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Preface

These lecture notes were written to accompany Jay Devore’s Prob-
ability and Statistics for Engineering and the Sciences (9th ed.) (Devore,
2015). They are half-filled notes that students are expected to fill out
as the instructor lectures and fills out the notes himself on a projected
screen for the students to see. This is my preferred lecturing style, as
it allows for definitions to be present without needing to waste time
writing them down by hand, example problems to be written but not
yet solved, and generally improves the flow of the class. Additionally,
R code accompanies the mathematical presentation so that students
can see how R integrates with the concepts they learn, something
that Devore’s book does not do. As the class these notes were written
for has an accompanying R programming lab, this is a highly useful
feature.

These notes do not stand alone and follow tightly to Prof. Devore’s
book, and I will never release filled-out notes. Additionally, these
notes are not intended to be an introduction to R programming; other
notes I have written serve that purpose. The R code here is intended
to be “real,” written to solve problems “the best way possible” rather
than in a way students will immediately understand. Devore’s book,
and some other resource for learning R programming (such as the
lab textbook for the course by Verzani (2014)) must accompany these
notes for them to be of any use. That said, I believe they make a great
supplement to Devore’s book.

These notes follow Devore’s structure exactly and cover Chap-
ters 1 through 9, the chapters covered by the course. Comments are
made in the margins, representing asides that are useful or interest-
ing to know (and might even be test or quiz material) yet serve as
asides to the main body of information. The notes follow the famous
Tufte style; this allows space for the comments and also for plenty
of whitespace for note taking and problem solving. There should be
plenty of room for students to write.

I hope you find these notes useful.
Curtis Miller





Chapter 1: Overview and Descriptive Statistics

Introduction

This chapter is devoted to basic statistical ideas and statistical
summaries. We start with describing what statistics is, does, and
what it uses. Next we see graphical and tabular methods for describ-
ing distributions. The last two sections discuss measures of location
and measures of spread, respectively.

Section 1: Populations, Samples, and Processes

Data is a collection of facts. A population is a group of interest. If we
collect data for the entire population, we have conducted a census.
Usually, though, we collect data for a subset of a population, called
a sample. Our objective is to use the data in the sample to reach
conclusions about the population as a whole.

In a sample we have observations, individual data points that
consist of variables, or quantities/characteristics of interest. Univari-
ate data records the value of only one variable for each observation.
Multivariate data records the value of multiple variables for each ob-
servation. Bivariate data is a special case of multivariate data; there
are two variables quantified.

Categorical variables take values from a finite number of possibili-
ties. Quantitative variables, however, take numerical values.1 1 This may be the simplest dichotomy of

types of data. Stevens (1946) classifies
data into nominal, ordinal, interval,
and ratio types, the first two breaking
up the “categorical” data type and the
second two breaking up the “quantita-
tive” data type. The data types allow
for different operations to be defined
for different data; ordinal data allows
for order relations, interval for addition
and subtraction, and ratio allows for
division and multiplication.

Modern statistics depends heavily on probability theory. Probabil-
ity is the field of mathematics that describes the behavior of objects in
the presence of uncertainty (which we refer to as randomness). The
diagram below illustrates the relationship between probability and
statistics with relation to samples and populations.
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How we define a population depends heavily on our problem. In
enumerative studies, the population is a fixed, finite, tangible group
that presently exists. In analytic studies the population may not
presently exist.

Statistics depends crucially on how data is collected in survey-
style, observational studies. If data is collected poorly, the results of
analysis cannot be trusted.

Below are two approaches for collecting data correctly:

• In a simple random sample (SRS), each member of the population
of interest is eligible to be randomly selected to be included in the
sample. The usual analogy is that each individual in the popula-
tion is written on a piece of paper and put in a hat; then, slips of
paper are randomly chosen in the hat and those individuals are
chosen to be in the sample.2 The statistical methods seen in this 2 For example, a candidate for public

office may use the registered voter list
to randomly select voters in the area
the candidate will represent and ask
them who they plan to vote for in the
upcoming election.

class are appropriate for simple random samples only.

• In stratified sampling, the population is divided into observable
strata. A SRS is then selected from individuals in each strata.3

3 For example, in a national election,
an equal number of voters are selected
from each state to participate in a poll.

Convenience sampling selects individuals in a way that is not
completely random (in the sense that not all individuals from the
population are equally likely to be selected, and the procedure is not
intentionally stratified). The results of convenience samples cannot be
trusted. Statistical descriptions of error account only for error due to
randomness, not due to bad sampling procedures.

Section 2: Pictorial and Tabular Methods in Descriptive Statistics

A distribution describes what values a variable takes and how fre-
quently it takes them. This section describes techniques for visual-
izing distributions of univariate data. Visualization is an important
first step in a statistical project, as it reveals patterns that are difficult
to describe using numbers only, and could suggest what statistical
procedures are appropriate.

In statistics, n usually denotes the sample size, or the number
of observations in the dataset. To denote the values of the dataset’s
variable, we often use the notation x1, x2, ..., xn, where xi is the ith
observation of the dataset. Unless otherwise stated this notation says
nothing about the dataset’s values. That is, the data is not assumed to
be ordered.

Stem-and-Leaf Plot

The first visualization of data is a stem-and-leaf plot. This plot is
constructed using the following steps:
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1. Select the number of leading digits to be the stem values. The
remaining digits are the leaf values.

2. Draw a vertical line and list the stem values to the left of this line,
in order.

3. Record the leaf of each observation in the row corresponding to its
stem value. (Computers often order the leaf values, but when done
by hand this is not necessary.)

4. Somewhere in the display, indicate the units of the stem and
leaves. (For example, the stems start at the tens place, and the
leaves start at the ones place.)

Example 1

The following is a subset of Macdonell’s data on height and finger
length of criminals imprisoned in England and Wales (Macdonell,
1902). Here I report only the (rounded) heights of the subset.4 4 Throughout this course I will be

including R code that answers the
questions I ask. This is so you can see
how to do these techniques in R. You
are not expected to understand any of the
code at the start of the course! I do not
attempt to simplify the code to account
for what you have learned so far in the
lab. The more you see R code, though,
the more familiar and less scary it will
become, and I invite you to revisit these
lectures at the end of the course and
see how much you can understand.
Additionally, I hope some of my code
will stimulate your curiosity, including
the more complicated code.

height <- c(5.55, 5.30, 5.63, 5.30, 5.13,

5.05, 5.38, 5.96, 5.21, 5.38)

Use this dataset to construct a stem-and-leaf plot.
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stem(height, scale = 2)

##

## The decimal point is 1 digit(s) to the left of the |

##

## 50 | 5

## 51 | 3

## 52 | 1

## 53 | 0088

## 54 |

## 55 | 5

## 56 | 3

## 57 |

## 58 |

## 59 | 6

A dotplot represents each data point as a dot along a real number
line, putting the point on the line according to its value. If two points
would be almost overlapping, they would instead be stacked.

Example 2

Using the data in Example 1, create a dotplot.
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stripchart(height, method = "stack", pch = 19, offset = 0.5, at = 0)

5.2 5.4 5.6 5.8

A quantitative variable is discrete if its possible values are count-
able. It is continuous if possible values consist of entire intervals of
the real number line (which could be the whole line, in principle).5 5 As a rule of thumb, discrete variables

arise from counting, while continuous
variables arise from measurements.

The frequency the value of a variable occurs is the number of
times that value was seen in a dataset. For discrete variables it’s rea-
sonable to list the frequency of each observed value, but for continu-
ous variables this is not reasonable. Instead, for continuous variables,
we list the frequency of a bin, which is a range in which a datapoint
could be. We would then count how many data points fell within
that range.

The relative frequency is the frequency a value occured divided
by the number of data points. (This is defined analogously for contin-
uous variables.) That is:

A frequency distribution is a tabulation of frequencies or relative
frequencies.
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Example 3

A statistically minded parent tracks the number of points scored by
his daughter’s little league soccer team during regular season. Below
is the dataset.

soccer <- c(9, 6, 5, 5, 5, 6, 2, 8, 3, 4, 8, 1)

Construct a frequency distribution for this dataset.
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table(soccer)

## soccer

## 1 2 3 4 5 6 8 9

## 1 1 1 1 3 2 2 1

When working with continuous data we need to construct bins
when creating a frequency distribution, and list the frequency each
bin occurs. How do we do this?

1. Decide on the number of bins. There are rules of thumb for doing
this, such as choosing approximately

√
n bins.6 6 Actually, n1/5 may work better.

2. Divide the segment of the number line where your data lies into
that many equal-length bins.7 7 Some people consider bins of unequal

length. When constructing a histogram,
do not do this. It makes the histogram
more difficult to read correctly.

3. Depending on where each datapoint falls, assign it to a bin. If it
falls on a border between bins, assign it to the bin on the right. (In
other words, bins are right-inclusive.)

4. Construct a frequency distribution for the bins.

Example 4

Using the data in Example 1, construct a frequency distribution.

length(height) # The sample size

## [1] 10

Once we have a frequency distribution, we can construct a his-
togram, a plot for visualizing the distribution of quantitative data.
Do the following:
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1. Draw a number line and mark the location of the bins. For dis-
crete data, center the bins on the corresponding value.

2. For each class, draw a bar extending from the number line to
either the frequency or relative frequency of the number/bin. Do
this for each bin.

Example 5

Draw a histogram for the dataset in Example 3 (the soccer dataset).
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hist(soccer, breaks = min(soccer):max(soccer + 1) - 0.5)

Histogram of soccer
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Example 6

For the dataset in Example 1 (the height dataset), create a histogram.
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hist(height)

Histogram of height

height

F
re

qu
en

cy

5.0 5.2 5.4 5.6 5.8 6.0

0
1

2
3

4
5

When looking at plots visualizing distributions we are looking for
certain qualities. We want to decide:

• Is the data unimodal (only one “peak”)? Is it bimodal or multi-
modal (multiple “peaks”)? Below are illustrations.

• Is the data positively-skewed? Negatively skewed? Symmetric?
Below are illustrations.
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• Are there outliers, points that are distant from the rest of the data?
• How spread out is the data?

A bar plot is a method for visualizing categorical (sometimes
referred to as qualitative) data. To construct a bar plot:

1. List each possible value of the variable and how frequently each
value is taken.

2. Draw a horizontal line and along that axis mark each possible
value of the variable. The vertical axis will correspond to different
possible frequencies.

3. Draw a bar for each category extending to the category’s observed
frequency.

Example 7

Below is a dataset showing the frequency of the class of passengers
aboard the Titanic who survived her sinking.

(t_survive_class <- apply(Titanic[, , , 2], 1, sum))

## 1st 2nd 3rd Crew

## 203 118 178 212

Create a bar plot for the frequency of each class’s survival.
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barplot(t_survive_class)

1st 2nd 3rd Crew

0
50

10
0

20
0

Section 3: Measures of Location

While visual summaries of data are nice, quantitative summaries are
still important for describing datasets. We start with measures of
location, which tell us where a dataset is located along the number
line.

The first and most common measure of location for a sample is the
sample mean8, defined for a dataset x1, ...., xn below: 8 There is a physical interpretation of

the mean; if you were to construct a dot
plot of the data and made that plot a
physical object, with a weight for each
dot and the number line a teeter-totter,
the mean would be the point where the
teeter-totter balances.

The sample proportion for categorical data is defined below:
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Example 8

What is the average number of points your daughter’s soccer team
scores? (Here’s the dataset, as a reminder.)

soccer

## [1] 9 6 5 5 5 6 2 8 3 4 8 1
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mean(soccer)

## [1] 5.166667

Let’s suppose that r1, r2, ..., rn is the ordered dataset corresponding
to the dataset x1, ..., xn, so that r1 ≤ r2 ≤ ... ≤ rn. The sample
median9 is the number that splits this dataset in half. It is defined 9 The physical/geometric interpretation

of the median is obvious; when you
arrange the data in order, it splits the
data in half.

below:

Example 9

Find the median of the first eleven games of your daughter’s soccer
team. (I have ordered the dataset for you below.)

sort(soccer[1:11])

## [1] 2 3 4 5 5 5 6 6 8 8 9
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median(soccer[1:11])

## [1] 5

Let α ∈ [0, 1]. The α × 100th percentile is the number such that
roughly α× 100% of the data in r1, ..., rn lies to the left of that num-
ber. Perhaps the most common percentiles are the quartiles. The
first quartile is the 25th percentile, and the third quartile is the 75th
percentile. The second quartile is the median (the 50th percentile).10 10 The 0th and 4th quartile are the

minimum and maximum of the dataset.
All quartiles together form the five-
number summary of a dataset.

Here is a procedure for finding quartiles:11

11 Actually, this is a procedure for
finding what your textbook refers to as
fourths. The difference is negligible so I
use the terms interchangeably.

1. Find the median of the data r1, ..., rn.
2. Split the dataset into two datasets at the median. If n is odd, re-

move the datapoint corresponding to the median.12

12 Not everyone does this, so software
might give a different answer when
computing medians. The difference is
usually negligible.

3. The median of the lower dataset is the first quartile, and the me-
dian of the upper dataset is the third quartile.

Example 10

Find first and third quartiles for your daughter’s first eleven soccer
games.

Example 11

Find the 10th and 90th percentiles of the height data. (I have listed
the data for you below, in order.)

sort(height)

## [1] 5.05 5.13 5.21 5.30 5.30 5.38 5.38 5.55

## [9] 5.63 5.96
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quantile(soccer[1:11], c(.25, .75))

## 25% 75%

## 4.5 7.0

quantile(height, c(.1, .9))

## 10% 90%

## 5.122 5.663

The sample mean x̄ is sensitive to outliers; that is, outliers in the
dataset can have a profound effect on the sample mean. On the other
hand, the sample median x̃ is insensitive to outliers, since outliers
almost never alter the value of the sample median.

Example 12

Compute both the sample mean and the sample median when the
value of your daughter’s 12th soccer game is one of the following:

(outlier_game <- c(soccer[12], soccer[12] + 3, soccer[12] * 2, max(soccer) * 2))

## [1] 1 4 2 18
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## This loop will compute each of the requested values. I will display the result

## in a table, which is formed when the loop runs.

soccer_tab <- sapply(outlier_game, function(g) {

dat <- c(soccer[1:11], g)

return(c(g, median(dat), mean(dat)))

})

soccer_tab <- t(soccer_tab) # Transpose matrix (I don’t want this shape)

## Row/column naming

rownames(soccer_tab) <- 1:nrow(soccer_tab)

colnames(soccer_tab) <- c("Outlier Value", "Median", "Mean")

round(soccer_tab, digits = 2)

## Outlier Value Median Mean

## 1 1 5.0 5.17

## 2 4 5.0 5.42

## 3 2 5.0 5.25

## 4 18 5.5 6.58

There is in fact a relationship between the mean and median
depending on whether the data is negatively-skewed, positively-
skewed, or symmetric, illustrated below:

The median is preferred for skewed data while the mean is pre-
ferred for symmetric data. (It is better behaved and has great analytic
results.)

So far I’ve discussed only sample means and medians but popu-
lation means, medians, and percentiles are also defined. They have
similar properties to their sample analogues.

A compromise between the mean’s sensitivity to outliers and the
median’s ignorance of nearly all of the dataset is the trimmed mean,
which I denote by x̄tr(100α). The trimmed mean is the mean of the
data when 100α% of the is removed from each end of the dataset.13 13 It may not be possible to remove

100α% of the data exactly. You can
approximate it with interpolation.
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Example 13

Find x̄tr(10) for the height data.
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mean(height, trim = 0.1)

## [1] 5.36

Section 4: Measures of Variability

Consider the following three datasets:

1 2 3

4 2 1

5 5 3

6 6 6

7 7 9

8 10 11

Construct dot plots for each dataset, then compute the mean and
median of each dataset.

Now suppose each dataset represented waiting time (in min-
utes) for the red line train to arrive to take you home. Which dataset
would you prefer to see? Why?

The above example illustrates that measures of center are insuffi-
cient for describing a dataset. We also want a measure of variability,
which describes how “spread out” a dataset is.

How can we measure spread? This should be based on deviations.
The deviation of data point i is xi − x̄.

Compute ∑n
i=1(xi − x̄).
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This result suggests we should measure variability with some-
thing else. The most common measure for variability is the sample
variance and the sample standard deviation, defined below:

The sample standard deviation can roughly be interpreted as the
“typical” deviation of a datapoint from the mean.14 14 The sample mean is sensitive to

outliers. The sample standard deviation
is more sensitive to outliers than the
sample mean.

There are population analogues to both of these quantities: the
population variance, σ2, and the population standard deviation,
σ =
√

σ2.
Ideally you should use software or a calculator to compute the

sample variance, but in a pinch you can use this handy formula:

Sxx =
n

∑
i=1

(xi − x̄)2 =
n

∑
i=1

x2
i − nx̄2

Example 14

Compute the sample variance and sample standard deviation of the
soccer game scores (listed below, as a reminder).
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soccer

## [1] 9 6 5 5 5 6 2 8 3 4 8 1

length(soccer)

## [1] 12

summary(soccer)

## Min. 1st Qu. Median Mean 3rd Qu.

## 1.000 3.750 5.000 5.167 6.500

## Max.

## 9.000
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var(soccer) # Sample variance

## [1] 5.969697

sd(soccer) # Sample standard deviation

## [1] 2.443296

Proposition 1. Let x1, ..., xn be a sample and c a constant. Then:
1. If yi = xi + c for all i, s2

y = s2
x

2. If yi = cxi for all i, s2
y = c2s2

x and sy = |c|sx

The fourth spread (also known as the inter-quartile range (IQR))
is the third quartile minus the first quartile; denote this with fs. This
is another measure of dispersion.

Example 15

Compute the fourth spread for the soccer game scores.

fs can be used for outlier detection. We may call an observation
that is further than 1.5 fs from its nearest quartile a mild outlier, and
an observation that is more than 3 fs away from the nearest quartile
an extreme outlier.

Example 16

Use the fourth spread to detect outliers in soccer game scores. What
is the minimum score needed for a data point to be a mild outlier?
Extreme outlier?
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A boxplot is a plot visualizing a dataset. A boxplot is created in
the following way:15 15 Often software will not extend the

whiskers of box plots to the extrema
of samples, instead ending at the
largest value that is not an outlier. The
outliers are then denoted with dots.
R, for example, does this by default.
While this is more informative it’s more
difficult to do by hand. The instructions
provided here are good enough when
not using software.

1. Compute the minimum, maximum, median, first and third quar-
tiles for the dataset.

2. On a number line, draw a box with one end at the first quartile
and the other at the third quartile.

3. Within the box, draw a line at the median.
4. Extend a line from one end of the box to the minimum and a line

from the other end to the maximum. (These are called whiskers.)

Boxplots give both a sense of location and a sense of spread.
They’re especially useful when placed side-by-side; they then are
called comparative boxplots.
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Example 17

The following dataset contains the tooth growth for guinea pigs given
vitamin C via orange juice at three different dosage levels.

suppressPackageStartupMessages(library(dplyr)) # Provides %>% operator

OJ <- ToothGrowth %>% filter(supp == "OJ") %>% select(len, dose) %>% unstack %>%

lapply(sort) %>% as.data.frame

names(OJ) <- c(0.5, 1, 2)

OJ

## 0.5 1 2

## 1 8.2 14.5 22.4

## 2 9.4 19.7 23.0

## 3 9.7 20.0 24.5

## 4 9.7 21.2 24.8

## 5 10.0 23.3 25.5

## 6 14.5 23.6 26.4

## 7 15.2 25.2 26.4

## 8 16.5 25.8 27.3

## 9 17.6 26.4 29.4

## 10 21.5 27.3 30.9

Construct a comparative box plot for the lengths. Compare.
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boxplot(len ~ dose, data = ToothGrowth %>% filter(supp == "OJ"))
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Chapter 2: Probability

Introduction

Next we focus on probability. Probability is the mathematical
study of randomness and uncertain outcomes. The subject may be as
old as calculus. Modern statistics is based on probability theory, often
estimating parameters that arise from a probability model. The sub-
ject is big and fascinating and sometimes shockingly counterintuitive.
In this chapter we introduce basic ideas in probability theory and the
theory of counting and combinatorics.

Section 1: Sample Spaces and Events

An experiment is an activity or process with an uncertain outcome.
Example experiments include:

• Flipping a coin
• Flipping a coin until the coin lands heads-up
• Rolling a six-sided die
• Rolling two six-sided dice
• The time in the morning you wake up

When we have an experiment we need to describe the sample
space, S16, which is the set of all possible outcomes of the experi- 16 Another extremely common notation

for the sample space is Ω.ment. A set is loosely defined as a collection of objects.17 Events are
17 This definition cannot be rigorous
because it leads to paradoxes. Bertrand
Russell was able to find sets that,
while legally defined this way, cannot
logically exist. Examples include “a
set of all sets” and “a set of sets that
do not have themselves as members.”
Axiomatic set theory defines sets
in a way that avoids paradoxes but
the theory is more complicated than
necessary for typical use; the “naive”
definition is usually fine.

subsets of the sample space18, defining possible outcomes of an ex-

18 The sample space is a subset of the
sample space and thus is an event,
which can be thought of as the event
that anything happens.

periment. The empty set or null event, ∅, is a set with no members;
it can be thought of as the event that nothing happens.
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Example 1

Define a sample space for the experiment of flipping a coin. List all
possible events for this experiment.

Example 2

Define a sample space for the experiment of rolling a six-sided die.
List three events based on this sample space.

Example 3

Define a sample space describing the experiment of flipping a coin
until it lands heads-up. List five events for this sample space.
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Example 4

Define a sample space describing the experiment of rolling two six-
sided die simultaneoulsy. List three events from this sample space.

Example 5

Define a sample space describing the experiment of waking up in
the morning at a particular time, where the time you wake up at
(thought of as a real number) is the outcome of interest. List three
events from this sample space.
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Events can be manipulated in ways to “create” new events. Let A
and B be events. The complement of A, denoted A′19 is the set of 19 Other common notation includes A

and Ac.outcomes of S not in A, which in words is the event “not A”. The
union of two sets, A ∪ B, is the set that combines the contents of the
sets A and B, which in words means “A or B”.20 The intersection of 20 Sets only ever include one copy of

each element, so {H, H} = {H}. This
implies that if there is a copy of x in
both A and B, there will not be two
copies of x in A ∪ B; there is only one
copy.

two sets, A ∩ B, is the set that only includes objects that appear in
both A and B, which in words means “A and B”.

Two sets are disjoint if they have no elements in common. In that
case, A ∩ B = ∅.

An intuitive approach to set theory is the use of Venn diagrams,
where set-theoretic relations are illustrated by depicting objects as
points on a plane and denoting set membership with enclosed re-
gions. Below are Venn diagrams illustrating the relations between
two sets just described.
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Example 6

Use a Venn diagram to illustrate (A ∪ B)′ ∪ (A ∩ B).

Example 7

Consider three sets A, B, and C. Illustrate:

1. A ∪ B ∪ C

2. A ∩ B ∩ C
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3. (A ∩ B) ∪ (A ∩ C) ∪ (B ∩ C)

Example 8

Describe the intersection, complement, and union of events described
in Examples 1 through 5
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Section 2: Axioms, Interpretations, and Properties of Probability

In probability our objective is to assign numbers to events describing
how likely that event is to occur. Thus, a probability measure, P, is
a function taking events as inputs and returning numbers between 0

and 1, and satisfies the following three axioms:

1. P (A) ≥ 0
2. P (S) = 1
3. If A1, A2, ... is a sequence of disjoint events (so that for any i 6= j,

Ai ∩ Aj = ∅), then P (A1 ∪ A2 ∪ ...) = P (
⋃∞

i=1 Ai) = ∑∞
i=1P (Ai)

21 21 You may understand this in the more
common situation where if A ∩ B = ∅,
P (A ∪ B) = P (A) +P (B).

From these, we get all other intuitive relations in probability.

Proposition 2. P (∅) = 0

Proposition 3. P (A′) = 1−P (A)
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Proposition 4. P (A) ≤ 1 for any event A.

Proposition 5. P (A ∪ B) = P (A) +P (B)−P (A ∩ B) for any events
A and B.
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Proposition 6. For any events A, B, and C,

P (A ∪ B ∪ C) = P (A) +P (B) +P (C)

−P (A ∩ B)−P (A ∩ C)−P (B ∩ C)

+P (A ∩ B ∩ C)

Example 9

Reconsider the experiment of flipping a coin, and assume that the
coin is equally likely to land with each face facing up. Assign proba-
bilities to all outcomes in the sample space.

Example 10

Do the same as Example 9, but when rolling a single dice.

