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Introduction

While we appreciate a parameter estimate we know that with
any estimate there is uncertainty. Rather than report a single num-
ber, statisticians prefer to report a range of plausible values for the
parameter being estimated. The shorter the range, the more we know
about the location of the parameter.

In this chapter we will be looking at more common statistical
intervals, such as confidence intervals. We will see how to construct
them and how to properly interpret them. (Statisticians care a lot
about the correct interpretation!)

Section 1: Basic Properties of Confidence Intervals

A 100(1 − α)% confidence interval (CI) is a random interval (an
interval with random endpoints) intended to describe the location
of a parameter θ. Suppose the endpoints of the random interval
are l(x1, . . . , xn) and u(x1, . . . , xn) (recall the distinction between
xi and Xi; here, the former is an observed number, perhaps from a
sample, while Xi is a random variable). The CI for θ is an interval
(l(x1, . . . , xn), u(x1, . . . , xn)) such that

P (l(X1, . . . , Xn) ≤ θ ≤ u(X1, . . . , Xn)) = 1− α

In short, in the long run, 100(1 − α)% of intervals constructed
this way capture the true value of θ.1 Common confidence intervals 1 This is not the same as saying that

the probability the interval captured
θ is 1 − α. The distinction is subtle
but important. When we construct a
confidence interval from a particular
dataset, the endpoints are not random,
and that particular interval may or may
not include the true value of θ. We
have to use this frequentist notion of a
long-run capture rate in order to make
sense of the interval. There are intervals
out there where we can refer to the
probability of whether a particular
interval captured the true θ, such as
the Bayesian credible interval, but this
uses a completely different theory and
interpretation of probability, in addition
to being more computationally difficult.

include 90%, 95%, and 99%2.

2 Alternatively, common α includes 0.1,
0.05, and 0.01.

Suppose that σ is known and we have a dataset of i.i.d. data, with
observed values x1, . . . , xn. A confidence interval for the population
mean µ is

This interval is exact when the data follows a Normal distribution3

3 We got this interval in the Chapter 5

notes.

and approximately correct (due to the CLT) for large n when σ exists,
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for any underlying distribution. This interval takes the commonly-
seen4 form 4 This is not law; we will see intervals

not of this form.

For this interval, the margin of error (moe) is

Consider for a second the variables involved in the margin of er-
ror, and consider changing their values. Which variables (all others
being equal) lead to the margin of error being larger when they in-
crease? Which would lead to a decrease in the margin of error?

Consider the denominator of the moe. What is the relationship
between the amount of data and the size of the moe?

Call the moe m. When planning our study we may want to specify
the value of m. We do not want to change α5, and σ is viewed as a 5 The relationship between α and m can

be thought of as a trade-off between
precision and accuracy. Here, precision
refers to the size of the margin of error;
it describes how well we know the
location of the parameter of interest.
We like being precise. We can gain
precision by sacrificing accuracy, which
is how likely the CI achieves its goal
of containing the parameter of interest.
While we want to be precise, we also
want to be accurate, and wider intervals
are naturally more accurate, all else
being equal (or ceteris paribus, as the
economists like to say). The only way
to gain precision without sacrificing
accuracy is increasing the sample size,
n.

property of nature and thus impossible to change. Thus we can only
change n.

We can solve the equation for n and thus get a formula for the
sample size needed to attain a margin of error m6:

6 The textbook has a similar formula but
it involves the width of the CI, which is
w = 2m. I prefer to use the margin of
error here.
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Example 1

An automated assembly line producing ball bearings should produce
bearings with a diameter of 5mm. Quality control personnel run
the line and get a sample of ten bearings. The bearings are known
to have a standard deviation of σ = 0.1 mm7. The measured ball 7 This assumption is clearly unrealistic;

not only that, the mean µ is usually
known before σ is, as you should
expect from your study of probability
and the nature of σ; thus its unlikely
to see a study where σ is known but
not µ. We will see in the next section
what happens when we drop this
assumption, but if n is large, you could
replace σ with the sample standard
deviation s and still get a quality CI,
thanks to the law of large numbers and
a result known as Slutzky’s Theorem
[Slutsky, 1925].

bearing diameters are listed below:

bearings <- c(10.396, 10.497, 10.655, 10.578, 10.543,

10.575, 10.563, 10.549, 10.546, 10.489)

mean(bearings)

