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Introduction

Statistics involes more than parameter estimation. We may
not care about the actual value of the parameter but rather whether
the parameter is a particular value or within some range. In this case
we may prefer to perform a statistical hypothesis test rather than
construct a confidence interval.

In this chapter we see for the first time statistical hypothesis test-
ing, involving only a single sample. The hypotheses of interest will
typically be making a statement about the value of a parameter,
though other hypothesis tests make more general statements. The
fundamental principles, though, are the same, along with the general
format of a test.

Hypothesis testing is a popular procedure, which suggests it’s
also frequently abused. We should always remember that hypothesis
testing is part of our toolset for reaching conclusions about a phe-
nomenon using a dataset; it is not the only tool that should be used
We should supplement hypothesis testing with other procedures,
such as visualization and providing point estimates. Furthermore,
we should be honest when collecting our data and be sure we are not
“coercing” the dataset to get an answer we want.1 1 As Nobel Prize winning economist

Robert Coase said, “If you torture
the data enough, nature will always
confess.”Section 1: Hypotheses and Test Procedures

A statistical hypothesis is a statement about the probabilistic prop-
erties of a data-generating process.2 A test of hypotheses is a proce- 2 This is usually a statement about a

parameter, a collection of parameters,
or even whether the data follows some
distribution.

dure where sample data is used to decide which of two competing
hypotheses better describes the process that generated the data. The
null hypothesis (usually denoted H0) can be thought of as the cur-
rent assumption about the data3, while the alternative hypothesis 3 Usually H0 is the statement we seek

to disprove, but this is not always the
case; for example, tests for distribution,
which intend to determine if the data
follows a particular distribution, will
often state that under the null hypoth-
esis the data follows the distribution of
interest.

(usually denoted HA) is the assumption that will replace the null hy-
pothesis if we reject the null hypothesis. If we don’t reject H0, we do
not say that we accept H0 but rather that we failed to reject H0.

Hypothesis testing is a form of reductio ad absurdum (“argument
to absurdity”), similar to a proof by contradiction; the argument is
that by assuming the null hypothesis is true we see a result in the
data that is “absurd”, so we should surrender our belief in H0. If this
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“absurdity” in the data does not appear, though, that does not mean
H0 is true; it just means we could not show it is false, or that HA is
more correct.4 4 The usual comparison is the ancient

Roman legal principle (still in use in
America) of “innocent until proven
guilty”; we assume that the individual
on trial is innocent (i.e. H0 is “true”),
and the burden of proof lies on the
prosecution (the statistical test) to
show that this assumption is “absurd”
based on the evidence (the data) and
we should then assume the individual
is guilty (H0 is “false”, and HA better
describes reality). Failure to prove guilt,
though, does not imply innocence,
and the “beyond reasonable doubt”
criteria sets a high bar for proving guilt.
It tilts justice in favor of letting guilty
people go (a Type II error) as opposed
to using the state’s resources to punish
the innocent (a Type I error).

In this chapter we consider tests that make statements about a
population parameter θ. These tests almost always take the following
form in practice:

We call θ0 the null value for θ, and it is the assumed value of θ

under H0.5
5 We amost never see H0 of the form

H0 : θ ≤ θ0

or
H0 : θ ≥ θ0

This is because the statistical test does
not change if we replace the inequality
with equality. The border value θ0 is
the most difficult case to check, and it
can be shown that if we reject H0 at the
border we can safely reject for all other
potential values of θ, while if we could
not reject H0 when assuming θ = θ0 we
should reject H0 at all. Consequently
we can view H0 as actually making a
statement about all possible θ within a
region when HA is one-sided.

Statistical tests (of any form) follow the procedure described be-
low:

1. Identify H0 and HA.

2. Specify a number α ∈ (0, 1), usually small (typical α are α ∈
{0.1, 0.05, 0.01, 0.001}; there is an interpretation of α I will explain
later that can guide this decision). This is called the significance
level of the test.

3. Collect data and compute the test statistic; call the random version
of the test statistic T for now, and let the observed (computed)
value of T be T̂. If H0 is true, the distribution of T is known.

4. Compute a quantity known at the p-value, denoted here pval
6. 6 The usual notation for p-values is sim-

ply p, but we will run into situations in
this class where the letter p appears in
many places, so I use this notation to
keep all these different p’s straight.