Example 11

The dice from Example 10 has been altered with weights. Now, the
probability of the dice rolling a 6 is twice as likely as rolling a 1,
while all other sides still have the same probability of appearing as
before. What is the new probability model?
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Example 12

Reconsider the experiment of rolling two six-sided die. It’s reason-
able to assume that each outcome in S is equally likely. What, then,
is the probability of each outcome in S?

Use this model to find the probability of event E, where:

1. E = {At least one dice is a 6}

2. E = {The sum of the pips showing on the two die is 5}

3. E = {The maximum of the two numbers showing on the die is greater than 2}
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Example 13

Reconsider the experiment of flipping a coin until H is seen. What is
one way to assign probabilities to all outcomes of this experiment so
that we have a legal probability model? Justify your answer.

With this model, answer the following questions:

1. What is the probability the number of flips needed to see the first
H exceeds 4?

2. What is the probability the number of flips until the experiment
ends is between 3 and 20?

3. What is the probability that an even number of flips is seen before
the experiment ends?

Example 14

In a small town, 20% of the population is considered “wealthy”, 30%
of the population identifies as “black”, and 5% of the population is
“wealthy” and “black”. Select a random individual from this popula-
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tion (everyone equally likely to be selected). What is the probability
this individual is “wealthy” and “not black”?

What is the probability this individual is neither wealthy nor
black?

Example 15

A bag contains balls and blocks. 30% of the bag’s contents are balls.
An object is either red or blue, and 40% of the objects are red. An
object is made of either wood or plastic, and 65% of the objects are
wooden. 10% of the objects are wooden balls, 5% of the objects are
red balls, and 20% of the objects are red and plastic. 2% of the objects
are red plastic blocks.

Reach into the bag and pick out an object at random, each object
equally likely to be selected.

1. What is the probability the object selected is a ball, red, or wooden?
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2. What is the probability the object is a red wooden ball?

3. What is the probability that the object is a blue plastic block?
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How do we interpret probabilies? The frequentist interpretation
of probability22 interprets probabilities as the long-run relative fre- 22 This interpretation isn’t the only one.

Any interpretation limits the kind of
questions you can obtain probabilities
for. In this case, the frequentist inter-
pretation suggests that probabilities
can be assigned only to repeatable
experiments. While the frequentist
interpretation is simple it can lead to
convoluted language as we avoid refer-
encing probabilities for nonrepeatable
circumstances. The convoluted inter-
pretation of confidence intervals, for
example, is due to this interpretation of
what a probability means. It turns out
though that the rigorous mathematical
theory of probability, which is based
on measure theory and real analysis,
does not care about the “interpretation”
of a probability, so all the mathemat-
ics remain the same no matter what
interpretation we choose.

quency as we repeat an experiment many times. For example, if we
were to flip a fair coin many times, the proportion of times the coin
lands heads up would approach 1

2 .
The chart below illustrates this idea.



math 3070 lecture notes 49

set.seed(11618) # Choosing a number to set the seed, for replicability

n <- 15

flips <- rbinom(n, 1, 0.5)

heads <- cumsum(flips == 1)

plot(1:n, heads/(1:n), type = "l", ylim = c(0, 1), xlab = "Flips",

ylab = "Proportion")

abline(h = 0.5, col = "blue", lty = "dashed")
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n <- 50

flips <- rbinom(n, 1, 0.5)

heads <- cumsum(flips == 1)

plot(1:n, heads/(1:n), type = "l", ylim = c(0, 1), xlab = "Flips",

ylab = "Proportion")

abline(h = 0.5, col = "blue", lty = "dashed")
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n <- 500

flips <- rbinom(n, 1, 0.5)

heads <- cumsum(flips == 1)

plot(1:n, heads/(1:n), type = "l", ylim = c(0, 1), xlab = "Flips",

ylab = "Proportion")

abline(h = 0.5, col = "blue", lty = "dashed")

0 100 200 300 400 500

0.
0

0.
4

0.
8

Flips

P
ro

po
rt

io
n

Section 3: Counting Techniques

Consider a burger shop, Bob’s Burgers, that offers three types of
bread: white, rye, and sourdough. A burger can come with or with-
out cheese. How many burgers are possible?
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We first answer this question using a tree diagram:

Or we can answer using the product rule:

Proposition 7. If there are n1 possibilities for choice 1, n2 possibilities for
choice 2, ..., nk possibilities for choice k, then there are n1n2...nk = ∏k

i=1 ni

total possible combinations.

Using the product rule:

Example 16

The sandwich shop Deluxe Deli offers four bread options (white,
sourdough, whole wheat and rye), five meat options (turkey, ham,
beef, chicken, no meat), six cheese options (cheddar, white cheddar,
swiss, American, pepperjack, no cheese), with or whithout lettuce,
with or without tomatoes, with or without bacon, with or without
mayonaise, and with or without mustard. How many sandwiches are
possible?
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Suppose that out of n possibilities we will be choosing k. We have
two essential questions to answer:

1. Do we choose with or without replacement?
2. Does order matter?

Depending on our answer our question has different solutions,
summarized below:

With replacement Without replacement
Ordered nk Pn,k =

n!
(n−k)!

Not ordered (k+n−1
n−1 ) (n

k) =
n!

k!(n−k)!

Justifications
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Example 17

When we roll two six-sided die, we assume each outcome is equally
likely (if the dice are different colors). How many possible outcomes
are there? What about for three six-sided die?

Example 18

A high school has 27 boys playing men’s basketball. In basketball,
there are five positions: point guard (PG), shooting guard (SG), small
forward (SF), power forward (PF), and center (C). Each assignment of
player to position is unique. How many teams can be formed?

Example 19

When playing poker, players draw five cards from a 52-card deck.
Every card is distinct, but the order of the draw does not matter.
How many hands are possible?
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## Example 16

6^2

## [1] 36

6^3

## [1] 216

## Example 17

factorial(27)/factorial(27 - 5)

## [1] 9687600

## Example 18

choose(52, 5)

## [1] 2598960

Example 20

You want to choose a dozen donuts from a donut shop. There are
eight different kinds of donuts. How many boxes of a dozen donuts
are possible?
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choose(12 + 8 - 1, 8 - 1)

## [1] 50388

For the next few examples, we will be using a standard23
52-card 23 The “standard” deck is the French

deck, the most common deck in the
English-speaking world. Other Euro-
pean countries have their own tradi-
tional decks.

deck of playing cards. In this deck, each card belongs to one of four
suits: spades (♠), hearts (♥), clubs (♣), and diamonds (♦). Each
card has a face value, which is either Ace (A), King (K), Queen (Q),
Jack (J), or a number between 2 and 10; there are 13 possible face
values. Hearts and diamonds are colored red, while spades and clubs
are colored black. The notation 8♦ means “eight of diamonds”, K♠
means “king of spades”, and so on.

Example 21

A poker hand is “four of a kind” if four cards have the same face
value. How many four-of-a-kind hands exist?

Example 22

A poker hand is “full house” of two cards have the same face value
and three different cards have another common face value. How
many “full house” hands exist?
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## Example 20

(a1 <- 13 * 48)

## [1] 624

## Example 21

(a2 <- 13 * choose(4, 3) * 12 * choose(4, 2))

## [1] 3744

Example 23

A “flush” is a poker hand where all cards belong to the same suit.
How many “flush” hands exist (including straight flush hands)?

Example 24

A “straight” is poker hand where the cards can be arranged in se-
quence: for example, 5♠6♣7♣8♥9♥ is a straight (suit does not
matter). A “straight flush” is both a straight and a flush, so it is a
flush with all cards belonging to the same suit (and the best possible
hand). How many straight flush hands exist? How many straight
hands exist (that are not straight flushes)?
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## Example 22

(a3 <- 4 * choose(13, 5))

## [1] 5148

## Example 23

(a4 <- 10 * 4^5 - 4 * 10)

## [1] 10200

For finite sample spaces, there is a natural probability measure,
defined below for a set A.

Example 25

Use the natural probability measure to compute the probability of
each poker hand mentioned in Examples 21 to 24.
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s <- choose(52, 5)

a1/s # Exc. 20

## [1] 0.000240096

a2/s # Exc. 21

## [1] 0.001440576

a3/s # Exc. 22

## [1] 0.001980792

a4/s # Exc. 23

## [1] 0.003924647

Section 4: Conditional Probability

Consider flipping a fair coin three times. What is the probability the
same face will appear three times?

Now suppose I told you that the first two flips were HH. What is
the probability of this event now?

This demonstrates the need for conditional probability, which is a
probability of an event given the fact that another event has occured.
The probability of A given B has occured, denoted P (A|B), is:

There is an illustration for making this definition intuitive:

Given a conditional probability we can also compute P (A ∩ B):
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Given P (A|B), what is P (A′|B)?

Example 26

Use the definition of conditional probability to compute the prob-
ability of the event that all three coins have the same face up when
flipped given the first two flips were heads.

Example 27

Suppose that you were dealt two cards of a five-card poker hand,
which are K♥8♥. Given this information, what is the probability
your complete hand will be a full house?
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## Hands with KH 8H

(den <- choose(50, 3))

## [1] 19600

## Full house hands with KH 8H

(num <- 2 * choose(3, 1) * choose(3, 2))

## [1] 18

num / den

## [1] 0.0009183673

(num/s) / (den/s)

## [1] 0.0009183673

Example 28

Suppose your five-card poker hand is a flush. What is the probability
it is a straight flush?

Example 29

Suppose your five-card poker hand is a straight. What is the proba-
bility it is a straight flush?
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Example 30

In a certain village 20% of individuals are considered “wealthy” and
35% are considered “black”. Among blacks, 60% are not considered
“wealthy”. If you chose a random individual from this village, what
is the probability this individual is “black” and “wealthy”?

A partition is a division of S into sets A1, ..., An such that for i 6= j,
Ai ∩ Aj = ∅, and

⋃n
i=1 Ai = S . Below is an illustration:

Theorem 1 (Law of Total Probability). Let A1, ..., An be a partition of S
and B be an event. Then:

P (B) =
n

∑
i=1
P (B|Ai)P (Ai)

We can then state Bayes’ Theorem24: 24 Bayes’ Theorem is also seen in the
simpler form where the partition is A
and A′, in which case the statement
becomes

P (A|B) = P (B|A)P (A)

P (B|A)P (A) +P (B|A′)P (A′)

Theorem 2 (Bayes’ Theorem). Let A1, ..., An be a partition of S and B be
an event. Then:

P (Ai|B) =
P (B|Ai)P (Ai)

∑n
j=1P

(
B
∣∣Aj
)
P
(

Aj
)
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Example 31

Roll a fair six-sided dice. Then, after observing the number of pips,
roll another dice until more than that number of pips appears. What
is the probability that the second die roll will show four pips?

Example 32

In a city Uber and Lyft transport passengers. 95% of drivers work
for Uber, and 5% work for Lyft. One day there is a hit-and-run acci-
dent and a witness claims that she noticed the driver worked for Lyft.
Lyft’s defense attorneys subject her to testing, and in testing deter-
mine that she correctly identifies a car as belonging to Lyft 90% of the
time but will claim a vehicle belongs to Lyft incorrectly 20% of the
time. Based on this evidence, how likely is it that the driver who hit
the pedestrian worked for Lyft?
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Section 5: Independence

Two events A and B are independent if P (A|B) = P (A). In some
sense, information about the event B gives no information about
whether A happened.

Use this to compute P (B|A).

Use this to compute P (A′|B).

A consequence of this defition of independence:25 25 In fact, this may be a more common
definition of independence.

Below is a graphical representation of independence:26 26 Notice that independence is not the
same as being disjoint. In fact, two
disjoint events are not independent
except in the most trivial cases. (That is,
S and ∅ are technically independent.)
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Example 33

Consider rolling a 6-sided dice. Show that the events A = {Number does not exceed 4}
and B = {Number is even} are independent.

Suppose we have events A1, ..., An. These events are mutually
independent if, for k ≤ n:

P
(

Ai1 ∩ Ai2 ∩ ...∩ Aik
)
= P

 k⋂
j=1

Aij

 =
k

∏
j=1
P

(
Aij

)
= P

(
Ai1
)
P
(

Ai2
)

...P
(

Aik
)

This definition cannot be simplified to P (A1 ∩ ...∩ An) = P (A1) ...P (An),
as demonstrated below.27 27 This example was written by George

(2004) and is available here: http://
www.engr.mun.ca/~ggeorge/MathGaz04.

pdf

Example 34

Using the diagram below for finding probabilities, compute P (A ∩ B ∩ C)
and P (A)P (B)P (C). Are A, B, and C mutually independent?

0 .10

.16

.34

A B

C

.04

.06

.10 .20

http://www.engr.mun.ca/~ggeorge/MathGaz04.pdf
http://www.engr.mun.ca/~ggeorge/MathGaz04.pdf
http://www.engr.mun.ca/~ggeorge/MathGaz04.pdf
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Example 35

We flip eight fair coins. What is the probability of H? TH? TTH?
TTTH? In general, what is the probability for a sequence of n flips to
have n− 1 T and a H at the end?

Example 36

Below is a system of components. A signal will be sent from one
end of the system, and will be successfully transmitted to the other
end if no intermediate components fail. Each component functions
independently of the others. What is the probability a transmission is
sent successfully?
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Example 36

Below is another system of components. A signal will be sent from
one end of the system, and will be successfully transmitted to the
other end if no intermediate components fail. Each component func-
tions independently of the others. What is the probability a transmis-
sion is sent successfully?





Chapter 3: Discrete Random Variables and Probability
Distributions

Introduction

After we define probability measures and sample spaces, we
can talk about random variables. The next two chapters focus on ran-
dom variables, which translate random outcomes into mathematical
objects, such as numbers.28 This first chapter introduces random vari- 28 In general random variables can

produce any mathematical object. In
this class random variables almost
always produce real numbers, but in
general random variables can also
produce vectors or even functions, but
this is well beyond the scope of the
course.

ables and a theory for discrete random variables. The second chapter
focuses on continuous random variables.

Section 1: Random Variables

A random variable (sometimes abbreviated with rv) is a function
taking values from the sample space S and associating numbers with
them.29 Conventional notation for random variables uses capital 29 From this definition it’s clear that ran-

dom variables are neither random nor
variables; they are functions mapping
values from S to some other space,
commonly the real numbers R. They
can be written X : S → R to emphasize
this fact.

letters from the end of the English alphabet, while lower-case letters
are used to denote a non-random value or outcome. If ω ∈ S , the
notation X(ω) = x can be used to say that the value of the random
variable X when the outcome ω occurs is x. The set {ω : X(ω) = x}
is the event that an element of S is drawn that causes the random
variable X to equal x, and the set {ω : X(ω) ∈ A} is the event that an
element of S is drawn that causes the random variable X to assume a
value that is in A.30 Instead of writing P ({ω : X(ω) ∈ A}) we often 30 The latter set is known as the preim-

age of A under X.write P (X ∈ A).
Random variables are commonly classified as being either discrete

or continuous.31 Discrete (real-valued) random variables take values 31 There are random variables consid-
ered neither discrete nor continuous.
One obvious example is a random
variable that is a mixture of discrete
and continuous random variables. For
example, if a random variable X quan-
tifies the number of hours slept per
day, you may have P (X = 0) > 0 and
P (X = 24) > 0 but all other outcomes
are treated like the continuous case. Yet
even then it’s possible to define random
variables that are not discrete, not con-
tinuous, and not a mixture of the two,
those these are not seen in practice. In
measure-theoretic probability theory, all
of these cases are effectively indistin-
guishable; there isn’t a separate theory
for each type of random variable. But
without this theory we handle dis-
crete and continuous random variables
separately.

in a finite or countably infinite (or enumerable, if you prefer) set with
positive probability; these are effectively the only possible values.
Continuous (real-valued) random variables satisfy the following two
properties:

1. The random variable takes values in intervals (possibly infinite
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in length) or disjoint unions of intervals of the real line R with
positive probability.

2. For any c ∈ R, P (X = c) = 0.

Perhaps the simplest non-trivial random variable is the Bernoulli
random variable. If X is a Bernoulli random variable, then P (X = 1) =
1−P (X = 0) = p, and we say X ∼ Ber(p) to mean this. The set S
on which X(ω) is defined could be just about anything. An inter-
esting result of probability theory is that if all I gave you was the
values of X(ω) without saying anything about S or how specifically
X assumes values given ω ∈ S , it is impossible statistically to deter-
mine what S is. The sample space is effectively forgotten. (In other
words, you wouldn’t be able to tell the difference between a fair coin
and a Bernoulli random variable taking a value of 1 when the coin
lands heads-up after being flipped, or a fair die being rolled and
a Bernoulli random variable taking a value of 1 when the number
rolled is even.)

Example 1

Which of the following random variables are likely to be considered
discrete and which continuous? Describe the space of outcomes the
random variable takes with positive probability.

1. Flip a coin, record 1 for H, and 0 for T.

2. Roll a die, record the number of pips showing.

3. Roll a die, record 1 for an even number of pips and -1 for an odd
number of pips.

4. The time (in minutes) needed to complete a race.
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5. The length (in cm) of a hair plucked from a person’s head.

6. Roll two dice and record the sum of the number of pips showing.

7. Flip a coin until H is seen and count the number of flips.

Example 2

Consider an experiment of rolling two six-sided die. Define two ran-
dom variables for this experiment. Are they continuous or discrete?

Section 2: Probability Distributions for Discrete Random Variables

A probability distribution for a random variable is a function that
describes the probability that a random variable takes on certain
values. Discrete rv’s are determined completely by the probability
mass function (abbreviated pmf):
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The pmf can be visualized using a line graph, where a line is
placed on each point x of R that X takes with positive probability
and extends to a height representing p(x).

A probability histogram functions similarly to a line graph, but is
a histogram, with bins centered on x of length 1 (usually) and with
height p(x).

Example 3

A fair coin is flipped; X(H) = 1 and X(T) = 0. Find the pmf of X,
p(x). Visualize p(x) with a line graph.
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The R package discreteRV (Buja et al., 2015) allows for defining
and working with discrete random variables in R. (It’s pedagogically
useful but R’s supplied discrete random variable functions are more
practical.)

suppressPackageStartupMessages( # Startup messages are annoying

library(discreteRV) # An R package for working with discrete random variables

)

## A statement enclosed in parenthesis prints the variable that was assigned

(X <- RV(0:1, probs = c(1/2, 1/2)))

## Random variable with 2 outcomes

##

## Outcomes 0 1

## Probs 1/2 1/2

plot(X)
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Example 4

Let S be the sum of the number of pips rolled on two dice. Find p(s)
and plot it.



74 curtis miller

(D <- RV(1:6, probs = rep(1/6, times = 6)))

## Random variable with 6 outcomes

##

## Outcomes 1 2 3 4 5 6

## Probs 1/6 1/6 1/6 1/6 1/6 1/6

(S <- SofIID(D))

## Random variable with 11 outcomes

##

## Outcomes 2 3 4 5 6 7 8 9 10 11 12

## Probs 1/36 1/18 1/12 1/9 5/36 1/6 5/36 1/9 1/12 1/18 1/36

plot(S)
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Example 5

Consider flipping a fair coin until H is seen. Let N be the number of
flips. Find a pmf describing the distribution of N and plot the first
few values of the pmf.
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(N <- RV("geometric"))

## Random variable with outcomes from 1 to Inf

##

## Outcomes 1 2 3 4 5 6 7 8 9 10 11 12

## Probs 0.500 0.250 0.125 0.063 0.031 0.016 0.008 0.004 0.002 0.001 0.000 0.000

##

## Displaying first 12 outcomes

plot(N)
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Sometimes we describe a distribution in terms of a parameter,
which is a value that can be set to different possible values to gener-
ate a pmf. Probability distributions that differ only in the choice of
parameters are called a family of distributions.

Example families with parameters include:
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Example 6

Confirm that p(x; N) = 1
N for x ∈ {1, 2, ..., N} = [N] is a valid

pmf. This is the pmf of the discrete uniform distribution, X ∼
DUNIF(1, N).

Example 7

Confirm that f (n; p) = p(1− p)n−1 is a valid pmf. This is the pmf of
the geometric distribution, X ∼ GEOM(p).

The cumulative distribution function (abbreviated cdf) is defined
below:
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Notice the following relation between the cdf and the pdf:

In general, a function F(x) is a cdf if it satisfies the following three
properties:32 32 If a function F(x) satisfies these

properties than there exists a random
variable X with a cdf identical to F(x).

For discrete rv’s, cdf’s are jump functions, resembling the follow-
ing plot:
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Like a pmf, a cdf completely characterizes a random variable. We
can use it for computing probabilities of regions using the following
rule:

Example 8

Compute and plot the cdf for a random variable X ∼ Ber(p).
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## For p = 1/2

bercdf <- function(q) {pbinom(q, size = 1, prob = 1/2)}

plot(stepfun(0:1, bercdf((-1):1), right = TRUE), verticals = FALSE,

main = "cdf")

−1.0 0.0 0.5 1.0 1.5 2.0

0.
0

0.
4

0.
8

cdf

x

f(
x)

Example 9

Consider rolling a four-sided dice that produces numbers from 1 to 4

(so X ∼ DUNIF(1, 4)). Compute the cdf of X and plot it.
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(U <- RV(1:4, probs = rep(1/4, 4)))

## Random variable with 4 outcomes

##

## Outcomes 1 2 3 4

## Probs 1/4 1/4 1/4 1/4

discunifcdf <- function(u) {P(U <= u)}

discunifcdf <- Vectorize(discunifcdf)

plot(stepfun(1:4, discunifcdf(0:4), right = TRUE), verticals = FALSE,

main = "cdf")
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Example 10

Find the cdf of a geometric random variable with parameter p. What
would a plot of the cdf look like?
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geomcdf <- function(q) {pgeom(q, 1/2)}

plot(stepfun(0:9, geomcdf((-1):9), right = TRUE), vertical = FALSE,

main = "cdf")
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Section 3: Expected Values

The expected value for a discrete random variable, E [X], is given
below:

E [X] is viewed as the population mean, µ, described in previous
chapters. We can also compute the expected value of functions of X,
E [h(X)], in a natural way:

The expected value is, in some sense, a “best prediction”33 for the 33 Specifically, let E
[
(X− µ̂)2] represent

the expected squared error, and µ̂
represents a prediction for X; when this
quantity exists (sometimes it doesn’t),
the value of µ̂ that minizes the expected
squared error is µ̂ = E [X].

value of X.
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Example 11

Compute the expected value for X ∼ Ber(p), S ∼ DUNIF(1, 6), and
N ∼ GEOM(p) (as seen in examples 3, 4, and 5).
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E(X)

## [1] 0.5

E(S)

## [1] 7

E(N) # Approximate

## [1] 1.999999

Expectations are linear functions acting on random variables.34 34 This is true for all random variables
though we work with the discrete case
only for now.Proposition 8.

E [aX + b] = aE [X] + b

The variance of a random variable is given by:

There is a handy formula for computing the variance that is often
easier than computing it directly:

Proposition 9.

Var (X) = E
[

X2
]
− (E [X])2
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Var (X) is thought of as the population variance and is often de-
noted Var (X) = σ2. From this we get the population standard devia-
tion, σ =

√
σ2.

Example 12

Compute the variance and standard deviation of the random vari-
ables listed in Example 11.
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V(X)

## [1] 0.25

SD(X)

## [1] 0.5

V(S)

## [1] 5.833333

SD(S)

## [1] 2.415229

V(N) # Approximate

## [1] 1.999981

SD(N)

## [1] 1.414207

Proposition 10.

Var (aX + b) = a2 Var (X)

σaX+b = |a| σX

where σX is the standard deviation of X.

Expectations need not be finite or even exist, as demonstrated in
the following example:35 35 This example is known as the St. Pe-

tersburg paradox, and is famous for
how unintuitive its solution is and how
strongly humans underestimate the
game’s value. The game gets its name
due to its resolution by Daniel Bernoulli
in 1738 (Bernoulli, 1954), who lived in
St. Petersburg at the time.
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Example 13

Consider a game where a fair coin is flipped until it lands heads-up.
A player would earn $1 if the game ends with 1 flip, $2 if it ends
with two flips, $4 if it ends with three flips, $8 if it ends with four
flips, and so on. The “fair price” of a game corresponds to the game’s
expected payout. What, then, is the fair price to play this game?

Section 4: The Binomial Probability Distribution

A binomial experiment is an experiment that satisfies the following
requirements:

1. The experiment consists of n Bernoulli trials that end in either in
“success”, S, or “failure”, F.

2. The trials are independent.

3. For each trial, P (S) = 1−P (F) = p ∈ (0, 1).

We can think of the outcome of an experiment as a sequence of S
and F, such as SSFSF (here, n = 5).

