don’t stack
the breakdown categories one atop the other but instead place them side by side yet in close proxomity.
barplot() can create such plots.
barplot(tab1)
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Another option is a mosaic plot, which shows the frequency of each combination of variables as the size of
rectangles. This can be created in R using the function mosaicplot(), as below.
mosaicplot(tab1)
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mosaicplot(tab2)
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Lecture 6

Inferential Statistics via Computational Methods

The objective of inferential statistics is to describe population parameters using samples. In the lecture, we
will study extensively inferential statistics when constructed from a probabilistic model, and in the lab we will
see how to use R to perform analysis based on these methods. Prior to that, though, we explore techniques
based on computational methods such as simulation and bootstrapping. Not only do computational methods
provide a good first step for thinking about later methods, they are also very useful when one does not have a
probability model available for inference, perhaps because such a model would be very difficult to construct.

Simulation

Let Xi be a Normal random variable with mean 100 and standard deviation 16, so Xi ∼ N(100, 162). We
know that if Xi are random variables, the sample mean X = 1

n

∑n
i=1Xi is also a random variable. What

distribution does X follow? While we can compute this distribution exactly, here we show how it could be
simulated.

We could simulate a single sample mean for a sample of size 10 with the following code:
set.seed(6222016)
rand_dat <- rnorm(10, mean = 100, sd = 16)
mean(rand_dat)

## [1] 101.0052

Obviously 101.00519 is not 100, which we know to be the true mean of the data, nor should we expect that
to ever happen. But is it “close” to the true mean? It’s hard to say; we would need to know how much
variability is possible.

We would like to generate a number of sample means for data coming from the distirbution in question. An
initial approach may involve a for loop, which is not the best approach when using R. Another approach
may involve sapply(), like so:
sim_means <- sapply(1:100, function(throwaway) mean(rnorm(10, mean = 100, sd = 16)))

While better than a for loop, this solution uses sapply() in a way it was not designed for. We have to
create a variable with a parameter that is unused by the function, and also pass a vector with a length
corresponding to the number of simulated values we want, when in truth it’s not the vector we want but the
length of the vector. A better solution would be to use the replicate() function. The call replicate(n,
expr) will repeat the expression expr n times, and return a vector containing the results. I show an example
for simulated means below:
sim_means <- replicate(100, mean(rnorm(10, mean = 100, sd = 16)))
sim_means
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## [1] 108.35565 100.66750 108.19234 95.89265 101.20817 105.76444 104.89860
## [8] 104.22216 102.06229 94.31038 99.55700 94.44461 102.06794 89.95609
## [15] 101.17615 100.63431 95.18799 104.70427 107.69503 104.04101 107.86346
## [22] 103.06723 97.43702 102.05654 96.08053 101.36263 103.91291 96.41028
## [29] 96.81695 102.50987 104.38500 99.17687 97.74994 92.30596 99.26339
## [36] 101.67710 102.39232 105.79338 106.72293 99.22185 95.99618 98.91788
## [43] 101.01230 96.25258 91.20321 104.81500 96.05610 106.60535 93.97403
## [50] 103.89452 107.67794 105.31947 99.81982 99.84518 98.65894 93.04366
## [57] 99.36829 97.92127 105.95773 93.25400 97.91482 100.05437 93.78229
## [64] 105.21112 97.93044 100.19164 95.70649 97.18679 93.44727 101.54060
## [71] 98.67888 103.98927 95.20378 101.56096 108.71335 105.40760 105.08654
## [78] 102.58549 95.86958 97.53956 92.42496 103.78224 102.66197 93.44900
## [85] 98.92777 97.65882 96.09172 108.16021 100.97451 97.53069 98.50505
## [92] 102.83923 91.39683 98.91011 102.07212 99.36859 100.66825 102.34920
## [99] 99.55977 105.28871

Looking at the simulated means, we see a lot of variability, with 53% of the means being more than 3 away
from the true mean. The only way to reduce this variability would be to increase the sample size.
sim_means2 <- replicate(100, mean(rnorm(20, mean = 100, sd = 16)))
sim_means2

## [1] 99.69189 95.21360 105.52372 104.45792 93.52940 91.62906 105.26088
## [8] 100.36841 105.73402 102.46795 99.09634 98.09586 103.41291 102.24939
## [15] 95.19029 97.46231 101.84167 106.39167 99.76708 96.41046 94.57369
## [22] 100.30044 107.70845 105.03082 103.03096 96.89259 101.63428 106.77924
## [29] 93.78310 99.20373 99.21529 96.04547 100.02290 100.23826 98.78401
## [36] 96.60201 97.90106 95.12226 98.53885 101.81787 107.67086 102.87544
## [43] 102.54591 100.30953 104.98270 99.21484 96.38804 100.71951 100.54088
## [50] 96.36608 102.28295 103.48824 104.53096 100.48312 97.77604 100.40682
## [57] 99.59780 95.34798 97.79904 94.79671 103.44435 103.94647 101.33339
## [64] 98.72290 98.94278 102.88865 97.95571 98.96574 101.67445 98.99390
## [71] 101.10229 100.38276 100.99239 102.65524 106.64794 95.42338 103.30498
## [78] 104.93425 108.15721 99.01630 96.63749 96.91546 101.56492 104.53852
## [85] 99.35392 97.48784 98.20285 92.61517 106.96066 100.54894 100.45520
## [92] 99.29380 99.20205 104.19171 103.59921 97.42151 95.17621 106.17301
## [99] 98.95303 106.53663

Now, only 46% of the simulated means are more than 5 away from the true mean. If we repeat this for ever
increasing sample sizes, we can see the distribution of the sample means concentrating around the true mean.
sim_means3 <- replicate(100, mean(rnorm(50, mean = 100, sd = 16)))
sim_means4 <- replicate(100, mean(rnorm(100, mean = 100, sd = 16)))
boxplot(list("n10" = sim_means, "n20" = sim_means2, "n50" = sim_means3, "n100" = sim_means4))
abline(h = 100, col = "blue")
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As can be seen in the chart, larger sample sizes have smaller variability around the true mean. This is what
we want; we want estimators for the mean to be both accurate (they center around the correct result, not
elsewhere) and precise (they are consistently near the correct answer). The term for the first property is
unbiasedness, where E [X] = µ, and the term for the second property is minimum variance.

Recall that for the Normal distribution, the mean is also the median. This suggests the sample median as an
alternative to the sample mean for estimating the same parameter. How do the two compare? Let’s simulate
them and find out!
library(ggplot2)

# Simulate sample medians
sim_medians <- replicate(100, median(rnorm(10, mean = 100, sd = 16)))
sim_medians2 <- replicate(100, median(rnorm(20, mean = 100, sd = 16)))
sim_medians3 <- replicate(100, median(rnorm(50, mean = 100, sd = 16)))
sim_medians4 <- replicate(100, median(rnorm(100, mean = 100, sd = 16)))

# Make a data frame to contain the data for the sake of easier plotting
dat <- data.frame(stat = c(sim_means, sim_medians, sim_means2, sim_medians2, sim_means3, sim_medians3, sim_means4, sim_medians4),

type = rep(c("mean", "median"), times = 4, each = 20),
n = as.factor(rep(c(10, 20, 50, 100), each = 2 * 20)))

head(dat)

## stat type n
## 1 108.35565 mean 10
## 2 100.66750 mean 10
## 3 108.19234 mean 10
## 4 95.89265 mean 10
## 5 101.20817 mean 10
## 6 105.76444 mean 10
# Using ggplot2 to make the graphic comparing distributions
ggplot(dat, aes(y = stat, x = type, color = type, fill = type)) +

geom_hline(yintercept = 100, color = "blue", alpha = .5) + # Horizontal line for true center
geom_violin(width = .5, alpha = .3) + # Violin plot
stat_summary(fun.data = "median_hilow") + # A statistical summary, showing median and 5th/95th percentiles
facet_grid(. ~ n) + # Split based on sample size
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theme_bw() + # Sometimes I don't like the grey theme
ggtitle("Comparison of distribution of simulated sample means and medians")
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Comparison of distribution of simulated sample means and medians

From the above graphic, one can see that the sample median has more variance than the sample median, and
is thus not minimum variance. The sample mean is a more reliable way to estimate unknown µ than the
sample median.

These analyses suggest that when trying to estimate the value of a parameter, we should follow these
principals:

1. We should use unbiased estimators. If this is not possible, we should use estimators that are at least
consistent (that is, the bias approaches 0 as the sample size grows large).

2. We should use estimators that vary as little as possible. This in turn implies that we should use as
large a sample size as possible when estimating unknown parameters.

Clearly, X is a random variable. With that said, what is its distribution? We could explore the possibility
that X is Normally distributed by looking at a Q-Q plot, which compares sample quantiles to theoretical
quantiles if a random variable were to follow some particular distribution. If we wanted to see if X were
Normally distributed, we could use the qnorm() function to create a Q-Q plot comparing the distribution of
X to the Normal distribution. The call qqnorm(x) create a Q-Q plot comparing the distribution of x to the
Normal distribution. I next create such a plot.
qqnorm(sim_means4)
# A line, for comparison
qqline(sim_means4)
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If the points in the plot fit closely to a straight line, then the distributions are similar. In this case, it seems
that the Normal distribution fits the data well (as it should).