The definition of pval in general is7

7 The classical approach to statistical
testing does not involve p-values but
instead a critical value, T0, and if T̂ >
T0, H0 would be rejected. This theory
still underlies statistics; power/Type
II error analysis and the formulas for
computing p-values are derived with
this theory in mind. However, there
are advantages to referring to p-values.
One is that software usually computes
p-values. Another is that p-values have
a universal interpretation; given any p-
value you can decide whether to reject
H0 or not even if you don’t know the
context of the test. Additionally, readers
can decide whether a reported p-value
is convincing for themselves personally,
regardless of what the authors of the
study write. (Unfortunately, though,
authors often don’t write p-values but
instead will write p < 0.05, which
partially defeats the purpose of p-
values.)

pval = P
(
Observe T more contradictory to H0 than T̂

)
5. If pval < α, reject H0; otherwise (pval ≥ α) do not reject H0.

(Because of this rule, pval is sometimes referred to as the observed
significance level of the test, as it is the smallest α at which you
would reject H0.)

6. Conclude and interpret the results of the test.

Be clear that pval is the probability of observing a test statistic at
least as contradictory to H0 as the observed test statistic. If we were
to say that large T are evidence against H0 (with larger T meaning
even more evidence against H0), then pval = P

(
T > T̂

)
; that is, it is

the probability of seeing even more contradictory evidence than what
was seen.
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The following are incorrect interpretations of pval:

• The probability H0 is true or false.
• The probability the conclusion of the test is due to random chance

alone.

Additionally, practitioners should not fret over exactly what
threshold a p-value passes (such as whether pval < 0.05). While (5) in
the above description of the statistical testing procedure suggests that
certain p-value imply certain conclusions, p-values are more useful
when considered as a measure of how strong the evidence against H0

is.8 8 People have identified as one of the
culprits of the so-called reproducibility
crisis (many results in published scien-
tific papers cannot be reproduced), and
they are frequently abused. The prob-
lem has gotten severe enough that in
2006 the American Statistical Associa-
tion (ASA) issued a statement about the
appropriate use and interpretation of
p-values [Wasserstein and Lazar, 2016].
However, the problems associated with
p-values can be pinned (more fairly) on
publishing practices and how publica-
tion decisions are made. Journals are
biased to “positive results” (i.e. when
H0 is rejected) and have given α = 0.05
unreasonable importance. This can lead
to malicious practices such as p-hacking
(rephrasing a statistical problem until
“statistically significant” results are
found), or ignoring the size of the effect
found in the paper. See Aschwanden
[2015] and Aschwanden [2016] for inter-
esting discussions and even interactive
demonstrations of these issues.

In hypothesis testing, there are two types of errors. A Type I error
is rejecting H0 when H0 is true, while a Type II error is failing to re-
ject H0 when H0 is false. The table below visualizes the relationship:

Immediately after a test, you do not know whether you committed
an error or what the nature of the error is. Error analysis is part of
study design, conducted before any data is collected. It determines
what must be observed to reject H0 and what sample size the study
should use. There should be a discussion about what happens when
a Type I or Type II error is made, what the consequences are, the
relative severity of the consequences, and thus what the acceptable
error rates should be.

α is the Type I error rate:9 9 Actually this is the case when the test
statistic is a continuous variable. For
discrete variables, we may choose a
desired α but due to the discrete nature
of the cdf the actual Type I error rate
may be less than specified (when being
conservative). We see this in Example 1.

In this context, the Type II error rate depends on what the true
value of θ is; we call β(θA) the Type II error rate when θ = θA:

A related concept to the Type II error rate is the power of the
statistical test; the power is the probability of rejecting H0 when θ =

θA. It is defined below:
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Power relates to α and β in the following way:

There is a general relationship between α and β:

After we have reflected on the consequences of Type I and Type
II errors, we may decide on an acceptable Type I error rate, α. We
then focus on a particular θA we want our test to be able to detect
and what the acceptable Type II error rate β(θA) should be. Once we
have these pieces of information, we may find a sample size n that
achieves these two error rates for our test.

Example 1

I claim that I am an 80% freethrow shooter, but you don’t believe
me; you think I make less than 80% of freethrows. To settle the dis-
pute, we agree that I will shoot 20 free-throws and you will count
how many baskets I manage to make. Based on this you will decide
whether you believe my claim. You decide to use α = 0.05 as your
significance level.

