
Fluid Dynamics - Math 6750
Basic principles - Week 1

1 Fluids

Two of the state of all material, gas and liquid, are called fluids. Gas can be compressed much
more easily than liquid, i.e. they fill the container. Fluids do not hold their shape, they flow,
deform and take the shape of the surrounding container. A free surface is the interface between
a gas and a liquid.

The most distinctive property of fluids is its response to an applied force or stress (force
per area), e.g. shear or normal stresses. As long as the stress acts, a fluid element will continue
to distort. It will not recover its original shape.

2 Units

We will be using the SI system of units.

Quantity Dimension Units

Mass M kilogram
Length L mass
Time T second
Velocity L/T m/s
Acceleration L/T 2 m/s2

Strain rate (Velocity gradient) 1/T 1/s
Density M/L3 kg/m3

Force ML/T 2 Newton
Energy ML2/T 2 Joule
Power ML2/T 3 Watt
Stress M/L/T 2 Pascal
Viscosity M/L/T Pa · s
Kinematic viscosity L2/T m2/s
Surface tension M/T 2 N/m
Temperature K Kelvin

Table 1: Units and dimensions of common quantities.

3 The continuum approximation

There are two ways we can describe the motion of a liquid. In the first one (microscopic), we
can tract the motion of individual molecules of water and use the laws of physics to describe
their motions. This approach becomes computationally very expensive. For example, there are
55 moles per liter of water (H2O) and 1 mole consists of about 6(10)23 molecules. So there are
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about 330(10)23 = 3.3(10)25 water molecules per liter. Therefore, we adopt a second approach
(macroscopic). In this case, the fluid properties will be described by continuous functions
of a spatial point x and time t. Our goal is to derive partial differential equations (PDEs)
describing the motion and properties of fluids on the continuum level.

Microscopic Macroscopic

individual molecules infinitely divisible without change of character
many-body problems continuum
few thousands molecules limit of the mean of a quantity over the molecular fluctuations
short time large physical dimension
laws of dynamics laws of mechanics and probability
ε ∼ mean free path L: physical length of the fluid flow

Table 2: The continuum approximation

Any macroscopic quantity can be defined as an appropriate spatial average of molecular
quantities over a small enough volume V . For example, the velocity u is

u =
1

V

∫
V

wdV.

The above continuum approximation is valid if

ε� V 1/3 � L.

On the microscopic scale, all transports phenomena stems from statistical mechanics. On the
macroscopic level, transports mechanisms can be split into transport by mean of a continuum
variable (e.g. u) (also called convective processes) and transports resulting from molecular
fluctuations (also called diffusive processes). We will see that molecular fluctuations lead to
surface contributions and stresses.

4 Frames and flow map

Consider a region D ∈ R3 filled with a fluid.

Definition 1. Assume that at time t = 0, the location of a fluid particle is denoted by α. At
time t ≥ 0, the same fluid particle may be at location x = Φ(α, t). The function Φ(α, t) is
called the flow map, Φ : R3 × R→ R3.

We will assume that Φ is smooth and invertible for each t. Φ(α, t) being invertible means
that given a time t and spatial location x ∈ D, we can identify the unique α such that
α = Φ−1(x, t). We think of α as the label or color of the fluid particle. As a result, two fluid
particles with α1 6= α2 cannot be at the same x at the same t. Furthermore, since x = Φ(α, t)
is invertible, its Jacobian (determinant) is nonzero:

J =

∣∣∣∣ ∂(x1, x2, x3)

∂(α1, α2, α3)

∣∣∣∣ =


∂x1
∂α1

∂x1
α2

∂x1
∂α3

∂x2
∂α1

∂x2
α2

∂x2
∂α3

∂x3
∂α1

∂x3
α2

∂x3
∂α3

 6= 0.
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|J | represents the dilatation of an infinitesimal volume dV = dV (x) as it follows the motion
and the change in dV = dx is given by the usual change of coordinates formula.

Consider a region Ω0 ∈ D, a region of fluid at t = 0. We will consider the set (image under
the flow map, set of location at time t of fluid particles that were originally in Ω0 at t = 0)
and introduce the following notation:

Ωt = {x ∈ D : x = Φ(α, t) for some α ∈ Ω0} ≡ Ω(t) = Φ(Ω0, t).

Ωt is called a material volume, a volume moving with the fluid.

Definition 2 (Coordinates).