Simulation is frequently used for estimating probabilities that are otherwise difficult to compute by hand.
The idea is to simulate the phenomena under question and how often the event in question happened in
the simulated data. If done correctly, the sample proportion should approach the true probability as more
simulations are done. Here, I demonstrate by estimating for each of the sample sizes investigated, the
probability of being “close” to the true mean, both for the sample mean and the sample median (these
probabilities are no necessarily difficult to compute by hand, and you can investigate for yourself using the
results of the Central Limit Theorem whether the estimated probabilities are close to the true probabilities).
library(reshape)
dat_list <- list("mean" = list(

# Compute probability of being "close" for sample means
"10" = mean(abs(sim_means - 100) < 1), "20" = mean(abs(sim_means2 - 100) < 1), "50" = mean(abs(sim_means3 - 100) < 1), "100" = mean(abs(sim_means4 - 100) < 1)),
# Probabilities of being "close" for sample medians
"median" = list("10" = mean(abs(sim_medians - 100) < 1), "20" = mean(abs(sim_medians2 - 100) < 1), "50" = mean(abs(sim_medians3 - 100) < 1), "100" = mean(abs(sim_medians4 - 100) < 1)))

# Convert this list into a workable data frame. Here I use the melt function in reshape, which will create a data frame where one column is the values stored in the list, and the others represent the values of the tiers.
nice_df <- melt(dat_list)
# Data cleanup
names(nice_df) <- c("Probability", "Size", "Statistic")
nice_df$Size <- factor(nice_df$Size, levels = c("10", "20", "50", "100"))
# The actual probabilities
nice_df

## Probability Size Statistic
## 1 0.15 10 mean
## 2 0.24 20 mean
## 3 0.40 50 mean
## 4 0.49 100 mean
## 5 0.11 10 median
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## 6 0.22 20 median
## 7 0.21 50 median
## 8 0.37 100 median
# A plot of the probabilities
ggplot(nice_df, aes(y = Probability, x = Statistic)) +

# Instead of plotting points, I simply plot what the probability is, as a point.
geom_text(aes(label = paste0(Probability * 100, "%"))) +
facet_grid(. ~ Size) +
theme_bw()
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The above information suggests that the sample mean tends to be closer than the sample median to the true
mean. This can be proven mathematically, but the simulation approach is much easier, although not nearly
as precise.

We could also use sample quantiles to estimate true quantiles for a statistic, and thus get some sense as to
where the true parameter may lie. I demonstrate in the code block below.
quant_list = list("mean" = list("10" = as.list(quantile(sim_means, c(.05, .95))), "20" = as.list(quantile(sim_means2, c(.05, .95))), "50" = as.list(quantile(sim_means3, c(.05, .95))), "100" = as.list(quantile(sim_means4, c(.05, .95)))), "median" = list("10" = as.list(quantile(sim_medians, c(.05, .95))), "20" = as.list(quantile(sim_medians2, c(.05, .95))), "50" = as.list(quantile(sim_medians3, c(.05, .95))), "100" = as.list(quantile(sim_medians4, c(.05, .95)))))
quant_df <- cast(melt(quant_list), L1 + L2 ~ L3)
names(quant_df) <- c("Statistic", "Size", "Lower", "Upper")
quant_df$Size <- factor(quant_df$Size, levels = c("10", "20", "50", "100"))

quant_df

## Statistic Size Lower Upper
## 1 mean 10 93.01272 107.7034
## 2 mean 100 97.37297 102.6705
## 3 mean 20 94.78556 106.6545
## 4 mean 50 97.43711 103.6452
## 5 median 10 89.42588 108.9288
## 6 median 100 96.60708 102.9936
## 7 median 20 94.47622 107.2607
## 8 median 50 95.24452 104.3953
ggplot(quant_df) +

geom_segment(aes(x = Lower, xend = Upper, y = Statistic, yend = Statistic), size = 1.2) +
facet_grid(Size ~ .) +
xlab(NULL)
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We can see that in all cases the true mean lies between the 5th and 95th quantiles, and that the sample mean
has a narrower range than the sample median, thus giving a more precise description as to where the true
mean lies.

Significance Testing

Statistical inference’s raison d’etre is detecting signal from noise. More precisely, statistical inference is
used to determine if there is enough evidence to detect an effect or determine the location of a parameter in
the presence of “noise”, or random effects.

Suppose a researcher is trying to determine if a new drug under study lowers blood pressure. The researcher
randomly assigns study participants to control and treatment groups. He stores his results in R vectors like
so:
control <- c(124, 155, 120, 116)
treatment <- c(120, 108, 132, 112)

Is there a difference beteen control and treatment? Let’s check.
mean(treatment) - mean(control)

## [1] -10.75

A difference of -10.75 looks promising, but there is lots of variation in the data. Is a difference of -10.75 large
enough to conclude there is a difference?

Suppose not. Let’s assume that the treatment had no effect, and the observed difference is due only to the
random assignment to control and treatment groups. If that were the case, other random assignment schemes
would have differences just as or even more extreme than the one observed.
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Let’s investigate this possibility. We will use the combn() function to find all possible combinations of
assigning individuals to the treatment group, with the rest going to the control group. combn(vec, n) will
find all ways to choose n elements from vec, storing the result in a matrix with each column representing one
possible combination. We will assume that we will be pooling the control and treatment groups into a single
vector with 8 elements.
# Find all ways to choose the four indices that will represent a new random
# assignment to the treatment group. This is all we need to know to
# determine who is assigned to both control and treatment.
assn <- combn(1:(length(control) + length(treatment)), 4)
# Look at the result
assn[, 1:4]

## [,1] [,2] [,3] [,4]
## [1,] 1 1 1 1
## [2,] 2 2 2 2
## [3,] 3 3 3 3
## [4,] 4 5 6 7
# How many combinations are possible?
ncol(assn)

## [1] 70

Now, let’s actually investigate the difference and determine if it is “large”.
# Lump all data into a single vector
blood_pressure <- c(control, treatment)
blood_pressure

## [1] 124 155 120 116 120 108 132 112
# To demonstrate the idea of this analysis, let's consider just one new
# assignment of control and treatment, using the 4th column of assn. The new
# assignment is in ind.
ind <- assn[, 4]
# If blood_pressure[ind] is the treatment group, blood_pressure[-ind] is the
# control group.
blood_pressure[ind]

## [1] 124 155 120 132
blood_pressure[-ind]

## [1] 116 120 108 112
# What is the new difference?
mean(blood_pressure[ind]) - mean(blood_pressure[-ind])

## [1] 18.75
# Now, let's do this for all possible combinations, using apply
diffs <- apply(assn, 2, function(ind) {

mean(blood_pressure[ind]) - mean(blood_pressure[-ind])
})

Now we can decide how “unusual” our initial difference between treatment and control of -10.75 is. Since we
are trying to determine if the treatment reduces blood pressure, we decide that if this particular assignment
is unusually negative, there would be evidence that the treatment works. So we see how many assignments
have means more negative than the one seen.
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sum(diffs < mean(treatment) - mean(control))

## [1] 11
mean(diffs < mean(treatment) - mean(control))

## [1] 0.1571429

It seems that 0.16% of assigments to control and treatment result in differences more “extreme” than the one
observed. This is not convincing evidence that the difference we saw reflects any significant effect from the
new drug; there is too much noise in the data to reach such a conclusion.

Let’s consider another problem. In the ToothGrowth data set, we can see the results of an experiment where
different supplements were used to examine the tooth growth of guinea pigs. Is there a difference?

Let’s first see what the difference is.
# Find the means
supp_means <- aggregate(len ~ supp, data = ToothGrowth, mean)
supp_means

## supp len
## 1 OJ 20.66333
## 2 VC 16.96333
# The difference in means (VC - OJ)
diff(supp_means$len)

## [1] -3.7

There is a difference; it appears that the supplement VC (vitamin C in absorbic acid) has smaller tooth growth
than the supplement OJ (orange juice). But is this evidence significant?

In this case, our earlier trick will not work. There are 60 observations in ToothGrowth, 30 of which are
for the group OJ. This means that there are

(60
30
)

= choose(60, 30) = 118, 264, 581, 564, 861, 152 possible
random assignments to the two groups. R will surely choke on that much computation, so we must use a new
approach.

Rather than examine all possible permutations, let’s randomly select permutations and see how often in our
random sample we get results more extreme than what was observed. The principle is the same as what was
done before, but it’s probabilistic rather than exhaustive.
# Let's randomly assign to VC supplement just once for proof of concept;
# each sample has 30 observations, so we will randomly select 30 to be the
# new VC group
ind <- sample(1:60, size = 30)
with(ToothGrowth, mean(len[ind]) - mean(len[-ind]))

## [1] 0.7066667
# We will now do this many times
sim_diffs <- replicate(2000, {

ind <- sample(1:60, size = 30)
with(ToothGrowth, mean(len[ind]) - mean(len[-ind]))

})
# Proportion with bigger difference
mean(sim_diffs < diff(supp_means$len))

## [1] 0.0325
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3.25% of means are “more extreme” than what was observed, which seems convincing evidence that VC is, on
average, less than OJ.