1. Identify H0 and HA.

2. What is the test statistic? What is its distribution under H0?

3. Out of 20 baskets, I manage to make 11. Compute pval.
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4. What is the conclusion of the test?

5. Let Nα denote the fewest number of baskets I could make while
still allowing you to believe my claim when you use significance
level α (that is, if X ∼ BIN(20, 0.8), Nα is the largest number such
that P (X < Nα) ≤ α). Find N0.05.10 10 (5) and on are questions we would

ask before we observed any data and
reached a conclusion.

6. While α = 0.05 is the specified Type I error rate, due to the dis-
crete nature of the test statistic, it is not the actual Type I error rate.
What is the actual Type I error rate?

7. Suppose I were not an 80% freethrow shooter and instead only
make 75% of my baskets. What is the Type II error rate in this
case?
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pbinom(11, 20, .8) # Part 3

## [1] 0.009981786

(N <- qbinom(.05, 20, .8) - 1) # Part 5

## [1] 12

pbinom(N, 20, .8) # Part 6

## [1] 0.03214266

pbinom(N, 20, .75, lower.tail = FALSE)

## [1] 0.8981881

Example 2

Let µ denote the population mean. We wish to determine if the true
population mean is greater than the specified value µ0.

1. State the null and alternative hypothesis.

2. We collect a dataset X1, . . . , Xn from the population, with E [X] =

µ, and SD (X) = σ. Consider the test statistic

Z =
X̄− µ0

σ/
√

n
According to the central limit theorem, what is the approximate

distribution of Z under H0?
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3. What is the (approximate) distribution when HA is true and µ =

µA > µ0?

4. Let α be the level of significance of the test. We will reject H0

when Z is larger than some threshold value. Find this threshold
value such that the Type I error rate is α.

5. Compute β(µA). This is the probability of not rejecting H0 when
µ = µA; in other words, Z is less than the threshold value even
though µ = µA > µ0.
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6. Given the answers to (4) and (5), find a sample size n such that
a test with Type I error rate α will have Type II error rate β when
µ = µA.

7. Let’s now suppose that we are investigating whether men’s aver-
age height is 5.9 ft., and under the alternative hypothesis men are
taller than 5.9 ft. Phrase H0 and HA below.
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8. Let our significance level be α = 0.1. The standard deviation of
height is known to be σ = 0.5. Suppose the true mean height for
men is 6 ft. What is the Type II error rate when n = 100? Repeat
for a potential mean height of 6.5 ft.

9. Find the sample size that, for a test with α = 0.1, would have a
Type II error rate of β = 0.1 when the true average height is 6 ft.
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10. A sample mean height of 5.97 ft. is observed, and the sample size
is the one found in part (9) above. Compute pval.

11. Based on this data, what is the conclusion of the test?
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alpha <- 0.1

beta <- 0.1

sigma <- 0.5

mu0 <- 5.9

muA <- 6.0

xbar <- 5.97

(za <- qnorm(alpha, lower.tail = FALSE))

## [1] 1.281552

(zb <- qnorm(beta, lower.tail = FALSE))

## [1] 1.281552

pnorm(za + (mu0 - muA)/(sigma/sqrt(100))) # Part 8

## [1] 0.2362404

pnorm(za + (mu0 - 6.5)/(sigma/sqrt(100)))

## [1] 4.169523e-27

(n <- ceiling((sigma * (za + zb) / (mu0 - muA))^2)) # Part 9

## [1] 165

(z <- (xbar - mu0)/(sigma/sqrt(n))) # Part 10

## [1] 1.798333

(pval <- pnorm(z, lower.tail = FALSE))

## [1] 0.03606216

(pval < alpha) # Part 11

## [1] TRUE

Section 2: z Tests for Hypotheses about a Population Mean

From here, in order to perform a hypothesis test, we only need the
following bits of information:

• The null hypothesis H0, and potential HA

• Assumptions about the data made by the test
• The test statistic and how to compute it
• How to compute pval based on the test statistic
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Our first case is a test for the mean µ when σ is known. This test
is exact when the data was drawn from a Normal distribution, and
asymptotically correct when the data is not Normally distributed.

Suppose σ is not known. If n is large11, we can replace σ with the 11 Let’s say n > 40.

sample standard deviation S and thus use the test statistic

The test is otherwise the same.
Below are formulas for computing Type II errors. If σ is not

known, you will need to guess it.
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The formulas below allow for sample size planning. Overestimat-
ing σ will produce large n and thus produce tests that may do better
than specified.