1. α is called a material or Lagrangian coordinate. It describes a particular fluid particle.

2. x is called a spatial or Eulerian coordinate. It describes a particular location in space.

For the Lagrangian description we start with a fluid element and follow it through the fluid.
The Lagrangian coordinate α need not be the initial position of a fluid element, although that
is the most common choice. Working in the Lagrangian frame has certain theoretical and
mathematical advantages, but it is often difficult to apply in practice since any measurements
in a fluid tend to be performed at fixed points in space as the fluid flows past the point. In the
Lagrangian system we use fluid particles, which are small parts of the fluid of fixed mass. They
are called particles in analogy with the dynamics of solid bodies. We follow an individual fluid
particle as it moves through the flow, and the particle is identified by its position at some ini-
tial time and the time elapsed since that instant. This particle description is the one normally
used in describing the dynamics of rigid bodies because the particles tend to be few in number
and easily identified. To describe a fluid flow, however, we need to follow many fluid particles,
and to resolve the smallest details of the flow we may need to follow a very large ODE, such
as Newton’s second law, and each equation is coupled to all the others, because the motion of
each particle will depend on the motion of all its neighboring particles. The solutions of these
coupled ODE’s are usually difficult to find because of their large number. The Lagrangian
approach, therefore, is not widely used in fluid mechanics, except in some problems such as in
tracking the dispersion of pollutants.

On the other hand, if we wish to observe fluid properties at a fixed location x as a function
of time, we must realize that as time evolves different fluid elements will occupy the location x.
This constitutes the Eulerian description which is the most commonly used way of describing
a fluid motion. In the Eulerian system we try to find a description which gives the details of
the entire flow field at any position and time. Instead of describing the fluid motion in terms
of the movement of individual particles, we look for a field description. In other words, we
search for a description that gives the velocity and acceleration of any fluid particle at any
point at any time. At first sight, this approach appears to be very straightforward. However,
we are no longer explicitly following fluid particles of fixed mass; at a given point in the flow,
new particles are arriving all the time. This makes it difficult to apply Newton’s second law
since it applies only to particles of fixed mass. We therefore need a relationship that gives
the acceleration of a fluid particle in terms of the Eulerian system. Nevertheless, the Eulerian
system is generally preferred for solving problems in fluid mechanics.
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Eulerian Lagrangian

spatial material, referential
fluid dynamics elasticity
variables: x position in space, t time variables: α initial configuration, t time
fluid velocity: u(x, t) fluid velocity: v(α, t)
follows flow through a control volume fixed in space follows identifiable pieces of matter

Table 3: Lagrangian vs Eulerian coordinate systems.

It is of interest to compare these two descriptions and explore their connections. Because
the velocity at a location x and time t must be equal to the velocity of the fluid particle which
is at this position and at this particular time, the Eulerian and Lagrangian coordinates are
related as follows:

u(x, t) = u(φ(α, t), t) =
∂φ(α, t)

∂t
(1)

where u is the fluid velocity field. Given the Eulerian velocity field, computing Lagrangian
coordinates is therefore equivalent to solving (1) with initial condition x(0) = φ(α, 0).

Example 1. In one dimension, consider the velocity field given in Eulerian coordinates by
u(x, t) = 2x

1+t . The Lagrangian coordinate φ(α, t) can be found by solving

∂φ(α, t)

∂t
=

2φ

1 + t
φ(α, 0) = α.

This is a separable ODE and its solution is φ(α, t) = α(1 + t)2. The Lagrangian velocity

as a function of α, t is ∂φ(α,t)
∂t = 2α(1 + t), which can also be found by evaluating the Eulerian

velocity at x = φ(α, t).

We introduce the following notation for derivatives with respect to time:

∂

∂t
≡
(
∂

∂t

)
x fixed

D

Dt
≡
(
∂

∂t

)
α fixed

Let f(x, t) be a function defined at each fluid point,where x is understood to change with time
at the local fluid velocity u, i.e. dxi

dt = ui, i = 1, 2, 3. Then ∂f
∂t is the rate of change of f at a

fixed location x, while Df
Dt is the rate of change of f for the fluid particle which happens to be

at location x = Φ(α, t) at time t. D
Dt is called material or Lagrangian derivative.

