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1 Canonical system and Hamiltonian

In this section, we bring Euler equations to the standard form using a modified
form of Lagrangian.

1.1 Canonical form of Euler equations

The Euler equations for a vector minimizer u = (uq,...,uy) is a system of N
second order differential equations:

d OL 0L

——— - — = i=1,....,N 1
dx Ou;  Ou, 0, ¢ B (1)

with boundary conditions
@a(ua u/)‘mza = 07 @b(ua u,)"xzb =0 (2)

where ©, and O, are some N-dimensional vector functions.

The structure of this system can be simplified and unified if instead of N
second-order equations the system is rewritten as a system of 2N first order
differential equations in a standard form

zi =Yi(z1,...,22n8), i=1,...,2N



where z(z) is a 2N-dimensional vector of unknowns and Y is a vector-valued
function of z.
This system can be obtained from (1) if new variables p; are introduced,

OL(z,u,u )
pi(as):%, i=1,...,N (3)

3

Variables p; are called dual variables. In mechanics, p = (p1,...,pn) is called
the vector of impulse.

The Euler equation takes the form
L !/
o = ) ), (W

where f is a vector-valued function of z,u,u’. The system (3), (4) becomes
symmetric with respect to p and w if we algebraically solve (3) for u':

u' = (b(x,u,p). (5)

Then, substitute this expression into (4) and obtain:

p/:f(x7u’¢(x’u?p)):¢(a:7u7p) (6)

where ¢ is a function of the variables w and p but not of their derivatives.
Equations (5), (6) form the canonical system of 2N equations for 2N unknown
functions w;, pj, i, =1,...,N.

The boundary conditions (2) are rewritten in terms of v and p excluding u’
using (5); they take the form

O (u, d(a,u,p),)zma = 0a(u,p) =0, Op(u,u)|zzp = Op(u,p) =0 (7)

where 6, and 8, are N-dimensional vector functions.
In summary, new variable p, see (3), transforms Euler equation to the canon-
ical form (5), (6) (known also as Cauchy, normal, or standard form):

u' = ¢(xauap)
p/ = 1/’(17»%17) (8)
oa(u7p) = Oa ob(uap) =0. (9)

The solution to the canonical system is entirely determined by the algebraic
vector functions ¢, ¥ in the right-hand side which does not contain derivatives,
and by the boundary conditions. Notice that functions u and p are differentiable.

Example 1.1 (Quadratic Lagrangian) Assume that Lagrangian L and bound-
ary conditions are:

1 1 oL
L= §a(a:)u’2 + ib(x)UQ, u(xo) = o, %\xle =0



The Euler equation
(au') —bu=0

is transformed as follows. We introduce p as in (3)

OL(x,u,u) ,
=—————=aqau
b ou/
and obtain the canonical system and boundary conditions

/

oL
b()
()

Notice that the coefficient a(x) is moved into denominator.

p(z1) =0

1.2 Hamiltonian

We can rewrite the system (8) in a more symmetric form introducing a spe-
cial potential function called Hamiltonian. The Hamiltonian is defined by the

formula o’ guL, — L where v’ is excluded by the relation v’ = ¢(z,u,p):
H(z,u,p) =pu’ — L(z,u,u’) v = ¢(z,u,p) (10)
or
H(x,u,p) :pgb(:c,u,p)fL(x,u,gb(x,u,p)). (11)

Here u is a stationary trajectory — the solution of Euler equation.
Hamiltonian allows writing canonical system (8) in a remarkable symmetric
form SH OH
p=-2 =2 (12)
ou dp
To demonstrate this, compute the partial derivatives of H (11) : We have

OH 3¢ IL 9L

e Pou ou 9 ou

By the definition (3) of p, p = gf, = %7 hence the first and third term in the

right-hand side cancel. By virtue of the Euler equation (4), the remaining term

?Tﬁ is equal to p’ and we obtain the first equation in (12)

Next, compute %—H. We have
P

OH 0 oL O
7:¢_~_ ﬁ_ij
dp

Pop ~ 96 op
By definition of p, the second and the third term in the right-hand side cancel,
and by definition of ¢ (¢ = u’) we obtain the second equation in (12)

The right-hand side functions in the canonical system (8) are expressed
through the partial derivatives of a single potential function H (u,p).



Lagrangian L, Hamiltonian H in Example (1.1) are as follows

1 1

L= 3 (a(z)u? + b(z)u?) = % <a(x)p2 + b(x)u2>

H=p(2)-L= % (a(lx);? - b(x)u2>

the canonical system is

O g o1
ou LU= Gp_a(sc)p_u

which coincides with the system in Example (1.1).