## [1] 10.5391

1. Construct a 95% CI for the mean diameter of the ball bearings.

2. Management is not satisfied with the margin of error, and want an
estimate accurate up to 0.01 mm. Find a sample size n that attains
this (while using a 95% CI).
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suppressPackageStartupMessages(library(BSDA))

z.test(bearings, sigma.x = 0.1)

##

## One-sample z-Test

##

## data: bearings

## z = 333.28, p-value < 2.2e-16

## alternative hypothesis: true mean is not equal to 0

## 95 percent confidence interval:

## 10.47712 10.60108

## sample estimates:

## mean of x

## 10.5391

ceiling((qnorm(1 - .05/2) * 0.1 / 0.01)^2) # Needed n

## [1] 385

In many cases we can get formulas for confidence intervals that
are either exact (if the assumptions hold) or approximately accurate
for large n. This is not always the case, though, and we may need to
use numerical techniques, such as bootstrapping, to get confidence
intervals. This involves resampling the data and computing an esti-
mate of the parameter of interest, θ̂, many times to get an estimate of
the sampling distribution of θ̂. The percentiles of the simulated data
can then be used to form the confidence interval.

Example 2

1. Use bootstrapping to estimate a 95% CI for the mean ball bearing
diameter mentioned in Example 1.

(xbar <- mean(bearings)) # Estimate

## [1] 10.5391

xstars <- replicate(1000, { # Simulations

sim_bearings <- sample(bearings, size = 10, replace = TRUE)

mean(sim_bearings)

})

head(xstars)

## [1] 10.5606 10.5395 10.5509 10.5280 10.5219

## [6] 10.5170
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(xbarstar <- mean(xstars)) # Mean of simulated means

## [1] 10.53926

# Percentiles of simulated means

(xbar_perc <- quantile(xstars - xbarstar, c(0.025, 0.975)))

## 2.5% 97.5%

## -0.0396615 0.0379435

(xbar + xbar_perc) # Bootstrap-estimated CI

## 2.5% 97.5%

## 10.49944 10.57704

2. Repeat the above procedure for the sample median. Which inter-
val is more precise?

# Below I committed a programming sin: copy/paste programming!

# I should have written a function to generalize the

# procedure. But I have other goals, such as showing the

# intermediate steps.

(xtilde <- median(bearings)) # Estimate

## [1] 10.5475

xstars2 <- replicate(1000, { # Simulations

sim_bearings <- sample(bearings, size = 10, replace = TRUE)

median(sim_bearings)

})

head(xstars)

## [1] 10.5606 10.5395 10.5509 10.5280 10.5219

## [6] 10.5170

(xtildestar <- mean(xstars2)) # Mean of simulated medians

## [1] 10.5469

# Percentiles of simulated medians

(xtilde_perc <- quantile(xstars2 - xtildestar, c(0.025, 0.975)))

## 2.5% 97.5%

## -0.053901 0.028099

(xtilde + xtilde_perc) # Bootstrap-estimated CI

## 2.5% 97.5%

## 10.4936 10.5756
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# Compare widths

(w1 <- diff(xbar_perc)) # Ignore the column name; not informative here

## 97.5%

## 0.077605

(w2 <- diff(xtilde_perc)) # Wider

## 97.5%

## 0.082

(w2 / w1 - 1) * 100 # The percentage by which the second interval is larger

## 97.5%

## 5.663295

Section 2: Large-Sample Confidence Intervals for a Population Mean
and Proportion

The assumption that we know σ is clearly unrealistic. If n is large,
though8, we can replace σ9 with the sample standard deviation, s. 8 As a rule of thumb, we can consider

n > 40 as “large” in this context.
9 In this context statisticians view σ
as a nuisance parameter. We are not
interested in the value of σ, but in order
to make a statement about µ we are
forced to estimate it.

This is because of the following:

Proposition 1. For a collection of i.i.d.r.v. X1, . . . , Xn with sample mean
X̄ and sample standard deviation S, if E [X1] = µ and Var (X1) < ∞, for
n large, the approximate distribution of Z = X̄−µ

S/
√

n is the standard Normal
distribution.

Thus we have the (approximate) 100(1− α)% CI:10 10 The quantity s/
√

n is called the
standard error of the mean, since it esti-
mates the mean’s standard deviation.

How would we go about sample size planning in this case? Our
formulas seem to require future information. The easiest approach is
to guess σ, erring on the side of large values as large σ yield larger n
and thus smaller margin of errors.11 11 This ethos of this approach is known

as being “conservative”, since we
are trying to err on the side of more
precision than desired. In this case, we
err on the side of collecting more data
than needed rather than collect too little
and get a margin of error that is larger
than desired.