Remark 1. Assume that water is flowing through a pipe with a constriction and the motion is
steady, i.e. the velocity at any spatial location x is not changing in time or ∂tu=0. However,
since the flow rate is constant across any cross-section, Du

Dt 6= 0. A sketch of this situation is
given below.

Lemma 1. Suppose f(x, t) = f(Φ(α, t), t). Then, we have for the material derivative of f

Df

Dt
=
∂f

∂t
+ u · ∇f. (2)
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Figure 1: Steady flow in a channel with a constriction.

Proof. We simply apply chain rule to f(Φ(α, t), t):

Df

Dt
=
∂f

∂f
+
∂f

∂xi

∂xi
∂t

where
∂xi
∂t

=
DΦi

Dt
= ui

is the component of the velocity at (x, t) in the ith direction.

Lemma 2 (Euler).
DJ

Dt
= J∇ · u (3)

5 Kinematics

Kinematics refers to a description of motion. It is not concerned with what causes the motion.
For a fluid, we will have a velocity field u(x, t) defined for each spatial location x in the fluid
and each time t. Several sets of curves related to the velocity field play a role in fluid dynamics.

Definition 3 (Flow lines).

1. The flow is steady if u is independent of t, i.e u(x, t) = u(x)

2. A streamline is a curve which is everywhere tangent to the velocity field, u(x, t).

3. A particle path consists of the set of points occupied by a given fluid particle as it moves
in time.

4. A streakline is a curve which, at time t, consists of the locations of fluid particles that
passed through a given location x0 at some earlier time.

5. A flow flield is 2D when u(x, t) is everywhere perpendicular to a certain direction and
independent of displacements parallel to that direction.
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6. A flow field is axisymmetric when u expressed in cylindrical coordinates is independent
of the azimuthal angle θ.

Remark 2.

• If a curve is described by (x(s), y(s), z(s)) for some parameter s, then that curve is a
streamline if

dx

ds
= u(x(s), y(s), z(s), t)

dy

ds
= v(x(s), y(s), z(s), t)

dz

ds
= w(x(s), y(s), z(s), t) for all t.

Note that t enters here as a parameter. Streamlines are defined at each time t relative
to the velocity field that exists at that time.

• Suppose the particle is at location (x0, y0, z0) at t = 0. The corresponding particle path
is the curve which satisfies

dx

dt
= u(x(t), y(t), z(t), t),

dy

dt
= v(x(t), y(t), z(t), t),

dz

dt
= w(x(t), y(t), z(t), t)

with the conditions x(0) = x0, y(0) = y0, z(0) = z0. The particle path is the trajectory
of a given fluid particle.

• The path of a particle coincide with the streamline only if the flow is steady.

• Physically, one can make a streak line by continuously injected dyed fluid at a fixed
location in the fluid. At time t, the curve traced by dyed particles is the streakline at
time t through the injection point x0. The streakline consists of the set of points x(t)
that satisfies

dx

dt
= u(x(t), t),x(τ) = x0 for some τ ≤ t.

Definition 4 (Circulation and Vorticity).

1. The circulation Γ is defined as Γ =
∮

u · dγ, where the contour integral is taken counter-
clockwise.

2. The vorticity ω is the curl of u: ω = ∇× u.

6 Tensor Calculus (Cartesian)

The physical quantities encountered in fluid mechanics can be divided into three categories:

1. scalars (zero-order tensors) such as shear rate, energy, volume and time;

2. vectors (first-order tensors) such as velocity, momentum and force;

3. second-order tensors such as stress and rate of strain tensors.

The cartesian basis vectors are ei, i = 1, 2, 3, for example e1 = [1 0 0]T . A vector is given by
u = uiei. Summation over the range of an index is understood when repeated dummy indices
appear in the same multiplicative term, also called Euler summation.

We start with a few basic facts about the Kronecker Delta and the permutation symbol.
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Definition 5 (Kronecker Delta).

δij =

{
1 if i = j

0 if i 6= j
.

A permutation is the act of rearranging members of a given set into some other order. A
transposition is a permutation in which two adjacent indices are interchanged. An even (odd)
permutation is a permutation that can be achieved in an even (odd) number of transpositions.

Definition 6 (Permutation symbol, Levi-Civita symbol).

εmnr =


0 when any two indices are equals

1 when m,n, r are 1, 2, 3 or an even permutation of 1, 2, 3

−1 when m,n, r are an odd permutation of 1, 2, 3

.

Proposition 1.

