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Introduction

Karl Pearson, perhaps the first mathematical statistician, pro-
posed the modern view that the objective of science is to estimate
the parameters of a probability distribution that generates datasets
[Salsburg, 2002]. Statistics has come a long way since Karl Pearson’s
methods, and in this chapter (where we finally leave our study of
probability behind to dive into statistics) we see how to compute
estimates for distribution parameters.

Initially there are many statistics competing to estimate some
quantity; for example, both the sample mean and sample median
could estimate the parameter µ of the Normal distribution. In the
first section, we see general principles used to evaluate estimators. In
the second section, we see methods for generating estimates.

Section 1: Some General Concepts of Point Estimation

There are many parameters we may try to estimate, such as

• µ from the distribution EXP(µ)
• µ and σ from the Normal distribution N(µ, σ)

• α and β from the Weibull distribution WEI(α, β)

• And others

We want to discuss parameters and estimators using a general
language. Let θ be a parameter, and θ̂ is an estimator for θ. Often the
notation θ̂ refers to both a random variable and a specific point esti-
mate.1 We call θ̂ a point estimator for θ; we use the point estimator 1 I’ve said that usually capital letters

refer to random variables; in this case,
we would use Θ̂ to refer to the random
version of the estimator, and θ̂ to refer
to a specific number computed from an
observed, no-longer-random dataset.
However, this is not conventional;
writers are lazy and don’t like writing
Θ̂, preferring θ̂ instead. Readers can
usually tell whether the writer is
referring to a random number or a
computed number. As I said, capital
letters usually refer to random variables;
this is one of the (many) exceptions.

to compute a point estimate, a single plausible value for θ.
Examples of point estimators and the parameters they estimate

include:
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An estimator θ̂ is an unbiased estimator for θ if

Example 1

Show that the sample mean X̄ computed from iid data is an unbiased
estimator for the population mean µ.

Example 2

Suppose that X1, . . . , Xn is an iid sample from a Bernoulli distribution
with parameter p. Show that the sample proportion is an unbiased
estimator for p.

Example 3

Show that the estimator σ̂2 = 1
n ∑n

i=1(Xi − X̄)2 computed from an iid
sample X1, . . . , Xn with Var (X1) = σ2 is not an unbiased estimator for
σ2.
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Example 4

Show that the sample variance S2 = 1
n−1 ∑n

i=1(Xi − X̄)2 computed
from an iid sample X1, . . . , Xn with Var (X1) = σ2 is an unbiased
estimator for σ2.2 2 It’s tempting to think that the sample

standard deviation S =
√

S2 is an
unbiased estimator for σ, but this is not
the case; S is a biased estimator for σ,
with a tendency to underestimate the
true σ. However, S is justified by other
criteria. In fact, estimation of σ presents
a good case study in why unbiasedness,
as a criterion for good estimators, may
be overrated (see Wikipedia [2018]).

Example 5

Suppose X1, . . . , Xn is an iid sample from an exponential distribution
with mean µ. Recall that the rate parameter of an exponential distri-
bution is λ = 1

µ . Show that the estimator λ̂ = 1
X̄ is not an unbiased

estimator for µ.
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Suppose we want to estimate µ for Normally distributed data. X̄
is an unbiased estimator for µ. So is X̃. In fact, X1 is an unbiased es-
timator for µ since E [X1] = µ. The last estimator is clearly silly, but
not because of the unbiasedness criterion. Instead, the last estimator
violates the minimum variance criterion, which states that the stan-
dard error (the standard deviation of θ̂, referred to as σθ̂) should be as
small as possible, if not the smallest of all possible estimators. In this
case, of the estimators I just mentioned, X̄ has the smallest variance,
and X1 the largest. In fact, X̄ is the minimum variance unbiased es-
timator (MVUE) for µ in this context, having the smallest variance
of any unbiased estimator of µ. Likewise, p̂ is the MVUE for p, when
the data was drawn from a Bernoulli distribution with parameter p.

The minimum variance and unbiasedness criteria are not neces-
sarily in agreement; there may be an estimator that has a smaller
variance than all unbiased estimators and is close to the true value
of θ when sample sizes are large. We may relax the unbiasedness
criterion and instead require consistency, which says that a law of
large numbers applies to the estimator; that is, θ̂n → θ in some sense
as n grows (with θ̂n being an estimator for θ computed from n data
points). The only estimator mentioned so far that isn’t consistent is
X1; the rest (including the sample standard deviation) are consistent
estimators.