Bootstrapping

When looking at polls in the news, you may notice a margin of error attached to the numbers in the poll. The
margin of error quantifies the uncertainty we attach to a statistic estimated from data, and the confidence
interval, found by adding and subtracting the margin of error from the statistic, represents the range of
values in which the true value of the parameter being estimated could plausibly lie. These are computed for
many statistics we estimate.

We cover in the lecture how confidence intervals are computed using probabilistic methods. Here, we will use
a computational technique called bootstrapping for computing these intervals. Even though the statistics
we discuss in this course could have confidence intervals computed exactly, this is not always the case. We
may not always have a formula for the margin of error in a closed form, either due to it simply not being
derived yet or because it’s intractable. Additionally, bootstrapping may be preferred even if a formula for a
margin error exists because bootstrapping may be a more robust means of computing this margin of error
when compared to a procedure very sensitive to the assumptions under which it was derived.

Earlier in this lecture, we examined techniques for obtaining, computationally, a confidence interval for the
location of the true mean of a Normal distribution. Unfortunately, doing so required knowing what the
true mean was, which clearly is never the case (otherwise there would be no reason for the investigation).
Bootstrapping does what we did earlier, but instead of using the Normal distribution to estimate the standard
error, it estimates the standard error by drawing from the distribution of the data set under investigation (the
empirical distribution). We re-estimate the statistic in the simulated data sets to obtain a distribution of
the statistic under question, and use this distribution to estimate the margin of error we should attach to the
statistic.

Suppose x is a vector containing the data set under investigation. We can sample from the empirical
distribution of x via sample(x, size = length(x), replace = TRUE) (I specify size = length(x) to
draw simulated data sets that are the same size as x, which is what should be done when bootstrapping
to obtain confidence intervals, but in principle one can sample from the empirical distribution simulated
data sets of any size). We can then compute the statistic of interest from the simulated data sets, and use
quantile() to obtain a confidence interval.

Let’s demonstrate by estimating the mean determinations of copper in wholemeal flour, in parts per million,
contained in the chem data set (MASS).
library(MASS)
chem

## [1] 2.90 3.10 3.40 3.40 3.70 3.70 2.80 2.50 2.40 2.40 2.70
## [12] 2.20 5.28 3.37 3.03 3.03 28.95 3.77 3.40 2.20 3.50 3.60
## [23] 3.70 3.70
# First, the sample mean of chem
mean(chem)

## [1] 4.280417
# To demonstrate how we sample from the empirical distribution of chem, I
# simulate once, and also compute the mean of the simulated data set
chem_sim <- sample(chem, size = length(chem), replace = TRUE)
chem_sim

## [1] 3.77 2.40 3.70 2.20 2.20 3.03 2.20 2.40 3.10 2.20 2.40
## [12] 3.40 28.95 3.50 3.40 3.77 2.50 3.77 2.40 3.70 3.70 28.95
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## [23] 28.95 2.90
mean(chem_sim)

## [1] 6.22875
# Now let's obtain a standard error by simulating 2000 means from the
# empirical distribution
mean_boot <- replicate(2000, {

mean(sample(chem, size = length(chem), replace = TRUE))
})
# The 95% confidence interval
quantile(mean_boot, c(0.025, 0.975))

## 2.5% 97.5%
## 3.0025 6.5750
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Lecture 7

Confidence Interval Basics

The sample mean, x̄, is usually not considered enough to know where the true mean of a population is. It is
seen as one instantiation of the random variable X, and since we interpret it as being the result of a random
process, we would like to describe the uncertainty we associate with its position relative to the population
mean. This is true not only of the sample mean but any statistic we estimate from a random sample.

The last lecture was concerned with computational methods for performing statistical inference. In this
lecture, we consider procedures for inferential statistics derived from probability models. In particular, I
focus on parametric methods, which aim to uncover information regarding the location of a parameter of
a probability model assumed to describe the data, such as the mean µ in the Normal distribution, or the
population proportion p. (The methods explored last lecture, such as bootstrapping, are non-parametric;
they do not assume a probability model describing the underlying distribution of the data. MATH 3080
covers other non-parametric methods.)

Why use probabilistic methods when we could use computational methods for many procedures? First,
computational power and complexity may limit the effectiveness of computational methods; large or complex
data sets may be time consuming to process using computational methods alone. Second, methods relying
on simulation, such as bootstrapping, are imprecise. Many times this is fine, but the price of imprecision is
large when handling small-probability events and other contexts where precision is called for. Third, while
computational methods are robust (deviation from underlying assumptions has little effect on the end result),
this robustness comes at the price of power (the ability to detect effects, even very small ones), and this may
not be acceptable to a practitioner (much of statistical methodology can be seen as a battle between power
and robustness, which are often mutually exclusive properties). Furthermore, many computational methods
can be seen as a means to approximate some probabilistic method that is for some reason inaccessible or not
quite optimal.

A 100C% confidence interval is an interval or region constructed in such a way that the probability the
procedure used to construct the interval results in an interval containing the true population parameter of
interest is C. (Note that this is not the same as the probability that the parameter of interest is in the
confidence interval, which does not even make sense in this context since the confidence interval computed
from the sample is fixed and the parameter of interest is also considered fixed, albeit unknown; this is a
common misinterpretation of the meaning of a confidence interval and I do not intend to spread it.) We
call C the confidence level of the confidence interval. Smaller C result in intervals that capture the true
parameter less frequently, while larger C result in intervals capturing the desired parameter more frequently.
There is (always) a price, though; smaller C yield intervals that are more precise (and more likely to be
wrong), while larger C yield intervals that are less precise (and less likely to be wrong). There is usually only
one way to get more precise confidence intervals while maintaining the same confidence level C: collect more
data.

In this lecture we consider only confidence intervals for univariate data (or data that could be univariate).
When discussing confidence intervals, the estimate is the estimated value of the parameter of interest, and
the margin of error (which I abbreviate with “moe”) is the quantity used to describe the uncertainty
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associated with the estimate. The most common and familiar type of confidence interval is a two-sided
confidence interval of the form:

estimate±moe

For estimates of parameters from symmetric distributions, such a confidence interval is called an equal-tail
confidence interval (so called because the confidence interval is equally likely to err on either side of the
estimate). For estimates for parameters from non-symmetric distributions, an equal-tail confidence interval
may not be symmetric around the estimate. Also, confidence intervals need not be two-sided; one-sided
confidence intervals, which effectively are a lower-bound or upper-bound for the location of the parameter of
interest, may also be constructed.

Confidence Intervals “By Hand”

One approach for constructing confidence intervals in R is “by hand”, where the user computes the estimate
and the moe. This approach is the only one available if no function for constructing the desired confidence
interval exists (that will not be the case for the confidence intervals we will see, but may be the case for
others).

Let’s consider a confidence interval for the population mean when the population standard deviation is known.
The estimate is the sample mean, x̄, and the moe is z 1−C

2

σ√
n
, where C is the confidence level, zα is the

quantile of the standard Normal distribution such that P (Z > zα) = 1 − Φ(zα) = α, σ is the population
standard deviation (presumed known, which is unrealistic), and n is the sample size. So the two-sided
confidence interval is:

x̄± z 1−C
2

σ√
n

Such an interval relies on the Central Limit Theorem to ensure the quality of the interval. For large n, it
should be safe (with “large” meaning over 30, according to DeVore), and otherwise one may want to look
at the shape of the distribution of the data to decide whether it is safe to use these procedures (the more
“Normal”, the better).

The “by hand” approach finds all involved quantities individually and uses them to construct the confidence
intervals.

Let’s construct a confidence interval for sepal length of versicolor iris flowers in the iris data set. There are
50 observations, so it should be safe to use the formula for the CI described above. We will construct a 95%
confidence interval assume that σ = 0.5.
# Get the data
vers <- split(iris$Sepal.Length, iris$Species)$versicolor
xbar <- mean(vers)
xbar

## [1] 5.936
# Get critical value for confidence level
zstar <- qnorm(0.025, lower.tail = FALSE)
sigma <- 0.5
# Compute margin of error
moe <- zstar * sigma/sqrt(length(vers))
moe

## [1] 0.1385904
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# The confidence interval
ci <- c(Lower = xbar - moe, Upper = xbar + moe)
ci

## Lower Upper
## 5.79741 6.07459

Of course, this is the long way to compute confidence intervals, and R has built-in functions for computing
most of the confidence intervals we want. The “by hand” method relies simply on knowing how to compute
the values used in the definition of the desired confidence interval, and combining them to get the desired
interval. Since this uses R as little more than a glorified calculator and alternative to a table, I will say no
more about the “by hand” approach (of course, if you are computing a confidence interval for which there
is no R function, the “by hand” approach is the only available route, though you may save some time and
make a contribution to the R community by writing your own R function for computing this novel confidence
interval in general).

R Functions for Confidence Intervals

Confidence intervals and hypothesis testing are closely related concepts, so the R functions that find confidence
intervals are also the functions that perform hypothesis testing (all of these functions being in the stats
package, which is loaded by default). If desired, it is possible to extract just the desired confidence interval
from the output of these functions, though when used interactively, the confidence interval and the result of
some hypothesis test are often shown together.