Example 3

At the behest of management a new sample of ball bearings was col-
lected, this time with n = 61 (people decided that 385 ball bearings
were too many; the study should not cost that much money). The
new sample mean is x̄ = 10.488 mm, and the sample standard de-
viation is s = 0.105 mm. Compute a 95% confidence interval for the
mean diameter µ. Based on this CI, is it plausible the assembly line
does not produce ball bearings of the desired diameter of 10 mm?
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xbar <- 10.488

s <- 0.105

n <- 61

(m <- qnorm(0.975) * s / sqrt(n)) # moe

## [1] 0.02634951

c(xbar - m, xbar + m)

## [1] 10.46165 10.51435

Confidence intervals have a close cousin, called confidence bounds12. 12 Confidence bounds can be viewed as
confidence intervals with one of the end
points being infinite.

The number l(x1, . . . , xn) is a 100(1− α)% confidence lower bound
for a parameter θ if

P (l(X1, . . . , Xn) ≤ θ) = 1− α

Similarly, u(x1, . . . , xn) is a 100(1− α)% confidence upper bound
for a parameter θ if

P (θ ≤ u(X1, . . . , Xn)) = 1− α

We have the following large-sample confidence bounds for the
population mean µ

Example 4

The stock with ticker symbol CGM had an average daily return of
0.07% over the last 200 days, with a standard deviation of 0.8%. Com-
pute a 99% confidence lower bound for the mean return of the stock.
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0.07 - 0.8 * qnorm(.99)/sqrt(200)

## [1] -0.06159811

Up until now we have been working with continuous data and
our objective was to describe the location of the mean µ of the data.
Suppose instead that we are working with binary/Bernoulli data and
want to estimate the population proportion p of “successes”. We can
find a confidence interval for p13 by working with 13 The problem of finding a confidence

interval for p demonstrates how many
different procedures can be used to get
different results intended to solve the
same problem. Wikipedia [2018] lists
eight different intervals CIs for p. The
traditional CI used was

p̂± zα/2

√
p̂(1− p̂)

n

but this interval exhibits pathological
behavior for strange combinations of
n and p. The interval recommended in
this class is known as the Wilson score
interval, which biases the parameter
estimate slightly to 0.5. An interval not
mentioned in Wikipedia [2018] is the CI
obtained when adding two “imaginary”
successes and two “imaginary” failures
to the sample; this interval seems to
work well.

After isolating p in the inequality so that it’s bounded by two
computable numbers requiring only a sample of data, we get the
following confidence interval:

We can turn the CI into a confidence bound by replacing α/2 with
α and ± with + or −, depending on whether we want an upper
bound or lower bound.

Prior to our study, if we want to choose a sample size n to achieve
a moe m, our sample size should be

Here, p̃ is a guess at what the population proportion will be. If
we are uncomfortable with making a guess, use p̃ = 0.5; this will
maximize m and guarantee that the observed moe will not exceed m
(this is the most conservative approach). If we have a belief about the
location of p we could economize during data collection somewhat
by choosing p̃ to be near our belief, bearing in mind that the close p̃
is to 0.5, the larger our sample size (and smaller our observed moe)
will be.

Example 5

Jack Johnson and John Jackson are running for mayor of New New
York. The Johnson campaign conducts a survey of voters to deter-
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mine who they support in the upcoming election.

1. The Johnson campaign will be constructing a 95% CI and does not
want the moe to exceed 0.03 (or 3%). What sample size does the
campaign need to achieve this?

2. In aa sample of 1068 New New York voters, 560 reported they
planned to vote for Jack Johnson. Construct a 95% CI for the pro-
portion of voters supporting Johnson. Based on the CI, who is
winning?
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suppressPackageStartupMessages(library(Hmisc))

ceiling((qnorm(.975) * 0.5 / 0.03)^2) # Sample size

## [1] 1068

binconf(560, 1068, alpha = 0.05, method = "wilson") # CI

## PointEst Lower Upper

## 0.5243446 0.4943595 0.5541551

Section 3: Intervals Based on a Normal Population Distribution

From this point on in the chapter, we will assume that our data is an
i.i.d. random sample from a Normal distribution with unknown mean
and standard deviation. The intervals mentioned in Section 2 work
for any underlying distribution so long as n is large enough. Here,
we want intervals for when n is not considered large. The procedures
mentioned in this section often work fine when n is large and the
data doesn’t follow a Normal distribution, though.