1. δmm = 3 δmnδmn = 3.

2. (Epsilon-Delta Identity)

εijkεilm = δjlδkm − δjmδkl εmjkεnjk = 2δmn.

Remark 3. The determinant of a 3× 3 matrix A is also related to the permutation symbol:

det(A) = εijka1ia2ja3k = |a1 · (a2 × a3)|,

where ai is the ith column of the matrix A.

Vector operations like dot and cross products are defined on the basis vector.

Definition 7 (Operations). The dot and cross products of basis vectors are

ei · ej = δij and ei × ej = εijkek.

Remark 4. From the above definitions, it is easy to see that for two vectors u,v

u · v = uiei · vjej = uivjδij = uivi and u× v = εijkuivjek.

Example 2. Prove the following identity involving the triple vector product

a× (b× c) = (a · c)b− (a · b)c.

We have

a× (b× c) = (amem)× (bicjεijkek) = ambicjεijkεmknen

= −ambicjεijkεmnken = −ambicj [δimδjn − δinδjm] en

= −aibicnen + ajcjbnen = (a · c)b− (a · b)c.

We will use the next fact about δij and derivatives in many derivations.

Proposition 2. Let x be a position vector with coordinates xi. Then

δij =
∂xi
∂xj

.
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6.1 Tensor algebra

Vectors are examples of rank one tensors. Matrices are example of second-rank tensors, gen-
erally just called tensors. A rank zero tensor is simply a scalar.

Definition 8 (Rank two tensor). A second-rank tensor T represents a linear vector function
associating with each vector u another vector v, i.e u = T · v. The dyadic form of a tensor T
is T = Tijeiej = Tijei ⊗ ej .

There are three basics operations on tensors. The inner and double inner product (·, :) are
contractions and reduce the rank of tensor. The tensor or outer product (⊗) increases the rank
of the tensor. More specifically, let u,v be vectors and T,U be tensors.

1. The inner product · which retains or reduces the rank of the tensors;

T · u = (Tijeiej) · (ukek) = Tijukδjkei = Tijujei (Rank 1)

u ·T = (uiei) · (Tjkejek) = Tjkuiδijek = Tjkujek (Rank 1)

T · S = (Tijeiej) · (Sklekel) = TijSklδjkeiek = TijSjleiel. (Rank 2)

These correspond to standard matrix-vector and matrix-matrix multiplication.

2. The double inner product or contraction : which reduces the rank of the tensors;

T : S = TijSij (Rank 0)

ε : T = εijkTjkei = εjkiTjkei = εkijTjkei. (Rank 1)

3. The outer product or tensor product ⊗ which retains or increases the rank of the tensor;

u⊗T = (uiei)⊗ (Tjkejek) = uiTjkeiejek. (Rank 3)

Remark 5. eij = ei ⊗ ej form the unit basis for the second rank tensors with respect to the
scalar product :. It is a nine dimensional vector space.

Remark 6. The cross product is not a general tensor operation as it is only defined between
two rank one tensors.

Definition 9. A tensor is symmetric if Tij = Tji. A tensor is antisymmetric (also called skew
symmetric) if Tij = −Tji.

Definition 10. A tensor is isotropic if its components are invariant with respect to all possible
rotations of the coordinate system. That is if the quantity represented by the tensor is a
function of position only.

Remark 7. All tensors of rank 0 are isotropic, while all tensors of rank 1 are not (vectors have
a direction).

Theorem 1 (Isotropic tensors). The only isotropic tensors of order 2, 3, 4 are of the form

rank 2 : αδij

rank 3 : αεijk

rank 4 : αδijδpq + β(δipδjq + δiqδjp) + γ(δipδjp − δiqδjp),

where α, β, γ are scalars.
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Proof. We only give the proof for rank 2 tensors. Consider a general rank 2 tensor T with com-
ponents Tij with respect to some coordinate frame {f1, f2, f3} and suppose that it is isotropic.
Consider the 90◦ counter-clockwise rotation about the f3-axis and f2-axis, which can be ex-
pressed in terms of the second-order tensor S3 and S2 respectively:

S3 =

0 −1 0
1 0 0
0 0 1

 , S2 =

 0 0 1
0 1 0
−1 0 0

 .
Since T is isotropic, the following must be true:

S3 TST3 = T = S2 T ST2 .