Example 3

A factory that produces ball bearings is testing its assembly line
to see whether the line produces ball bearings with the specified
diameter of 10 mm or whether the line is not properly calibrated. The
managers believe that the standard deviation of bearings produced
by this line is σ = 0.1 mm. They want tests that are significant at the
α = 0.01 significance level.

1. State the null and alternative hypothesis.

2. What is the probability of a Type I error?

3. What is the probability of a Type II error when the ball bearings’
mean diameter differ from the specified diameter by 0.1 mm and
the sample size is n = 20?
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4. The managers want to be able to detect a difference of 0.1 mm
from the specified diameter with probability 0.9995. Find a sample
size that guarantees this under our assumptions.

5. Using the sample size n = 41, experimenters run the line and
produce some ball bearings. The following sample was observed:

bearings <- c(10.11, 9.858, 10.072, 10.007, 10.158, 9.878, 9.935, 9.787,

9.993, 10.008, 9.927, 9.959, 10.086, 10.001, 9.881, 10.057, 9.913,

9.744, 10.136, 10, 9.988, 10.022, 10.112, 10.013, 9.809, 10.014,

10.036, 9.977, 9.952, 9.963, 9.955, 9.926, 10.095, 10.076, 9.994,

9.93, 10.057, 9.923, 9.954, 9.969, 10.124)

mean(bearings)

## [1] 9.985341

sd(bearings)

## [1] 0.09381434

Using the sample standard deviation rather than σ, perform the
appropriate statistical test to decide between H0 and HA, computing
pval.
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6. Conclude.
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suppressPackageStartupMessages(library(BSDA))

alpha <- 0.01

beta <- 0.0005

sigma <- 0.1

mu0 <- 10

muA <- 10.1 # We could also use 9.9 and be fine

(za2 <- qnorm(alpha/2, lower.tail = FALSE))

## [1] 2.575829

(zb <- qnorm(beta, lower.tail = FALSE))

## [1] 3.290527

pnorm(za2 + (mu0 - muA)/(sigma/sqrt(10))) +

pnorm(-za2 + (mu0 - muA)/(sigma/sqrt(10))) # Part 3

## [1] 0.2787871

(n <- ceiling((sigma * (za2 + zb)/(mu0 - muA))^2)) # Part 4

## [1] 35

z.test(bearings, mu = 10, sigma.x = sd(bearings)) # Part 5

##

## One-sample z-Test

##

## data: bearings

## z = -1.0005, p-value = 0.3171

## alternative hypothesis: true mean is not equal to 10

## 95 percent confidence interval:

## 9.956625 10.014058

## sample estimates:

## mean of x

## 9.985341

Section 3: The One-Sample t Test

If we assume our data follows a Normal distribution, then the distri-
bution of

T =
X̄− µ0

S/
√

n

is t(n − 1) when H0 is true. Based on this we can describe a test
based on the t distribution.
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This test works better than the test described in the previous sec-
tion when the data follows a Normal distribution, and the difference
is noticeable for small n.12 12 What’s the difference between these

two tests? What is the penalty for
using the z-test rather than the t-test
for Normally distributed data? Notice
that zα < tα,n−1 for all n. Since the
random variable T follows the t(n− 1)
distribution, we can conclude that when
we use the z-test instead of the t-test,
pval will be inappropriately small, and
thus we are more likely to reject the
null hypothesis. The true Type I error
rate is greater than α! This phenomenon
is known as size inflation. When n is
large the inflation is negligible, but for
small n it could be a problem.

Table A.5 isn’t well suited for hypothesis testing; instead, use Table
A.8.

Example 4

Repeat the test performed in Example 3 but using the t-test instead.
Does your conclusion change?
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t.test(bearings, mu = 10)

##

## One Sample t-test

##

## data: bearings

## t = -1.0005, df = 40, p-value = 0.3231

## alternative hypothesis: true mean is not equal to 10

## 95 percent confidence interval:

## 9.95573 10.01495

## sample estimates:

## mean of x

## 9.985341

Type II error analysis (including sample size planning) is more
complicated for t-testing, and we do not have clean formulas like we
did when σ was known. We either need to use software or graphs
like those provided in Table A.17. When using software, the power
π(µA) is usually referred to rather than β(µA), and the input is usu-
ally not µA but d = (µ0 − µA)/σ. (Table A.17 also uses d.) Notice that
a guess of σ needs to be made.