We start with the following theorem:

Theorem 1. Suppose X̄ is the sample mean of n i.i.d. Normal random
variables with mean µ and S is the sample standard deviation. The random
variable

T =
X̄− µ

S/
√

n

follows a t distribution with ν = n − 1 degrees of freedom (denoted
T ∼ t(n− 1)).

The t(ν) distribution14 is a probability distribution with the fol- 14 This distribution is often called
Student’s t distribution in honor of
the pseudonym of William Gosset.
Gosset was employed by Guinness
(the brewer), and at the time Guinness
was engaged in a program to make
beer brewing scientific. Eventually the
experiments Guinness’s burgeoning
R & D department wanted to conduct
required statistical methods that did
not yet exist, so Gosset, then one of
their brewers, began studying statistics
and mathematics to develop methods
for addressing Guinness’s problems.
Gosset’s work was innovative and
Guinness allowed him to publish his
results in journals, but in order to not
attract the attention of rival brewers,
Gosset published under the pseudonym
“Student”. [Box, 1987]

lowing properties:
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The t distribution depends on a parameter known as the degrees
of freedom (df). This name comes from the fact that among the n
deviations X1 − X̄, . . . , Xn − X̄, the condition ∑n

i=1(X1 − X̄) = 0
means only n− 1 of these deviations are freely determined.

The t critical value tα,ν satisfies

Table A.5 gives critical values for the t distribution for various α

and ν.
Confidence intervals based on the t distribution resemble those

from the previous section, but with zα replaced with tα,n−1.

We can get confidence bounds rather than confidence intervals by
replacing ± with either + or − and tα/2,n−1 with tα,n−1.

Since we assume the data follows a Normal distribution, we
should check that this assumption is reasonable for our dataset. Tech-
niques for checking the normality assumption range from probability
plots to box plots to statistical tests. Use whatever method you prefer.

Example 6

Assume that the diameter of the ball bearings from Example 3 follow
a Normal distribution. Compute the requested CI but using the t
distribution. Compare to the CI found in Example 3.
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(m2 <- qt(0.975, df = n - 1) * s / sqrt(n)) # moe

## [1] 0.02689175

c(xbar - m2, xbar + m2)

## [1] 10.46111 10.51489

There are other satistical intervals than confidence intervals. A
prediction interval (PI) is an interval intended to describe the range
of values that will likely include a future observation. If we denote
our future observation with Xn+1 the interval (l(x1, . . . , xn), u(x1, . . . , xn))

is a 100(1− α)% PI if

For Normally distributed data our PI is given below:

Again, we can get formulas for prediction upper bounds or predic-
tion lower bounds with the usual substitutions.

Example 7

Over the past 121 days, the daily percentage change of the price of
the stock with ticker symbol CGM had the following sample mean
and standard deviation:

mean(cgm)

## [1] -0.005115001

sd(cgm)

## [1] 0.0922781
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A look at these daily returns’ probability plot suggests that we
can reasonably assume that the price fluctuations follow a Normal
distribution15: 15 Actual asset price fluctuations are

usually not Normally distributed. In-
stead, asset price fluctuations exhibit
“heavy tails”; that is, extreme price
movements are far more likely than the
Normal distribution would suggest.
Nevertheless, many models in finance
for asset prices assume that price fluctu-
ations follow a Normal distribution. See
Mandelbrot and Hudson [2007] to learn
more.

qqnorm(cgm)

qqline(cgm)
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Construct a 99% prediction lower bound for price movements.
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mean(cgm) - sd(cgm) * qt(.99, df = length(cgm) - 1 * sqrt(1 + 1/length(cgm)))

## [1] -0.2226907

Confidence intervals are meant to capture the mean and prediction
intervals are meant to capture future values. Tolerance intervals are
intervals such that at least k% of the population should be between
the bounds of the interval; this statement is made with confidence
level 100(1− α)%16. 16 For example, we may have an interval

such that, with 95% confidence, 99% of
the population is within the bounds of
the interval

The visualization of what is done by a tolerance interval is given
below:

Tolerance intervals take the form

We still have the obvious translation to tolerance bounds. Toler-
ance critical values are given in Table A.6 in the textbook.

