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Introduction

THIS CHAPTER IS DEVOTED to basic statistical ideas and statistical
summaries. We start with describing what statistics is, does, and
what it uses. Next we see graphical and tabular methods for describ-
ing distributions. The last two sections discuss measures of location
and measures of spread, respectively.

Section 1: Populations, Samples, and Processes

Data is a collection of facts. A population is a group of interest. If we
collect data for the entire population, we have conducted a census.
Usually, though, we collect data for a subset of a population, called

a sample. Our objective is to use the data in the sample to reach
conclusions about the population as a whole.

In a sample we have observations, individual data points that
consist of variables, or quantities/characteristics of interest. Univari-
ate data records the value of only one variable for each observation.
Multivariate data records the value of multiple variables for each ob-
servation. Bivariate data is a special case of multivariate data; there
are two variables quantified.

Categorical variables take values from a finite number of possibili-
ties. Quantitative variables, however, take numerical values.!

Modern statistics depends heavily on probability theory. Probabil-
ity is the field of mathematics that describes the behavior of objects in
the presence of uncertainty (which we refer to as randomness). The
diagram below illustrates the relationship between probability and
statistics with relation to samples and populations.

* This may be the simplest dichotomy of
types of data. Stevens [1946] classifies
data into nominal, ordinal, interval,
and ratio types, the first two breaking
up the “categorical” data type and the
second two breaking up the “quantita-
tive” data type. The data types allow
for different operations to be defined
for different data; ordinal data allows
for order relations, interval for addition
and subtraction, and ratio allows for
division and multiplication.
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How we define a population depends heavily on our problem. In
enumerative studies, the population is a fixed, finite, tangible group
that presently exists. In analytic studies the population may not
presently exist.

Statistics depends crucially on how data is collected in survey-
style, observational studies. If data is collected poorly, the results of
analysis cannot be trusted.

Below are two approaches for collecting data correctly:

® In a simple random sample (SRS), each member of the population
of interest is eligible to be randomly selected to be included in the
sample. The usual analogy is that each individual in the popula-
tion is written on a piece of paper and put in a hat; then, slips of
paper are randomly chosen in the hat and those individuals are

chosen to be in the sample.* The statistical methods seen in this 2 For example, a candidate for public
office may use the registered voter list
to randomly select voters in the area
the candidate will represent and ask
them who they plan to vote for in the

class are appropriate for simple random samples only.

¢ In stratified sampling, the population is divided into observable

strata. A SRS is then selected from individuals in each strata.3 upcoming election.
3 For example, in a national election,
Convenience sampling selects individuals in a way that is not an equal number of voters are selected
completely random (in the sense that not all individuals from the from each state to participate in a poll.

population are equally likely to be selected, and the procedure is not
intentionally stratified). The results of convenience samples cannot be
trusted. Statistical descriptions of error account only for error due to
randomness, not due to bad sampling procedures.

Section 2: Pictorial and Tabular Methods in Descriptive Statistics

A distribution describes what values a variable takes and how fre-
quently it takes them. This section describes techniques for visual-
izing distributions of univariate data. Visualization is an important
first step in a statistical project, as it reveals patterns that are difficult
to describe using numbers only, and could suggest what statistical
procedures are appropriate.

In statistics, n usually denotes the sample size, or the number
of observations in the dataset. To denote the values of the dataset’s
variable, we often use the notation x1, xy, ..., X;;, where x; is the ith
observation of the dataset. Unless otherwise stated this notation says
nothing about the dataset’s values. That is, the data is not assumed to
be ordered.

Stem-and-Leaf Plot

The first visualization of data is a stem-and-leaf plot. This plot is
constructed using the following steps:
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1. Select the number of leading digits to be the stem values. The
remaining digits are the leaf values.

2. Draw a vertical line and list the stem values to the left of this line,
in order.

3. Record the leaf of each observation in the row corresponding to its
stem value. (Computers often order the leaf values, but when done
by hand this is not necessary.)

4. Somewhere in the display, indicate the units of the stem and
leaves. (For example, the stems start at the tens place, and the
leaves start at the ones place.)

Example 1

The following is a subset of Macdonell’s data on height and finger
length of criminals imprisoned in England and Wales [Macdonell,
1902]. Here I report only the (rounded) heights of the subset.*

height <- ¢(5.55, 5.30, 5.63, 5.30, 5.13,
5.05, 5.38, 5.96, 5.21, 5.38)

Use this dataset to construct a stem-and-leaf plot.