When constructing confidence intervals, there are two parameters to be aware of: conf.level and
alternative. conf.level specifies the desired confidence level associated with the interval, C. Thus,
conf.level = .99 tells the function computing the confidence interval that a 99% confidence interval is
desired. (The default behavior is to construct a 95% confidence interval.) alternative determines whether
a two-sided interval, an upper-bound, or a lower-bound are computed. alternative = "two.sided"
creates a two-sided confidence interval (this is usually the default behavior, though, so specifying this may
not be necessary). alternative = "greater" computes a one-sided ‘00C% confidence lower bound, and
alternative = "less" returns a one-sided 100C% confidence upper bound. (The parameter alternative
gets its name and behavior from the alternative hypothesis when performing hypothesis testing, which we
will discuss next lecture.)

I now discuss different confidence intervals intended to capture different population parameters.

Population Mean, Single Sample

We saw a procedure for constructing a confidence interval for the population mean earlier, and that procedure
assumed the population standard deviation σ is known. That assumption is unrealistic, and instead we
base our confidence intervals on the random variable T = X−µ

S√
n

. If the data Xi is drawn from some Normal
distribution, then T will follow Student’s t distribution with ν = n − 1 degrees of freedom: T ∼ t(n − 1).
Thus the confidence interval is constructed using critical values from the t distribution, and the resulting
confidence interval is:

x̄± tα
2 ,n−1

s√
n
≡
(
x̄− tα

2 ,n−1
s√
n

; x̄+ tα
2 ,n−1

s√
n

)
where if T ∼ t(ν), P (T ≥ tα,ν) = α.

One should check the Normality assumption made by this confidence interval before using it. A Q-Q plot
is a good way to do so, and a Q-Q plot checking for Normality can be created using the qnorm() function.



134 LECTURE 7

qnorm(x) creates a Q-Q plot checking normality for a data vector x, and qqline(x) will add a line by which
to judge how well the distribution fits the data (being clost to the line suggests a good fit, while strange
patterns like an S-shape curve suggest a poor fit).

I check how well the Normal distribution describes the versicolor iris flower sepal length data below. It is
clear that the assumption of Normality holds quite well for this data.
qqnorm(vers)
qqline(vers)
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That said, the Normality assumption turns out not to be crucial for these confidence intervals, and the
methods turn out to be robust enough to work well even when that assumption does not hold. If a distribution
is roughly symmetric with no outliers, it’s probably safe to build a confidence interval using methods based
on the t distribution, and even if these two do not quite hold, there are circumstances when even then the t
distribution will still work well.

The function t.test() will construct a confidence interval for the true mean µ, and I demonstrate its use below.
# Construct a 95% two-sided confidence interval
t.test(vers)

##
## One Sample t-test
##
## data: vers
## t = 81.318, df = 49, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 5.789306 6.082694
## sample estimates:
## mean of x
## 5.936
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# Construct a 99% upper confidence bound
t.test(vers, conf.level = 0.99, alternative = "less")

##
## One Sample t-test
##
## data: vers
## t = 81.318, df = 49, p-value = 1
## alternative hypothesis: true mean is less than 0
## 99 percent confidence interval:
## -Inf 6.111551
## sample estimates:
## mean of x
## 5.936
# t.test creates a list containing all computed stats, including the
# confidence interval. I can extract the CI by accessing the conf.int
# variable in the list
tt1 <- t.test(vers, conf.level = 0.9)
tt2 <- t.test(vers, conf.level = 0.95)
tt3 <- t.test(vers, conf.level = 0.99)
str(tt1)

## List of 9
## $ statistic : Named num 81.3
## ..- attr(*, "names")= chr "t"
## $ parameter : Named num 49
## ..- attr(*, "names")= chr "df"
## $ p.value : num 6.14e-54
## $ conf.int : atomic [1:2] 5.81 6.06
## ..- attr(*, "conf.level")= num 0.9
## $ estimate : Named num 5.94
## ..- attr(*, "names")= chr "mean of x"
## $ null.value : Named num 0
## ..- attr(*, "names")= chr "mean"
## $ alternative: chr "two.sided"
## $ method : chr "One Sample t-test"
## $ data.name : chr "vers"
## - attr(*, "class")= chr "htest"
# Create a graphic comparing these CIs
library(ggplot2)
# The end goal is to create an object easily handled by ggplot. I start by
# making a list with my data
conf_int_dat <- list(`90% CI` = as.list(tt1$conf.int), `95% CI` = as.list(tt2$conf.int),

`99% CI` = as.list(tt3$conf.int))
# Use melt and cast from reshape package to make a data frame I can work
# with
library(reshape)
melted_cid <- melt(conf_int_dat)
melted_cid

## value L2 L1
## 1 5.813616 1 90% CI
## 2 6.058384 2 90% CI
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## 3 5.789306 1 95% CI
## 4 6.082694 2 95% CI
## 5 5.740370 1 99% CI
## 6 6.131630 2 99% CI
plot_conf_int_dat <- cast(melted_cid, L1 ~ L2)
names(plot_conf_int_dat) <- c("Type", "Lower", "Upper")
plot_conf_int_dat

## Type Lower Upper
## 1 90% CI 5.813616 6.058384
## 2 95% CI 5.789306 6.082694
## 3 99% CI 5.740370 6.131630
# Now, create desired graphic
ggplot(plot_conf_int_dat) + geom_segment(aes(x = Lower, xend = Upper, y = Type,

yend = Type), size = 2)
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# It's clear that larger confidence levels lead to larger intervals, as can
# be seen in this graphic

Population Proportion, Single Sample

Suppose we collect categorical data, and encode observations that have some trait being tracked (“successes”)
with 1, and the rest 0. This is a Bernoulli random variable, and our objective is to estimate the population
proportion of successes, p. The number of successes in the sample,

∑n
i=1Xi, is a binomial random variable,

and the natural estimator for the population proportion is the sample proportion, p̂ = 1
n

∑n
i=1Xi.
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Computing a confidence interval for p has been revisited many times, each method trying to rectify faults of
others (there is even an R package, binom, devoted to providing all the different methods for computing
confidence intervals for the population proportion). A method that used to be popular, based on the Normal
approximation for the distribution of the sample proportion p̂, is the confidence interval:

p̂± zα
2

√
p̂(1− p̂)

n
≡

(
p̂− zα

2

√
p̂(1− p̂)

n
; p̂+ zα

2

√
p̂(1− p̂)

n

)

The function prop.test() will compute confidence intervals using this method, having the format
prop.test(x, n), where x is the number of successes and n the sample size.

A June CNN-ORC poll found 420 individuals surveyed out of 1001 would vote for Donald Trump if the
election were held that day. Let’s use this data to get a confidence interval for the proportion of voters who
would vote for Trump.
prop.test(420, 1001)

##
## 1-sample proportions test with continuity correction
##
## data: 420 out of 1001, null probability 0.5
## X-squared = 25.574, df = 1, p-value = 4.256e-07
## alternative hypothesis: true p is not equal to 0.5
## 95 percent confidence interval:
## 0.3888812 0.4509045
## sample estimates:
## p
## 0.4195804

prop.test() found a confidence interval with a margin of error of roughly 3% (the target margin of error of
the survey).

This confidence interval was popular in textbooks for years, but it is flawed to the point few advocate its
use. The primary reason is that this interval is not guaranteed to capture the true p with the probability we
specify, behaving erratically for different combinations of sample sizes and with more-or-less extreme p. It’s
thus considered unreliable, and alternatives are preferred.

The Hmisc package contains a function for computing confidence intervals for the population proportion,
binconf(), that allows for a few other confidence intervals for the population proportion to be computed.
The score-based method is advocated by the textbook author used in the lecture course, and is supported by
binconf(). The interface of the function is different from the interface of similar functions in the stats (base
R) package (it was not written by the same authors); instead of specifying conf.level, one specifies alpha
in binconf(), with α = 1−C (the default value for alpha is .05, corresponding to a 95% confidence interval).
Additionally, binconf() will not directly compute one-sided confidence bounds like prop.test() would. But
otherwise usage is similar, with binconf(x, n, method = "wilson") computing a 95% confidence interval
for a data set in which, out of n trials, there were x successes, using the score confidence interval.

Let’s use binconf() to compute the score confidence interval for the proportion of voters supporting Donald
Trump, obtaining both a 95% and 99% confidence interval.
library(Hmisc)
# 95% CI
binconf(420, 1001, method = "wilson")

## PointEst Lower Upper
## 0.4195804 0.3893738 0.4504019

http://i2.cdn.turner.com/cnn/2016/images/06/21/rel7b.-.2016.general.pdf
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# 99% CI
binconf(420, 1001, alpha = 0.01, method = "wilson")

## PointEst Lower Upper
## 0.4195804 0.3800618 0.4601581

The 95% confidence interval using the score method is not the same as the result from prop.test(), but not
drastically different either.

binom.test() supports the exact confidence interval, which uses the CDF of the binomial distribution
rather than a Normal approximation. The exact confidence interval can be computed via binom.test(x, n)
(with all other common parameters such as conf.level and alternative being supported). binconf() also
supports the exact confidence interval, where one merely sets method = "exact" to compute it.
binom.test(420, 1001)

##
## Exact binomial test
##
## data: 420 and 1001
## number of successes = 420, number of trials = 1001, p-value =
## 4.029e-07
## alternative hypothesis: true probability of success is not equal to 0.5
## 95 percent confidence interval:
## 0.3887849 0.4508502
## sample estimates:
## probability of success
## 0.4195804
# 99% confidence lower bound for Trump support, using binom.test
binom.test(420, 1001, alternative = "greater", conf.level = 0.99)

##
## Exact binomial test
##
## data: 420 and 1001
## number of successes = 420, number of trials = 1001, p-value = 1
## alternative hypothesis: true probability of success is greater than 0.5
## 99 percent confidence interval:
## 0.3831763 1.0000000
## sample estimates:
## probability of success
## 0.4195804

Paired Sample Confidence Interval for Difference in Means

Suppose you have paired data, Xi and a corresponding Yi. Examples of paired data include weight before
(Xi) and after (Yi) a weight-loss program, or the political views of a husband (Xi) and wife (Yi). There are
two different means for Xi and Yi, denoted µX and µY , and we want to know how these means compare.