The binomial random variable associated with a binomial ex-
periment counts the number of “successes” in the experiment:
X(ω) = {# of S in ω}; we write X ∼ BIN(n, p). For example,
X(SSFSF) = 3.

We denote the pmf of X with b(x; n, p). This is 0 for x that is not
an integer from 0 to n. For x ∈ {0, 1, . . . , n}, it can be computed:
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The cdf of X is given below:

E [X], Var (X), and σX are given below:36 36 We can compute these algebraically
or with a probabilistic argument. The
former is algebraically tedious while
the latter is illuminating and easy. We
revisit this in Chapter 5.

Select values of B(x; n, p) are given in Table A.1 of the textbook.

Example 14

You flip a fair coin ten times.

1. What is the probability you see exactly 4 heads? (Do so without
using a table.)

2. If X ∼ BIN(10, 0.5), compute P (4 < X ≤ 6).



90 curtis miller

3. Compute P (2 ≤ X ≤ 4).

4. What is the probability you see more than 7 heads?

5. Compute E [X], Var (X), and σX .
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dbinom(4, size = 10, prob = 0.5) # 1

## [1] 0.2050781

pbinom(6, size = 10, prob = 0.5) - pbinom(4, size = 10, prob = 0.5) # 2

## [1] 0.4511719

pbinom(4, size = 10, prob = 0.5) - pbinom(2 - 1, size = 10, prob = 0.5) # 3

## [1] 0.3662109

1 - pbinom(7, size = 10, prob = 0.5) # 4

## [1] 0.0546875

pbinom(7, size = 10, prob = 0.5, lower.tail = FALSE) # Alternative to 4

## [1] 0.0546875

X <- RV(0:10, probs = dbinom(0:10, size = 10, prob = 0.5))

E(X) # 5

## [1] 5

V(X)

## [1] 2.5

SD(X)

## [1] 1.581139

plot(X)
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Example 15

A manufacturer of widgets send batches of widgets in giant bins.
Your company will accept a shipment of widgets if no more than
7% of widgets are defective. The procedure for deciding whether
a shipment is defective is to choose four widgets from the batch at
random, without replacement. If more than one widget is defective,
the batch is rejected. What is the probability of rejecting the batch if
7% of the widgets are defective? Model the process using a binomial
random variable.37 37 We can view the batch of widgets

as the entire population and we are
choosing a subsample of that popu-
lation without replacement. Binomial
random variables draw “successes” and
“failures” from an infinite population,
not a finite one, and thus a different
probability distribution should describe
this experiment (it is the subject of the
next section). It is safe, though, to treat
a finite population like an infinite one if
your sample size does not exceed 5% of
the population size.
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pbinom(1, 4, 0.07, lower.tail = FALSE)

## [1] 0.02672803

Example 16

I claim that I can make 80% of my free-throw shots when playing
basketball. You plan to test me by having me shoot 20 baskets; if I
make fewer baskets than a specified amount, you will call me a liar.
The threshold amount of baskets is chosen so that the probability
I make less than this amount given that I am, in fact, an 80% free-
throw shooter does not exceed 5%. What is the threshold amount?

Additionally, compute the mean and standard deviation of the
number of shots I would make if my claim is true.
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qbinom(0.05, 20, 0.8) - 1

## [1] 12

## The subtraction is due to how qbinom defines quantiles; see documentation

X <- RV(0:20, probs = dbinom(0:20, size = 20, prob = 0.8))

plot(X)
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E(X)

## [1] 16

V(X)

## [1] 3.199998

SD(X)

## [1] 1.788854

Section 5: Hypergeometric and Negative Binomial Distributions

The hypergeometric distribution is the finite population analogue
to the binomial distribution. The population has N elements labeled
S or F (for “success” or “failure”). There are M S’s in the population
(and thus N −M F’s). A sample of size n is chosen from the sample
without replacement in such a way that each subset of n elements
is equally likely.38 X ∼ HYPERGEOM(n, M, N) denotes a random 38 The hypergeometric distribution

should resemble the binomial distri-
bution as N becomes large. In fact it
can be shown that if M is replaced with
MN and MN

N → p as N → ∞, the
hypergeometric distribution becomes
the binomial distribution in the limit.
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variable following the hypergeometric distribution.
For an integer x satisfying max(0, n− N + M) ≤ x ≤ min(n, M),

the pmf of the hypergeometric distribution is given below:

Below are E [X] and Var (X):

Example 16

A manufacturer of widgets send batches of widgets in giant bins.
Your company will accept a shipment of widgets if no more than
6% of widgets are defective. The procedure for deciding whether
a shipment is defective is to choose four widgets from the batch at
random, without replacement. If more than one widget is defective,
the batch is rejected. The batch sent contains 50 widgets. What is the
probability of rejecting the batch if 6% of the widgets are defective?

Also, compute the mean and variance of X, the number of defec-
tive widgets in the sample, under the assumption that 6% of widgets
are defective.
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phyper(1, 50 * .06, 50 * (1 - .06), 4, lower.tail = FALSE)

## [1] 0.01428571

pbinom(1, 4, .06, lower.tail = FALSE) # For comparison

## [1] 0.01991088

X <- RV(0:4, probs = dhyper(0:4, 50 * .06, 50 * (1 - .06), 4))

plot(X)
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E(X)

## [1] 0.24

V(X)

## [1] 0.2117878

Example 17

It is election night in the small town of Studentsville, and Jack John-
son is running for mayor against bitter rival, John Jackson. Votes
have been cast and are being counted. There are 1024 ballots cast
and among the 200 ballots counted, 116 were cast for Jack Johnson.
If the election were actually a tie, what would be the probability of
observing 116 ballots or more cast for Jack Johnson? What does this
say about who is likely winning the election?

phyper(116 - 1, 512, 512, 200, lower.tail = FALSE)
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## [1] 0.007203238

Consider flipping a coin with probability p of landing heads-up
(all flips independent). Flip a coin until r heads have been seen, and
count the number of tails seen until the experiment ended; let the
random variable X represent this count. Then X follows the negative
binomial distribution, or X ∼ NB(r, p).39 The pmf of X is given 39 Let r = 1. Then Y = 1 + X follows

the geometric distribution, or Y ∼
GEOM(p).

below:

Additionally, below are E [X] and Var (X):

Example 18

A husband and wife plan to have children until they have exactly two
boys; after this, they will stop attempting to have children. Assume
that the probability of giving birth to a boy is 51%.

1. What is the probability they will have two girls before stopping
attempting to have more children?
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2. What is the probability they will need at least four children?

3. What is the expected number of children they will have? What is
the variance of this random variable?
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dnbinom(2, 2, 0.51) # 1

## [1] 0.18735

pnbinom(4 - 2 - 1, 2, 0.51, lower.tail = FALSE) # 2

## [1] 0.485002

nbinom_func <- function(x) {dnbinom(x, 2, 0.51)}

(X <- RV(c(0, Inf), nbinom_func))

## Random variable with outcomes from 0 to Inf

##

## Outcomes 0 1 2 3 4 5 6 7 8 9 10 11

## Probs 0.260 0.255 0.187 0.122 0.075 0.044 0.025 0.014 0.008 0.004 0.002 0.001

##

## Displaying first 12 outcomes

plot(X)
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E(X) # 3

## [1] 1.921568

V(X)

## [1] 3.767769
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Section 6: The Poisson Probability Distribution

X ∼ POI(µ), or X follows the Poisson distribution with parameter µ,
if the pmf of X is given by:

Is this a valid pmf? Yes.

If X ∼ POI(µ), E [X] = Var (X) = µ.
Table A.2 of your textbook gives the cdf of select Poisson distribu-

tions.
The Poisson distribution describes random variables that follow

the Poisson process. This process describes the number of times
an event occurs over an interval of time.40 So the probability an 40 This interpretation comes from a

relationship between Poisson random
variables and binomial random vari-
ables; if pn → 0 but npn → µ as n → ∞,
b(x; n, pn) → p(x; µ) as n → ∞, where
p(·; µ) is the pmf of a Poisson random
variable.

event occurs k times during an interval of time of length t is given

by Pk(t) =
e−αt(αt)k

k! .
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Below is a plot of a simulated Poisson process.

jumps <- rexp(4)

plot(stepfun(cumsum(jumps), 0:4, right = TRUE), vertical = FALSE,

xlab = "Time", ylab = "Value", main = "Simulated Poisson Process",

xlim = c(0, ceiling(sum(jumps))))
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Example 19

On average, your daughter’s soccer team scores 10 points per game.
Assume that the number of points scored per game by her team
follows a Poisson process.

1. What is the probability her team will score 7 points during the
game?

2. What is the probability that by half time your daughter’s team
will have scored two points?
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3. What is the probability your daughter’s team will score between 3

and 6 points (inclusive) during the game?

4. What is the probability your daughter’s team will score more than
three points in the last half of the game?

5. What is the probability that in two games your daughter’s team
will score between 15 and 18 points (inclusive)?
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poiproc <- function(x, t) {dpois(x, 10 * t)}

(X1 <- RV(c(0, Inf), poiproc, t = 1))

## Random variable with outcomes from 0 to Inf

##

## Outcomes 0 1 2 3 4 5 6 7 8 9 10 11

## Probs 0.000 0.000 0.002 0.008 0.019 0.038 0.063 0.090 0.113 0.125 0.125 0.114

##

## Displaying first 12 outcomes

(Xhalf <- RV(c(0, Inf), poiproc, t = 1/2))

## Random variable with outcomes from 0 to Inf

##

## Outcomes 0 1 2 3 4 5 6 7 8 9 10 11

## Probs 0.007 0.034 0.084 0.140 0.175 0.175 0.146 0.104 0.065 0.036 0.018 0.008

##

## Displaying first 12 outcomes

(X2 <- RV(c(0, Inf), poiproc, t = 2))

## Random variable with outcomes from 0 to Inf

##

## Outcomes 1 2 3 4 5 6 7 8 9 10 11 12

## Probs 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.003 0.006 0.011 0.018

##

## Displaying first 12 outcomes

plot(X1)
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plot(Xhalf)
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plot(X2)
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P(X1 == 7) # 1

## [1] 0.09007923

P(Xhalf == 2) # 2

## [1] 0.08422434

P((X1 >= 3) %AND% (X1 <= 6)) # 3
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## [1] 0.127372

P(Xhalf > 3) # 4

## [1] 0.7349741

P((X2 >= 15) %AND% (X2 <= 18)) # 5

## [1] 0.2765577

Tables for the Poisson distribution can be used for approximating
binomial distribution probabilities when n is large and p is small.
Then b(x; n, p) ≈ p(x; np).

Example 20

Use the Poisson approximation to estimate B(4; 200, .01).
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pbinom(4, 200, .01)

## [1] 0.9482537

ppois(4, 200 * .01)

## [1] 0.947347



Chapter 4: Continuous Random Variables and Probabil-
ity Distributions

Introduction

Continuous probability models are the other major class of
probability models. In addition to extending our probabilistic frame-
work to continuous phenomena (namely, measurements), the Nor-
mal41 distribution is both a continuous distribution and arguably the 41 Another name for the Normal dis-

tribution is the Gaussian distribution,
named after the great mathematician
Carl Friedrich Gauss. No one is sure
where the name “Normal” came from,
but some theorize that the distribution
attracted so much attention authors
began to refer to it as the “typical”
distribution, although most natural
phenomena doesn’t follow a Normal
distribution. Thus I capitalize the word
“Normal” to refer to a particular dis-
tribution but as a reminder that the
distribution doesn’t automatically
describe a phenomenon.

most important distribution in statistics and probability theory, due
to its role in the central limit theorem. Many of the concepts we cov-
ered for discrete random variables carry over to the continuous case,
including pmfs (although they become density functions rather than
mass functions), cdfs, and expectations. In fact, the continuous case
may be slightly easier than the discrete case since P (X = c) = 0 for
all c ∈ R and P (X < x) = P (X ≤ x).

Section 1: Probability Density Functions

The analogue to the probability mass function seen for discrete ran-
dom variables is the probability density function (pdf). The pdf is
a non-negative function f (x) such that, for any two numbers a and b
with a ≤ b

In order for f to be a valid pdf we must also have

Example 1

Confirm that the function
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f (x; a, b) =

 1
b−a a ≤ x ≤ b

0 otherwise

is a valid pdf. Then, plot the pdf. A random variable U following
this distribution is said to follow the uniform distribution, denoted
by U ∼ UNIF(a, b).

Example 2

Confirm that the function

f (x; µ) =

 1
µ e−

1
µ x x ≥ 0

0 x < 0

is a valid pdf. Then, plot the pdf. A random variable X follow-
ing this distribution is said to follow the exponential distribution,
denoted by X ∼ EXP(µ)42. 42 This notation is not standard and

depends ultimately on who is writing
the document. It turns out that µ is
the mean of the exponential random
variable when specified this way, but
an alternative specification uses the
rate λ = 1

µ . While the rate is often
easier to work with mathematically,
statisticians usually are interested in the
mean. As a result, probabilists usually
specify exponential random variables
using the rate and write X ∼ EXP(λ)
while statisticians prefer to specify
exponential random variables using
the mean. I do the latter as this is a
statistics course, but be aware of the
controversy.
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## UNIF(0,1)

curve(dunif, -1, 2) # Plot the pdf
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integrate(dunif, -1, 2) # Integrage (numerically) the pdf to see it is one

## 1 with absolute error < 1.1e-15

## EXP(1)

curve(dexp, -1, 5)
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integrate(dexp, 0, Inf)

## 1 with absolute error < 5.7e-05
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Example 3

Accidents along a certain stretch of road are presumed to occur a dis-
tance of X miles from the nearest city center, where X ∼ UNIF(100, 150).
Compute

1. P (110 ≤ X ≤ 130)

2. P (127 < X ≤ 144)

3. P (X > 148)
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integrate(dunif, 110, 130, min = 100, max = 150) # 1

## 0.4 with absolute error < 4.4e-15

integrate(dunif, 127, 144, min = 100, max = 150) # 2

## 0.34 with absolute error < 3.8e-15

integrate(dunif, 148, Inf, min = 100, max = 150) # 3

## 0.03999993 with absolute error < 0.00011

Example 4

The time (in minutes) taken by a worker at the Tuition and Finan-
cial Aid office of a certain university to service a student follows an
exponential distribution with T ∼ Exp(10). Compute the following:

1. P (T < 20)

2. P (6 < T < 9)

3. P (T ≥ 22)
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integrate(dexp, -Inf, 20, rate = 1/10) # 1

## 0.8646644 with absolute error < 3.8e-05

integrate(dexp, 6, 9, rate = 1/10) # 2

## 0.142242 with absolute error < 1.6e-15

integrate(dexp, 22, Inf, rate = 1/10) # 3

## 0.1108032 with absolute error < 1.3e-05

Section 2: Cumulative Distribution Functions and Expected Val-
ues

The cdf of a continuous random variable is

Thanks to the fundamental theorem of calculus we have the fol-
lowing relationship between the pdf and cdf of a random variable:

Rules for using the cdf to compute the probability of a continuous
random variable taking values in an interval are given below.

Example 5

Compute the cdf of X ∼ UNIF(a, b) and plot it.
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Example 6

Compute the cdf of X ∼ EXP(µ) and plot it.
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curve(punif, -1, 2) # CDF of UNIF(0, 1)
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curve(pexp, -1, 5) # CDF of EXP(1)
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Example 7

Answer the questions posed in Example 3 and Example 4 but using
the cdf of the respective random variables.
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## Example 3

punif(130, min = 100, max = 150) - punif(110, min = 100, max = 150) # 1

## [1] 0.4

punif(144, min = 100, max = 150) - punif(127, min = 100, max = 150) # 2

## [1] 0.34

1 - punif(148, min = 100, max = 150) # 3

## [1] 0.04

## Example 4

pexp(20, rate = 1/10) # 1

## [1] 0.8646647

pexp(9, rate = 1/10) - pexp(6, rate = 1/10) # 2

## [1] 0.142242

1 - pexp(22, rate = 1/10) # 3

## [1] 0.1108032

The 100pth percentile (also referred to as quantiles) of a distribu-
tion is the number η(p) such that F(η(p)) = p. If F can be inverted
over its support, we can use F−1 to find percentiles.

A particularly interesting percentile is the 50th percentile, other-
wise known as the median, µ̃.

Example 8

Find percentile functions for the uniform and exponential distribu-
tions. Then find η(0.5).
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## Example for UNIF(0,1) and EXP(1)

qunif(0.5)

## [1] 0.5

qexp(0.5)

## [1] 0.6931472

Below are formulas for E [X], E [h(X)], and Var (X) in the continu-
ous case.

The shortcut formula for the variance in the discrete case also
holds in the continuous case.

Proposition 11.
Var (X) = E

[
X2
]
− (E [X])2

Example 9

Compute E [X] and Var (X) for uniform and exponential random
variables.
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(mu1 <- integrate(function(x) {x * dunif(x, 0, 1)}, -1, 2)) # Mean of UNIF(0,1)

## 0.5 with absolute error < 5.6e-16

integrate(function(x) {(x - mu1$value)^2 * dunif(x, 0, 1)}, # Var of UNIF(0,1)

-1, 2)

## 0.08333333 with absolute error < 8.6e-05

(mu2 <- integrate(function(x) {x * dexp(x)}, 0, Inf)) # Mean of EXP(1)

## 1 with absolute error < 6.4e-06

integrate(function(x) {(x - mu2$value)^2 * dexp(x)}, 0, Inf) # Var of EXP(1)

## 1 with absolute error < 5.8e-05

Section 3: The Normal Distribution

We say that a random variable X follows the Normal distribution43, 43 Of all the probability distributions,
the Normal distribution is arguably
the most important. It plays a promi-
nent role in one of the key theorems of
probability, the central limit theorem,
and as a result many random variables
start to resemble Normally distributed
random variables under certain con-
ditions; we will see examples in this
section. It is a well-behaved distribu-
tion; while any real number could be
generated by the Normal distribution,
it is effectively supported on the in-
terval [µ − 3σ, µ + 3σ]. It naturally
describes phenomena we would say
results from an error process. That said,
not everything is Normally distributed.
Stock price movements, for example,
are modeled with the Normal distribu-
tion yet we see fluctuations that would
never be seen in billions of years if the
Normal distribution were actually the
appropriate distribution.

or X ∼ N(µ, σ)44, if it has the pdf:

44 Frequently the Normal distribution
is specified with σ2 instead of σ. In
this class we use σ, but be aware that
in academic settings it may be more
common to see the Normal distribution
using σ2 instead. This is because the
math is generally easier when using
σ2 and the notation extends well to
multivariate or even functional cases.

Below is a sketch of the density curve for the Normal distribution:
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curve(dnorm, -4, 4) # Plot of the density curve for N(0,1)
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E [X], Var (X), and SD(X) are given below.

One property of the Normal distribution is the 68-95-99.7 rule:

If Z ∼ N(0, 1), we say that Z follows the standard Normal distri-
bution. This distribution is useful since we can relate X ∼ N(µ, σ) to
the standard Normal distribution, and vice versa:
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Let Φ(z) = P (Z ≤ z) be the cdf of the standard Normal distribu-
tion. Then if F(x) = P (X ≤ x), we have the following relationship
between F and Φ:

This means that we only need to worry about tabulating values for
Φ(z)45 for working with any Normal distribution, as done in Table 45 Notice that

Φ(z) =
1√
2π

∫ z

−∞
e−

t2
2 dt

As mentioned, there is no closed form
solution to this integral, but that is not
a problem. Numerical methods can
easily compute these quantities and
they can then be tabulated. On a more
general note, we encounter integrals
without closed form solutions all the
time, yet the functions they represent
can still be very well-behaved, so there
is no problem leaving the integral in
the expression of the quantity; we know
the integral exists, we can evaluate it
numerically, and we can even talk about
its properties. Not every integral needs
to be like the ones seen in the calculus
sequence of classes.

A.3.

Example 10

Compute the following:

1. P (Z ≤ 0)

2. P (Z ≤ 1.23)
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pnorm(0) # 1

## [1] 0.5

pnorm(1.23) # 2

## [1] 0.8906514

3. P (−1.97 ≤ Z ≤ 2.1)

4. P (Z ≥ 1.8)

5. P (Z > 5.2)
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pnorm(2.1) - pnorm(-1.97) # 3

## [1] 0.9577164

1 - pnorm(1.8) # 4

## [1] 0.03593032

pnorm(5.2, lower.tail = FALSE) # 5

## [1] 9.964426e-08

Example 11

IQ scores are said to be Normally distributed with mean 100 and
standard deviation 15. Let Q be a randomly selected individual’s IQ
score. Compute the following:

1. P (85 ≤ Q ≤ 115)

2. P (Q > 90)

3. The International Society for Philosophical Enquiry requires po-
tential members to have an IQ of at least 135 in order to join the
society. Based on this, what proportion of the population is eligible
for membership?
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pnorm(115, mean = 100, sd = 15) - pnorm(85, mean = 100, sd = 15) # 1

## [1] 0.6826895

pnorm(90, mean = 100, sd = 15, lower.tail = FALSE) # 2

## [1] 0.7475075

pnorm(135, mean = 100, sd = 15, lower.tail = FALSE) # 3

## [1] 0.009815329

Here the notation zα is used to mean Φ(zα) = 1 − α. We can
relate this back to general η(p), defined for an arbitrary Normally
distributed random variable.

z1−α can be found using Table A.3 using a reverse lookup.

Example 12

1. What is z0.5?

2. What is z0.05?
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3. What are the first and third quartiles of the standard Normal
distribution?
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qnorm(0.5) # 1

## [1] 0

qnorm(0.05, lower.tail = FALSE) # 2

## [1] 1.644854

qnorm(0.25) # 3a

## [1] -0.6744898

qnorm(0.75) # 3b

## [1] 0.6744898

Example 13

Using the description of the random variable Q from Example 11,
answer the following questions.

1. Mensa International require individuals have an IQ score that
would place them in the top 2% of the population. What is the
minimum IQ score needed to be a member of Mensa?

2. The part of the population with the lowest 5% of IQ scores is
considered to be intellectually disabled. What is the highest IQ
score needed to be in this group?
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qnorm(0.02, mean = 100, sd = 15, lower.tail = FALSE) # 1

## [1] 130.8062

qnorm(0.05, mean = 100, sd = 15) # 2

## [1] 75.3272

Due to the symmetry of the Normal distribution we have the fol-
lowing useful identities for Φ:

As mentioned before, Φ can be used to approximate the cdf of
other random variables. Below is a particular example for binomial
random variables when n is large46: 46 A rule of thumb is that if np ≥ 10

and n(1− p) ≥ 10, it is safe to use this
approximation.

Example 14

A manufacture will reject a batch of widgets if, in a sample of 100

randomly selected widgets from the batch, 15 or more are defective.
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If 12% of the widgets in the batch are defective, what is the probabil-
ity of rejecting the batch? (Use the Normal approximation to answer
this question.)
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1 - pnorm((15 + 0.5 - (.12 * 100))/sqrt(.12 * .88 * 100))

## [1] 0.1407288

The approximation works for Poisson random variables too, when
λ is large; choose µ = λ and σ =

√
λ for the approximation.47 47 Many of the distributions we see can

be related to the Normal distribution in
some way.

Example 15

Suppose X ∼ POI(100). Estimate P (X ≤ 110).
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pnorm(110 + 0.5, mean = 100, sd = sqrt(100))

## [1] 0.8531409

ppois(110, 100) # For comparison

## [1] 0.8528627

Section 4: The Exponential and Gamma Distributions

We have investigated the properties of the exponential distribution
already; below we recall what we have seen:

Exponential random variables can be used to model waiting times,
particularly when a process is memoryless; that is, the time remain-
ing until the process terminates is independent of how long the pro-
cess has currently taken.
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Proposition 12 (Memoryless property). Let T ∼ EXP(µ). Then

P (T ≥ t + t0|T ≥ t0) = P (T ≥ t)

Exponential random variablest play an important role in Poisson
processes. The time between subsequent jumps of a Poisson process
with parameter α follow an exponential distribution with mean µ =
1
α .

Example 16

Your daughter’s team score on average 10 points per game. You
model the points scored by her team in a game with a Poisson pro-
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cess, and t = 1 is a whole game.

1. Based on this, what is the expected time between points score by
your daughter’s team?

2. Suppose that by the start of the second half your daughter’s team
has scored 3 points. Given this, what is the expected time when
your daughter’s team score is 4 points?
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(mu3 <- integrate(function(x) {x * dexp(x, rate = 10)}, 0, Inf)) # 1

## 0.1 with absolute error < 4.9e-05

0.5 + mu3$value

## [1] 0.6

The gamma function, Γ(α), is given below:

The gamma function has interesting properties, including

(Based on this we can say that the gamma function is the continu-
ous analogue to n!.)