Example 8

In light of previous studies, management has instructed the assem-
bly line producing 10mm ball bearings to retool. After the retooling
a sample of 50 ball bearings is produced by the line. Management
will be satisfied if 99% of ball bearings produced by the line have a
diameter that is within 0.1mm of the specified diameter of 10mm.
Construct a 99% tolerance interval for the diameter of the ball bear-
ings that is correct with 95% confidence, using the following data.

bearings2

## [1] 10.001461 10.034805 10.014253 9.955770

## [5] 10.012418 9.975701 10.000594 10.000315

## [9] 10.010690 10.004044 10.015320 10.014393
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## [13] 9.959830 9.987546 9.941776 10.026255

## [17] 10.025361 10.002873 10.019028 10.056476

## [21] 10.037196 10.004245 10.037012 9.974021

## [25] 10.039246 9.993619 9.996703 9.980263

## [29] 9.987879 9.942542 9.991442 9.941127

## [33] 9.975634 9.984178 9.989484 10.032692

## [37] 9.979320 9.977702 10.010261 10.034477

## [41] 10.004526 9.998308 9.992430 9.979205

## [45] 9.966931 9.919507 9.969121 9.989352

## [49] 10.032301 9.984713

qqnorm(bearings2)

qqline(bearings2)
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mean(bearings2)

## [1] 9.996087

sd(bearings2)

## [1] 0.02894869
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# For constructing tolerance intervals

suppressPackageStartupMessages(library(tolerance))

normtol.int(bearings2, alpha = .05, P = 0.99, side = 2)

## alpha P x.bar 2-sided.lower

## 1 0.05 0.99 9.996087 9.905473

## 2-sided.upper

## 1 10.0867

What do you do when you don’t have Normally distributed data
and n is not large? This depends on what you are attempting to do.
Some procedures, such as the t procedures for constructing confi-
dence intervals, are robust to non-normality in some contexts; that is,
failure of holding to the assumption does not seem to change the end
result very much. But prediction intervals and tolerance intervals are
not robust to the normality assumption and you may need to an in-
terval constructed for a more appropriate distribution. Bootstrapping
and other non-parametric procedures (not discussed in this course)
could also provide a solution. Perhaps consider reading the book
Hahn and Meeker [2011] to learn about other intervals that may be
useful for your problem.

Section 4: Confidence Intervals for the Variance and Standard De-
viation of a Normal Population

We may be interested in constructing a confidence interval for the
population variance σ2 or standard deviation σ. We will be keeping
the assumptions made in Section 3; in fact, those assumptions are
more crucial. Not only are the procedures I will suggest not robust
to the Normality assumption, if our data isn’t Normally distributed,
we may not even consider σ a good measure of spread in the data
(especially if our underlying distribution is not symmetric).

Theorem 2. Suppose X̄ is the sample mean of n i.i.d. Normal random
variables with mean µ and S2 is the sample variance The random variable

(n− 1)S2

σ2 =
1
σ2

n

∑
i=1

(Xi − X̄)2

follows a χ2(n− 1) distribution.

Let χ2
α,ν satisfy
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We can derive the CI for σ2 by working with

The resulting CI is given below:17 17 Notice this is not an equal-tail inter-
val!

We can get a CI for σ by taking the square root of the lower and
upper bounds. We can get one-sided intervals by using either the
upper or lower bound exclusively and replacing α/2 with α.

Example 9

We have the following returns from the previous ten days of the stock
with ticker symbol CGM:

cgm2 <- c(-0.2264, 0.0188, -0.0496, 0.1990, 0.1941,

-0.0219, -0.0177, 0.0847, 0.0167, -0.0736)

Based on the plot below the returns seem to follow a Normal
distribution:

qqnorm(cgm2)

qqline(cgm2)
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The standard deviation and variance of the stock’s daily returns
are given below:

var(cgm2)

## [1] 0.01594101

(vol <- sd(cgm2))

## [1] 0.1262577

Construct a 90% CI for the true σ18 of the stock’s returns. 18 In finance, σ is frequently referred to
as the volatility of the asset’s price.
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n <- length(cgm2)

(l <- (n - 1) * vol^2 / qchisq(.05, df = n - 1,

lower.tail = FALSE)) # Variance lower bound

## [1] 0.008479775

(u <- (n - 1) * vol^2 / qchisq(1 - .05, df = n - 1,

lower.tail = FALSE)) # Upper bound

## [1] 0.04314715

c(sqrt(l), sqrt(u)) # Bounds for the standard deviation

## [1] 0.0920857 0.2077189
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