Since the data is paired, we create a confidence interval using the differences of each Xi and Yi, Di = Xi− Yi,
and the confidence interval will describe the location of the mean difference µD. Thus, for paired data, after
computing the differences, the procedure for computing a confidence interval is the same as the univariate
case.

One approach for computing the confidence interval for the mean difference of paired data is with t.test(x
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- y), where x and y are vectors containing the paired data. Another approach would be to use t.test(x,
y, paired = TRUE).

I illustrate by examining whether stricter enforcement of speed limit laws helps reduce the number of accidents.
The Traffic data set (MASS) shows the effects of Swedish speed limits on accidents after an experiment
where specific days in 1961 and 1962 saw different speed limits applied, in a paired study (days each year
were matched). Thus a matched pairs design could be applied to see if the speed limit laws helped reduce
accidents.
library(MASS)
library(reshape)
head(Traffic)

## year day limit y
## 1 1961 1 no 9
## 2 1961 2 no 11
## 3 1961 3 no 9
## 4 1961 4 no 20
## 5 1961 5 no 31
## 6 1961 6 no 26
# The Traffic data set needs to be formed into a format that is more easily
# worked with. The following code reshapes the data into a form that allows
# for easier comparison of paired days
new_Traffic <- with(Traffic, data.frame(year = year, day = day, limit = as.character(limit),

y = as.character(y)))
melt_Traffic <- melt(new_Traffic, id.vars = c("year", "day"), measure.vars = c("limit",

"y"))
form_Traffic <- cast(melt_Traffic, day ~ year + variable)
form_Traffic <- with(form_Traffic, data.frame(day = day, limit_61 = `1961_limit`,

accidents_61 = as.numeric(as.character(`1961_y`)), limit_62 = `1962_limit`,
accidents_62 = as.numeric(as.character(`1962_y`))))

head(form_Traffic)

## day limit_61 accidents_61 limit_62 accidents_62
## 1 1 no 9 no 9
## 2 2 no 11 no 20
## 3 3 no 9 no 15
## 4 4 no 20 no 14
## 5 5 no 31 no 30
## 6 6 no 26 no 23
# Now we subset this data so that only days where speed limits were enforced
# differently between the two years
diff_Traffic <- subset(form_Traffic, select = c("accidents_61", "accidents_62",

"limit_61", "limit_62"), subset = limit_61 != limit_62)
head(diff_Traffic)

## accidents_61 accidents_62 limit_61 limit_62
## 11 29 17 no yes
## 12 40 23 no yes
## 13 28 16 no yes
## 14 17 20 no yes
## 15 15 13 no yes
## 16 21 13 no yes
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# Get a vector for accidents when the speed limit was not enforced, and a
# vector for accidents for when it was
accident_no_limit <- with(diff_Traffic, c(accidents_61[limit_61 == "no"], accidents_62[limit_62 ==

"no"]))
accident_limit <- with(diff_Traffic, c(accidents_61[limit_61 == "yes"], accidents_62[limit_62 ==

"yes"]))
accident_limit

## [1] 19 19 9 21 22 23 14 19 15 13 22 42 29 21 12 16 17 23 16 20 13 13 9
## [24] 10 27 12 7 11 15 29 17 17 15 25 9 16 25 25 16 22 21 17 26 41 25 12
## [47] 17 24 26 16 15 12 22 24 16 25 14 15 9
accident_no_limit

## [1] 29 40 28 17 15 21 24 15 32 22 24 11 27 37 32 25 20 40 21 18 35 21 25
## [24] 34 42 27 34 47 36 15 26 21 39 39 21 15 17 20 24 30 25 8 21 10 14 18
## [47] 26 38 31 12 8 22 17 31 49 23 14 25 24
# It took a lot of work, but finally we have the data in a format we want.
# Now, the first thing I check is whether the differences are Normally
# distributed
qqnorm(accident_limit - accident_no_limit)
qqline(accident_limit - accident_no_limit)
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# Aside from a couple observations, the Normal distribution seems to fit
# very well. t procedures are safe to use.
t.test(accident_limit, accident_no_limit, paired = TRUE)

##
## Paired t-test
##
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## data: accident_limit and accident_no_limit
## t = -3.7744, df = 58, p-value = 0.0003794
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -9.856470 -3.024886
## sample estimates:
## mean of the differences
## -6.440678

The above analysis suggests that enforcing speed limits reduces the number of accidents, since zero is not in
the interval.

Test for Difference in Population Means Between Two Samples

Analyzing paired data is simple since the analysis reduces to the univariate case. Two independent samples,
though, are not as simple.

Suppose we have two independent data sets, with X1, ..., Xn the first and Y1, ..., Ym the second, each drawn
from two distinct populations. We typically wish to know whether the means of the two populations, µX
and µY , differ. Thus, we wish to obtain a confidence interval for the difference in means of the populations,
µX − µY .

The natural estimator for µX − µY is X − Y , so the point estimate of the difference is x̄− ȳ. The margin
of error, though, depends on whether we believe the populations are homoskedastic or heteroskedastic.
Homoskedastic populations have equal variances, so σ2

X = σ2
Y . Heteroskedastic populations, though,

have different variances, so σ2
X 6= σ2

Y . Between the two, homoskedasticity is a much stronger assumption, so
unless you have a reason for believing otherwise, you should assume heteroskedasticity. (It is the correct
assumption the populations are, in fact, heteroskedastic, and if they are actually homoskedastic, the confidence
interval should still be reasonably precise.)

For homoskedastic populations, the confidence interval is:

x̄− ȳ ± tα
2 ,n+m−2s

√
1
n

+ 1
m
≡

(
x̄− ȳ − tα

2 ,n+m−2s

√
1
n

+ 1
m

; x̄− ȳ + tα
2 ,n+m−2s

√
1
n

+ 1
m

)

where s is the sample standard deviation of the pooled sample (that is, when X1, ..., Xn and Y1, ..., Ym are
treated as one sample).

Confidence intervals for heteroskedastic data are more complicated, since the t distribution is no longer the
correct distribution to use to describe the behavior of the random variable from which the confidence interval
is derived. That said, the t distribution can approximate the true distribution when the degrees of freedom
used is:

ν =

(
s2
X

n + s2
Y

m

)2

(s2
X
/n)2

n−1 + (s2
Y
/m)2

m−1

with s2
X and s2

Y being the variances of the data sets x1, ..., xn and y1, ..., ym, respectively. Then the confidence
interval is approximately:

x̄− ȳ ± tα
2 ,ν

√
s2
X

n
+ s2

Y

m
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t.test() can compute confidence intervals in both these cases. The function call is similar to the case
of paired data, though without setting paired = TRUE. Instead, set var.equal = TRUE for homoskedastic
populations, and var.equal = FALSE (the default) for heteroskedastic populations.

Let’s illustrate this by determining whether orange juice or a vitamin C supplement increase tooth growth in
guinea pigs (in the ToothGrowth data set).
# First, let's get the data into separate vectors
split_len <- split(ToothGrowth$len, ToothGrowth$supp)
OJ <- split_len$OJ
VC <- split_len$VC
# Gets CI for difference in means
t.test(OJ, VC)

##
## Welch Two Sample t-test
##
## data: OJ and VC
## t = 1.9153, df = 55.309, p-value = 0.06063
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.1710156 7.5710156
## sample estimates:
## mean of x mean of y
## 20.66333 16.96333
# Is there homoskedasticity? Let's check a boxplot
boxplot(len ~ supp, data = ToothGrowth)
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# These populations look homoskedastic; spread does not differ drastically
# between the two. A CI that assumes homoskedasticity is thus computed.
t.test(OJ, VC, var.equal = TRUE)

##
## Two Sample t-test
##
## data: OJ and VC
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## t = 1.9153, df = 58, p-value = 0.06039
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.1670064 7.5670064
## sample estimates:
## mean of x mean of y
## 20.66333 16.96333
# Not much changed (only slightly narrower).

Difference in Population Proportions

If we have two populations, each with a respective population proportion representing the proportion of that
population possessing some trait, we can construct a confidence interval for the difference in the proportions,
pX − pY . The form of the confidence interval depends on which type is being used, and I will not discuss the
details of how these confidence intervals are computed, but simply say that some of the functions we have
seen for single sample confidence intervals, such as prop.test(), support comparing proportions (binconf()
and binom.test() do not). The only difference is that rather than passing a single count and a single sample
size to these functions, you pass a vector containing the count of successes in the two population, and a vector
containing the two sample sizes (naturally they should be in the same order).