The (lower) incomplete gamma function, γ(α, x), is given below:

This yields the obvious asymptotic relationship between γ(α, x)
and Γ(α):

The following are the pdf and cdf of the gamma distribution with
parameters α and β (we write X ∼ GAMMA(α, β) to say X follows
such a distribution):
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If β = 1 then we refer to GAMMA(α, 1) as the standard gamma
distribution. Table A.4 gives values of the cdf of the standard gamma
distribution for particular α and x.

Standard gamma distributions can be used to compute probabil-
ities involving non-standard gamma distributions in the following
way:

The mean and variance of gamma-distributed random variables is
given below:

Example 17

In a paper by Husak et al. (2007) the amount of rain (in mm) in Istan-
bull is fitted to a gamma distribution and the author estimated that
the distribution of the amount of rain in April is R ∼ GAMMA(0.436, 11.05).
Based on this, compute the mean and standard deviation of April
rainfall.



math 3070 lecture notes 135

curve(dgamma(x, shape = 0.436, scale = 11.05), 0, 6)
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(mur <- integrate(function(x) {x * dgamma(x, shape = 0.436, scale = 11.05)},

0, Inf))

## 4.8178 with absolute error < 0.00029

(varr <- integrate(function(x) {(x - mur$value)^2 * dgamma(x,

shape = 0.436, scale = 11.05)},

0, Inf))

## 53.23669 with absolute error < 0.0041

sqrt(varr$value)

## [1] 7.296348

## The probability the random variable is greater than 1

pgamma(1, shape = 0.436, scale = 11.05, lower.tail = FALSE)

## [1] 0.6145785

Let Xt be a Poisson process with rate parameter α. Let Tk be the
time until the process is equal to k; that is, Tk is the smallest t such
that Xt = k, so XTk = k. The distribution of Tk is known.
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Example 18

You model the points your daughter’s soccer team scores in a single
game with a Poisson process with rate parameter α = 10, with t = 1
representing a single game.

1. What is the mean and standard deviation of the time until her
team scores 5 points?

2. What is the probability that the time until her team scores 5 points
is before half time (t = 0.5)?48 48 Consider computing P (Tk > t),

where t is a natural number. This
is the event that the time when the
process reaches k is greater than t; in
other words, at time t, the process is
less than k at time t, or Xt < k. Thus
P (Tk > t) = P (Xt < k). The left-
hand side of this equality is an integral
and the right-hand side is the sum

∑k−1
x=0

e−αt(αt)x

x! , so we have

∫ ∞

t

αkxk−1e−αx

(k− 1)!
dx =

k−1

∑
x=0

e−αt(αt)x

x!

This identity could have been found
with an inductive argument and in-
tegration by parts, but we have a
probabilistic argument that explains
why the identity holds, which is more
illuminating.
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curve(dgamma(x, shape = 5, scale = 0.1), 0, 2)
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(mus <- integrate(function(x) {x * dgamma(x, shape = 5, scale = 0.1)},

0, Inf))

## 0.5 with absolute error < 3.5e-07

(vars <- integrate(function(x) {(x - mus$value)^2 * dgamma(x,

shape = 5, scale = 0.1)},

0, Inf))

## 0.05 with absolute error < 2.7e-05

sqrt(vars$value)

## [1] 0.2236068

## The probability the random variable is greater than 1

pgamma(0.5, shape = 5, scale = 0.1)

## [1] 0.5595067

Notice that there is a relationship between the gamma distribution
and the exponential distribution:
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In this sense the exponential family of distributions is a subset of
the gamma family of distributions.

The chi-square distribution is another distribution that belongs to
the gamma family of distributions; we write X ∼ χ2(ν) to indicate a
chi-square distributed random variable. In particular, X ∼ χ2(ν) ⇐⇒
X ∼ GAMMA(ν/2, 2). This distribution is important in statistics for
describing the sampling distribution of certain statistics. Values of the
cdf of the chi-square distribution are given in Table A.7.

Example 19

Suppose S2 ∼ χ2(9). Compute E
[
S2], Var

(
S2), and P

(
S2 > 3.325

)
.
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curve(dchisq(x, 9), -1, 25)
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(mus2 <- integrate(function(x) {x * dchisq(x, 9)}, 0, Inf))

## 9 with absolute error < 7.6e-06

integrate(function(x) {(x - mus2$value)^2 * dchisq(x, 9)}, 0, Inf)

## 18 with absolute error < 0.00012

pchisq(3.325, 9, lower.tail = FALSE)

## [1] 0.9500055

Section 5: Other Continuous Distributions

We say that X follows the Weibull distribution with shape parame-
ter α > 0 and scale parameter β > 0, or X ∼ WEI(α, β)49, if the pdf of 49 Sometimes X ∼ WEI(α, β, γ) is seen,

which means that X − γ ∼ WEI(α, β);
that is, X is a shifted version of the
usual Weibull distribution.

X is

The mean, variance, and cdf of the Weibull distribution are given
below
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If α = 1 the Weibull distribution is an exponential distribution.
Below is a sketch of the pdf of the Weibull distribution
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curve(dweibull(x, 2, 2), -0.5, 5)
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Example 20

Wind speed (in meters per second) at the site of a wind turbine is
believed to follow a Weibull distribution with α = 2 and β = 8. Com-
pute the mean and median wind speeds and the standard deviation
of wind speed.
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The turbine will not turn if wind speed is below two meters per
second. Compute the probability this occurs.
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(muwind <- integrate(function(x) {x * dweibull(x, 2, 8)}, 0, Inf))

## 7.089815 with absolute error < 2.8e-06

(varwind <- integrate(function(x) {(x - muwind$value)^2 * dweibull(x, 2, 8)},

0, Inf))

## 13.73452 with absolute error < 6.6e-05

sqrt(varwind$value)

## [1] 3.706011

qweibull(0.5, 2, 8) # Median

## [1] 6.660437

pweibull(2, 2, 8)

## [1] 0.06058694

X is said to follow a lognormal distribution, denoted X ∼
LN(µ, σ), if ln(X) follows a Normal distribution, or ln(X) ∼ N(µ, σ).
X has pdf

We can express the cdf of X in terms of Φ like so:

µ and σ2 are not the mean and variance of X. Instead we have
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Below is a sketch of the pdf of X:
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curve(dlnorm, 0, 3)
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Example 21

The current price of the stock with ticker symbol CGM is $26.18. The
quants believe the the price of the stock in a year is Y = 26.18X,
where X ∼ LN(0.1, 0.2). Based on this information, find l and u such
that P (l ≤ Y ≤ u) = 0.95 and P (Y ≤ l) = 0.025.
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(lprime <- qlnorm(0.025, 0.1, 0.2))

## [1] 0.7467739

(uprime <- qlnorm(0.975, 0.1, 0.2))

## [1] 1.635572

(l <- lprime * 26.18) # lower bound

## [1] 19.55054

(u <- uprime * 26.18) # upper bound

## [1] 42.81928

X follows the beta distribution, denoted X ∼ BETA(α, β, A, B)50, if 50 It is also common to see X ∼
BETA(α, β), which refers to the stan-
dard beta distribution.

X has the pdf

If A = 0 and B = 1, then X is said to have the standard beta
distribution.

The mean and variance of X are given below:

The beta distribution can assume a large number of shapes de-
pending on its shape parameters. But it has compact support, assign-
ing positive probabilities only to regions between A and B.

Below is a sketch of what a beta distribution can look like.
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curve(dbeta(x, 4, 6))
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Example 22

Suppose X ∼ BETA(3, 2). Write down the pdf of X and compute
E [X], Var (X), and P (1/4 ≤ X ≤ 3/4).
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curve(dbeta(x, 3, 2))
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(mux <- integrate(function (x) {x * dbeta(x, 3, 2)}, 0, 1))

## 0.6 with absolute error < 6.7e-15

(varx <- integrate(function (x) {(x - mux$value)^2 * dbeta(x, 3, 2)}, 0, 1))

## 0.04 with absolute error < 4.4e-16

pbeta(.75, 3 ,2) - pbeta(.25, 3, 2)

## [1] 0.6875

Example 23

In a paper by Maltamo et al. (2007), the basal diameter (in cm) of
pine trees was fitted to a beta distribution. The paper suggests that,
if B is the diameter of a pine tree, then B ∼ BETA(1.3, 1.1, 4.0, 40.9).
What, then, is the mean diameter of the pine trees? What about the
standard deviation?
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suppressPackageStartupMessages(library(extraDistr)) # Package with more dist’s

curve(dnsbeta(x, 1.3, 1.1, 4.0, 40.9), 4.0, 40.9)
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(mudiam <- integrate(function(x) {x * dnsbeta(x, 1.3, 1.1, 4.0, 40.9)},

4.0, 40.9))

## 23.9875 with absolute error < 1.4e-06

(vardiam <- integrate(function(x) {(x - mudiam$value)^2 * dnsbeta(x, 1.3, 1.1,

4.0, 40.9)},

4.0, 40.9))

## 99.42312 with absolute error < 0.00012

sqrt(vardiam$value)

## [1] 9.971114

Section 6: Probability Plots

Probability plots are a visual method used to check whether a
dataset could plausibly have been drawn from a particular distri-
bution. In essence, we compare the observed sample percentiles with
the percentiles of a dataset if it had come from a chosen distribution.
If the relationship between the observed and the theoretical distri-
butions is linear, the distributional assumption seems reasonable. If
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there is a nonlinear relationship, the distribution chosen is not likely
a good model for the data.

While we can often argue that a certain data generating process
produces a particular probability distribution in the discrete case,
fitting data to distributions is more difficult in the continuous case;
we can’t make arguments like we could in the discrete case. Thus we
turn to probability plots or statistical tests.

Below is an example of a probability plot.
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dat1 <- rnorm(100)

dat2 <- runif(100)

## Probability plot checking for Normal distributions

qqnorm(dat1); qqline(dat1)
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qqnorm(dat2); qqline(dat2)
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Suppose we have a sample x1, . . . , xn, and r1, . . . , rn is the ordered
sample (with r1 ≤ r2 ≤ . . . ≤ rn). We call ri the [100(i − .5)/n]th
sample percentile.

To construct a probability plot, we do the following:

1. For i = 1, . . . , n, we find the [100(i − .5)/n]th percentile of the
theoretical distribution; we call these the theoretical percentiles,
referred to as η

(
i−0.5

n

)
.

2. For i = 1, . . . , n, plot the point
(

η
(

i−0.5
n

)
, ri

)
on a Cartesian

grid; the x-axis is the theoretical percentiles and the y-axis is the
observed percentiles.

If the theoretical distribution is a Normal distribution, we call the
probability plot a Normal probability plot.

We then decide if the relationship between the theoretical and
observed percentiles appears linear. If yes, then the distribution is a
good fit. Otherwise, it’s a bad fit.

Example 24

Consider the following dataset:

i 1 2 3 4 5

ri 0.22 0.26 0.97 1.04 1.59

Create a probability plot to determine if it’s plausible the data
came from a EXP(1) distribution.
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x <- c(0.22, 0.26, 0.97, 1.04, 1.59)

(theo <- qexp((1:5 - 0.5)/5))

## [1] 0.1053605 0.3566749 0.6931472 1.2039728

## [5] 2.3025851

qqplot(theo, x, xlab = "Theoretical Quantiles", ylab = "Sample Quantiles")

qqline(x, distribution = qexp)
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As described we can check whether a dataset was generated by
a particular distribution (in the last example, it was EXP(1)), but we
usually want to know whether a dataset was generated by a member
of a family of distributions (for example, EXP(µ)). Fortunately there
are tricks we can use to do the latter task.

We call θ1 a location parameter and θ2 a scale parameter if the cdf
F(x; θ1, θ2) depends on x−θ1

θ2
51. Below are examples of parameters 51 Intuitively, θ1 shifts the pdf left or

right rigidly, while θ2 stretches or
compresses the pdf.

that are either (or are neither) location or scale parameters.52

52 Notice that the mean is not always a
location parameter. For the exponen-
tial distribution, the mean is a scale
parameter.
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If the theoretical distribution involes location and scale parame-
ters, we estimate them; call the estimates θ̂1 and θ̂2. Instead of plot-

ting using ri, we use ri−θ̂1
θ̂2

, and use the standard theoretical distribu-
tion where θ1 = 0 and θ2 = 153. 53 What if we need a parameter that is

neither a location nor scale parameter?
One trick would be to transform the
data in an appropriate way. For exam-
ple, if we think Xi ∼ LN(µ, σ), neither
µ nor σ are location or scale param-
eters, but we can create a probability
plot for ln(Xi) instead and see if the
new, transformed dataset is Normally
distributed, as it should be if our hy-
pothesis is correct; in this case, µ and
σ can now be treated as location and
scale parameters, respectively. This
trick would not work if we wanted
to check if Xi ∼ BETA(α, β) since no
transformation will turn α and β into
location/scale parameters. In that case
we may be forced to estimate α and
β from the data, assuming that our
hypothesis is true; in this example, call
the estimates α̂ and β̂. Then we would
construct a probability plot to see if
the data came from the distribution
BETA(α̂, β̂).

Example 25

Construct a probability plot to check if the following dataset was
plausibly generated by a Normal distribution.

i 1 2 3 4 5 6 7

ri 8.89 25.86 26.47 32.16 34.07 37.49 86.80

i 8 9 10

ri 125.02 146.36 379.06
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y <- c(8.89, 25.86, 26.47, 32.16, 34.07, 37.49, 86.80, 125.02, 146.36, 379.06)

qqnorm(y)

qqline(y)
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Chapter 5: Joint Probability Distributions and Random
Samples

Introduction

We may naturally inquire about collections of random vari-
ables that are related to each other in some way. For instance, we may
record an individual’s height and weight, calling these random vari-
ables X and Y, and ask if these are correlated, uncorrelated, or even
independent characteristics, and describe a probability model that
accounts for the relationship in these two characteristics.

Additionally, we may have a large collection of random variables,
say X1, X2, . . . , Xn which will be used to estimate some essential
quantity of a distribution, such as the mean µ. We compute some
quantity based on this collection of random variables, such as X̄ =
1
n ∑n

i=1 Xi, or any other T = T(X1, . . . , Xn). This quantity, dependent
on random variables, is itself a random variable, and we call it a
statistic. Being a statistic it has its own probability distribution, with
its own mean and variance and cdf, and we can use the distribution
of the statistic to make statements about the process that generated
the original dataset X1, . . . , Xn. It is here when probability theory
begins to turn into statistical theory.

Section 1: Jointly Distributed Random Variables

Suppose X and Y are two discrete random variables. Their joint
probability mass function is described below:

This can be used to compute P ((X, Y) ∈ A) for an event A:

From this we can compute the marginal probability mass func-
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tions, pX(x) and pY(y), for X and Y respectively.

These represent the probability distribution of X and Y respec-
tively regardless of what value the other rv takes.

We can also compute what is known as the conditional probabil-
ity mass function of Y given X = x, which represents the probability
distribution of Y when we know that X = x. The conditional proba-
bility mass function of X given Y = y is defined in a similar manner.

Example 1

A fair six-sided die is rolled; let X represent the number of pips
shown. At the same time, a fair coin is flipped, and Y(ω) = 1 if
the coin lands heads-up, and Y(ω) = 2 if the coin lands tails-up. The
joint pmf of X and Y is

1. Compute P (X < Y).
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2. Compute P (Both X and Yare even)

3. Find the marginal pmfs for both X and Y.

4. Find the conditional distributions pX|Y(x|y) and pY|X(y|x).
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library(discreteRV)

##

## Attaching package: ’discreteRV’

## The following object is masked from ’package:base’:

##

## %in%

library(magrittr) # Adds the %>% operator

XY <- jointRV(list(1:6, 1:2), probs = rep(1/12, times = 12))

(X <- marginal(XY, 1)) # The relationship between X and Y is still preserved

## Random variable with 6 outcomes

##

## Outcomes 1 2 3 4 5 6

## Probs 1/6 1/6 1/6 1/6 1/6 1/6

(Y <- marginal(XY, 2))

## Random variable with 2 outcomes

##

## Outcomes 1 2

## Probs 1/2 1/2

joint(X, Y)

## Random variable with 12 outcomes

##

## Outcomes 1,1 1,2 2,1 2,2 3,1 3,2 4,1 4,2 5,1 5,2 6,1 6,2

## Probs 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12

P(X < Y)

## [1] 0.08333333

P((X %in% c(2, 4, 6)) %AND% (Y %in% c(2))) # Both even

## [1] 0.25

X | Y == 2 # Gets a conditional random variable

## Random variable with 6 outcomes

##

## Outcomes 1 2 3 4 5 6

## Probs 1/6 1/6 1/6 1/6 1/6 1/6
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YgivenX <- function(x) {Y | X == x}

XgivenY <- function(y) {X | Y == y}

YgivenX(2)

## Random variable with 2 outcomes

##

## Outcomes 1 2

## Probs 1/2 1/2

XgivenY(2)

## Random variable with 6 outcomes

##

## Outcomes 1 2 3 4 5 6

## Probs 1/6 1/6 1/6 1/6 1/6 1/6

Now suppose that X and Y are continuous random variables.
Much is the same; we work with a joint probability density func-
tion, marginal probability density functions, and conditional prob-
ability density functions.
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Example 2

A company sells bags of “deluxe” mixed nuts, containing almonds,
cashews, and peanuts. One bag is five pounds, and the joint pdf for
the amount of almonds X and cashews Y in the bag (in pounds) is
given below:

(We don’t need to worry about the amount of peanuts; this is
simply 5− X−Y and thus is completely determined given X and Y.)

The region on which the pdf is illustrated below:

1. Customers buying bags of “deluxe” mixed nuts complain when
60% of the nuts in the bag are peanuts. Compute the probability
this occurs.
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2. Find the marginal distributions of X and Y. Use this to compute
E [X], E [Y], Var (X), and Var (Y).

3. Find the conditional pdfs fX|Y(x|y) and fY|X(y|x). Use this to
compute P (X > 2|Y = 2).
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We say that two random variables X and Y are independent if

Example 3

Are the random variables in the previous two example independent?
Explain why or why not.
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independent(X, Y) # For Example 1

## [1] TRUE

We can generalize our definitions from two to n rvs, X1, . . . , Xn.

We say that X1, . . . , Xn are independent if for every subset Xi1 , . . . , Xik
of the collection, we have

If X1, . . . , Xn are independent and each has the same pmf/pdf
that X1, . . . , Xn are independent and identically distributed, often
abbreviated i.i.d..54 54 This is a typical assumption about a

dataset in statistics.

Example 4

Compute P (min{X1, ..., Xn} ≥ x) if X1, . . . , Xn are i.i.d..
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We can generalize the binomial distribution we saw before the
the multinomial distribution. We have r categories, and a single
observation belongs to category i with probability pi. We count how
many observations belong to category i; this gives Xi. Then the vector
(X1, . . . , Xr) follows the multinomial distribution, or (X1, . . . , Xr) ∼
MULTINOM(p1, . . . , pr)55, and we have the pmf 55 The binomial distribution is a par-

ticular instance of the multinomial
distribution, when r = 2. We omit the
count of tails, which we may call X2, as
it’s redundant information given X1.

Section 2: Expected Values, Covariance, and Correlation

Expectations involving two random variables are defined similarly to
the univariate cases.

Example 5

Reconsider the random variables in Examples 1 and 2. Compute
E [XY] for both cases.
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E(X * Y) # For Example 1’s random variables

## [1] 5.25

One measure of the relationship between two random variables is
the covariance.

The covariance is positive if the two random variables tend to be
large together, while the covariance is negative if one rv tends to be
large when the other tends to be small. If Cov (X, Y) = 0, then X and
Y are uncorrelated.56 56 Due to the relationship between

the covariance and the variance,
we sometimes see the notation
Cov (X, Y) = σXY .

We also have the following shortcut formula for the covariance:

It’s obtained in a similar manner to shortcut formulas found for
computing Var (X).57 57 From this it’s clear that Cov (X, X) =

Var (X).Notice that the covariance is not insensitive to the units of the ran-
dom variable; in fact, we can compute the covariance Cov (aX + b, cY + d):

Changing the units changes the covariance. A unit-free measure of
the relationship between X and Y is the correlation.58 58 The usual Greek letter representing

correlation is ρ.

The correlation is 1 if there is a perfect positive linear relationship
between X and Y, -1 if there is a perfect negative linear relationship,
and 0 if there is no linear relationship between X and Y.59 Thus |ρ| 59 Notice the emphasis on the word

“linear”; there can be a relationship
between X and Y that would make their
correlation small yet there could still be
a strong nonlinear relationship linking
the two variables.

determines the strength of the relationship60 between X and Y and

60 We can classify the strength of the
relationship between rvs using com-
pletely arbitrary cutoffs; specifically, we
could say that if |ρ| < 0.3 there is no
notable correlation, if |ρ| > 0.7 there is
a strong correlation, and otherwise the
correlation is weak.

sign(ρ) determines the direction of the relationship.61

61 There is a sample statistic for estimat-
ing ρ from paired data (x1, yi):

r =
1

sxsy(n− 1)

n

∑
i=1

(xi − x̄)(yi − ȳ)

The interpretation is the same. We do
not discuss the sample statistic in this
course.

Example 6

Compute the covariance and correlation for the random variables
mentioned in Examples 1 and 2.
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## For Example 1

(sigma_xy <- E(X * Y) - E(X) * E(Y))

## [1] 0

If X and Y are independent, then Cov (X, Y) = 0.62 The converse is 62 As a consequence, we can equiva-
lently say that E [XY] = E [X]E [Y]
when X and Y are idependent.

not true in general, as the following example shows.

Example 7

The point (U, V) is equally likely to be any of the points in the
sample space S = {(1, 1), (1,−1), (−1, 2), (−1,−2)}. Compute
Cov (U, V). Are U and V independent?
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(UV <- jointRV(list(c(-1, 1), c(-2, -1, 1, 2)),

probs = c(1/4, 0, 0, 1/4, 0, 1/4, 1/4, 0)))

## Random variable with 4 outcomes

##

## Outcomes -1,-2 -1,2 1,-1 1,1

## Probs 1/4 1/4 1/4 1/4

(U <- marginal(UV, 1))

## Random variable with 2 outcomes

##

## Outcomes -1 1

## Probs 1/2 1/2

(V <- marginal(UV, 2))

## Random variable with 4 outcomes

##

## Outcomes -2 -1 1 2

## Probs 1/4 1/4 1/4 1/4

E(U*V) - E(U) * E(V)

## [1] 0

independent(U, V)

## [1] FALSE

We say (X1, X2) follows the bivariate Normal distribution, or
(X1, X2) ∼ BINORM(µ1, µ2, σ1, σ2, ρ), if the joint pdf of X1 and X2

is

The pdf of the bivariate Normal distribution is illustrated below.

library(mvtnorm)

library(lattice)

my.settings <- list(superpose.polygon = list(border = "transparent"))
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points <- data.frame("x" = rep(seq(-3, 3, length.out = 100), times = 100),

"y" = rep(seq(-3, 3, length.out = 100), each = 100))

points$z <- apply(points, 1, function(r) {dmvnorm(r)})

head(points)

## x y z

## 1 -3.000000 -3 1.964128e-05

## 2 -2.939394 -3 2.351445e-05

## 3 -2.878788 -3 2.804818e-05

## 4 -2.818182 -3 3.333337e-05

## 5 -2.757576 -3 3.946923e-05

## 6 -2.696970 -3 4.656321e-05

wireframe(z ~ x * y, data = points, lines = FALSE,

col = "transparent", shade = TRUE)

xy

z

contourplot(z ~ x * y, data = points)
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x

y

−2

−1

0

1

2

−2 −1 0 1 2

0.02
0.04
0.060.080.100.120.14

levelplot(z ~ x * y, data = points, drape = TRUE,

col.regions = terrain.colors(100))
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If you were to slice the pdf in any direction, the resulting plot
would be another Normal distribution. Specifically, the marginal dis-
tributions fX1(x1) and fX2(x2) are Normal distributions, and condi-
tional distributions fX1|X2

(x1|x2) and fX2|X1
(x2|x1) are all all Normal

distributions.