Example 5

Use Table A.17 to answer the following:

1. For a one-tailed t-test, what is the probability of a Type II error
when the degrees of freedom is ν = 9 and |∆| = 0.6? Repeat with
ν = 29.

2. For a two-tailed test, what sample size is needed so that a test
will have a Type II error rate of 0.1 when |∆| = 0.5? Choose the
smallest listed degrees of freedom.
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Something to consider when talking about pval: this number
is a statistic like any other quantity we compute from data, and
thus it has a sampling distribution. Under the null hypothesis, if
the assumptions of the t-test are met, then it can be shown that
pval ∼ UNIF(0, 1). Under the alternative hypothesis, though, pval

follows a distribution other than UNIF(0, 1), and the sampling distri-
bution concentrates near 0 as n grows or as ∆ grows.

Below I simulate the distribution of pval in different scenarios.

# I write a function to perform these simulations

sim_p_val <- function(M = 1000, # Number of replications

mu0 = 0, # Hypothesized mean

muA = NULL, # True mean; if null, same as mu0

n = 10,

sd = 1,

alternative = c("two.sided", "less", "greater")) {

if (is.null(muA)) {

muA <- mu0

}

alternative <- alternative[1]

replicate(M, {

dat <- rnorm(n, mean = muA, sd = sd)

return(t.test(dat, alternative = alternative, mu = mu0)$p.value)

})

}

hist(sim_p_val(), freq = FALSE)



chapter 8: tests of hypotheses based on a single sample 20
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Histogram of sim_p_val(muA = 0.3)
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Histogram of sim_p_val(muA = 1)
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When we compute a pval and get a statistically significant result
we may be interested in whether others repeating our study will
also get a statistically significant result; in other words, whether they
will be able to replicate our result. This issue is discussed in Boos
and Stefanski [2011]. They noted that for p-values that are near-
misses (that is, pval < α but only barely) there are good odds that
replication studies will not also reject H0, but when the p-value is
much smaller than α, the odds of replication should be good. They
even recommend reporting estimates of the replication probability to
signal how fragile the results of the study are.

Section 4: Tests Concerning a Population Proportion

In Example 1 we saw what a small sample test for a population pro-
portion looks like. When our data follows a Bernoulli distribution,
we first state our null and alternative hypothesis:

Then we identify the distribution of the number of “successes” in
the sample if H0 is true:
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Finally, we can provide a formula for computing pval.

In this section I consider the large-sample version of the test. First,
consider the sample proportion p̂ computed from Bernoulli data
X1, . . . , Xn, Xi ∼ Ber(p). Assume H0 : p = p0 is true. What then is
E [ p̂] and Var ( p̂)?

Based on this, what is the approximate distribution for p̂ for large
n?

Using this, we can create a large-sample test for sample propor-
tions13, described below. 13 We can extend this reasoning to other

statistics that asymptotically follow
the Normal distribution. Suppose θ̂
is a consistent estimator of θ, and let
SD
(
θ̂
)
= σθ̂ . If we have

Z =
θ̂ − θ

σθ̂

and the approximate distribution of Z
is N(0, 1), then we can test H0 : θ = θ0
against some alternative using the
statistic

Z =
θ̂ − θ0

σθ̂

In this case, under H0, σp̂ =√
np0(1− p0), thus producing the

large-sample test statistics described.
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Below are large-sample Type II error analysis formulas:

Example 6

Jack Johnson and John Jackson are running for President of Earth.
You work for the Johnson campaign and want to determine whether
Johnson is currently the candidate with the most support. You plan
on conducting a survey asking potential voters who they plan to vote
for in the election.

1. Let p represent the proportion of potential voters who support
Johnson. State an appropriate null and alternative hypothesis.
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2. You want to be able to detect when Johnson has a 1% lead among
potential voters with a probability of 95%. Find a sample size
capable of achieving this when your level of significaince is α =

0.05.