In the next example, I compare the proportions of men and women with melanoma who die from the disease.
mel_split <- split(Melanoma$status, Melanoma$sex)
# Get logical vectors for whether patient died from melanoma. Group 0 is
# women and group 1 is men, and the code 1 in the data indicates death from
# melanoma
fem_death <- mel_split[["0"]] == 1
man_death <- mel_split[["1"]] == 1
# Vector containing the number of deaths for both men and women
deaths <- c(Female = sum(fem_death), Male = sum(man_death))
# Vector containing sample sizes
size <- c(Female = length(fem_death), Male = length(man_death))
deaths/size

## Female Male
## 0.2222222 0.3670886
# prop.test, with the 'classic' CLT-based CI
prop.test(deaths, size)

##
## 2-sample test for equality of proportions with continuity
## correction
##
## data: deaths out of size
## X-squared = 4.3803, df = 1, p-value = 0.03636
## alternative hypothesis: two.sided
## 95 percent confidence interval:
## -0.283876633 -0.005856138
## sample estimates:
## prop 1 prop 2
## 0.2222222 0.3670886
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Hypothesis Testing Basics

Hypothesis testing is another common form of statistical inference. In hypothesis testing, our objective is to
decide whether we have enough evidence to reject the null hypothesis, a statement about the population
distribution that a priori we believe to be true, in favor of the alternative hypothesis, a statement about
the population disagreeing with the null hypothesis. Usually the null hypothesis is denoted by H0 and the
alternative by HA.

The first statistical tests introduced to students are tests about the value of a population parameter (other
tests are possible, though). These tests generally take the form:

H0 : θ = θo

HA :

 θ < θ0
θ 6= θ0
θ > θ0

These are the tests that I discuss.

In statistical testing, one computes a test statistic used to compute a p-value, which represents the
probability of observing a test statistic at least as “extreme” as the one actually observed if H0 were in fact
true. Very small p-values indicate a false null hypothesis. Usually what constitutes a “small” p-value is
decided beforehand by choosing a level of significance, typically denoted α. If the p-value is less than α,
H0 is rejected in favor of HA; otherwise, we fail to reject H0. Common α include 0.05, 0.01, 0.001, and 0.1.
The smaller α, the more difficult it is to reject H0.

In hypothesis testing, we need to be aware of two types of errors, called Type I and Type II errors. A Type I
error is rejecting H0 when H0 is true. A Type II error is failing to reject H0 when HA is true. For any test,
we want to know the probability of making either type of error. The probability of a Type I error is α, the
level of significance; this means we specify beforehand what Type I error we want. Type II errors are much
more complicated, since they depend not only on what the true value of θ is (which we will call θA, the value
of θ under the alternative assumed true for Type II error analysis) but additionally on the specified α and
sample size n (other parameters may be involved as well, but they are assumed constant and unable to be
changed). For any testing scheme we represent the Type II error with β(θA), the probability of failing to reject
H0 when the true value of θ is θA. Generally β(θA) is large when θA is close to θ0 (in fact, β(θ0) = 1− α),
and small when θA is distant from θ0. This should make intuitive sense; a big difference between θ0 and θA
should be easy to detect, but a small difference may be more difficult. In practice, researchers pick a θA for
which they want to be able to detect a difference with some specified probability β. They then use this to
pick a sample size that gives the test the desired property.

Some prefer to discuss the power of a test rather than the probability of a Type II error. The power of a
test is the probability of rejecting H0 when θ = θA. Power connects both Type I and Type II errors, since
the power of a test is defined to be π(θA) = 1− β(θA) and π(θ0) = α. The same principles discussed with
regard to the probability of Type I and Type II errors hold with power.
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As with confidence intervals, R has many functions for handling hypothesis testing (in fact, you have already
seen most of them). We can perform hypothesis testing “by hand” (not using any functions designed for
performing an entire test), or using functions designed for hypothesis testing. We start with methods “by
hand”.

Hypothesis Testing “By Hand”

Hypothesis testing “by hand” involves computing the test statistic and finding the appropriate p-value for a
test directly. This is the only means of hypothesis testing if a function for performing some desired test does
not exist (which is probably not the case unless you’re working with a very obscure test).

Let’s start by considering a simple z-test, where the hypotheses are:

H0 : µ = µ0

HA :

 µ < µ0
µ 6= µ0
µ > µ0

The test statistic is z = x̄−µ0
σ√
n

and the p-value (denoted pval) is:

pval =

 Φ(z) if HA is µ < µ0
2 (1− Φ(|z|)) if HA is µ 6= µ0
1− Φ(z) if HA is µ > µ0

This test is unrealistic since it assumes σ is known, but it is simple to analyze.

I demonstrate these procedures by testing whether the diameter of black cherry trees is 12 in. I test the
hypotheses:

H0 : µ = 12

HA : µ 6= 12

I use the data set trees and assume that the population standard deviation is 3. I will base my test on the
significance level of α = .05.
# Some basic numbers
xbar <- mean(trees$Girth)
xbar

## [1] 13.24839
n <- nrow(trees)
mu_0 <- 12
sigma <- 3
# Test statistic
z <- (xbar - mu_0)/(sigma/sqrt(n))
z

## [1] 2.316908
# Get p-value, using pnorm
pval <- 2 * (1 - pnorm(abs(z)))
pval
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## [1] 0.02050872

Since 0.02 is less than my significance level of .05, I reject the null hypothesis; the mean diameter of black
cherry trees is not 12. That said, if I were to use a significance level of α = .01, I would not reject the null
hypothesis. Remember that the p-value represents the largest level of significance at which I would fail to
reject the null hypothesis. Thus the p-value measures how unlikely my data is if the null hypothesis were
true, with smaller p-values indicating more evidence against the null hypothesis.

Testing hypotheses “by hand” follows a similar format to the one demonstrated here, so I do not demonstrate
this approach any more in this lecture.

R Functions for Statistical Testing

R has functions for performing many common statistical tests, including many that come with any R
installation in the stats package. We already saw all the functions for performing statistical tests I consider in
this lecture when we discussed confidence intervals. There may be additional parameters to specify depending
on the statistical test, such as what the population mean under the null hypothesis is, but otherwise little
has changed. Many of these functions have a common parameter alternative that determines what the
alternative hypothesis is. For a two-sided test (that is, when the alternative hypothesis is that θ 6= θ0), you
may set alternative = "two.sided" (this is the default, though, so setting this may not be necessary). If
the alternative hypothesis says θ > θ0, set alternative = "greater", and if the alternative hypothesis says
θ < θ0, set alternative = "less".

The statistical testing functions in stats will report the results of a statistical test and many other important
quantities, such as the estimate of the parameters investigated, the sample size, degrees of freedom, the value
of a test statistic, the p-value, and even the corresponding confidence interval. They do not state whether to
reject or not reject the null hypothesis; you are expected to tell from the p-value reported whether to reject
or not reject based on the significance level you have chosen.

stats includes some functions for Type II error analysis (often in the form of power analysis, which amounts
to the same sort of analysis), but this is a difficult analysis in general. Functions for study planning may be
included in other packages.

Test for Location of Population Mean

Suppose you wish to test the hypotheses:

H0 : µ = µ0

HA :

 µ < µ0
µ 6= µ0
µ > µ0

Furthermore, you assume (after perhaps using qqnorm() or some other procedure to check) that your data is
Normally distributed, and thus it is safe to use the t-test (or your sample size is large enough for this to be
safe to use anyway). The function t.test() allows you to test these hypotheses. The call t.test(x, mu =
mu0) will test whether the data stored in vector x has a mean of mu0 or whether the true mean differs from
mu0 (remember: change the form of the alternative hypothesis with the parameter alternative), using the
test statistic:

t = x̄− µ0
s√
n
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I test the hypotheses regarding tree girth in the trees data set mentioned earlier in this lecture, but this
time using t.test(), using a level of significance of α = .05.
# Check the normality assumption
qqnorm(trees$Girth)
qqline(trees$Girth)
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# Data appears Normally distributed, so it's safe to use t.test
t.test(trees$Girth, mu = 12)

##
## One Sample t-test
##
## data: trees$Girth
## t = 2.2149, df = 30, p-value = 0.0345
## alternative hypothesis: true mean is not equal to 12
## 95 percent confidence interval:
## 12.09731 14.39947
## sample estimates:
## mean of x
## 13.24839

With a p-value of 0.0345, I reject the null hypothesis in favor of the alternative.

Test for Value of a Proportion

Suppose you wish to test the hypotheses:

H0 : p = p0
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HA :

 p < p0
p 6= p0
p > p0

Suppose your sample size is large enough to invoke the Central Limit Theorem to describe the sampling
distribution of the statistic p̂ = 1

n

∑n
i=1Xi, and thus use the test statistic:

z = p̂− p0√
p0(1−p0)

n

You can use prop.test() to test the hypotheses if these conditions hold. The call prop.test(x, n, p =
p0) will test whether the true proportion is p0 when there were x successes out of n trials (both x and n are
single non-negative integers).