We have E [X1] = µ1, E [X2] = µ2, SD (X1) = σ1, SD (X2) = σ2,
and Corr (X1, X2) = ρ. Crucially, when (X1, X2) follows a bivariate
Normal distribution, Cov (X1, X2) does imply independence!63 63 This is not the same as saying that

if two random variables are Normally
distributed and uncorrelated they
are independent. Joint normality
does not follow from the normality
of the marginal distributions; for
example, if we choose Z1 ∼ N(0, 1)
and Z2 = SZ1 with P (S = 1) =
P (S = −1) = 1

2 , then Z2 ∼ N(0, 1), and
the marginal distributions of (Z1, Z2)
are thus standard Normal distributions,
and Cov (Z1, Z2) = 0. However, Z1 and
Z2 are obviously not independent since
if we know Z1 then we know Z2 differs
from Z1 by at most a sign.

Example 8

Let HC represent the height of a son and HF the height of the son’s
father (in inches). Suppose

(HC, HF) ∼ BINORM(69.2, 69.2, 2.6, 2.6, 0.4)

1. What are the marginal distributions of HC and HF?
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2. Suppose a person’s father is 78 inches tall. Find an equal-tailed64 64 In general, when we say an interval
is equal-tailed, we mean that the prob-
ability that the random variable is too
small to be in the region is equal to the
probability that the random variable
is too large. We need this restriction in
order to have a unique solution; other-
wise, there could be an infinite number
of solutions.

interval such that the probability the child’s height is in this inter-
val is 0.95.
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## Marginal distributions are trivial; let’s worry about the conditional

mu1 <- 69.2; mu2 <- 69.2; sigma1 <- 2.6; sigma2 <- 2.6; rho <- 0.4

h <- 78

(mu_2g1 <- (mu1 - rho * mu2 * sigma1 / sigma2) + rho * sigma1 * h / sigma2)

## [1] 72.72

(sigma_2g1 <- sqrt((1 - rho^2) * sigma1^2))

## [1] 2.382939

qnorm(0.025, mean = mu_2g1, sd = sigma_2g1) # Lower bound

## [1] 68.04952

qnorm(0.975, mean = mu_2g1, sd = sigma_2g1) # Upper bound

## [1] 77.39048

Section 5: The Distribution of a Linear Combination65
65 In my opinion, Section 5 of this
chapter is a more logical successor of
Section 2; we will come back to Section
3 later.

Consider a collection of n random variables X1, . . . , Xn and numerical
constants a1, . . . , an. The rv Y is a linear combination of the random
variables X1, . . . , Xn if Y is of the form

Proposition 13. Suppose E [Xi] = µi and Var (Xi) = σ2
i . The following

facts are true:
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Thus we have the important property about expectations; they
are linear operators, to use linear algebra language. The variance is
not a linear operator (although it is a sublinear operator), but the
covariance is a bilinear operator (linear in both its arguments).

Corollary 1. Suppose X1 and X2 are two independent random variables.
Then:

We can weaken the independence assumption to simply being
uncorrelated and the variance computation will still be true.

Proposition 14. Suppose X1 and X2 are two Normal random variables.
Then

Corollary 2. A linear combination of Normal random variables also follows
a Normal distribution.

Example 9

Suppose X1, . . . , Xn are i.i.d. random variables. Compute the ex-
pected value, variance, and standard deviation of X̄ = 1

n ∑n
i=1 Xi.
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Example 10

Suppose X1, . . . , Xn are i.i.d. random variables. Compute the ex-
pected value, variance, and standard deviation of T = ∑n

i=1 Xi

There are several random variables where we know the distribu-
tion of sums of those random variables. Below is a summary:

Section 3: Statistics and Their Distributions

We will call the collection X1, . . . , Xn a random sample if it consists
of i.i.d. random variables. We will call any quantity we can compute
from a random sample a statistic. Before the dataset is observed, a
statistic is a random quantity, with its own distribution, referred to as
the sampling distribution; statistics in this random state are usually
referred to using upper-case letters, while the observed statistic (after
we have a dataset) is usually referred to using lower-case letters.

Examples of statistics include:
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Example 11

Let X1, . . . , Xn be i.i.d.r.v. with X1 ∼ Ber(p). What is the sampling
distribution of X̄?

Example 12

Let X1, . . . , Xn be i.i.d.r.v. with X1 ∼ N(µ, σ). What is the sampling
distribution of X̄? Use the sampling distribution to find an interval
such that P (l(X̄) ≤ µ ≤ u(X̄)) = 1− α.
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One approach to finding information about the sampling distri-
bution of statistics is to use simulations. We generate K random
samples of size n, X1,k, . . . , Xn,k, k ∈ [K]. For each sample we compute
the statistic of interest T(X1,k, . . . , Xn,k) = Tk, and then study the
random sample T1, . . . , TK.

Example 13

For the Normal distribution, we could estimate the parameter µ

using either the sample mean X̄ or the sample median X̃. What are
the properties of these two statistics’ sampling distributions? What
are their respective shapes? Which has a smaller variance?

Let’s suppose X1 ∼ N(0, 1), then conduct a simulation study to
compare these statistics. We’ll look at n = 10 and use K = 1000
samples.

## Generate 1000 random samples of size ten, storing them in a 10x1000 matrix

datamat <- replicate(1000, rnorm(10))

sim_mean <- apply(datamat, 2, mean)

sim_med <- apply(datamat, 2, median)

boxplot(sim_mean, sim_med)

1 2

−
1.

0
0.

0
1.

0

summary(sim_mean)

## Min. 1st Qu. Median Mean

## -1.141278 -0.206299 -0.013537 -0.008187

## 3rd Qu. Max.

## 0.205722 0.988908
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summary(sim_med)

## Min. 1st Qu. Median Mean

## -1.1992114 -0.2592222 -0.0004545 -0.0110169

## 3rd Qu. Max.

## 0.2374234 0.9773014

var(sim_mean)

## [1] 0.0983803

var(sim_med)

## [1] 0.1318241

qqnorm(sim_mean); qqline(sim_mean)
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qqnorm(sim_med); qqline(sim_med)
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Example 14

Let’s now consider the sample mean of random samples U1, . . . , Un

with U1 ∼ UNIF(0, 1). What can we say about the distribution of the
sample mean Ū as the sample size n gets large?

We will create 1000 samples for n ∈ {5, 20, 80}, then compare the
distributions.

sizes <- c(2, 5, 20, 80)

k <- 1000

datasets <- lapply(sizes, function(n) {

replicate(k, runif(n))

})

names(datasets) <- sizes

str(datasets)

## List of 4

## $ 2 : num [1:2, 1:1000] 0.575 0.135 0.125 0.898 0.284 ...

## $ 5 : num [1:5, 1:1000] 0.294 0.179 0.893 0.965 0.32 ...

## $ 20: num [1:20, 1:1000] 0.418 0.712 0.339 0.192 0.19 ...

## $ 80: num [1:80, 1:1000] 0.98088 0.74066 0.00726 0.35442 0.08737 ...

sim_mean_unif <- lapply(datasets, function(d) {apply(d, 2, mean)})

str(sim_mean_unif)
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## List of 4

## $ 2 : num [1:1000] 0.355 0.511 0.632 0.475 0.345 ...

## $ 5 : num [1:1000] 0.53 0.419 0.656 0.573 0.533 ...

## $ 20: num [1:1000] 0.487 0.468 0.416 0.47 0.603 ...

## $ 80: num [1:1000] 0.416 0.51 0.434 0.496 0.508 ...

for (x in sim_mean_unif) {

print(summary(x))

hist(x, freq = FALSE)

lines(seq(0, 1, length.out = 1000),

dnorm(seq(0, 1, length.out = 1000), mean = mean(x), sd = sd(x)))

qqnorm(x); qqline(x)

}

## Min. 1st Qu. Median Mean 3rd Qu.

## 0.01131 0.35465 0.49095 0.50179 0.65230

## Max.

## 0.96549
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## Min. 1st Qu. Median Mean 3rd Qu.

## 0.1365 0.4100 0.4975 0.4984 0.5829

## Max.

## 0.8999
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## Min. 1st Qu. Median Mean 3rd Qu.

## 0.2978 0.4574 0.4995 0.4980 0.5412

## Max.

## 0.6859
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## Min. 1st Qu. Median Mean 3rd Qu.

## 0.3999 0.4756 0.4981 0.4996 0.5226

## Max.

## 0.5934
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Section 4: The Distribution of the Sample Mean

There are two theorems that form the cornerstone of probability and
statistics: the law of large numbers and the central limit theorem. The
Law of Large Numbers (LLN) guarantees us that the sample mean
will approximately equal the population mean, while the Central
Limit Theorem (CLT) describes the distribution of the sample mean
for large n when we have a mean and a variance.

Theorem 3 (Law of Large Numbers). Let X1, X2, . . . be a sequence of of
i.i.d.r.v. with E [X1] = µ, and let X̄n = 1

n ∑n
i=1 Xi. Then the probability the

(random) sequence X̄n converges to µ is 1.

Theorem 4 (Central Limit Theorem). Under the same assumptions as the
Law of Large Numbers but with the additional assumption that Var (X1) =

σ2, P
(

X̄n−µ

σ/
√

n ≤ z
)
→ Φ(z) for all z. In other words, the distribution of X̄n

is approximately N
(

µ, σ√
n

)
, with the approximation improving as n→ ∞.

More directly, the CLT describes the behavior of sums of i.i.d.r.v.
as more random variables are summed. The CLT explains why some
distributions–like the binomial distribution, the Poisson distribution,
the gamma distribution, and the χ2-distribution–can be approxi-
mated with the Normal distribution as one of their parameters grows
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large; these distributions can be interpreted as the distributions of
sums of i.i.d.r.v.66 and thus the CLT applies.67 66 Specifically: BIN(n, p) is the sum of

n Ber(p) r.v.s; POI(n) is the sum of n
POI(1) r.v.s; GAMMA(α, n) is the sum
of n EXP(α) r.v.s; and χ2(n) is the sum
of n χ2(1) r.v.s.
67 The CLT requires that Var (X1) < ∞;
if this does not hold, the CLT no longer
applies and its conclusion may not even
be true.

Thanks to the CLT, we can describe the distribution of the sample
mean without worrying about the exact distribution of the under-
lying data if the sample size n is large enouch68, since the CLT says

68 In general it’s safe to use the CLT if
n > 30.

that the initial distribution is eventually “forgotten” by the sample
mean.

Example 15

The average customer visiting a grocery store spends X dollars,
where E [X] = 50 and SD (X) = 55.69 Every month about 30,000

69 Notice X is non-negative but
SD (X) > E [X]. This can happen
with skewed distributions.

purchases are made at the grocery store.

1. What will be the (approximate) distribution of the average pur-
chase, X̄?

2. What is the (approximate) probability that the revenue of the
grocery store in a month is less than $1,485,000
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55/sqrt(30000) # sd of xbar

## [1] 0.3175426

pnorm(1485000, mean = 50 * 30000, sd = 55 * sqrt(30000))

## [1] 0.05767537



Chapter 6: Point Estimation

Introduction

Karl Pearson, perhaps the first mathematical statistician, pro-
posed the modern view that the objective of science is to estimate
the parameters of a probability distribution that generates datasets
(Salsburg, 2002). Statistics has come a long way since Karl Pearson’s
methods, and in this chapter (where we finally leave our study of
probability behind to dive into statistics) we see how to compute
estimates for distribution parameters.

Initially there are many statistics competing to estimate some
quantity; for example, both the sample mean and sample median
could estimate the parameter µ of the Normal distribution. In the
first section, we see general principles used to evaluate estimators. In
the second section, we see methods for generating estimates.

Section 1: Some General Concepts of Point Estimation

There are many parameters we may try to estimate, such as

• µ from the distribution EXP(µ)
• µ and σ from the Normal distribution N(µ, σ)

• α and β from the Weibull distribution WEI(α, β)

• And others

We want to discuss parameters and estimators using a general
language. Let θ be a parameter, and θ̂ is an estimator for θ. Often the
notation θ̂ refers to both a random variable and a specific point esti-
mate.70 We call θ̂ a point estimator for θ; we use the point estimator 70 I’ve said that usually capital letters

refer to random variables; in this case,
we would use Θ̂ to refer to the random
version of the estimator, and θ̂ to refer
to a specific number computed from an
observed, no-longer-random dataset.
However, this is not conventional;
writers are lazy and don’t like writing
Θ̂, preferring θ̂ instead. Readers can
usually tell whether the writer is
referring to a random number or a
computed number. As I said, capital
letters usually refer to random variables;
this is one of the (many) exceptions.

to compute a point estimate, a single plausible value for θ.
Examples of point estimators and the parameters they estimate

include:
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An estimator θ̂ is an unbiased estimator for θ if

Example 1

Show that the sample mean X̄ computed from iid data is an unbiased
estimator for the population mean µ.

Example 2

Suppose that X1, . . . , Xn is an iid sample from a Bernoulli distribution
with parameter p. Show that the sample proportion is an unbiased
estimator for p.

Example 3

Show that the estimator σ̂2 = 1
n ∑n

i=1(Xi − X̄)2 computed from an iid
sample X1, . . . , Xn with Var (X1) = σ2 is not an unbiased estimator for
σ2.
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Example 4

Show that the sample variance S2 = 1
n−1 ∑n

i=1(Xi − X̄)2 computed
from an iid sample X1, . . . , Xn with Var (X1) = σ2 is an unbiased
estimator for σ2.71 71 It’s tempting to think that the sample

standard deviation S =
√

S2 is an
unbiased estimator for σ, but this is not
the case; S is a biased estimator for σ,
with a tendency to underestimate the
true σ. However, S is justified by other
criteria. In fact, estimation of σ presents
a good case study in why unbiasedness,
as a criterion for good estimators, may
be overrated (see Wikipedia (2018)).

Example 5

Suppose X1, . . . , Xn is an iid sample from an exponential distribution
with mean µ. Recall that the rate parameter of an exponential distri-
bution is λ = 1

µ . Show that the estimator λ̂ = 1
X̄ is not an unbiased

estimator for µ.
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Suppose we want to estimate µ for Normally distributed data. X̄
is an unbiased estimator for µ. So is X̃. In fact, X1 is an unbiased es-
timator for µ since E [X1] = µ. The last estimator is clearly silly, but
not because of the unbiasedness criterion. Instead, the last estimator
violates the minimum variance criterion, which states that the stan-
dard error (the standard deviation of θ̂, referred to as σθ̂) should be as
small as possible, if not the smallest of all possible estimators. In this
case, of the estimators I just mentioned, X̄ has the smallest variance,
and X1 the largest. In fact, X̄ is the minimum variance unbiased es-
timator (MVUE) for µ in this context, having the smallest variance
of any unbiased estimator of µ. Likewise, p̂ is the MVUE for p, when
the data was drawn from a Bernoulli distribution with parameter p.

The minimum variance and unbiasedness criteria are not neces-
sarily in agreement; there may be an estimator that has a smaller
variance than all unbiased estimators and is close to the true value
of θ when sample sizes are large. We may relax the unbiasedness
criterion and instead require consistency, which says that a law of
large numbers applies to the estimator; that is, θ̂n → θ in some sense
as n grows (with θ̂n being an estimator for θ computed from n data
points). The only estimator mentioned so far that isn’t consistent is
X1; the rest (including the sample standard deviation) are consistent
estimators.

Sometimes an estimator performs well in some circumstances but
poorly in others; for example, X̄ estimates the location of a distribu-
tion well when data is drawn from a Normal distribution but poorly
when computed from data drawn from a distribution with heavy
tails, such as the Laplace or Cauchy distributions. We call an estima-
tor robust when the estimator performs well in multiple scenarios.
Trimmed means, for example, as seen as robust estimators for the
location of a distribution.

The standard error of an estimator is defined below:

The standard error can depend on unknown parameters. In that
case, we may report an estimated standard error, where estimates
for the unknown parameters are used in those parameters’ place.
Estimates of standard errors are often reported with point estimates
to give a sense of how accurate the point estimate is. We will see how
standard errors are often used to compute plausible regions for the
location of θ in Chapter 7.
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Example 6

Suppose Var (X1) = σ2 and the dataset X1, . . . , Xn is an iid dataset.
What is the standard error of X̄? Use this to give estimates of stan-
dard errors for data drawn from Normal, exponential, and Poisson
distributions.

Example 7

Suppose X1, . . . , Xn is a Bernoulli dataset. What is the standard error
of p̂? What is an upper bound on the standard error? What is an
estimate of the standard error?
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Bootstrapping is a computer intensive technique for computing
the standard errors of estimates. Bootstrap estimates of standard er-
rors are often robust and allow us to obtain estimates when formulas
for those errors would be intractable.

Suppose that x1, . . . , xn is a sample of iid data drawn from a distri-
bution with pdf f (x; θ). The bootstrap procedure works as follows:

1. Estimate θ with θ̂.
2. Choose a large number B.
3. Generate B samples of data Xb1, . . . , Xbn (1 ≤ b ≤ B) from the

distribution with pdf f (x; θ̂), and from each of them compute
θ̂∗b , the estimate of θ using xb1, . . . , xbn; you should now have a
collection of data θ̂∗1 , . . . , θ̂∗B

4. Compute θ̄∗ = 1
B ∑B

b=1 θ̂∗b ; this is the bootstrap estimate of θ

5. Compute σ̂θ̂ =
√

1
B−1 ∑B

b=1
(
θ̂∗b − θ̄∗

)2
; this is the bootstrap stan-

dard error estimate

Example 8

In this example I demonstrate how to estimate the standard error
of the estimate of the sample standard deviation computed from
Normally distributed data.

n <- 100 # Our sample size is 100

B <- 500 # The bootstrap sample size is 500

dat <- rnorm(n, mean = 10, sd = 5) # Our dataset

(s <- sd(dat)) # Estimated standard deviation

## [1] 4.647059

boot_s <- replicate(B, {

boot_dat <- rnorm(n, mean(dat), s)

sd(boot_dat)

})

plot(density(boot_s))
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mean(boot_s) # The bootstrap estimator of s

## [1] 4.635094

sd(boot_s) # The bootstrap-estimated standard error of s

## [1] 0.3317313

If we don’t want to assume that the data came from a particular
sample, we can sample instead from the data itself, doing so with
replacement. When doing this, we are said to be sampling from the
empirical cdf, or empirical distribution, of the data; that is, we are
sampling from the distribution we observed, which serves as an
estimate of the population distribution that generated the data.

Example 9

This example demonstrates obtaining a bootstrap estimate of the
standard error of the standard deviation without assuming that the
data was drawn from a particular distribution, using the resampling
technique.

boot_s_resample <- replicate(B, {

boot_dat <- sample(dat, n, replace = TRUE)
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sd(boot_dat)

})

plot(density(boot_s_resample))

3.5 4.0 4.5 5.0 5.5

0.
0

0.
4

0.
8

1.
2

density.default(x = boot_s_resample)

N = 500   Bandwidth = 0.08485

D
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mean(boot_s_resample)

## [1] 4.600309

sd(boot_s_resample)

## [1] 0.3278774

Section 2: Methods of Point Estimation

Assume again that X1, . . . , Xn is an iid sample from some distribu-

tion. E
[

Xk
1

]
is called the kth population moment, and 1

n ∑n
i=1 Xk

i is

called the kth sample moment. As an example, X̄ is the first sample
moment and E [X1] = µ is the first population moment.72 A sample 72 σ2 is related to the second sample

moment but isn’t the second moment
itself. The same goes for S2 and sample
moments.

moment is an unbiased estimator for the corresponding population
moment.

Suppose a distribution has θ1, . . . , θK parameters we wish to esti-
mate. Below is the method of moments estimation procedure:

1. Compute the first K population moments, m1, . . . , mK in terms of
the unknown parameters θ1, . . . , θK

2. Solve for θ1, . . . , θK so they are expressed in terms of m1, . . . , mK



math 3070 lecture notes 197

3. Replace m1, . . . , mK with M1, . . . , MK, the first K sample moments;
the resulting expressions are θ̂1, . . . , θ̂K, the method of moments
estimators (MMEs) for the desired parameters.

Method of moments estimation produces consistent estimators
for desired parameters using an intuitive procedure. There is no
guarantee the estimators are unbiased (in fact they likely are not
unbiased) and they usually are not minimum-variance estimators.
In fact, in the context the estimators were computed, there likely is
an estimator that is consistent and with a smaller variance than the
MMEs That said, method of moment estimators are often robust and
more tractable than other estimators while being easy to compute.73 73 Method of moments estimation is

often used in economics due to their
simplicity and robustness.

Example 10

What is the method of moments estimator for the population vari-
ance?

Example 11

What is the MME for the rate parameter λ = 1
µ for an exponential

distribution?
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Example 12

Let X1, . . . , Xn be an iid sample from the distribution UNIF(a− b, a +
b). What are the MMEs for a and b?
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Example 13

Consider a shifted exponential distribution that depends on two
parameters µ and γ such that X1 − γ ∼ EXP(µ). What are the MMEs
for µ and γ?
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To illustrate the principle of the next estimation method, suppose
I flip a coin and record whether I get heads or not. The coin could
be a fair coin or a biased coin, where the probability of getting heads
is p = .9. When I flip the coin and observe an outcome, how will I
decide which coin was flipped?

Consider the following table:

After flipping the coin and observing the outcome, I look to the
table to see what the probability of that outcome was under each
scenario of coin choice. The maximum likelihood principle says that I
should choose the coin that maximizes these probabilities.

Let X1, . . . , Xn have the joint pmf/pdf f (x1, . . . , xn; θ1, . . . , θK).
When x1, . . . , xn are the observed values of the dataset, this function
is called the likelihood function when it is regarded as a function of
θ1, . . . , θK, as expressed below:

When the random variables X1, . . . , Xn are iid, the likelihood func-
tion is

The maximum likelihood estimators (MLEs) θ̂1, . . . , θ̂K are the
values that maximize the likelihood function. They are interpreted
as the most likely values of the parameters given the data we saw, in
that we were most likely to see the values of the data if those were
the parameters.

Usually the likelihood function is hard to maximize on its own, so
instead we maximize the log-likelihood function

Since ln(x) is an increasing function, both functions have the same
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maxima.

Example 14

Consider an iid dataset of Bernoulli data. What is the maximum
likelihood estimator of the sample proportion p?

Example 15

Consider an iid dataset drawn from the EXP(µ) distribution. Find the
MLE for µ.
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Example 17

Consider an iid dataset drawn from the N(µ, σ2) distribution. Find
the MLE of µ and σ2.
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Example 18

Consider an iid dataset drawn from the UNIF(0, θ) distribution. Find
the MLE of θ.

MLEs are consistent estimators and are either minimum variance
or almost minimum variance, with these properties improving as
the sample size grows large. Additionally, the MLE of a function of
parameters h(θ1, . . . , θK) is the value of that function when applied to
the MLEs h(θ̂1, . . . , θ̂K).

Example 19

Expanding on Example 15, find the MLE of the rate parameter λ = 1
µ

of an exponential distribution.

Example 20

Expanding on Example 20, find the MLE of the standard deviation σ

of a Normal distribution.
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Maximum likelihood estimation is an example of a general ap-
proach to parameter estimation, where a “good” estimate is an es-
timate that optimizes some objective function. MLEs maximize the
likelihood function. Least-squares estimators minimizes the sum of
square errors, ∑n

i=1
(

xi − x̂i(θ̂1, . . . , θ̂K)
)2

(with x̂i(θ̂1, . . . , θ̂K) being
the predicted value of xi based on the parameter estimates), and least
absolute deviation estimators minimize ∑n

i=1
∣∣xi − x̂i(θ̂1, . . . , θ̂K)

∣∣.
M-estimators maximize ∑n

i=1 ρ(xi; θ̂1, . . . , θ̂K), where the “objective
function” ρ is chosen to give the resulting estimator desired robust-
ness properties.

Example 21

Consider the following dataset:

x <- c(12.2, 18.3, 6.0, 5.9, 13.5)

The predicted value µ̂ of the data is the least absolute deviation
estimator. Find the value of the estimator.

lad_penalty <- function(mu) {sum(abs(x - mu))}

lad_penalty <- Vectorize(lad_penalty)

curve(lad_penalty(x), 3, 20)
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optim(0, lad_penalty)

## Warning in optim(0, lad_penalty): one-dimensional optimization by Nelder-Mead is unreliable:

## use "Brent" or optimize() directly

## $par

## [1] 12.3

##

## $value

## [1] 20

##

## $counts

## function gradient

## 24 NA

##

## $convergence

## [1] 0

##

## $message

## NULL

median(x)

## [1] 12.2





Chapter 7: Statistical Intervals Based on a Single Sam-
ple

Introduction

While we appreciate a parameter estimate we know that with
any estimate there is uncertainty. Rather than report a single num-
ber, statisticians prefer to report a range of plausible values for the
parameter being estimated. The shorter the range, the more we know
about the location of the parameter.

In this chapter we will be looking at more common statistical
intervals, such as confidence intervals. We will see how to construct
them and how to properly interpret them. (Statisticians care a lot
about the correct interpretation!)