+ Throughout this course I will be
including R code that answers the
questions I ask. This is so you can see
how to do these techniques in R. You
are not expected to understand any of the
code at the start of the course! 1 do not
attempt to simplify the code to account
for what you have learned so far in the
lab. The more you see R code, though,
the more familiar and less scary it will
become, and I invite you to revisit these
lectures at the end of the course and
see how much you can understand.
Additionally, I hope some of my code
will stimulate your curiosity, including
the more complicated code.
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stem(height, scale = 2)

##

## The decimal point is 1 digit(s) to the left of the |
##

## 50 | 5
## 51| 3
## 52 |1
## 53 | 0088
## 54 |

## 55| 5
## 56 | 3
# 57 |

## 58 |

## 59| 6

A dotplot represents each data point as a dot along a real number
line, putting the point on the line according to its value. If two points
would be almost overlapping, they would instead be stacked.

Example 2

Using the data in Example 1, create a dotplot.
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stripchart(height, method = "stack", pch = 19, offset = 0.5, at = 0)

A quantitative variable is discrete if its possible values are count-
able. It is continuous if possible values consist of entire intervals of
the real number line (which could be the whole line, in principle).> 5 As a rule of thumb, discrete variables
The frequency the value of a variable occurs is the number of arise from counting, while continuous
variables arise from measurements.
times that value was seen in a dataset. For discrete variables it’s rea-
sonable to list the frequency of each observed value, but for continu-
ous variables this is not reasonable. Instead, for continuous variables,
we list the frequency of a bin, which is a range in which a datapoint
could be. We would then count how many data points fell within
that range.
The relative frequency is the frequency a value occured divided

by the number of data points. (This is defined analogously for contin-
uous variables.) That is:

A frequency distribution is a tabulation of frequencies or relative
frequencies.
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Example 3

A statistically minded parent tracks the number of points scored by
his daughter’s little league soccer team during regular season. Below
is the dataset.

soccer <- ¢(9, 6, 5, 5, 5, 6, 2, 8, 3, 4, 8, 1)

Construct a frequency distribution for this dataset.
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table(soccer)

## soccer
# 12345689
# 11113221

When working with continuous data we need to construct bins
when creating a frequency distribution, and list the frequency each
bin occurs. How do we do this?

1. Decide on the number of bins. There are rules of thumb for doing
this, such as choosing approximately /7 bins.®

2. Divide the segment of the number line where your data lies into
that many equal-length bins.”

3. Depending on where each datapoint falls, assign it to a bin. If it
falls on a border between bins, assign it to the bin on the right. (In
other words, bins are right-inclusive.)

4. Construct a frequency distribution for the bins.

Example 4

Using the data in Example 1, construct a frequency distribution.
length(height)

## [1] 10

Once we have a frequency distribution, we can construct a his-
togram, a plot for visualizing the distribution of quantitative data.
Do the following:

¢ Actually, n'/% may work better.

7Some people consider bins of unequal
length. When constructing a histogram,
do not do this. It makes the histogram
more difficult to read correctly.
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1. Draw a number line and mark the location of the bins. For dis-
crete data, center the bins on the corresponding value.

2. Por each class, draw a bar extending from the number line to
either the frequency or relative frequency of the number/bin. Do
this for each bin.

Example 5

Draw a histogram for the dataset in Example 3 (the soccer dataset).

8



CHAPTER 1: OVERVIEW AND DESCRIPTIVE STATISTICS 9

hist(soccer, breaks = min(soccer):max(soccer + 1) - 0.5)

Histogram of soccer

S _
™
> 9
S
5}
3 —
o
G
LL —
o _|
© | | | |
2 4 6 8
soccer
Example 6

For the dataset in Example 1 (the height dataset), create a histogram.
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hist(height)
Histogram of height
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When looking at plots visualizing distributions we are looking for
certain qualities. We want to decide:

¢ Is the data unimodal (only one “peak”)? Is it bimodal or multi-
modal (multiple “peaks”)? Below are illustrations.

¢ Is the data positively-skewed? Negatively skewed? Symmetric?
Below are illustrations.
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e Are there outliers, points that are distant from the rest of the data?
* How spread out is the data?

A bar plot is a method for visualizing categorical (sometimes
referred to as qualitative) data. To construct a bar plot:

1. List each possible value of the variable and how frequently each
value is taken.

2. Draw a horizontal line and along that axis mark each possible
value of the variable. The vertical axis will correspond to different

possible frequencies.
3. Draw a bar for each category extending to the category’s observed

frequency.

Example 7

Below is a dataset showing the frequency of the class of passengers
aboard the Titanic who survived her sinking.

(t_survive_class <- apply(Titanic[, , , 2], 1, sum))

## 1st 2nd 3rd Crew
## 203 118 178 212

Create a bar plot for the frequency of each class’s survival.