Suppose that out of 1118 survey participants, 562 favored Hillary Clinton over Donald Trump (this data is
fictitious). I test whether the candidates are tied or whether Hillary Clinton is winning below:
prop.test(562, 1118, alternative = "greater", p = 0.5)

##
## 1-sample proportions test with continuity correction
##
## data: 562 out of 1118, null probability 0.5
## X-squared = 0.022361, df = 1, p-value = 0.4406
## alternative hypothesis: true p is greater than 0.5
## 95 percent confidence interval:
## 0.477664 1.000000
## sample estimates:
## p
## 0.5026834

With a p-value of 0.4406, I soundly fail to reject the null hypothesis.

Suppose that your sample size is not large enough to use the above procedure (or you would simply rather
not risk it), and you would rather use the binomial distribution to perform an exact test of the null and
alternative hypotheses. binom.test() will allow you to perform such a test with a function call similar to
prop.test().

Suppose you wish to know what the political alignment of your Facebook friends are. You conduct a survey,
randomly selecting 15 friends from your friends list and determining their political affiliation, with a “success”
being a friend being the same political party as yours. You find that 10 of your friends have the same political
views as you, and use this to test whether most of your friends agree with you. You use a significance level of
α = .1 to decide whether to reject the null hypothesis.
binom.test(10, 15, p = .5, alternative = "greater")

##
## Exact binomial test
##
## data: 10 and 15
## number of successes = 10, number of trials = 15, p-value = 0.1509
## alternative hypothesis: true probability of success is greater than 0.5
## 95 percent confidence interval:
## 0.4225563 1.0000000
## sample estimates:
## probability of success
## 0.6666667
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Since the p-value of 0.1509 is greater than the significance level, you fail to reject the null hypothesis.

Testing for Difference Between Population Means Using Paired Data

Suppose you have data sets from two populations Xi and Yi, each possibly having their own mean, and you
wish to test:

H0 : µX = µY ≡ µX − µY = 0

HA :

 µX < µY ≡ µX − µY < 0
µX 6= µY ≡ µX − µY 6= 0
µX > µY ≡ µX − µY > 0

Since the data is paired, testing these hypotheses is similar to inference with univariate data after you find
Di = Xi − Yi and replace µX − µY with µD.

If the differences Di are Normally distributed, you can use the t-test to decide whether to reject H0 (you
would also use the t-test if your data was not Normally distributed but the sample size was large enough
that little would change if a more exact test were used). In R, use t.test() setting the parameter paired
= TRUE. By default the parameter mu is 0, so you do not need to change it unless you want to test for a
difference between the two populations other than zero. (In other words, you would be testing whether the
samples differ by a certain amount as opposed to whether they differ at all.)

Below I test whether stronger speed limits reduce accidents, using the Swedish study we saw in the lecture
on confidence intervals (in fact, you may see that most of the following code is identical to that lecture’s
code). I will reject H0 if the p-value is less than 0.1.
library(MASS)
library(reshape)
head(Traffic)

## year day limit y
## 1 1961 1 no 9
## 2 1961 2 no 11
## 3 1961 3 no 9
## 4 1961 4 no 20
## 5 1961 5 no 31
## 6 1961 6 no 26
# The Traffic data set needs to be formed into a format that is more easily worked with. The following code reshapes the data into a form that allows for easier comparison of paired days
new_Traffic <- with(Traffic, data.frame("year" = year, "day" = day, "limit" = as.character(limit), "y" = as.character(y)))
melt_Traffic <- melt(new_Traffic, id.vars = c("year", "day"), measure.vars = c("limit", "y"))
form_Traffic <- cast(melt_Traffic, day ~ year + variable)
form_Traffic <- with(form_Traffic, data.frame("day" = day, "limit_61" = `1961_limit`, "accidents_61" = as.numeric(as.character(`1961_y`)), "limit_62" = `1962_limit`, "accidents_62" = as.numeric(as.character(`1962_y`))))
head(form_Traffic)

## day limit_61 accidents_61 limit_62 accidents_62
## 1 1 no 9 no 9
## 2 2 no 11 no 20
## 3 3 no 9 no 15
## 4 4 no 20 no 14
## 5 5 no 31 no 30
## 6 6 no 26 no 23
# Now we subset this data so that only days where speed limits were enforced differently between the two years
diff_Traffic <- subset(form_Traffic, select = c("accidents_61", "accidents_62", "limit_61", "limit_62"), subset = limit_61 != limit_62)
head(diff_Traffic)



R FUNCTIONS FOR STATISTICAL TESTING 151

## accidents_61 accidents_62 limit_61 limit_62
## 11 29 17 no yes
## 12 40 23 no yes
## 13 28 16 no yes
## 14 17 20 no yes
## 15 15 13 no yes
## 16 21 13 no yes
# Get a vector for accidents when the speed limit was not enforced, and a vector for accidents for when it was
accident_no_limit <- with(diff_Traffic, c(accidents_61[limit_61 == "no"], accidents_62[limit_62 == "no"]))
accident_limit <- with(diff_Traffic, c(accidents_61[limit_61 == "yes"], accidents_62[limit_62 == "yes"]))
accident_limit

## [1] 19 19 9 21 22 23 14 19 15 13 22 42 29 21 12 16 17 23 16 20 13 13 9
## [24] 10 27 12 7 11 15 29 17 17 15 25 9 16 25 25 16 22 21 17 26 41 25 12
## [47] 17 24 26 16 15 12 22 24 16 25 14 15 9
accident_no_limit

## [1] 29 40 28 17 15 21 24 15 32 22 24 11 27 37 32 25 20 40 21 18 35 21 25
## [24] 34 42 27 34 47 36 15 26 21 39 39 21 15 17 20 24 30 25 8 21 10 14 18
## [47] 26 38 31 12 8 22 17 31 49 23 14 25 24
# It took a lot of work, but finally we have the data in a format we want. Now, the first thing I check is whether the differences are Normally distributed
qqnorm(accident_limit - accident_no_limit)
qqline(accident_limit - accident_no_limit)
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# Aside from a couple observations, the Normal distribution seems to fit very well. t procedures are safe to use.
t.test(accident_limit, accident_no_limit, paired = TRUE, alternative = "less")

##
## Paired t-test
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##
## data: accident_limit and accident_no_limit
## t = -3.7744, df = 58, p-value = 0.0001897
## alternative hypothesis: true difference in means is less than 0
## 95 percent confidence interval:
## -Inf -3.588289
## sample estimates:
## mean of the differences
## -6.440678

With a p-value of 0.0002, we soundly reject H0.

Test for Difference in Mean Between Populations With Independent Samples

Again, consider the set of hypotheses considered in the above section, only the data is not paired; we have
two samples, X1, ..., Xn and Y1, ..., Ym (I assume both are drawn from Normal distributions, so we may use t
procedures). Our test statistic depends on whether we believe our populations are homoskedastic (common
standard deviation σ) or heteroskedastic (possibly differing standard deviations σX and σY ) under the null
hypothesis (whether they are homoskedastic or heteroskedastic if the alternative hypothesis is true doesn’t
matter). If we believe that, under H0, the populations are homoskedastic, our test statistic will be:

t = x̄− ȳ

s
√

1
n + 1

m

where s is the pooled sample standard deviation. The degrees of freedom of the t distribution used to compute
the p-value are ν = n+m− 2.

If we do not assume that the populations are homoskedastic under H0 (so we either believe they are
heteroskedastic or that we have no reason to believe they are homoskedastic and thus assume heteroskedasticity
by default), our test statistic will be:

t = x̄− ȳ√
s2
x

n + s2
y

m

The t distribution is used as an approximation of the true distribution this test statistic follows under H0,
with degrees of freedom:

ν =

(
s2
X

n + s2
Y

m

)2

(s2
X
/n)2

n−1 + (s2
Y
/m)2

m−1

t.test() allows for testing these hypotheses. There is no need to set paired = FALSE, and you only set
var.equal = TRUE if you want a test assuming that the populations are homoskedastic under H0. (If this
assumption holds, the homoskedastic test is more powerful than the heteroskedastic test, but the difference is
only minor.)

Let’s test whether orange juice increases the tooth growth of guinea pigs, using the ToothGrowth data set. I
use a significance level of α = .05 to decide whether to reject H0.
# First, let's get the data into separate vectors
split_len <- split(ToothGrowth$len, ToothGrowth$supp)
OJ <- split_len$OJ
VC <- split_len$VC
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# Perform statistical test
t.test(OJ, VC, alternative = "greater")

##
## Welch Two Sample t-test
##
## data: OJ and VC
## t = 1.9153, df = 55.309, p-value = 0.03032
## alternative hypothesis: true difference in means is greater than 0
## 95 percent confidence interval:
## 0.4682687 Inf
## sample estimates:
## mean of x mean of y
## 20.66333 16.96333
# Is there homoskedasticity? Let's check a boxplot
boxplot(len ~ supp, data = ToothGrowth)
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# These populations look homoskedastic; spread does not differ drastically
# between the two. A test that assumes homoskedasticity is thus performed.
t.test(OJ, VC, var.equal = TRUE, alternative = "greater")

##
## Two Sample t-test
##
## data: OJ and VC
## t = 1.9153, df = 58, p-value = 0.0302
## alternative hypothesis: true difference in means is greater than 0
## 95 percent confidence interval:
## 0.4708204 Inf
## sample estimates:
## mean of x mean of y
## 20.66333 16.96333
# Not much changed.
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In both versions of the test, I reject the null hypothesis.