Section 1: Basic Properties of Confidence Intervals

A 100(1 − α)% confidence interval (CI) is a random interval (an
interval with random endpoints) intended to describe the location
of a parameter θ. Suppose the endpoints of the random interval
are l(x1, . . . , xn) and u(x1, . . . , xn) (recall the distinction between
xi and Xi; here, the former is an observed number, perhaps from a
sample, while Xi is a random variable). The CI for θ is an interval
(l(x1, . . . , xn), u(x1, . . . , xn)) such that

P (l(X1, . . . , Xn) ≤ θ ≤ u(X1, . . . , Xn)) = 1− α

In short, in the long run, 100(1 − α)% of intervals constructed
this way capture the true value of θ.74 Common confidence intervals 74 This is not the same as saying that

the probability the interval captured
θ is 1 − α. The distinction is subtle
but important. When we construct a
confidence interval from a particular
dataset, the endpoints are not random,
and that particular interval may or may
not include the true value of θ. We
have to use this frequentist notion of a
long-run capture rate in order to make
sense of the interval. There are intervals
out there where we can refer to the
probability of whether a particular
interval captured the true θ, such as
the Bayesian credible interval, but this
uses a completely different theory and
interpretation of probability, in addition
to being more computationally difficult.

include 90%, 95%, and 99%75.

75 Alternatively, common α includes 0.1,
0.05, and 0.01.

Suppose that σ is known and we have a dataset of i.i.d. data, with
observed values x1, . . . , xn. A confidence interval for the population
mean µ is
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This interval is exact when the data follows a Normal distribu-
tion76 and approximately correct (due to the CLT) for large n when 76 We got this interval in the Chapter 5

notes.σ exists, for any underlying distribution. This interval takes the
commonly-seen77 form 77 This is not law; we will see intervals

not of this form.

For this interval, the margin of error (moe) is

Consider for a second the variables involved in the margin of er-
ror, and consider changing their values. Which variables (all others
being equal) lead to the margin of error being larger when they in-
crease? Which would lead to a decrease in the margin of error?

Consider the denominator of the moe. What is the relationship
between the amount of data and the size of the moe?

Call the moe m. When planning our study we may want to specify
the value of m. We do not want to change α78, and σ is viewed as a 78 The relationship between α and m can

be thought of as a trade-off between
precision and accuracy. Here, precision
refers to the size of the margin of error;
it describes how well we know the
location of the parameter of interest.
We like being precise. We can gain
precision by sacrificing accuracy, which
is how likely the CI achieves its goal
of containing the parameter of interest.
While we want to be precise, we also
want to be accurate, and wider intervals
are naturally more accurate, all else
being equal (or ceteris paribus, as the
economists like to say). The only way
to gain precision without sacrificing
accuracy is increasing the sample size,
n.

property of nature and thus impossible to change. Thus we can only
change n.

We can solve the equation for n and thus get a formula for the
sample size needed to attain a margin of error m79:

79 The textbook has a similar formula
but it involves the width of the CI,
which is w = 2m. I prefer to use the
margin of error here.
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Example 1

An automated assembly line producing ball bearings should produce
bearings with a diameter of 5mm. Quality control personnel run
the line and get a sample of ten bearings. The bearings are known
to have a standard deviation of σ = 0.1 mm80. The measured ball 80 This assumption is clearly unrealistic;

not only that, the mean µ is usually
known before σ is, as you should
expect from your study of probability
and the nature of σ; thus its unlikely
to see a study where σ is known but
not µ. We will see in the next section
what happens when we drop this
assumption, but if n is large, you could
replace σ with the sample standard
deviation s and still get a quality CI,
thanks to the law of large numbers and
a result known as Slutzky’s Theorem
(Slutsky, 1925).

bearing diameters are listed below:

bearings <- c(10.396, 10.497, 10.655, 10.578, 10.543,

10.575, 10.563, 10.549, 10.546, 10.489)

mean(bearings)

## [1] 10.5391

1. Construct a 95% CI for the mean diameter of the ball bearings.

2. Management is not satisfied with the margin of error, and want an
estimate accurate up to 0.01 mm. Find a sample size n that attains
this (while using a 95% CI).
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suppressPackageStartupMessages(library(BSDA))

z.test(bearings, sigma.x = 0.1)

##

## One-sample z-Test

##

## data: bearings

## z = 333.28, p-value < 2.2e-16

## alternative hypothesis: true mean is not equal to 0

## 95 percent confidence interval:

## 10.47712 10.60108

## sample estimates:

## mean of x

## 10.5391

ceiling((qnorm(1 - .05/2) * 0.1 / 0.01)^2) # Needed n

## [1] 385

In many cases we can get formulas for confidence intervals that
are either exact (if the assumptions hold) or approximately accurate
for large n. This is not always the case, though, and we may need to
use numerical techniques, such as bootstrapping, to get confidence
intervals. This involves resampling the data and computing an esti-
mate of the parameter of interest, θ̂, many times to get an estimate of
the sampling distribution of θ̂. The percentiles of the simulated data
can then be used to form the confidence interval.

Example 2

1. Use bootstrapping to estimate a 95% CI for the mean ball bearing
diameter mentioned in Example 1.

(xbar <- mean(bearings)) # Estimate

## [1] 10.5391

xstars <- replicate(1000, { # Simulations

sim_bearings <- sample(bearings, size = 10, replace = TRUE)

mean(sim_bearings)

})

head(xstars)

## [1] 10.5606 10.5395 10.5509 10.5280 10.5219

## [6] 10.5170
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(xbarstar <- mean(xstars)) # Mean of simulated means

## [1] 10.53926

## Percentiles of simulated means

(xbar_perc <- quantile(xstars - xbarstar, c(0.025, 0.975)))

## 2.5% 97.5%

## -0.0396615 0.0379435

(xbar + xbar_perc) # Bootstrap-estimated CI

## 2.5% 97.5%

## 10.49944 10.57704

2. Repeat the above procedure for the sample median. Which inter-
val is more precise?

## Below I committed a programming sin: copy/paste programming!

## I should have written a function to generalize the

## procedure. But I have other goals, such as showing the

## intermediate steps.

(xtilde <- median(bearings)) # Estimate

## [1] 10.5475

xstars2 <- replicate(1000, { # Simulations

sim_bearings <- sample(bearings, size = 10, replace = TRUE)

median(sim_bearings)

})

head(xstars)

## [1] 10.5606 10.5395 10.5509 10.5280 10.5219

## [6] 10.5170

(xtildestar <- mean(xstars2)) # Mean of simulated medians

## [1] 10.5469

## Percentiles of simulated medians

(xtilde_perc <- quantile(xstars2 - xtildestar, c(0.025, 0.975)))

## 2.5% 97.5%

## -0.053901 0.028099

(xtilde + xtilde_perc) # Bootstrap-estimated CI

## 2.5% 97.5%

## 10.4936 10.5756
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## Compare widths

(w1 <- diff(xbar_perc)) # Ignore the column name; not informative here

## 97.5%

## 0.077605

(w2 <- diff(xtilde_perc)) # Wider

## 97.5%

## 0.082

(w2 / w1 - 1) * 100 # The percentage by which the second interval is larger

## 97.5%

## 5.663295

Section 2: Large-Sample Confidence Intervals for a Population Mean
and Proportion

The assumption that we know σ is clearly unrealistic. If n is large,
though81, we can replace σ82 with the sample standard deviation, s. 81 As a rule of thumb, we can consider

n > 40 as “large” in this context.
82 In this context statisticians view σ
as a nuisance parameter. We are not
interested in the value of σ, but in order
to make a statement about µ we are
forced to estimate it.

This is because of the following:

Proposition 15. For a collection of i.i.d.r.v. X1, . . . , Xn with sample mean
X̄ and sample standard deviation S, if E [X1] = µ and Var (X1) < ∞, for
n large, the approximate distribution of Z = X̄−µ

S/
√

n is the standard Normal
distribution.

Thus we have the (approximate) 100(1− α)% CI:83 83 The quantity s/
√

n is called the
standard error of the mean, since it esti-
mates the mean’s standard deviation.

How would we go about sample size planning in this case? Our
formulas seem to require future information. The easiest approach is
to guess σ, erring on the side of large values as large σ yield larger n
and thus smaller margin of errors.84 84 This ethos of this approach is known

as being “conservative”, since we
are trying to err on the side of more
precision than desired. In this case, we
err on the side of collecting more data
than needed rather than collect too little
and get a margin of error that is larger
than desired.

Example 3

At the behest of management a new sample of ball bearings was col-
lected, this time with n = 61 (people decided that 385 ball bearings
were too many; the study should not cost that much money). The
new sample mean is x̄ = 10.488 mm, and the sample standard de-
viation is s = 0.105 mm. Compute a 95% confidence interval for the
mean diameter µ. Based on this CI, is it plausible the assembly line
does not produce ball bearings of the desired diameter of 10 mm?
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xbar <- 10.488

s <- 0.105

n <- 61

(m <- qnorm(0.975) * s / sqrt(n)) # moe

## [1] 0.02634951

c(xbar - m, xbar + m)

## [1] 10.46165 10.51435

Confidence intervals have a close cousin, called confidence bounds85. 85 Confidence bounds can be viewed as
confidence intervals with one of the end
points being infinite.

The number l(x1, . . . , xn) is a 100(1− α)% confidence lower bound
for a parameter θ if

P (l(X1, . . . , Xn) ≤ θ) = 1− α

Similarly, u(x1, . . . , xn) is a 100(1− α)% confidence upper bound
for a parameter θ if

P (θ ≤ u(X1, . . . , Xn)) = 1− α

We have the following large-sample confidence bounds for the
population mean µ

Example 4

The stock with ticker symbol CGM had an average daily return of
0.07% over the last 200 days, with a standard deviation of 0.8%. Com-
pute a 99% confidence lower bound for the mean return of the stock.
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0.07 - 0.8 * qnorm(.99)/sqrt(200)

## [1] -0.06159811

Up until now we have been working with continuous data and
our objective was to describe the location of the mean µ of the data.
Suppose instead that we are working with binary/Bernoulli data and
want to estimate the population proportion p of “successes”. We can
find a confidence interval for p86 by working with 86 The problem of finding a confidence

interval for p demonstrates how many
different procedures can be used to get
different results intended to solve the
same problem. Wikipedia (2018) lists
eight different intervals CIs for p. The
traditional CI used was

p̂± zα/2

√
p̂(1− p̂)

n

but this interval exhibits pathological
behavior for strange combinations of
n and p. The interval recommended in
this class is known as the Wilson score
interval, which biases the parameter
estimate slightly to 0.5. An interval not
mentioned in Wikipedia (2018) is the CI
obtained when adding two “imaginary”
successes and two “imaginary” failures
to the sample; this interval seems to
work well.

After isolating p in the inequality so that it’s bounded by two
computable numbers requiring only a sample of data, we get the
following confidence interval:

We can turn the CI into a confidence bound by replacing α/2 with
α and ± with + or −, depending on whether we want an upper
bound or lower bound.

Prior to our study, if we want to choose a sample size n to achieve
a moe m, our sample size should be

Here, p̃ is a guess at what the population proportion will be. If
we are uncomfortable with making a guess, use p̃ = 0.5; this will
maximize m and guarantee that the observed moe will not exceed m
(this is the most conservative approach). If we have a belief about the
location of p we could economize during data collection somewhat
by choosing p̃ to be near our belief, bearing in mind that the close p̃
is to 0.5, the larger our sample size (and smaller our observed moe)
will be.

Example 5

Jack Johnson and John Jackson are running for mayor of New New
York. The Johnson campaign conducts a survey of voters to deter-
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mine who they support in the upcoming election.

1. The Johnson campaign will be constructing a 95% CI and does not
want the moe to exceed 0.03 (or 3%). What sample size does the
campaign need to achieve this?

2. In aa sample of 1068 New New York voters, 560 reported they
planned to vote for Jack Johnson. Construct a 95% CI for the pro-
portion of voters supporting Johnson. Based on the CI, who is
winning?
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suppressPackageStartupMessages(library(Hmisc))

ceiling((qnorm(.975) * 0.5 / 0.03)^2) # Sample size

## [1] 1068

binconf(560, 1068, alpha = 0.05, method = "wilson") # CI

## PointEst Lower Upper

## 0.5243446 0.4943595 0.5541551

Section 3: Intervals Based on a Normal Population Distribution

From this point on in the chapter, we will assume that our data is an
i.i.d. random sample from a Normal distribution with unknown mean
and standard deviation. The intervals mentioned in Section 2 work
for any underlying distribution so long as n is large enough. Here,
we want intervals for when n is not considered large. The procedures
mentioned in this section often work fine when n is large and the
data doesn’t follow a Normal distribution, though.

We start with the following theorem:

Theorem 5. Suppose X̄ is the sample mean of n i.i.d. Normal random
variables with mean µ and S is the sample standard deviation. The random
variable

T =
X̄− µ

S/
√

n

follows a t distribution with ν = n − 1 degrees of freedom (denoted
T ∼ t(n− 1)).

The t(ν) distribution87 is a probability distribution with the fol- 87 This distribution is often called
Student’s t distribution in honor of
the pseudonym of William Gosset.
Gosset was employed by Guinness
(the brewer), and at the time Guinness
was engaged in a program to make
beer brewing scientific. Eventually the
experiments Guinness’s burgeoning
R & D department wanted to conduct
required statistical methods that did
not yet exist, so Gosset, then one of
their brewers, began studying statistics
and mathematics to develop methods
for addressing Guinness’s problems.
Gosset’s work was innovative and
Guinness allowed him to publish his
results in journals, but in order to not
attract the attention of rival brewers,
Gosset published under the pseudonym
“Student”. (Box, 1987)

lowing properties:
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The t distribution depends on a parameter known as the degrees
of freedom (df). This name comes from the fact that among the n
deviations X1 − X̄, . . . , Xn − X̄, the condition ∑n

i=1(X1 − X̄) = 0
means only n− 1 of these deviations are freely determined.

The t critical value tα,ν satisfies

Table A.5 gives critical values for the t distribution for various α

and ν.
Confidence intervals based on the t distribution resemble those

from the previous section, but with zα replaced with tα,n−1.

We can get confidence bounds rather than confidence intervals by
replacing ± with either + or − and tα/2,n−1 with tα,n−1.

Since we assume the data follows a Normal distribution, we
should check that this assumption is reasonable for our dataset. Tech-
niques for checking the normality assumption range from probability
plots to box plots to statistical tests. Use whatever method you prefer.

Example 6

Assume that the diameter of the ball bearings from Example 3 follow
a Normal distribution. Compute the requested CI but using the t
distribution. Compare to the CI found in Example 3.
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(m2 <- qt(0.975, df = n - 1) * s / sqrt(n)) # moe

## [1] 0.02689175

c(xbar - m2, xbar + m2)

## [1] 10.46111 10.51489

There are other satistical intervals than confidence intervals. A
prediction interval (PI) is an interval intended to describe the range
of values that will likely include a future observation. If we denote
our future observation with Xn+1 the interval (l(x1, . . . , xn), u(x1, . . . , xn))

is a 100(1− α)% PI if

For Normally distributed data our PI is given below:

Again, we can get formulas for prediction upper bounds or predic-
tion lower bounds with the usual substitutions.

Example 7

Over the past 121 days, the daily percentage change of the price of
the stock with ticker symbol CGM had the following sample mean
and standard deviation:

mean(cgm)

## [1] -0.005115001

sd(cgm)

## [1] 0.0922781
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A look at these daily returns’ probability plot suggests that we
can reasonably assume that the price fluctuations follow a Normal
distribution88: 88 Actual asset price fluctuations are

usually not Normally distributed. In-
stead, asset price fluctuations exhibit
“heavy tails”; that is, extreme price
movements are far more likely than the
Normal distribution would suggest.
Nevertheless, many models in finance
for asset prices assume that price fluctu-
ations follow a Normal distribution. See
Mandelbrot and Hudson (2007) to learn
more.

qqnorm(cgm)

qqline(cgm)
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Construct a 99% prediction lower bound for price movements.
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mean(cgm) - sd(cgm) * qt(.99, df = length(cgm) - 1 * sqrt(1 + 1/length(cgm)))

## [1] -0.2226907

Confidence intervals are meant to capture the mean and prediction
intervals are meant to capture future values. Tolerance intervals are
intervals such that at least k% of the population should be between
the bounds of the interval; this statement is made with confidence
level 100(1− α)%89. 89 For example, we may have an interval

such that, with 95% confidence, 99% of
the population is within the bounds of
the interval

The visualization of what is done by a tolerance interval is given
below:

Tolerance intervals take the form

We still have the obvious translation to tolerance bounds. Toler-
ance critical values are given in Table A.6 in the textbook.

Example 8

In light of previous studies, management has instructed the assem-
bly line producing 10mm ball bearings to retool. After the retooling
a sample of 50 ball bearings is produced by the line. Management
will be satisfied if 99% of ball bearings produced by the line have a
diameter that is within 0.1mm of the specified diameter of 10mm.
Construct a 99% tolerance interval for the diameter of the ball bear-
ings that is correct with 95% confidence, using the following data.

bearings2

## [1] 10.001461 10.034805 10.014253 9.955770

## [5] 10.012418 9.975701 10.000594 10.000315

## [9] 10.010690 10.004044 10.015320 10.014393
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## [13] 9.959830 9.987546 9.941776 10.026255

## [17] 10.025361 10.002873 10.019028 10.056476

## [21] 10.037196 10.004245 10.037012 9.974021

## [25] 10.039246 9.993619 9.996703 9.980263

## [29] 9.987879 9.942542 9.991442 9.941127

## [33] 9.975634 9.984178 9.989484 10.032692

## [37] 9.979320 9.977702 10.010261 10.034477

## [41] 10.004526 9.998308 9.992430 9.979205

## [45] 9.966931 9.919507 9.969121 9.989352

## [49] 10.032301 9.984713

qqnorm(bearings2)

qqline(bearings2)
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mean(bearings2)

## [1] 9.996087

sd(bearings2)

## [1] 0.02894869
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## For constructing tolerance intervals

suppressPackageStartupMessages(library(tolerance))

normtol.int(bearings2, alpha = .05, P = 0.99, side = 2)

## alpha P x.bar 2-sided.lower

## 1 0.05 0.99 9.996087 9.905473

## 2-sided.upper

## 1 10.0867

What do you do when you don’t have Normally distributed data
and n is not large? This depends on what you are attempting to do.
Some procedures, such as the t procedures for constructing confi-
dence intervals, are robust to non-normality in some contexts; that is,
failure of holding to the assumption does not seem to change the end
result very much. But prediction intervals and tolerance intervals are
not robust to the normality assumption and you may need to an in-
terval constructed for a more appropriate distribution. Bootstrapping
and other non-parametric procedures (not discussed in this course)
could also provide a solution. Perhaps consider reading the book
Hahn and Meeker (2011) to learn about other intervals that may be
useful for your problem.

Section 4: Confidence Intervals for the Variance and Standard De-
viation of a Normal Population

We may be interested in constructing a confidence interval for the
population variance σ2 or standard deviation σ. We will be keeping
the assumptions made in Section 3; in fact, those assumptions are
more crucial. Not only are the procedures I will suggest not robust
to the Normality assumption, if our data isn’t Normally distributed,
we may not even consider σ a good measure of spread in the data
(especially if our underlying distribution is not symmetric).

Theorem 6. Suppose X̄ is the sample mean of n i.i.d. Normal random
variables with mean µ and S2 is the sample variance The random variable

(n− 1)S2

σ2 =
1
σ2

n

∑
i=1

(Xi − X̄)2

follows a χ2(n− 1) distribution.

Let χ2
α,ν satisfy
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We can derive the CI for σ2 by working with

The resulting CI is given below:90 90 Notice this is not an equal-tail inter-
val!

We can get a CI for σ by taking the square root of the lower and
upper bounds. We can get one-sided intervals by using either the
upper or lower bound exclusively and replacing α/2 with α.

Example 9

We have the following returns from the previous ten days of the stock
with ticker symbol CGM:

cgm2 <- c(-0.2264, 0.0188, -0.0496, 0.1990, 0.1941,

-0.0219, -0.0177, 0.0847, 0.0167, -0.0736)

Based on the plot below the returns seem to follow a Normal
distribution:

qqnorm(cgm2)

qqline(cgm2)
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The standard deviation and variance of the stock’s daily returns
are given below:

var(cgm2)

## [1] 0.01594101

(vol <- sd(cgm2))

## [1] 0.1262577

Construct a 90% CI for the true σ91 of the stock’s returns. 91 In finance, σ is frequently referred to
as the volatility of the asset’s price.
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n <- length(cgm2)

(l <- (n - 1) * vol^2 / qchisq(.05, df = n - 1,

lower.tail = FALSE)) # Variance lower bound

## [1] 0.008479775

(u <- (n - 1) * vol^2 / qchisq(1 - .05, df = n - 1,

lower.tail = FALSE)) # Upper bound

## [1] 0.04314715

c(sqrt(l), sqrt(u)) # Bounds for the standard deviation

## [1] 0.0920857 0.2077189





Chapter 8: Tests of Hypotheses Based on a Single Sam-
ple

Introduction

Statistics involes more than parameter estimation. We may
not care about the actual value of the parameter but rather whether
the parameter is a particular value or within some range. In this case
we may prefer to perform a statistical hypothesis test rather than
construct a confidence interval.

In this chapter we see for the first time statistical hypothesis test-
ing, involving only a single sample. The hypotheses of interest will
typically be making a statement about the value of a parameter,
though other hypothesis tests make more general statements. The
fundamental principles, though, are the same, along with the general
format of a test.

Hypothesis testing is a popular procedure, which suggests it’s
also frequently abused. We should always remember that hypothesis
testing is part of our toolset for reaching conclusions about a phe-
nomenon using a dataset; it is not the only tool that should be used
We should supplement hypothesis testing with other procedures,
such as visualization and providing point estimates. Furthermore,
we should be honest when collecting our data and be sure we are not
“coercing” the dataset to get an answer we want.92 92 As Nobel Prize winning economist

Robert Coase said, “If you torture
the data enough, nature will always
confess.”Section 1: Hypotheses and Test Procedures

A statistical hypothesis is a statement about the probabilistic prop-
erties of a data-generating process.93 A test of hypotheses is a pro- 93 This is usually a statement about a

parameter, a collection of parameters,
or even whether the data follows some
distribution.

cedure where sample data is used to decide which of two competing
hypotheses better describes the process that generated the data. The
null hypothesis (usually denoted H0) can be thought of as the cur-
rent assumption about the data94, while the alternative hypothesis 94 Usually H0 is the statement we seek

to disprove, but this is not always the
case; for example, tests for distribution,
which intend to determine if the data
follows a particular distribution, will
often state that under the null hypoth-
esis the data follows the distribution of
interest.

(usually denoted HA) is the assumption that will replace the null hy-
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pothesis if we reject the null hypothesis. If we don’t reject H0, we do
not say that we accept H0 but rather that we failed to reject H0.

Hypothesis testing is a form of reductio ad absurdum (“argument
to absurdity”), similar to a proof by contradiction; the argument is
that by assuming the null hypothesis is true we see a result in the
data that is “absurd”, so we should surrender our belief in H0. If this
“absurdity” in the data does not appear, though, that does not mean
H0 is true; it just means we could not show it is false, or that HA is
more correct.95 95 The usual comparison is the ancient

Roman legal principle (still in use in
America) of “innocent until proven
guilty”; we assume that the individual
on trial is innocent (i.e. H0 is “true”),
and the burden of proof lies on the
prosecution (the statistical test) to
show that this assumption is “absurd”
based on the evidence (the data) and
we should then assume the individual
is guilty (H0 is “false”, and HA better
describes reality). Failure to prove guilt,
though, does not imply innocence,
and the “beyond reasonable doubt”
criteria sets a high bar for proving guilt.
It tilts justice in favor of letting guilty
people go (a Type II error) as opposed
to using the state’s resources to punish
the innocent (a Type I error).

In this chapter we consider tests that make statements about a
population parameter θ. These tests almost always take the following
form in practice:

We call θ0 the null value for θ, and it is the assumed value of θ

under H0.96

96 We amost never see H0 of the form

H0 : θ ≤ θ0

or
H0 : θ ≥ θ0

This is because the statistical test does
not change if we replace the inequality
with equality. The border value θ0 is
the most difficult case to check, and it
can be shown that if we reject H0 at the
border we can safely reject for all other
potential values of θ, while if we could
not reject H0 when assuming θ = θ0 we
should reject H0 at all. Consequently
we can view H0 as actually making a
statement about all possible θ within a
region when HA is one-sided.