Expanding these yields T22 −T21 −T23

−T12 T11 T13

−T32 T31 T33

 =

T11 T12 T13

T21 T22 T23

T31 T32 T33

 =

 T33 T32 −T31

T23 T22 −T21

−T13 −T12 T11

 .
Comparing the first two matrices, we see that T11 = T22 and

−T23 = T13 = T23 =⇒ T23 = T13 = 0

−T32 = T31 = T32 =⇒ T32 = T31 = 0.

Comparing the last two matrices, we see that T11 = T33 and T12 = T32 = 0, T21 = T23 = 0.
Therefore all the off-diagonal elements of T are zero and all the diagonal elements are equal,
say α. The claim follows.

6.2 Tensor calculus

All of the previous operations are algebra operations. Since tensors represent quantities that are
changing in space and time, we can define tensor calculus operations like we did in multivariable
Calculus. The main operator is the nabla or del operator, which we define next. For the
moment, we will define everything with respect to the Cartesian coordinates system and leave
the generalization to spherical and cylindrical coordinates for later.

Definition 11 (Del operator).

∇ = ei
∂

∂i
= ei∂i.

We can now apply tensor operations between ∇ and a general tensor field. The most important
ones are the gradient and the divergence.

Definition 12 (Gradient). The gradient of tensor field A of any rank is

∇A = ∇⊗A.

Example 3. Let φ be a scalar field and u a vector field. Then

∇φ =
∂φ

∂x
=

∂φ

∂xk
ek = ∂kφek,

∇u = ei∂iujej = ∂iujeiej .
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Definition 13 (Divergence). The divergence of a tensor field A of any rank is

div = ∇ ·A.

Example 4. Let u be a vector field and T be a tensor field. Then

div(u) = ∇ · u = ei∂i · ujej = ∂iujδij = ∂iui,

div(T) = ∇ ·T = ei∂i · Tjkejek = ∂iTjkδijek = ∂iTikek.

Remark 8. ∇u is sometimes denoted
−→
∇u to avoid confusion with

←−
∇ defined as: u

←−
∇ =

uiei∂jej = ∂juieiej .

Since ∇ is a rank one tensor, we can take its cross product with a vector field.

Definition 14 (Curl). The curl (or rotation) of a vector field u is

curl(u) = ∇× u = ei∂i × ujej = ∂iujεijkek.

Definition 15. A vector field is irrotational if curl(u) = 0.

Taking the inner product of ∇ with itself is called the Laplace operator ∆.

Definition 16 (Laplace operator).

∆ = ∇2 = ∇ · ∇.

Example 5. The Laplacian of a scalar field φ(x) is ∇ · (∇φ) = ∆φ.

Example 6. For a vector field u(x), the vector Laplacian is

∆u = ∇ · ∇u = (∂iei) · (∂jukejek) = ∂i∂jukδijej = ∂i∂iukek,

i.e ∆u = (∆u1,∆u2,∆u3)T .

The next proposition summarizes different relations between algebra and calculus operations.

Proposition 3. Let φ be a scalar field and u be a vector field. Then

1. ∇ · (φu) = ∇φ · u + φ∇ · u.

2. ∇× (∇φ) = 0.

3. ∇ · (∇× u) = 0.

4. ∇× (∇× u) = ∇(∇ · u)−∇2u.
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Theorem 2 (Divergence Theorem). Let V be a Lipschitz domain in R3 with piecewise smooth
boundary ∂V = S. If u is a C1 vector field defined on a neighborhood of V , then∫

V
∇ · u dV =

∫
S

u · n dS,

where n is the outward unit normal vector on S. The integral on the right is the flux of u
across the boundary (oriented surface) S.

We can generalized the divergence theorem to second-order tensor fields.

Theorem 3 (Generalized Divergence Theorem). Let V be a Lipschitz domain in R3 with piece-
wise smooth boundary ∂V = S. If T is a second-order tensor field defined on a neighborhood
of V , then ∫

V
∇ ·T dV =

∫
S

n ·T dS,

where n is the outward unit normal vector on S.

Proof. Let n = (n1, n2, n3)T . The main idea is to apply the divergence theorem to each
component of ∇ ·T:∫

V
∇ ·T dV =

∫
V
∂jTjkek dV =

∫
A
njTjkek dA =

∫
A

n ·T dA.

For the last equality, note that

n ·T = (njej) · (Tikeiek) = njTikδjiek = njTjkek.
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