3. It turns out that Johnson is very rich and can afford to conduct
a survey of the size found above, and in the survey of 61,000 po-
tential voters, 30,698 reported they were planning on voting for
Johnson. Compute pval and conclude.
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alpha <- 0.05

beta <- 0.05

p0 <- 0.5

pA <- 0.51

n <- 61000

x <- 30698

(za <- qnorm(alpha, lower.tail = FALSE))

## [1] 1.644854

(zb <- qnorm(beta, lower.tail = FALSE))

## [1] 1.644854

# Part 2

ceiling(((za * sqrt(p0 * (1 - p0)) + zb * sqrt(pA * (1 - pA)))/(pA - p0))^2)

## [1] 27051

prop.test(x, n, p = 0.5, alternative = "greater", correct = FALSE)

##

## 1-sample proportions test without

## continuity correction

##

## data: x out of n, null probability 0.5

## X-squared = 2.5708, df = 1, p-value =

## 0.05443

## alternative hypothesis: true p is greater than 0.5

## 95 percent confidence interval:

## 0.499916 1.000000

## sample estimates:

## p

## 0.5032459

Section 5: Further Aspects of Hypothesis Testing

Suppose we want to perform hypothesis tests for describing the value
of the population variance: that is, we wish to test
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Assume that the data X1, . . . , Xn is an i.i.d. sample from the
N(µ, σ) distribution14. Then se can describe the distribution of S2, 14 The t-test we saw in Section 3 was

somewhat robust to the Normality as-
sumption, working well for large sam-
ple sizes even when the assumptions of
the test are not met. However, the χ2

test is not robust to this assumption. As
discussed before, for non-Normal data,
inference regarding σ2 may not even
be very useful when the data doesn’t
follow a Normal distribution.

the sample variance:

Using this we can formulate a statistical test for inference for σ2

(and thus σ as well):

Below are formulas for Type II error analysis:
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Sample size planning for this test is difficult and may require the
use of numerical techniques.

Example 7

1. Suppose we plan to use ten days of returns from a stock price se-
ries to test whether the volatility (that is, σ) of the stock is greater
than 10% or not. State the null and alternative hypotheses.

2. Suppose the true volatility of the stock is 15%. Estimate the proba-
bility of comitting a Type II error when n = 10 and α = 0.1.

3. We have the following returns from the previous ten days of the
stock with ticker symbol CGM:

cgm2 <- c(-0.2264, 0.0188, -0.0496, 0.1990, 0.1941,

-0.0219, -0.0177, 0.0847, 0.0167, -0.0736)
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The standard deviation and variance of the stock’s daily returns
are given below:

var(cgm2)

## [1] 0.01594101

(vol <- sd(cgm2))

## [1] 0.1262577

Test whether the volatility (that is, σ) of the stock is greater than
10% or not with significance level α = 0.1.
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sigma0 <- .1

# Part 2

pchisq(sigma0^2/.15^2 * qchisq(.1, df = 10 - 1, lower.tail = FALSE),

df = 10 - 1)

## [1] 0.3136713

# Part 3

pchisq((10 - 1) * var(cgm2)/sigma0^2, df = 10 - 1, lower.tail = FALSE)

## [1] 0.1105089

In hypothesis testing, we can find statistically significant results
(where H0 was rejected) that are not practically significant. That is,
we might conclude that H0 is false, but the difference between θ0

and our best estimate of the true value of the parameter of interest
are barely worth mentioning. Large sample sizes produce tests so
powerful they can detect even tiny divergences from H0, even if the
actual effect is barely worth mentioning. Thus we should be cautious
and not overstate the importance of our test’s conclusions.

Example 8

Suppose we are testing to see if the proportion of individuals who
have some rare disease is more than p = 0.007. We have a lot of
funding and conduct a massive study and can conclude that, in fact,
the true proportion of the population with the disease is more than
0.007. But our point estimate for this proportion is p̂ = 0.00711; this is
barely larger than the hypothesized value, so the test’s results are not
noteworthy.

Statistical tests and confidence intervals have a connection. If we
have a 100(1− α)% confidence interval (l(x1, . . . , xn), u(x1, . . . , xn))

and consider the set of hypotheses:

The CI can be interpreted as the set of θ0 for which H0 would not
be rejected at significance level α. 100(1 − α)% confidence bounds
have a similar interpretation for the alternative hypotheses:
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Example 9

Compute a 95% confidence interval for the mean diameter of ball
bearings using the data mentioned in Example 3 (using t-procedures).
Does the confidence interval agree with the conclusion of the test
conducted in Example 4?

In many situations we don’t want to conduct just one statistical
test, but many. When we do so, the probability of making a Type I
error in any test increases.

Suppose, for example, that we perform K tests that are independent
of each other (a strong and likely incorrect assumption). The follow-
ing calculations show the probability of making a Type I error in the
study:

The problem is explained well by Munroe [2011] in the comic
xkcd.