Statistical tests (of any form) follow the procedure described be-
low:

1. Identify H0 and HA.

2. Specify a number α ∈ (0, 1), usually small (typical α are α ∈
{0.1, 0.05, 0.01, 0.001}; there is an interpretation of α I will explain
later that can guide this decision). This is called the significance
level of the test.

3. Collect data and compute the test statistic; call the random version
of the test statistic T for now, and let the observed (computed)
value of T be T̂. If H0 is true, the distribution of T is known.

4. Compute a quantity known at the p-value, denoted here pval
97. 97 The usual notation for p-values is

simply p, but we will run into situa-
tions in this class where the letter p
appears in many places, so I use this
notation to keep all these different p’s
straight.

The definition of pval in general is98

98 The classical approach to statistical
testing does not involve p-values but
instead a critical value, T0, and if T̂ >
T0, H0 would be rejected. This theory
still underlies statistics; power/Type
II error analysis and the formulas for
computing p-values are derived with
this theory in mind. However, there
are advantages to referring to p-values.
One is that software usually computes
p-values. Another is that p-values have
a universal interpretation; given any p-
value you can decide whether to reject
H0 or not even if you don’t know the
context of the test. Additionally, readers
can decide whether a reported p-value
is convincing for themselves personally,
regardless of what the authors of the
study write. (Unfortunately, though,
authors often don’t write p-values but
instead will write p < 0.05, which
partially defeats the purpose of p-
values.)

pval = P
(
Observe T more contradictory to H0 than T̂

)
5. If pval < α, reject H0; otherwise (pval ≥ α) do not reject H0.

(Because of this rule, pval is sometimes referred to as the observed
significance level of the test, as it is the smallest α at which you
would reject H0.)

6. Conclude and interpret the results of the test.
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Be clear that pval is the probability of observing a test statistic at
least as contradictory to H0 as the observed test statistic. If we were
to say that large T are evidence against H0 (with larger T meaning
even more evidence against H0), then pval = P

(
T > T̂

)
; that is, it is

the probability of seeing even more contradictory evidence than what
was seen.

The following are incorrect interpretations of pval:

• The probability H0 is true or false.
• The probability the conclusion of the test is due to random chance

alone.

Additionally, practitioners should not fret over exactly what
threshold a p-value passes (such as whether pval < 0.05). While (5) in
the above description of the statistical testing procedure suggests that
certain p-value imply certain conclusions, p-values are more useful
when considered as a measure of how strong the evidence against H0

is.99 99 People have identified as one of the
culprits of the so-called reproducibility
crisis (many results in published scien-
tific papers cannot be reproduced), and
they are frequently abused. The prob-
lem has gotten severe enough that in
2006 the American Statistical Associa-
tion (ASA) issued a statement about the
appropriate use and interpretation of
p-values (Wasserstein and Lazar, 2016).
However, the problems associated with
p-values can be pinned (more fairly) on
publishing practices and how publica-
tion decisions are made. Journals are
biased to “positive results” (i.e. when
H0 is rejected) and have given α = 0.05
unreasonable importance. This can lead
to malicious practices such as p-hacking
(rephrasing a statistical problem until
“statistically significant” results are
found), or ignoring the size of the effect
found in the paper. See Aschwanden
(2015) and Aschwanden (2016) for inter-
esting discussions and even interactive
demonstrations of these issues.

In hypothesis testing, there are two types of errors. A Type I error
is rejecting H0 when H0 is true, while a Type II error is failing to re-
ject H0 when H0 is false. The table below visualizes the relationship:

Immediately after a test, you do not know whether you committed
an error or what the nature of the error is. Error analysis is part of
study design, conducted before any data is collected. It determines
what must be observed to reject H0 and what sample size the study
should use. There should be a discussion about what happens when
a Type I or Type II error is made, what the consequences are, the
relative severity of the consequences, and thus what the acceptable
error rates should be.

α is the Type I error rate:100 100 Actually this is the case when the
test statistic is a continuous variable.
For discrete variables, we may choose a
desired α but due to the discrete nature
of the cdf the actual Type I error rate
may be less than specified (when being
conservative). We see this in Example 1.

In this context, the Type II error rate depends on what the true
value of θ is; we call β(θA) the Type II error rate when θ = θA:
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A related concept to the Type II error rate is the power of the
statistical test; the power is the probability of rejecting H0 when θ =

θA. It is defined below:

Power relates to α and β in the following way:

There is a general relationship between α and β:

After we have reflected on the consequences of Type I and Type
II errors, we may decide on an acceptable Type I error rate, α. We
then focus on a particular θA we want our test to be able to detect
and what the acceptable Type II error rate β(θA) should be. Once we
have these pieces of information, we may find a sample size n that
achieves these two error rates for our test.

Example 1

I claim that I am an 80% freethrow shooter, but you don’t believe
me; you think I make less than 80% of freethrows. To settle the dis-
pute, we agree that I will shoot 20 free-throws and you will count
how many baskets I manage to make. Based on this you will decide
whether you believe my claim. You decide to use α = 0.05 as your
significance level.

1. Identify H0 and HA.

2. What is the test statistic? What is its distribution under H0?
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3. Out of 20 baskets, I manage to make 11. Compute pval.

4. What is the conclusion of the test?

5. Let Nα denote the fewest number of baskets I could make while
still allowing you to believe my claim when you use significance
level α (that is, if X ∼ BIN(20, 0.8), Nα is the largest number such
that P (X < Nα) ≤ α). Find N0.05.101 101 (5) and on are questions we would

ask before we observed any data and
reached a conclusion.

6. While α = 0.05 is the specified Type I error rate, due to the dis-
crete nature of the test statistic, it is not the actual Type I error rate.
What is the actual Type I error rate?

7. Suppose I were not an 80% freethrow shooter and instead only
make 75% of my baskets. What is the Type II error rate in this
case?
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pbinom(11, 20, .8) # Part 3

## [1] 0.009981786

(N <- qbinom(.05, 20, .8) - 1) # Part 5

## [1] 12

pbinom(N, 20, .8) # Part 6

## [1] 0.03214266

pbinom(N, 20, .75, lower.tail = FALSE)

## [1] 0.8981881

Example 2

Let µ denote the population mean. We wish to determine if the true
population mean is greater than the specified value µ0.

1. State the null and alternative hypothesis.

2. We collect a dataset X1, . . . , Xn from the population, with E [X] =

µ, and SD (X) = σ. Consider the test statistic

Z =
X̄− µ0

σ/
√

n
According to the central limit theorem, what is the approximate

distribution of Z under H0?
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3. What is the (approximate) distribution when HA is true and µ =

µA > µ0?

4. Let α be the level of significance of the test. We will reject H0

when Z is larger than some threshold value. Find this threshold
value such that the Type I error rate is α.

5. Compute β(µA). This is the probability of not rejecting H0 when
µ = µA; in other words, Z is less than the threshold value even
though µ = µA > µ0.
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6. Given the answers to (4) and (5), find a sample size n such that
a test with Type I error rate α will have Type II error rate β when
µ = µA.

7. Let’s now suppose that we are investigating whether men’s aver-
age height is 5.9 ft., and under the alternative hypothesis men are
taller than 5.9 ft. Phrase H0 and HA below.
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8. Let our significance level be α = 0.1. The standard deviation of
height is known to be σ = 0.5. Suppose the true mean height for
men is 6 ft. What is the Type II error rate when n = 100? Repeat
for a potential mean height of 6.5 ft.

9. Find the sample size that, for a test with α = 0.1, would have a
Type II error rate of β = 0.1 when the true average height is 6 ft.



236 curtis miller

10. A sample mean height of 5.97 ft. is observed, and the sample size
is the one found in part (9) above. Compute pval.

11. Based on this data, what is the conclusion of the test?
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alpha <- 0.1

beta <- 0.1

sigma <- 0.5

mu0 <- 5.9

muA <- 6.0

xbar <- 5.97

(za <- qnorm(alpha, lower.tail = FALSE))

## [1] 1.281552

(zb <- qnorm(beta, lower.tail = FALSE))

## [1] 1.281552

pnorm(za + (mu0 - muA)/(sigma/sqrt(100))) # Part 8

## [1] 0.2362404

pnorm(za + (mu0 - 6.5)/(sigma/sqrt(100)))

## [1] 4.169523e-27

(n <- ceiling((sigma * (za + zb) / (mu0 - muA))^2)) # Part 9

## [1] 165

(z <- (xbar - mu0)/(sigma/sqrt(n))) # Part 10

## [1] 1.798333

(pval <- pnorm(z, lower.tail = FALSE))

## [1] 0.03606216

(pval < alpha) # Part 11

## [1] TRUE

Section 2: z Tests for Hypotheses about a Population Mean

From here, in order to perform a hypothesis test, we only need the
following bits of information:

• The null hypothesis H0, and potential HA

• Assumptions about the data made by the test
• The test statistic and how to compute it
• How to compute pval based on the test statistic
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Our first case is a test for the mean µ when σ is known. This test
is exact when the data was drawn from a Normal distribution, and
asymptotically correct when the data is not Normally distributed.

Suppose σ is not known. If n is large102, we can replace σ with the 102 Let’s say n > 40.

sample standard deviation S and thus use the test statistic

The test is otherwise the same.
Below are formulas for computing Type II errors. If σ is not

known, you will need to guess it.
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The formulas below allow for sample size planning. Overestimat-
ing σ will produce large n and thus produce tests that may do better
than specified.

Example 3

A factory that produces ball bearings is testing its assembly line
to see whether the line produces ball bearings with the specified
diameter of 10 mm or whether the line is not properly calibrated. The
managers believe that the standard deviation of bearings produced
by this line is σ = 0.1 mm. They want tests that are significant at the
α = 0.01 significance level.

1. State the null and alternative hypothesis.

2. What is the probability of a Type I error?

3. What is the probability of a Type II error when the ball bearings’
mean diameter differ from the specified diameter by 0.1 mm and
the sample size is n = 20?
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4. The managers want to be able to detect a difference of 0.1 mm
from the specified diameter with probability 0.9995. Find a sample
size that guarantees this under our assumptions.

5. Using the sample size n = 41, experimenters run the line and
produce some ball bearings. The following sample was observed:

bearings <- c(10.11, 9.858, 10.072, 10.007, 10.158, 9.878, 9.935, 9.787,

9.993, 10.008, 9.927, 9.959, 10.086, 10.001, 9.881, 10.057, 9.913,

9.744, 10.136, 10, 9.988, 10.022, 10.112, 10.013, 9.809, 10.014,

10.036, 9.977, 9.952, 9.963, 9.955, 9.926, 10.095, 10.076, 9.994,

9.93, 10.057, 9.923, 9.954, 9.969, 10.124)

mean(bearings)

## [1] 9.985341

sd(bearings)

## [1] 0.09381434

Using the sample standard deviation rather than σ, perform the
appropriate statistical test to decide between H0 and HA, computing
pval.
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6. Conclude.
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suppressPackageStartupMessages(library(BSDA))

alpha <- 0.01

beta <- 0.0005

sigma <- 0.1

mu0 <- 10

muA <- 10.1 # We could also use 9.9 and be fine

(za2 <- qnorm(alpha/2, lower.tail = FALSE))

## [1] 2.575829

(zb <- qnorm(beta, lower.tail = FALSE))

## [1] 3.290527

pnorm(za2 + (mu0 - muA)/(sigma/sqrt(10))) +

pnorm(-za2 + (mu0 - muA)/(sigma/sqrt(10))) # Part 3

## [1] 0.2787871

(n <- ceiling((sigma * (za2 + zb)/(mu0 - muA))^2)) # Part 4

## [1] 35

z.test(bearings, mu = 10, sigma.x = sd(bearings)) # Part 5

##

## One-sample z-Test

##

## data: bearings

## z = -1.0005, p-value = 0.3171

## alternative hypothesis: true mean is not equal to 10

## 95 percent confidence interval:

## 9.956625 10.014058

## sample estimates:

## mean of x

## 9.985341

Section 3: The One-Sample t Test

If we assume our data follows a Normal distribution, then the distri-
bution of

T =
X̄− µ0

S/
√

n

is t(n − 1) when H0 is true. Based on this we can describe a test
based on the t distribution.
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This test works better than the test described in the previous sec-
tion when the data follows a Normal distribution, and the difference
is noticeable for small n.103 103 What’s the difference between these

two tests? What is the penalty for
using the z-test rather than the t-test
for Normally distributed data? Notice
that zα < tα,n−1 for all n. Since the
random variable T follows the t(n− 1)
distribution, we can conclude that when
we use the z-test instead of the t-test,
pval will be inappropriately small, and
thus we are more likely to reject the
null hypothesis. The true Type I error
rate is greater than α! This phenomenon
is known as size inflation. When n is
large the inflation is negligible, but for
small n it could be a problem.

Table A.5 isn’t well suited for hypothesis testing; instead, use Table
A.8.

Example 4

Repeat the test performed in Example 3 but using the t-test instead.
Does your conclusion change?
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t.test(bearings, mu = 10)

##

## One Sample t-test

##

## data: bearings

## t = -1.0005, df = 40, p-value = 0.3231

## alternative hypothesis: true mean is not equal to 10

## 95 percent confidence interval:

## 9.95573 10.01495

## sample estimates:

## mean of x

## 9.985341

Type II error analysis (including sample size planning) is more
complicated for t-testing, and we do not have clean formulas like we
did when σ was known. We either need to use software or graphs
like those provided in Table A.17. When using software, the power
π(µA) is usually referred to rather than β(µA), and the input is usu-
ally not µA but d = (µ0 − µA)/σ. (Table A.17 also uses d.) Notice that
a guess of σ needs to be made.

Example 5

Use Table A.17 to answer the following:

1. For a one-tailed t-test, what is the probability of a Type II error
when the degrees of freedom is ν = 9 and |d| = 0.6? Repeat with
ν = 29.

2. For a two-tailed test, what sample size is needed so that a test will
have a Type II error rate of 0.1 when |d| = 0.5? Choose the smallest
listed degrees of freedom.
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Something to consider when talking about pval: this number
is a statistic like any other quantity we compute from data, and
thus it has a sampling distribution. Under the null hypothesis, if
the assumptions of the t-test are met, then it can be shown that
pval ∼ UNIF(0, 1). Under the alternative hypothesis, though, pval

follows a distribution other than UNIF(0, 1), and the sampling distri-
bution concentrates near 0 as n grows or as ∆ grows.

Below I simulate the distribution of pval in different scenarios.

## I write a function to perform these simulations

sim_p_val <- function(M = 1000, # Number of replications

mu0 = 0, # Hypothesized mean

muA = NULL, # True mean; if null, same as mu0

n = 10,

sd = 1,

alternative = c("two.sided", "less", "greater")) {

if (is.null(muA)) {

muA <- mu0

}

alternative <- alternative[1]

replicate(M, {

dat <- rnorm(n, mean = muA, sd = sd)

return(t.test(dat, alternative = alternative, mu = mu0)$p.value)

})

}

hist(sim_p_val(), freq = FALSE)
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Histogram of sim_p_val()
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Histogram of sim_p_val(muA = 0.3)
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Histogram of sim_p_val(muA = 1)
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When we compute a pval and get a statistically significant result
we may be interested in whether others repeating our study will
also get a statistically significant result; in other words, whether they
will be able to replicate our result. This issue is discussed in Boos
and Stefanski (2011). They noted that for p-values that are near-
misses (that is, pval < α but only barely) there are good odds that
replication studies will not also reject H0, but when the p-value is
much smaller than α, the odds of replication should be good. They
even recommend reporting estimates of the replication probability to
signal how fragile the results of the study are.

Section 4: Tests Concerning a Population Proportion

In Example 1 we saw what a small sample test for a population pro-
portion looks like. When our data follows a Bernoulli distribution,
we first state our null and alternative hypothesis:

Then we identify the distribution of the number of “successes” in
the sample if H0 is true:
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Finally, we can provide a formula for computing pval.

In this section I consider the large-sample version of the test. First,
consider the sample proportion p̂ computed from Bernoulli data
X1, . . . , Xn, Xi ∼ Ber(p). Assume H0 : p = p0 is true. What then is
E [ p̂] and Var ( p̂)?

Based on this, what is the approximate distribution for p̂ for large
n?

Using this, we can create a large-sample test for sample propor-
tions104, described below. 104 We can extend this reasoning to other

statistics that asymptotically follow
the Normal distribution. Suppose θ̂
is a consistent estimator of θ, and let
SD
(
θ̂
)
= σθ̂ . If we have

Z =
θ̂ − θ

σθ̂

and the approximate distribution of Z
is N(0, 1), then we can test H0 : θ = θ0
against some alternative using the
statistic

Z =
θ̂ − θ0

σθ̂

In this case, under H0, σp̂ =√
np0(1− p0), thus producing the

large-sample test statistics described.
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Below are large-sample Type II error analysis formulas:

Example 6

Jack Johnson and John Jackson are running for President of Earth.
You work for the Johnson campaign and want to determine whether
Johnson is currently the candidate with the most support. You plan
on conducting a survey asking potential voters who they plan to vote
for in the election.

1. Let p represent the proportion of potential voters who support
Johnson. State an appropriate null and alternative hypothesis.
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2. You want to be able to detect when Johnson has a 1% lead among
potential voters with a probability of 95%. Find a sample size
capable of achieving this when your level of significaince is α =

0.05.

3. It turns out that Johnson is very rich and can afford to conduct
a survey of the size found above, and in the survey of 61,000 po-
tential voters, 30,698 reported they were planning on voting for
Johnson. Compute pval and conclude.
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alpha <- 0.05

beta <- 0.05

p0 <- 0.5

pA <- 0.51

n <- 61000

x <- 30698

(za <- qnorm(alpha, lower.tail = FALSE))

## [1] 1.644854

(zb <- qnorm(beta, lower.tail = FALSE))

## [1] 1.644854

## Part 2

ceiling(((za * sqrt(p0 * (1 - p0)) + zb * sqrt(pA * (1 - pA)))/(pA - p0))^2)

## [1] 27051

prop.test(x, n, p = 0.5, alternative = "greater", correct = FALSE)

##

## 1-sample proportions test without

## continuity correction

##

## data: x out of n, null probability 0.5

## X-squared = 2.5708, df = 1, p-value =

## 0.05443

## alternative hypothesis: true p is greater than 0.5

## 95 percent confidence interval:

## 0.499916 1.000000

## sample estimates:

## p

## 0.5032459

Section 5: Further Aspects of Hypothesis Testing

Suppose we want to perform hypothesis tests for describing the value
of the population variance: that is, we wish to test
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Assume that the data X1, . . . , Xn is an i.i.d. sample from the
N(µ, σ) distribution105. Then se can describe the distribution of S2, 105 The t-test we saw in Section 3 was

somewhat robust to the Normality as-
sumption, working well for large sam-
ple sizes even when the assumptions of
the test are not met. However, the χ2

test is not robust to this assumption. As
discussed before, for non-Normal data,
inference regarding σ2 may not even
be very useful when the data doesn’t
follow a Normal distribution.

the sample variance:

Using this we can formulate a statistical test for inference for σ2

(and thus σ as well):

Below are formulas for Type II error analysis:
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Sample size planning for this test is difficult and may require the
use of numerical techniques.

Example 7

1. Suppose we plan to use ten days of returns from a stock price se-
ries to test whether the volatility (that is, σ) of the stock is greater
than 10% or not. State the null and alternative hypotheses.

2. Suppose the true volatility of the stock is 15%. Estimate the proba-
bility of comitting a Type II error when n = 10 and α = 0.1.

3. We have the following returns from the previous ten days of the
stock with ticker symbol CGM:

cgm2 <- c(-0.2264, 0.0188, -0.0496, 0.1990, 0.1941,

-0.0219, -0.0177, 0.0847, 0.0167, -0.0736)
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The standard deviation and variance of the stock’s daily returns
are given below:

var(cgm2)

## [1] 0.01594101

(vol <- sd(cgm2))

## [1] 0.1262577

Test whether the volatility (that is, σ) of the stock is greater than
10% or not with significance level α = 0.1.
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sigma0 <- .1

## Part 2

pchisq(sigma0^2/.15^2 * qchisq(.1, df = 10 - 1, lower.tail = FALSE),

df = 10 - 1)

## [1] 0.3136713

## Part 3

pchisq((10 - 1) * var(cgm2)/sigma0^2, df = 10 - 1, lower.tail = FALSE)

## [1] 0.1105089

In hypothesis testing, we can find statistically significant results
(where H0 was rejected) that are not practically significant. That is,
we might conclude that H0 is false, but the difference between θ0

and our best estimate of the true value of the parameter of interest
are barely worth mentioning. Large sample sizes produce tests so
powerful they can detect even tiny divergences from H0, even if the
actual effect is barely worth mentioning. Thus we should be cautious
and not overstate the importance of our test’s conclusions.

Example 8

Suppose we are testing to see if the proportion of individuals who
have some rare disease is more than p = 0.007. We have a lot of
funding and conduct a massive study and can conclude that, in fact,
the true proportion of the population with the disease is more than
0.007. But our point estimate for this proportion is p̂ = 0.00711; this is
barely larger than the hypothesized value, so the test’s results are not
noteworthy.

Statistical tests and confidence intervals have a connection. If we
have a 100(1− α)% confidence interval (l(x1, . . . , xn), u(x1, . . . , xn))

and consider the set of hypotheses:

The CI can be interpreted as the set of θ0 for which H0 would not
be rejected at significance level α. 100(1 − α)% confidence bounds
have a similar interpretation for the alternative hypotheses:
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Example 9

Compute a 95% confidence interval for the mean diameter of ball
bearings using the data mentioned in Example 3 (using t-procedures).
Does the confidence interval agree with the conclusion of the test
conducted in Example 4?

In many situations we don’t want to conduct just one statistical
test, but many. When we do so, the probability of making a Type I
error in any test increases.

Suppose, for example, that we perform K tests that are independent
of each other (a strong and likely incorrect assumption). The follow-
ing calculations show the probability of making a Type I error in the
study:

The problem is explained well by Munroe (2011) in the comic
xkcd.

One approach to this problem is to adjust the significance levels of
the tests to achieve a study Type I error rate. For example, we could
work with the above expression to find an appropriate α for each test.
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The above assumption of independence, though, is strong and
unrealistic. Another approach is to use the Bonferroni inequality:

This inequality suggests that our α for each test should be:

This may be too strong a correction, though; imagine if we were
doing 1000 tests! Thus we don’t see this approach used when K is
large.

Example 10

A medical researcher tests 1000 genes to see if there is a relationship
between gene expression and rate of occurance of cancer. The re-
searcher wants a study Type I error rate of α = 0.1. How should we
choose α for each test if we assume each test is independent? What if
we use the Bonferroni inequality approach?
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alpha <- 0.1

K <- 1000

1 - (1 - alpha)^(1/K) # Independence approach

## [1] 0.000105355

alpha/K # Bonferroni approach

## [1] 1e-04

There are other approaches to multiple hypothesis testing. Proce-
dures such as ANOVA and the χ2 test have the following approach:

1. Execute an overall test to see if any effect is present.
2. If the null hypothesis of no effect is rejected, do a detailed analysis

to see where the divergence from this null hypothesis occurs.

Some of the tests discussed in this chapter follow from the likeli-
hood ratio principle. The likelihood ratio statistic is defined below:

Tests based on the likelihood ratio reject H0 when the likelihood
ratio statistic is “small”. The statistic is useful for generating new
statistical tests when data follows particular distributions. We can
also find more expressive hypotheses using the likelihood ratio.

Example 11

Suppose X1, . . . , Xn is an i.i.d. sample, with Xi ∼ Exp(µi). H0 and HA

are described below:

1. It can be shown that the MLE for µi = µ when H0 is true is µ̂ = X̄,
while the MLE for µi in general is µi = Xi. Find the corresponding
likelihood ratio.
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2. Show that if H0 is true, the distribution of the likelihood ratio
does not depend on µ. (This involves showing that µ is a scale
parameter.)

3. It is often numerically easier to work with the negative log-
likelihood ratio than the likelihood ratio since for large n the like-
lihood ratio can be very small, and the negative log-likelihood fits
with our intuition that large test statistics are evidence against H0.
Write an expression for the negative log-likelihood ratio.