Sometimes an estimator performs well in some circumstances but
poorly in others; for example, X̄ estimates the location of a distribu-
tion well when data is drawn from a Normal distribution but poorly
when computed from data drawn from a distribution with heavy
tails, such as the Laplace or Cauchy distributions. We call an estima-
tor robust when the estimator performs well in multiple scenarios.
Trimmed means, for example, as seen as robust estimators for the
location of a distribution.

The standard error of an estimator is defined below:

The standard error can depend on unknown parameters. In that
case, we may report an estimated standard error, where estimates
for the unknown parameters are used in those parameters’ place.
Estimates of standard errors are often reported with point estimates
to give a sense of how accurate the point estimate is. We will see how
standard errors are often used to compute plausible regions for the
location of θ in Chapter 7.
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Example 6

Suppose Var (X1) = σ2 and the dataset X1, . . . , Xn is an iid dataset.
What is the standard error of X̄? Use this to give estimates of stan-
dard errors for data drawn from Normal, exponential, and Poisson
distributions.

Example 7

Suppose X1, . . . , Xn is a Bernoulli dataset. What is the standard error
of p̂? What is an upper bound on the standard error? What is an
estimate of the standard error?
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Bootstrapping is a computer intensive technique for computing
the standard errors of estimates. Bootstrap estimates of standard er-
rors are often robust and allow us to obtain estimates when formulas
for those errors would be intractable.

Suppose that x1, . . . , xn is a sample of iid data drawn from a distri-
bution with pdf f (x; θ). The bootstrap procedure works as follows:

1. Estimate θ with θ̂.
2. Choose a large number B.
3. Generate B samples of data Xb1, . . . , Xbn (1 ≤ b ≤ B) from the

distribution with pdf f (x; θ̂), and from each of them compute
θ̂∗b , the estimate of θ using xb1, . . . , xbn; you should now have a
collection of data θ̂∗1 , . . . , θ̂∗B

4. Compute θ̄∗ = 1
B ∑B

b=1 θ̂∗b ; this is the bootstrap estimate of θ

5. Compute σ̂θ̂ =
√

1
B−1 ∑B

b=1
(
θ̂∗b − θ̄∗

)2
; this is the bootstrap stan-

dard error estimate

Example 8

In this example I demonstrate how to estimate the standard error
of the estimate of the sample standard deviation computed from
Normally distributed data.

n <- 100 # Our sample size is 100

B <- 500 # The bootstrap sample size is 500

dat <- rnorm(n, mean = 10, sd = 5) # Our dataset

(s <- sd(dat)) # Estimated standard deviation

## [1] 4.891413

boot_s <- replicate(B, {

boot_dat <- rnorm(n, mean(dat), s)

sd(boot_dat)

})

plot(density(boot_s))
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mean(boot_s) # The bootstrap estimator of s

## [1] 4.880043

sd(boot_s) # The bootstrap-estimated standard error of s

## [1] 0.3379874

If we don’t want to assume that the data came from a particular
sample, we can sample instead from the data itself, doing so with
replacement. When doing this, we are said to be sampling from the
empirical cdf, or empirical distribution, of the data; that is, we are
sampling from the distribution we observed, which serves as an
estimate of the population distribution that generated the data.

Example 9

This example demonstrates obtaining a bootstrap estimate of the
standard error of the standard deviation without assuming that the
data was drawn from a particular distribution, using the resampling
technique.

boot_s_resample <- replicate(B, {

boot_dat <- sample(dat, n, replace = TRUE)
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sd(boot_dat)

})

plot(density(boot_s_resample))
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mean(boot_s_resample)

## [1] 4.873325

sd(boot_s_resample)

## [1] 0.3817121

Section 2: Methods of Point Estimation

Assume again that X1, . . . , Xn is an iid sample from some distribu-

tion. E
[

Xk
1

]
is called the kth population moment, and 1

n ∑n
i=1 Xk

i is

called the kth sample moment. As an example, X̄ is the first sample
moment and E [X1] = µ is the first population moment.3 A sample 3 σ2 is related to the second sample

moment but isn’t the second moment
itself. The same goes for S2 and sample
moments.

moment is an unbiased estimator for the corresponding population
moment.

Suppose a distribution has θ1, . . . , θK parameters we wish to esti-
mate. Below is the method of moments estimation procedure:

1. Compute the first K population moments, m1, . . . , mK in terms of
the unknown parameters θ1, . . . , θK

2. Solve for θ1, . . . , θK so they are expressed in terms of m1, . . . , mK
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3. Replace m1, . . . , mK with M1, . . . , MK, the first K sample moments;
the resulting expressions are θ̂1, . . . , θ̂K, the method of moments
estimators (MMEs) for the desired parameters.