One approach to this problem is to adjust the significance levels of
the tests to achieve a study Type I error rate. For example, we could
work with the above expression to find an appropriate α for each test.
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The above assumption of independence, though, is strong and
unrealistic. Another approach is to use the Bonferroni inequality:

This inequality suggests that our α for each test should be:

This may be too strong a correction, though; imagine if we were
doing 1000 tests! Thus we don’t see this approach used when K is
large.

Example 10

A medical researcher tests 1000 genes to see if there is a relationship
between gene expression and rate of occurance of cancer. The re-
searcher wants a study Type I error rate of α = 0.1. How should we
choose α for each test if we assume each test is independent? What if
we use the Bonferroni inequality approach?
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alpha <- 0.1

K <- 1000

1 - (1 - alpha)^(1/K) # Independence approach

## [1] 0.000105355

alpha/K # Bonferroni approach

## [1] 1e-04

There are other approaches to multiple hypothesis testing. Proce-
dures such as ANOVA and the χ2 test have the following approach:

1. Execute an overall test to see if any effect is present.
2. If the null hypothesis of no effect is rejected, do a detailed analysis

to see where the divergence from this null hypothesis occurs.

Some of the tests discussed in this chapter follow from the likeli-
hood ratio principle. The likelihood ratio statistic is defined below:

Tests based on the likelihood ratio reject H0 when the likelihood
ratio statistic is “small”. The statistic is useful for generating new
statistical tests when data follows particular distributions. We can
also find more expressive hypotheses using the likelihood ratio.

Example 11

Suppose X1, . . . , Xn is an i.i.d. sample, with Xi ∼ Exp(µi). H0 and HA

are described below:

1. It can be shown that the MLE for µi = µ when H0 is true is µ̂ = X̄,
while the MLE for µi in general is µi = Xi. Find the corresponding
likelihood ratio.
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2. Show that if H0 is true, the distribution of the likelihood ratio
does not depend on µ. (This involves showing that µ is a scale
parameter.)

3. It is often numerically easier to work with the negative log-
likelihood ratio than the likelihood ratio since for large n the like-
lihood ratio can be very small, and the negative log-likelihood fits
with our intuition that large test statistics are evidence against H0.
Write an expression for the negative log-likelihood ratio.

4. Below I estimate the sampling distribution of the negative log-
likelihood ratio under H0 in order to estimate critical values for the
negative log-likelihood ratio statistic when n = 5:

n <- 5

loglambda_sim <- replicate(10000, {

dat <- rexp(n) # Can use rate = 1 since the rate does not matter under H0

-(sum(log(dat)) - n * log(mean(dat))) # Simulated test statistics
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})

hist(loglambda_sim)

Histogram of loglambda_sim
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quantile(loglambda_sim, c(.9, .95, .99, .995, .999, .9995))

## 90% 95% 99% 99.5%

## 4.597638 5.595884 7.707713 8.505277

## 99.9% 99.95%

## 10.769724 11.840371

Suppose now that we are tracking the time between eruptions of a
geyeser and we want to know whether the number of eruptions can
be modelled with a Poisson process. If that is the case, the time be-
tween eruptions is i.i.d. and follow from an exponential distribution
with some mean. All we wish to know is whether i.i.d. exponential
time is an appropriate model for the time between eruptions (we
don’t necessarily care about the parameters of the model).

We watch our geyeser and observe the following times (in hours)
between eruptions:

erupt_time <- c(1, 0.1, 27.6, 6.5, 16.3)

Test the appropriate hypotheses and estimate pval. What’s the
conclusion of the test at a significance level of α = 0.01?
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(teststat <- -(sum(log(erupt_time)) -

length(erupt_time) * log(mean(erupt_time)))) # Test statistic

## [1] 5.982522

mean(loglambda_sim > teststat) # Estimated p-value

## [1] 0.0385

mean(loglambda_sim > teststat) < 0.01

## [1] FALSE

Methods based on likelihood ratios make strong assumptions
about the distribution of the data, specifying the distribution the
data takes save for information about the values of some of the pa-
rameters. These methods are known as parametric methods since
they are ultimately probing about the value of parameters of some
assumed distribution. Distribution-free methods, also known as
non-parametric methods, make fewer assumptions about the dis-
tribution of the data. These methods will not be considered in this
course.
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