11
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barplot(t_survive_class)
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Section 3: Measures of Location

While visual summaries of data are nice, quantitative summaries are
still important for describing datasets. We start with measures of
location, which tell us where a dataset is located along the number
line.

The first and most common measure of location for a sample is the

sample mean®, defined for a dataset xy, ...., x,, below: 8 There is a physical interpretation of
the mean; if you were to construct a dot
plot of the data and made that plot a
physical object, with a weight for each
dot and the number line a teeter-totter,
the mean would be the point where the
teeter-totter balances.

The sample proportion for categorical data is defined below:
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Example 8

What is the average number of points your daughter’s soccer team
scores? (Here’s the dataset, as a reminder.)

soccer

## [1l1 965556283481
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mean (soccer)

## [1] 5.166667

Let’s suppose that 1,19, ..., 7, is the ordered dataset corresponding
to the dataset x4, ..., x5, so thatr; < r, < ... < ry. The sample

median? is the number that splits this dataset in half. It is defined 9 The physical/geometric interpretation
of the median is obvious; when you
arrange the data in order, it splits the
data in half.

below:

Example 9

Find the median of the first eleven games of your daughter’s soccer
team. (I have ordered the dataset for you below.)

sort(soccer[1:11])

## [1] 23455566889
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median(soccer[1:111]1)

## [1] 5

Let a € [0,1]. The a x 100th percentile is the number such that
roughly a x 100% of the data in 74, ..., 7, lies to the left of that num-
ber. Perhaps the most common percentiles are the quartiles. The
first quartile is the 25th percentile, and the third quartile is the 75th
percentile. The second quartile is the median (the 5oth percentile).™

Here is a procedure for finding quartiles:'*

1. Find the median of the data rq, ..., 7.

2. Split the dataset into two datasets at the median. If n is odd, re-
move the datapoint corresponding to the median.™?

3. The median of the lower dataset is the first quartile, and the me-
dian of the upper dataset is the third quartile.

* The oth and 4th quartile are the
minimum and maximum of the dataset.
All quartiles together form the five-
number summary of a dataset.

' Actually, this is a procedure for
finding what your textbook refers to as
fourths. The difference is negligible so I
use the terms interchangeably.

> Not everyone does this, so software
might give a different answer when
computing medians. The difference is
usually negligible.
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Example 10

Find first and third quartiles for your daughter’s first eleven soccer
games.

Example 11

Find the 10th and goth percentiles of the height data. (I have listed
the data for you below, in order.)

sort(height)

## [1] 5.05 5.13 5.21 5.30 5.30 5.38 5.38 5.55
## [9] 5.63 5.96



CHAPTER 1: OVERVIEW AND DESCRIPTIVE STATISTICS

quantile(soccer[1:11], c(.25, .75))

## 25% 75%
## 4.5 7.0

quantile(height, c(.1, .9))

## 10%  90%
## 5.122 5.663

The sample mean X is sensitive to outliers; that is, outliers in the
dataset can have a profound effect on the sample mean. On the other
hand, the sample median ¥ is insensitive to outliers, since outliers
almost never alter the value of the sample median.

Example 12

Compute both the sample mean and the sample median when the
value of your daughter’s 12th soccer game is one of the following:

(outlier_game <- c(soccer[12], soccer[12] + 3, soccer[12] * 2, max(soccer) * 2))

## [1] 1 4 2 18

17
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# This loop will compute each of the requested values. I will display the result
# in a table, which is formed when the loop runs.
soccer_tab <- sapply(outlier_game, function(g) {

dat <- c(soccer[1:11]1, qg)

return(c(g, median(dat), mean(dat)))
})
soccer_tab <- t(soccer_tab) # Transpose matrix (I don’t want this shape)
# Row/column naming
rownames (soccer_tab) <- l:nrow(soccer_tab)
colnames(soccer_tab) <- c("Outlier Value", "Median", "Mean")
round(soccer_tab, digits = 2)

##  Outlier Value Median Mean

## 1 1 5.0 5.17
## 2 4 5.0 5.42
## 3 2 5.0 5.25
## 4 18 5.5 6.58

There is in fact a relationship between the mean and median
depending on whether the data is negatively-skewed, positively-
skewed, or symmetric, illustrated below:

The median is preferred for skewed data while the mean is pre-
ferred for symmetric data. (It is better behaved and has great analytic
results.)

So far I've discussed only sample means and medians but popu-
lation means, medians, and percentiles are also defined. They have
similar properties to their sample analogues.

A compromise between the mean’s sensitivity to outliers and the
median’s ignorance of nearly all of the dataset is the trimmed mean,
which I denote by i (1904)- The trimmed mean is the mean of the

data when 100a% of the is removed from each end of the dataset.’3 5 It may not be possible to remove
100a% of the data exactly. You can
approximate it with interpolation.