Method of moments estimation produces consistent estimators
for desired parameters using an intuitive procedure. There is no
guarantee the estimators are unbiased (in fact they likely are not
unbiased) and they usually are not minimum-variance estimators.
In fact, in the context the estimators were computed, there likely is
an estimator that is consistent and with a smaller variance than the
MMEs That said, method of moment estimators are often robust and
more tractable than other estimators while being easy to compute.4 4 Method of moments estimation is

often used in economics due to their
simplicity and robustness.

Example 10

What is the method of moments estimator for the population vari-
ance?

Example 11

What is the MME for the rate parameter λ = 1
µ for an exponential

distribution?
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Example 12

Let X1, . . . , Xn be an iid sample from the distribution UNIF(a− b, a +
b). What are the MMEs for a and b?
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Example 13

Consider a shifted exponential distribution that depends on two
parameters µ and γ such that X1 − γ ∼ EXP(µ). What are the MMEs
for µ and γ?
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To illustrate the principle of the next estimation method, suppose
I flip a coin and record whether I get heads or not. The coin could
be a fair coin or a biased coin, where the probability of getting heads
is p = .9. When I flip the coin and observe an outcome, how will I
decide which coin was flipped?

Consider the following table:

After flipping the coin and observing the outcome, I look to the
table to see what the probability of that outcome was under each
scenario of coin choice. The maximum likelihood principle says that I
should choose the coin that maximizes these probabilities.

Let X1, . . . , Xn have the joint pmf/pdf f (x1, . . . , xn; θ1, . . . , θK).
When x1, . . . , xn are the observed values of the dataset, this function
is called the likelihood function when it is regarded as a function of
θ1, . . . , θK, as expressed below:

When the random variables X1, . . . , Xn are iid, the likelihood func-
tion is

The maximum likelihood estimators (MLEs) θ̂1, . . . , θ̂K are the
values that maximize the likelihood function. They are interpreted
as the most likely values of the parameters given the data we saw, in
that we were most likely to see the values of the data if those were
the parameters.

Usually the likelihood function is hard to maximize on its own, so
instead we maximize the log-likelihood function

Since ln(x) is an increasing function, both functions have the same
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maxima.

Example 14

Consider an iid dataset of Bernoulli data. What is the maximum
likelihood estimator of the sample proportion p?

Example 15

Consider an iid dataset drawn from the EXP(µ) distribution. Find the
MLE for µ.
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Example 17

Consider an iid dataset drawn from the N(µ, σ2) distribution. Find
the MLE of µ and σ2.



chapter 6: point estimation 15

Example 18

Consider an iid dataset drawn from the UNIF(0, θ) distribution. Find
the MLE of θ.

MLEs are consistent estimators and are either minimum variance
or almost minimum variance, with these properties improving as
the sample size grows large. Additionally, the MLE of a function of
parameters h(θ1, . . . , θK) is the value of that function when applied to
the MLEs h(θ̂1, . . . , θ̂K).

Example 19

Expanding on Example 15, find the MLE of the rate parameter λ = 1
µ

of an exponential distribution.

Example 20

Expanding on Example 20, find the MLE of the standard deviation σ

of a Normal distribution.
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Maximum likelihood estimation is an example of a general ap-
proach to parameter estimation, where a “good” estimate is an es-
timate that optimizes some objective function. MLEs maximize the
likelihood function. Least-squares estimators minimizes the sum of
square errors, ∑n

i=1
(

xi − x̂i(θ̂1, . . . , θ̂K)
)2

(with x̂i(θ̂1, . . . , θ̂K) being
the predicted value of xi based on the parameter estimates), and least
absolute deviation estimators minimize ∑n

i=1
∣∣xi − x̂i(θ̂1, . . . , θ̂K)

∣∣.
M-estimators maximize ∑n

i=1 ρ(xi; θ̂1, . . . , θ̂K), where the “objective
function” ρ is chosen to give the resulting estimator desired robust-
ness properties.

Example 21

Consider the following dataset:

x <- c(12.2, 18.3, 6.0, 5.9, 13.5)

The predicted value µ̂ of the data is the least absolute deviation
estimator. Find the value of the estimator.

lad_penalty <- function(mu) {sum(abs(x - mu))}

lad_penalty <- Vectorize(lad_penalty)

curve(lad_penalty(x), 3, 20)
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optim(0, lad_penalty)

## Warning in optim(0, lad_penalty): one-dimensional optimization by Nelder-Mead is unreliable:

## use "Brent" or optimize() directly

## $par

## [1] 12.3

##

## $value

## [1] 20

##

## $counts

## function gradient

## 24 NA

##

## $convergence

## [1] 0

##

## $message

## NULL

median(x)

## [1] 12.2
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