4. Below I estimate the sampling distribution of the negative log-
likelihood ratio under H0 in order to estimate critical values for the
negative log-likelihood ratio statistic when n = 5:

n <- 5

loglambda_sim <- replicate(10000, {

dat <- rexp(n) # Can use rate = 1 since the rate does not matter under H0

-(sum(log(dat)) - n * log(mean(dat))) # Simulated test statistics
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})

hist(loglambda_sim)
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quantile(loglambda_sim, c(.9, .95, .99, .995, .999, .9995))

## 90% 95% 99% 99.5%

## 4.597638 5.595884 7.707713 8.505277

## 99.9% 99.95%

## 10.769724 11.840371

Suppose now that we are tracking the time between eruptions of a
geyeser and we want to know whether the number of eruptions can
be modelled with a Poisson process. If that is the case, the time be-
tween eruptions is i.i.d. and follow from an exponential distribution
with some mean. All we wish to know is whether i.i.d. exponential
time is an appropriate model for the time between eruptions (we
don’t necessarily care about the parameters of the model).

We watch our geyeser and observe the following times (in hours)
between eruptions:

erupt_time <- c(1, 0.1, 27.6, 6.5, 16.3)

Test the appropriate hypotheses and estimate pval. What’s the
conclusion of the test at a significance level of α = 0.01?



264 curtis miller

(teststat <- -(sum(log(erupt_time)) -

length(erupt_time) * log(mean(erupt_time)))) # Test statistic

## [1] 5.982522

mean(loglambda_sim > teststat) # Estimated p-value

## [1] 0.0385

mean(loglambda_sim > teststat) < 0.01

## [1] FALSE

Methods based on likelihood ratios make strong assumptions
about the distribution of the data, specifying the distribution the
data takes save for information about the values of some of the pa-
rameters. These methods are known as parametric methods since
they are ultimately probing about the value of parameters of some
assumed distribution. Distribution-free methods, also known as
non-parametric methods, make fewer assumptions about the dis-
tribution of the data. These methods will not be considered in this
course.



Chapter 9: Inferences Based on Two Samples

Introduction

Researchers’ questions often address not just one population
but two. Frequently the researcher’s question doesn’t specify a value
for a single parameter but gives a relationship between two parame-
ters from two groups so that a relationship can be inferred. For exam-
ple, while the effect of a new blood pressure drug on blood pressure
is good to know, a more interesting question may ask whether a new
drug reduces blood pressure more than existing methods.

This chapter discusses procedures intended to compare two sam-
ples from two different populations. We will see both how to conduct
statistical tests and confidence intervals. The framework for confi-
dence intervals and hypothesis testing hasn’t changed. That means
that for this chapter a few formulas appropriate for certain contexts
are all we need; we don’t need to reintroduce the theory.

Section 1: z Tests and Confidence Intervals for a Difference Between
Two Population Means

Throughout this chapter I will assume that, unless otherwise stated,
we have two different samples, X1, . . . , Xm and Y1, . . . , Yn drawn from
two independent106 samples, and that the data within a sample is 106 In Section 3, the samples are not

independent, and m = n.i.i.d. Let E [X1] = µX , E [Y1] = µY, Var (X1) = σ2
X , and Var (Y1) = σ2

Y.
We’re often interested in ∆ = µX − µY. What is an estimator for ∆?

Is it unbiased?
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What is the variance of this estimator?

Based on this we can find the sampling distribution for ∆̂ that is at
least approximately correct when sample sizes are large.

Assume that σ2
X and σ2

Y are known. Using the above distribution of
∆̂ we can obtain a confidence interval for the true ∆ that is appropri-
ate at least approximately for large m and n.107 107 Here we will say that m and n

are “large” when both quantities are
greater than 40.

When planning a study, if we decide in advance to set m = n, we
could obtain a formula for n (and thus m as well) that will guarantee
a chosen margin of error.
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For hypothesis testing we want to make a statement about the
value of ∆. The ingredients of this statistical test are listed below.108 108 While the test described below is

appropriate for any proposed difference
∆0, the case ∆0 = 0 is certainly the most
interesting and more frequently seen, as
this corresponds to the null hypothesis
H0 : µX = µY ; in other words the test
determines whether the means of the
two populations are the same or differ
in some way.

Type II error analysis formulas are provided below.
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If we require that both samples have a common sample size we
can also obtain a formula that gives sample sizes that produce a test
with a specified Type II error rate for a particular ∆A for a test of
significance level α.

Example 1

A tutoring service claims to help understand difficult statistics con-
cepts. You decide to test this. You randomly assign 100 students
taking a statistics class to sign up for the tutoring students, while the
rest only attend lectures and office hours while learning statistics. At
first an equal number of students were assigned to both groups, but
after students dropped out, there were 45 students who did not use
the tutoring service and 51 who did.109 109 This is known as dropout bias; if the

propensity to drop out does not depend
on whether someone belongs to the
control or treatment group, there is no
problem, but if there is a relationship
the results of a study could be biased.
This should be accounted for, but we
will ignore the problem.

At the end of the course the final exam scores of students from
both groups were compared. The students who got tutoring (denoted
X1, . . . , X51) had an average score of 78.79 points. For those who
did not get tutoring (denoted Y1, . . . , Y45), the mean score was 71.09.
Assume that σX = σY = 15.

1. Compute a 95% confidence interval for the mean difference in
scores. Based on this confidence interval, is there good evidence
that the tutoring service improves students’ performance on ex-
ams?
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2. The tutoring service wants the margin of error produced by your
study to not exceed 3 points for the exam; this will help the service
determine if their product improves students’ performance by a
letter grade. What sample sizes could achieve this margin of error
(while preserving the confidence level)?

3. Perform a statistical test to determine if the tutoring service im-
proves students’ scores on exams.
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4. The tutoring service wants a statistical test that detects a differ-
ence of three points with a Type II error rate of 10% for a test with
a Type I error rate of α = 0.05. Assuming equal sample sizes for
both samples, find sample sizes that leads to a test meeting these
requirements.

5. Suppose a statistical has sample sizes of m = n = 450, find the
Type II error rate when the true difference between the two groups
of students is one point.
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xbar <- 78.79

ybar <- 71.09

sigma_X <- 15

sigma_Y <- sigma_X

m <- 51

n <- 45

alpha <- .05

(z <- qnorm(alpha/2, lower.tail = FALSE))

## [1] 1.959964

## Part 1

(se <- sqrt(sigma_X^2/m + sigma_Y^2/n))

## [1] 3.06786

(moe <- z * se)

## [1] 6.012895

(est <- xbar - ybar)

## [1] 7.7

c(est - moe, est + moe)

## [1] 1.687105 13.712895

## Part 2

ceiling(z^2 * (sigma_X^2 + sigma_Y^2) / 3^2)

## [1] 193

## Part 3

(z_stat <- (est - 0)/se)

## [1] 2.509893

pnorm(z_stat, lower.tail = FALSE) # p-value

## [1] 0.006038389

## Part 4

ceiling(((sigma_X^2 + sigma_Y^2) *
(qnorm(.05, lower.tail = FALSE) + qnorm(.1, lower.tail = FALSE))^2/3^2))

## [1] 429
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## Part 5

pnorm(qnorm(.05, lower.tail = FALSE) - 1/

(sqrt(15^2/450 + 15^2/450)))

## [1] 0.740489

Of course we very rarely know what σX and σY are and often
need to estimate them from the sample. Then we have an estimated
standard error

We would use this for our confidence intervals:

In hypothesis testing our test statistic would be

All the rest is the same. Procedures using these CIs and statistics
are appropriate for large sample sizes.

Example 2

The sample standard deviation for the students who got tutoring was
14.52 points. The sample standard deviation for the students who did
not get tutoring was 11.87 points. Recompute the confidence interval,
test statistic, and pval computed in Example 1.
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(se_est <- sqrt(14.52^2/m + 11.87^2/n))

## [1] 2.695361

c(est - z * se_est, est + z * se_est)

## [1] 2.417189 12.982811

(z_stat2 <- est/se_est)

## [1] 2.85676

pnorm(z_stat2, lower.tail = FALSE)

## [1] 0.002139946

In what contexts can we claim we observe a causal effect in a
study? This depends on how the data was generated. If the data
was obtained as-is, without being assigned to their groups by the in-
vestigators, we may call the study observational. If we assigned indi-
viduals to groups after the individuals generated their data, we may
call the study a retrospective observational study. On the other hand,
if the investigator assigned individuals randomly to two groups and
applied a different treatment depending on group assignment, mea-
suring outcomes after the treatment was applied, we would call the
study a randomized controlled experiment. The latter type of study
allows us to make conclusions about causality, unlike the former.

Section 2: The Two-Sample t Test and Confidence Interval

The procedures from the previous section are appropriate for large
sample sizes. When we don’t have large sample sizes and we assume
the data was drawn from Normal distributions, we can use t proce-
dures.

Suppose we assume σX = σY. In most cases this assumption is
unrealistic, though there are contexts where the assumption makes
sense; for instance, we may be attempting to determine not just the
difference in mean but whether two samples come from the same
population (and thus would have the same population standard
deviation). Then the standard error of X̄− Ȳ would be

This is estimated with
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Consider now the random variable

This random variable follows a t distribution with m + n − 2 de-
grees of freedom. Knowing this, we can find a confidence interval
based on this random variable. Procedures that assume that the two
samples have the same standard deviation are known as pooled t
procedures.

We could also perform a statistical test.
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Example 3

Below are two datasets, with each dataset coming from some distri-
bution. Did the same distribution generate these datasets?

x <- c( 7.07, -0.01, 8.30, 5.70, 5.06,

1.85, 0.74, 2.11, -0.93, 15.88)

y <- c( 1.69, 8.83, 9.11, -1.32, 3.97,

9.40, 7.60, 4.78, 5.13, 6.38)

mean(x)

## [1] 4.577

sd(x)

## [1] 5.043597

mean(y)

## [1] 5.557

sd(y)

## [1] 3.472233

1. Find a 90% confidence interval for the population mean, using the
pooled t procedure.

2. Using the pooled t test, test whether the datasets have the same
distribution or not, at significance level α = 0.1.
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t.test(x, y, var.equal = TRUE, conf.level = .9)

##

## Two Sample t-test

##

## data: x and y

## t = -0.50611, df = 18, p-value = 0.6189

## alternative hypothesis: true difference in means is not equal to 0

## 90 percent confidence interval:

## -4.337743 2.377743

## sample estimates:

## mean of x mean of y

## 4.577 5.557

The equal variance assumption made by the pooled test, though,
is unrealistic. What if we don’t make that assumption? Then we can
create procedures based on the quantity

This random variable follows approximately a t(ν) distribution.
The formula for ν is given below:

From this random variable we can derive a CI:

Below is a test statistic for a test based on this random variable:
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In most situations you should use the test that does not assume
equal variances. When this assumption is true, there is a minor gain
in power resulting from using the pooled version of the test, but even
a slight deviation from this assumption can result in statistics that
behave very poorly; the pooled statistic110 is not at all robust to the 110 The pooled two-sample test can be

viewed as an instance of the likelihood
ratio test, while the other test, known as
the Wald two-sample t-test, cannot be
derived from the likelihood ratio test.

assumption of equal variances.

Example 4

Two teams of competitive rowers locked in a bitter rivalry want to
know which team is fastest. Instead of a single race, the two teams
each engage in 10 time trials along the same 500m river length. The
mean time for team 1 (in minutes) is 1.49 with a standard deviation
of 0.12, while for team 2 the mean time was 1.37 with a standard
deviation of 0.10.

1. Construct a 95% confidence interval for the difference in rowing
times.

2. Perform a statistical test to determine whether team 2 is faster
than team 1 or not at significance level α = 0.1.
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x1bar <- 1.49

x2bar <- 1.37

sd1 <- 0.12

sd2 <- 0.10

n <- 10

m <- n

(se1 <- sd1/sqrt(m))

## [1] 0.03794733

(se2 <- sd2/sqrt(n))

## [1] 0.03162278

(std_err_diff <- sqrt(se1^2 + se2^2))

## [1] 0.04939636

(nu <- (se1^2 + se2^2)^2/(se1^4/(m - 1) + se2^4/(n - 1)))

## [1] 17.43311

## Part 1

(tstar <- qt(.975, df = nu))

## [1] 2.10583

c(x1bar - x2bar - tstar * std_err_diff, x1bar - x2bar + tstar * std_err_diff)

## [1] 0.01597968 0.22402032

## Part 2

(test_stat <- (x1bar - x2bar)/std_err_diff)

## [1] 2.429329

pt(test_stat, df = nu, lower.tail = FALSE)

## [1] 0.01309898
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Section 3: Analysis of Paired Data

Up until now we have required that X1, . . . , Xm and Y1, . . . , Yn be two
independent samples. However, in many experimental designs, the
datasets may not be independent; instead, they may be paired. That is,
we can view the datasets as (X1, Y1), . . . , (Xn, Yn).

Examples of independent sample studies and paired sample stud-
ies are listed below:111 111 I list these to avoid a common

situation in tests: students confusing
paired-sample and independent-sample
procedures. Don’t be another statistic;
know the difference between these tests!

We are still primarily interested in ∆ = µD = µX − µY, but since
the data is paired, we don’t approach inference in the same way.
Instead of treating X1, . . . , Xn and Y1, . . . , Yn separately, we work with
a sample of differences:

When we do this, comparing two populations reduces to the one-
sample case we saw in chapter 8. Below are CIs and statistical tests in
this context:112 112 What happens when we use the two

independent sample procedures in the
presence of paired data? The biggest
difference is that the variance of our
estimator for ∆ is no longer correct,
since the true variance is

Var (X̄− Ȳ) =
σ2

X + σ2
Y − 2ρσXσY

n

For independent samples, ρ = 0, but
that’s likely not the case for paired
data; in fact, usually ρ > 0. As a result
our estimate for the standard error
of the statistic is usually larger than
appropriate, which makes test statistics
smaller than they should be and CIs
wider than they should be. While this is
“conservative” and thus should be done
if you don’t know whether data was
paired or not, this is usually a major
error and needs to be avoided.
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Example 5

A drug manufacturer wants to determine if a new weight loss sup-
plement leads to weight loss in subjects. To determine if the supple-
ment leads to weight loss, the manufacturer selects a cohort of six
participants to participate. The subjects’ weights are measured prior
to taking the supplement, then after two months the subjects’ weights
will be measured again. Below are subjects’ weights both before and
after taking the supplement:

(supp_weight_loss <- data.frame(

"before" = c(221, 139, 253, 230, 186, 161),

"after" = c(209, 121, 230, 220, 182, 162)

))

## before after

## 1 221 209

## 2 139 121

## 3 253 230

## 4 230 220

## 5 186 182

## 6 161 162

1. Compute the dataset of differences, Di.

2. Construct a 90% confidence interval for the mean difference in
weight loss.
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3. Conduct a hypothesis test to determine whether the supplement
leads to weight loss. Use a significance level of α = 0.1 to decide
whether there is a statistically significant difference in weight after
taking the supplement.
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## Compute CI

with(supp_weight_loss,

t.test(before, after, conf.level = .9, paired = TRUE,

alternative = "two.sided")

)

##

## Paired t-test

##

## data: before and after

## t = 3.0587, df = 5, p-value = 0.02814

## alternative hypothesis: true difference in means is not equal to 0

## 90 percent confidence interval:

## 3.753293 18.246707

## sample estimates:

## mean of the differences

## 11

## Statistical test

with(supp_weight_loss,

t.test(before, after, paired = TRUE, alternative = "greater")

)

##

## Paired t-test

##

## data: before and after

## t = 3.0587, df = 5, p-value = 0.01407

## alternative hypothesis: true difference in means is greater than 0

## 95 percent confidence interval:

## 3.753293 Inf

## sample estimates:

## mean of the differences

## 11

Prior to conducting a study, should you opt for an independent-
sample study or a paired-sample study? Below are pros and cons of
the two:
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In general, if there is a lot of variability within a population and a
large correlation resulting from pairing, then a paired sample may be
preferred to independent samples, while if there is not a lot of vari-
ability and the sample is not large, we may prefer an independent-
sample procedure.

Section 4: Inferences Concerning a Difference Between Population
Proportions

Suppose that instead of being interesterested in the difference be-
tween two means of quantitative variables we are interested in the
difference in the population proportions from two different popu-
lations. For example, we may want to compare the rate at which a
disease appears in men versus women, or compare political affilia-
tion across different demographic groups. In any case, there is one
population at which the probability of a “success” is pX and another
population where the probability of a “success” is pY. If we were
conducting a hypothesis test, we may want to see if pX = pY or not.

We say that we have two independent samples of i.i.d. binomial
data, X1, . . . , Xm and Y1, . . . , Yn. We’re interested in estimating pX −
pY. The natural estimator for this parameter is:

The variance and standard error of this estimator is

When m and n are large, the following random variable follows an
approximately standard Normal distribution:
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We can use this to construct confidence intervals and statistical
tests.

Let’s discuss statistical testing first. When H0 is true, pX = pY =

p. We need to estimate p, and can do so using the pooled sample
(the sample that includes both datasets, X1, . . . , Xm, Y1, . . . , Yn). The
resulting estimator is

We then have the following test, appropriate for large sample
sizes:
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Type II errors don’t depend on pX − pY but instead on each
specific pX and pY, so the Type II error function is denoted with
β(pX , pY).

The following formulas can be used for Type II error analysis:

When conducting sample size planning, if we set m = n and want
to detect a difference in proportions of pX − pY = d, after guessing
pX and pY we get a guessed sample size of

This is the appropriate sample size for a one-sided alternative
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hypothesis; for a two-sided alternative, replace α with α/2.

Example 6

A pharmaceutical company plans to release a new vaccine intended
to reduce the risk of contracting the influenza virus. The company
plans to test the vaccine by randomly assigning study participants to
a control group and a treatment group. Individuals in the treatment
group will receive the new vaccine, while individuals in the control
group will receive no treatment.113 The experiment is conducted 113 This is ethically suspect, but ignore

ethics for now.in a double-blind fashion; that is, neither patients nor experimental
staff will know which patient received which vaccine until after the
experiment is complete.

1. The experimenters plan on assigning an equal number of subjects
to both control and treatment groups. They want to be able to
detect a 5% difference in contraction rate (in the new vaccine’s
favor) 95% of the time. The current influenza contraction rate is
believed to be 20%. The planned significance level is α = 0.1.
Based on this, what sample size should be used?

2. Using the answer from above, what is the probability of making a
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Type II error when the new vaccine reduces the rate of influenza
contraction by only 1%?

3. When the experiment was actually conducted, after participants
left the study for various reasons, the number of individuals in
the control group was 886 and the number of individuals in the
treatment group was 890. 183 individuals in the control group
contracted the flu, while 175 contracted the virus in the treat-
ment group. Test whether the vaccine reduced the occurance of
influenza. What is the conclusion?
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p_X <- .2

d <- .05

alpha <- .1

beta <- .05

## Part 1

(n <- ceiling((qnorm(alpha, lower.tail = FALSE) *
sqrt(p_X + (p_X - d) * ((1 - p_X) + (1 - (p_X - d)))/2) +

qnorm(beta, lower.tail = FALSE) * sqrt(p_X * (1 - p_X) +

(1 - p_X) *
(1 - (p_X - d)

)))/d^2))

## [1] 895

m <- n

## Part 2

(sigma <- sqrt(p_X * (1 - p_X)/m + (p_X - d) * (1 - (p_X - d))/n))

## [1] 0.01792286

(pbar <- (m * p_X + n * (p_X - d))/(m + n))

## [1] 0.175

(qbar <- (m * (1 - p_X) + n * (1 - (p_X - d)))/(m + n))

## [1] 0.825

pnorm((qnorm(alpha, lower.tail = FALSE) * sqrt(pbar * qbar * (1/m + 1/n)) - d)/

sigma)

## [1] 0.06611087

## Part 3

(phat <- (183 + 175)/(886 + 890))

## [1] 0.2015766

(z <- (183/886 - 175/890)/sqrt(phat * (1 - phat) * (1/886 + 1/890)))

## [1] 0.5208789

pnorm(z, lower.tail = FALSE) # p-value

## [1] 0.3012256
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We can construct a large-sample confidence interval for the differ-
ence in proportions using the formula:114 114 This interval should be appropriate

when mp̂X , np̂Y , m(1 − p̂X), and
n(1− p̂X) are all at least 10.

Example 7

Construct a 90% CI for the difference in influenza contraction rates
based on the data in Example 6. Does this CI agree with the conclu-
sion of the test?115 115 Looking at the formulas for the test

statistic and the CI, we should not
believe that the CI will necessarily agree
with the test.
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(phat_X <- 183/886)

## [1] 0.2065463

(phat_Y <- 175/890)

## [1] 0.1966292

m <- 886

n <- 890

(se <- qnorm(.05, lower.tail = FALSE) * sqrt(phat_X * (1 - phat_X)/m +

phat_Y * (1 - phat_Y)/n))

## [1] 0.03131543

c("Lower" = phat_X - phat_Y - se, "Upper" = phat_X - phat_Y + se)

## Lower Upper

## -0.02139837 0.04123249

Section 5: Inferences Concerning Two Population Variances

So far we have been interested in comparing µX and µY or pX and
pY. Sometimes, though, we may be interested in comparing σ2

X and
σ2

Y.
Let N ∼ χ2(νn) and D ∼ χ2(νd). Consider the random variable

This random variable follows the F(νn, νd) distribution. The den-
sity curve for this distribution is illustrated below:

The pdf and cdf of the F(νn, νd) distribution is difficult to describe
but I list the expected value and variance of this distribution below:
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Suppose F ∼ F(νn, νd). Let fα,νn ,νd satisfy P
(

F ≥ fα,νn ,νd

)
= α. We

will call fα,νn ,νd a critical value of the F(νn, νd) distribution. Critical
values (and thus some values of the cdf of) the F(νn, νd) distribution
are listed in Table A.9, for select νn and νd. νn is called the numerator
degrees of freedom and νd is called the denominator degrees of
freedom. An important identity for critical values of the F(νn, νd)

distribution is

Example 8

Let F ∼ F(4, 9).

1. Compute E [F] and Var (F).

2. Compute P (F ≤ 3.63).

3. Find f.01,4,9.
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4. Find f.999,4,9
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curve(df(x, 4, 9), 0, 4)
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0.
0

0.
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4

0.
6

x

df
(x

, 4
, 9

)

## Part 1

(mu_f <- integrate(function(x) {x * df(x, 4, 9)}, 0, Inf))

## 1.285714 with absolute error < 7.8e-06

(var_f <- integrate(function(x) {(x - mu_f$value)^2 * df(x, 4, 9)}, 0, Inf))

## 1.818367 with absolute error < 5.5e-05

## Part 2

pf(3.63, 4, 9)

## [1] 0.9498937

## Part 3

qf(.01, 4, 9, lower.tail = FALSE)

## [1] 6.422085

## Part 4

qf(.999, 4, 9, lower.tail = FALSE)

## [1] 0.0206294

The F distribution matters because when X1, . . . , Xm is an i.i.d.
sample with X1 ∼ N(µX , σX) and Y1, . . . , Yn is an i.i.d. sample with
Y1 ∼ N(µY, σY), if S2

X is the sample variance for the first dataset
and S2

Y is the sample variance for the second dataset, we can find a
distribution for S2

X/S2
Y.
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This distribution can be used for deriving confidence intervals
and statistical tests for σ2

X/σ2
Y and thus make statements about the

relationship between σ2
X and σ2

Y.116 116 Thus we also have statements for
σX and σY ’s relationship when we take
square roots appropriately.

Below I describe a hypothesis test for checking the relationship
between σ2

X and σ2
Y.

We can also derive formulas for the confidence interval for σ2
X/σ2

Y.
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Example 9

The standard deviation of the returns of a stock is called the stock’s
volatility in finance. Two stocks, CGM and UOU, are believed to have
Normally distributed returns. Some returns of these stocks are listed
below:

cgm <- c(-0.004, 0.006, 0.002, -0.023, -0.006, -0.004, 0.023, -0.011,

0.001, 0 , -0.004)

uou <- c( 0, -0.011, 0.015, 0.005, -0.012, 0.003, -0.009, 0.005)

format(var(cgm), scientific = FALSE)

## [1] "0.0001267636"

format(var(uou), scientific = FALSE)

## [1] "0.00008971429"

1. Find a 90% confidence interval for σCGM/σUOU. Based on this CI,
is it plausible that the two stocks have the same volatility?

2. Perform a statistical test to check whether the two stocks have the
same volatility. Does the result of the test agree with the confi-
dence interval’s conclusion?
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(res <- var.test(cgm, uou, conf.level = .9))

##

## F test to compare two variances

##

## data: cgm and uou

## F = 1.413, num df = 10, denom df = 7,

## p-value = 0.6643

## alternative hypothesis: true ratio of variances is not equal to 1

## 90 percent confidence interval:

## 0.3885498 4.4303192

## sample estimates:

## ratio of variances

## 1.41297

sqrt(res$conf.int) # Need to take square root to get CI of volatility ratio

## [1] 0.6233377 2.1048323

## attr(,"conf.level")

## [1] 0.9
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