Testing for Difference in Population Proportion

Suppose you have two data sets of Bernoulli random variables, X1, ..., Xn and Y1, ..., Ym, and you wish to
know if the population proportion of “successes” for the first population, pX , differs from the corresponding
proportion in the second population, pY . Your set of hypotheses are:

H0 : pX = pY ≡ pX − pY = 0

HA :

 pX < pY ≡ pX − pY < 0
pX 6= pY ≡ pX − pY 6= 0
pX > pY ≡ pX − pY > 0

If m and n are reasonably large, the Central Limit Theorem can be used to obtain a test statistic:

z = p̂X − p̂Y√
p̂(1− p̂)

( 1
n + 1

m

)
where p̂ is the pooled sample proportion (that is, the proportion of “successes” from the combined sample).
Under H0, this test statistic follows a standard Normal distribution (when applying the Central Limit
Theorem).

In R, prop.test() can be used to conduct this test, using a call similar to prop.test(x, n) where x is a
vector containing the number of successes in the samples, and n is the size of both samples.

Below, I use prop.test() and the Melanoma data set to test whether males and females are equally likely to
die from melanoma after being diagnosed, or whether they differ. I use a significance level of α = .05.
# First, I obtain sample sizes, using the fact that sex == 1 for males and 0
# for females
n <- c(Female = nrow(Melanoma) - sum(Melanoma$sex), Male = sum(Melanoma$sex))
# Now, find how many in each group died from melanoma
x <- aggregate(Melanoma$status == 1, list(Melanoma$sex), sum)
x <- c(Female = x[1, "x"], Male = x[2, "x"])
prop.test(x, n)

##
## 2-sample test for equality of proportions with continuity
## correction
##
## data: x out of n
## X-squared = 4.3803, df = 1, p-value = 0.03636
## alternative hypothesis: two.sided
## 95 percent confidence interval:
## -0.283876633 -0.005856138
## sample estimates:
## prop 1 prop 2
## 0.2222222 0.3670886

With a p-value of 0.0364, I reject the null hypothesis; men and women are not equally likely to die from
melanoma.
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Power Analysis

Power analysis is an important part of planning a statistical study. Researchers usually try to make a test as
powerful as reasonable (there is always a more powerful study than the one currently employed; simply use a
sample size of n+ 1 rather than n). A useful technique in planning a study is to decide what effect size the
test should be able to detect with some specified probability, then choose a sample size that will give this
property to the test.

Whole R packages are devoted to providing tools for study planning, but the stats package included with
any R installation has some function for power analysis, including those for the two classes of tests we have
studied: tests for population mean, and tests for population proportion.

Power Analysis for the t-Test

power.t.test() allows you to perform power analysis for the t-test. It can be used in different ways
depending on which parameters are passed to it and which are set to NULL, and you are encouraged to read
the documentation (with, say, help("power.t.test")) to see how this function behaves, but I will focus on
two applications: computing power for a test, and computing a sample size for a given power.

power.t.test(n, delta, sd, sig.level, type = "some.type.of.test", alternative = "some.alternative")
will compute the power of a test with sample size n, where the difference between the mean under the null
hypothesis and the mean under the alternative hypothesis, µ0 − µA, is delta, the population standard
deviation is sd, and the significance level is sig.level (by default, sig.level = .05). The type of the
test administered is specified by type, and can be either "one.sample", "two.sample", or "paired" (the
meaning should be self-evident). alternative specifies whether the alternative hypothesis is one-sided or
two-sided. Notice that if alternative = "two.sided", delta will be perceived as also communicating
which direction the difference between µ0 and µA occurs, so if you want the power to include the probability
of rejecting in the opposite direction as well, you should set the parameter strict to TRUE (by default,
strict = FALSE).

Suppose you plan to conduct a study to determine whether a new drug would induce weight loss. You plan to
give all study participants both the drug and a placebo (in random order, with neither the study participants
or experiment staff knowing which treatment is the drug or placebo, thus helping combat bias), and measure
the difference in weight loss when the two treatments are administered. Thus your hypotheses are:

H0 : µdrug = µplacebo

HA : µdrug > µplacebo

Your test will use a significance level of α = .01. You believe that σ = 20 (you estimate high to be on the
safe side). A researcher on staff suggests a sample size of 20. You are skeptical that a study with that sample
size will be able to detect a five-pound difference in weight loss between the drug and the placebo, and thus
compute π(5), the power of the test when the true difference is 5 lbs.
power.t.test(n = 20, delta = 5, sd = 20, sig.level = 0.01, type = "paired",

alternative = "one.sided")

##
## Paired t test power calculation
##
## n = 20
## delta = 5
## sd = 20
## sig.level = 0.01
## power = 0.09924502
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## alternative = one.sided
##
## NOTE: n is number of *pairs*, sd is std.dev. of *differences* within pairs

This study will only detect a five-pound difference about 10% of the time, which is too low for your liking.
You want to find a sample size to guarantee detecting this difference with some higher probability. This may
involve a much larger sample size.

power.t.test(delta = d, sd = s, sig.level = alpha, power = p, type = "some.type.of.test",
alternative = "some.alternative") is similar in usage to the earlier command but instead of finding
power, the sample size will be found such that the power of the test when the difference between µ0 and
µA is d is power. Thus this call is useful when planning a test and choosing an appropriate sample size for
detecting a specified effect with some desired probability.

You have decided that you want the study to detect a five-pound difference in weight loss 90% of the time,
and want to find a sample size that will give your test this property. You use R to find this sample size:
power.t.test(power = 0.9, delta = 5, sd = 20, sig.level = 0.01, type = "paired",

alternative = "one.sided")

##
## Paired t test power calculation
##
## n = 210.9878
## delta = 5
## sd = 20
## sig.level = 0.01
## power = 0.9
## alternative = one.sided
##
## NOTE: n is number of *pairs*, sd is std.dev. of *differences* within pairs

The results suggest that you need 211 study participants for your study to have the desired property.

Power Analysis for Tests of Proportion

power.prop.test() does for tests for population proportion what power.t.test() does for tests for popu-
lation mean. The syntax is similar, except there is no parameter type, and delta is replaced with p1 and
p2, which specify the population proportions under the two hypotheses. (There is no need to specify sd, so
clearly that is not a parameter either.)

Gallup polls often survey samples of 1500 adults. Suppose a Gallup poll asks individuals whether they support
Hillary Clinton or Donald Trump for President, and the poll uses a significance level of α = .05 (the default
for power.prop.test(), thus allowing us to ignore the parameter sig.level). Suppose we wish to use the
results of the poll to test:

H0 : p = .5

HA : p > .5

where p is the proportion of the population supporting Hillary Clinton. We would like to know if the Gallup
poll can reasonably detect a 1% advantage for Clinton, and use power.prop.test() to detect this:
power.prop.test(n = 1500, p1 = .5, p2 = .51, alternative = "one.sided")

##
## Two-sample comparison of proportions power calculation
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##
## n = 1500
## p1 = 0.5
## p2 = 0.51
## sig.level = 0.05
## power = 0.136286
## alternative = one.sided
##
## NOTE: n is number in *each* group

The Gallup poll will detect this difference only 14% of the time. If we wanted to detect this advantage for
Clinton 95% of the time, what sample size do we need? By specifying power = .95 and omitting n, we can
find the desired sample size.
power.prop.test(power = .95, p1 = .5, p2 = .51, alternative = "one.sided")

##
## Two-sample comparison of proportions power calculation
##
## n = 54102.75
## p1 = 0.5
## p2 = 0.51
## sig.level = 0.05
## power = 0.95
## alternative = one.sided
##
## NOTE: n is number in *each* group

We would need a sample size of 54,103 people to have a test with these properties.

p-Hacking

p-hacking (also known as data dredging or other names) is the practice of reformulating hypotheses and
research questions and computing p-values for the same data set until a statistically significant result is
obtained. This is considered to be very bad practice, and results found by p-hacking are untrustworthy. The
probability of a Type I error is inflated when p-hacking is used, yet nowhere is this communicated or adjusted
for. You do not want to be accused of p-hacking.

When conducting a study, you should have a well-defined problem prior to any testing. Exploratory analysis
with visualization, or deeper analysis on small subsets of the data (that you do not use later when testing)
You should also report what you did. If you perform an analysis and do not get the results you expected
and you are certain that the analysis was done correctly, or you simply are unsatisfied with the conclusion,
you need to perform analysis on new data, not the same data. Furthermore, you should report any prior
analyses. Keep in mind that if you perform lots of tests and end when you find a significant result, you may
be p-hacking, especially if you do not report that this was done.

There are many do’s and don’t’s with regards to how to properly conduct hypothesis testing and avoid
p-hacking. Some rules of thumb would be to have a well-defined plan and research question prior to analysis
and keep statistical testing critical to the research question at a minimum. The website FiveThirtyEight has
made a web app where you can see what p-hacking is and why it cannot be trusted.

http://projects.fivethirtyeight.com/p-hacking/
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