18



CHAPTER 1: OVERVIEW AND DESCRIPTIVE STATISTICS 19

Example 13

Find %y;(19) for the height data.
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mean (height, trim = 0.1)

## [1] 5.36

Section 4: Measures of Variability

Consider the following three datasets:

Oy O Ul A
N oNul N
O O W R

Construct dot plots for each dataset, then compute the mean and
median of each dataset.

Now suppose each dataset represented waiting time (in min-
utes) for the red line train to arrive to take you home. Which dataset
would you prefer to see? Why?

The above example illustrates that measures of center are insuffi-
cient for describing a dataset. We also want a measure of variability,
which describes how “spread out” a dataset is.

How can we measure spread? This should be based on deviations.

The deviation of data point i is x; — X.
Compute } 1" ;(x; — X).

20
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This result suggests we should measure variability with some-
thing else. The most common measure for variability is the sample
variance and the sample standard deviation, defined below:

The sample standard deviation can roughly be interpreted as the

“typical” deviation of a datapoint from the mean.™4 % The sample mean is sensitive to
outliers. The sample standard deviation

. . ) . L. is more sensitive to outliers than the
population variance, c~, and the population standard deviation, sample mean.

o= Vo2.

Ideally you should use software or a calculator to compute the

There are population analogues to both of these quantities: the

sample variance, but in a pinch you can use this handy formula:

n

Sex =Y _(xi — %)%= lez — nx?

n
i=1 i=1

Example 14

Compute the sample variance and sample standard deviation of the
soccer game scores (listed below, as a reminder).



CHAPTER 1: OVERVIEW AND DESCRIPTIVE STATISTICS 22

soccer
## [11 965556283481
length(soccer)

## [1] 12

summary (soccer)

## Min. 1st Qu. Median Mean 3rd Qu.
## 1.000 3.750 5.000 5.167 6.500
#t Max .
##  9.000
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var(soccer)

## [1] 5.969697

sd(soccer)

## [1] 2.443296

Proposition 1. Lef xq, ..., X, be a sample and c a constant. Then:
1. If y; = x; +c forall i, sf =32

2. Ify; = cx; forall i, sﬁ = c?s2 and sy = |clsx

The fourth spread (also known as the inter-quartile range (IQR))
is the third quartile minus the first quartile; denote this with f;. This
is another measure of dispersion.

Example 15

Compute the fourth spread for the soccer game scores.

fs can be used for outlier detection. We may call an observation
that is further than 1.5f; from its nearest quartile a mild outlier, and
an observation that is more than 3f; away from the nearest quartile
an extreme outlier.

Example 16

Use the fourth spread to detect outliers in soccer game scores. What
is the minimum score needed for a data point to be a mild outlier?
Extreme outlier?

23
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A boxplot is a plot visualizing a dataset. A boxplot is created in
the following way:'>

1. Compute the minimum, maximum, median, first and third quar-
tiles for the dataset.

2. On a number line, draw a box with one end at the first quartile
and the other at the third quartile.

3. Within the box, draw a line at the median.

4. Extend a line from one end of the box to the minimum and a line
from the other end to the maximum. (These are called whiskers.)

Boxplots give both a sense of location and a sense of spread.
They’re especially useful when placed side-by-side; they then are
called comparative boxplots.

5 Often software will not extend the
whiskers of box plots to the extrema

of samples, instead ending at the
largest value that is not an outlier. The
outliers are then denoted with dots.

R, for example, does this by default.
While this is more informative it's more
difficult to do by hand. The instructions
provided here are good enough when
not using software.
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Example 17

The following dataset contains the tooth growth for guinea pigs given
vitamin C via orange juice at three different dosage levels.

suppressPackageStartupMessages (library(dplyr)) # Provides %>% operator

## Warning: package 'dplyr’ was built under R
## version 3.4.3

0J <- ToothGrowth %>% filter(supp == "0J") %>% select(len, dose) %>% unstack %>%
lapply(sort) %>% as.data.frame

## Warning: package 'bindrcpp’ was built under R
## version 3.4.3

names (0J) <- c(0.5, 1, 2)

0J

## 0.5 1 2
## 1 8.2 14.5 22.4
## 2 9.4 19.7 23.0
## 3 9.7 20.0 24.5
## 4 9.7 21.2 24.8
## 5 10.0 23.3 25.5
## 6 14.5 23.6 26.4
## 7 15.2 25.2 26.4
## 8 16.5 25.8 27.3
# 9 17.6 26.4 29.4
## 10 21.5 27.3 30.9

Construct a comparative box plot for the lengths. Compare.

25
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boxplot(len ~ dose, data = ToothGrowth %>% filter(supp == "0J"))
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