1.3 The first integrals through the Hamiltonian
System (12) demonstrates that
if H= constant(u;), then p; = constant (13)

and
if H = constant(p;), then u; = constant (14)

These equations correspond to the first integrals in the Euler equation

d oL 0L
= =0, i=1,...,N
dx Ou;  Ou;
Indeed,
if Lagrangian L is independent of u;, % =0, 3 lf, = constant;
if Lagrangian is independent of w/, guL{ =0, then g—i = 0. Since % =p, p; is

constant.

Conservative system: Lagrangian is independent of = If F' = F(u,u'),
than
H(u,p) = constant (15)

Indeed, compute the time derivative of the Hamiltonian using the chain rule

iH(xu )—aiH_;’_aiHu’_i_aiH’—aiH
dx A app - Oz
because of equalities (12), v/ = %—IZ and p’ = —%—Iz. If Lagrangian does not

explicitly depend on =z, g—ﬁ = 0 the Hamiltonian does not explicitly depend on

x as well, %—_{j = 0, and we arrive at (15). In mechanics, (15) corresponds to the
conservation of the total energy.



Natural boundary conditions The natural or variational boundary condi-
tions that are imposed at the endpoint b from the requirement of minimization
of the functional, are gf, = 0 at x = b. By definition of the impulse, it is

rewritten as

p=0 atz="b;

Transversality condition The transversality condition (25) at the unknown
endpoint = = b of the trajectory u(x) is expressed through Lagrangian L(x, u, u')
* oL
/
U EVAE 0
The expression in the left-hand side is Hamiltonian, therefore the condition
takes a simple form:

L

H=0 atxz=hb.

If the system is conservative, the Hamiltonian is constant (15); therefore, there
is no optimal endpoint for such systems.

Weierstrass-Erdmann condition This condition states that at all points
of the optimal trajectory, % is continuous. It translates into a statement
that impulse p is continuous everywhere. Notice that by virtue of (12), p is
differentiable.

Lagrangian and Hamiltonian Both functions describe the same process,
but

e Hamiltonian is an algebraic function of differentiable arguments p and u,
and Lagrangian is an expression for u, and it’s derivative u’, the derivative
may be discontinuous.

e Optimality conditions for Hamiltonian are expressed as a system of first-
order differential equations in canonical form. Optimality conditions for
Lagrangian are expressed as a system of second-order differential equa-
tions.

e Invariant properties and boundary conditions are more conveniently ex-
pressed through Hamiltonian.

e Lagrangian deals with the minimizer and its derivatives; its minimization
is a realization of the minimal principle.



2 Examples

2.1 Lagrangian mechanics

Canonical system for equations of Lagrangian mechanics The equa-
tions of Lagrangian mechanics correspond to stationarity of the functional

L(t.q.q') =T(¢,d) = V(a), T(q.¢)= %(q’)TR(Q)q’
that callee the action. Here ¢ is the N dimensional vector of generalized coordi-
nates ¢ = qi1,...,N, T(q,q’) is the kinetic energy, R(q) is a symmetric positively
defined matrix of inertia, and the potential energy V(q) is a convex function of
q of the N dimensional vector of generalized coordinates ¢ = ¢q1,..., N.
The vector-valued Euler equation

dor oT oV
_— = (16)
dt 0q’ dq dq
is of order 2N.
To bring the system (16) to canonical form, we introduce vector of impulses

=~ — R(a)d'
P= 50 (2)q
The Euler equation becomes:
,_ 0T _ 0V
b= dq Oq

Kinetic energy T is expressed through p as

1 1
T = §(q’)TRq’ = QPT (R7Y) p. (17)

The first term in the right-hand side of (16) becomes

o 1 (dn
dq - oF dg b

The canonical system becomes

— —1
¢ =R 'p,
r_ 9T _ 9V _ 1, T (dR""), _ 9V
p_aq Bq_2p dq Oq

Hamiltonian for Lagrangian mechanics In Lagrangian mechanics, La-
grangian L = T — V implies that Hamiltonian H is the sum of kinetic and
potential energy H =T 4V,

H(q,p) =T(q,q') +V(q)



where ¢’ is expressed through p and ¢ and ¢ = R(q)"'p. Indeed, we obtain
using (17)
p'd =p" R (q)p = 2T
and
H=p"¢ - L=2T—-(T-V)=T+V

The Hamiltonian is equal to the whole energy of the system.

2.2  Orbiting mass

Consider a point mass m attached by a spring to a fixed point; call this point
the origin. The force F' in the spring is the derivative of a potential V(|r]),
where 7 = (r1,72,73) is the vector of coordinates of a point, |r| = \/r? + r2 +1r3
is the distance fro the origin. The force F' is computed as

v dv'dlr| [dV 1
F = — = _— = _— frd
dr — djr| dr (dr| |7"|) r=o(lrl)r

av 1
o(|r]) = a1l

where

The Lagrangian is
1
L=T-V= §m7”T7"' = V(r)
Euler equations are

(mr’) + aai: =0 or (mr') +¢(r))r =0

Introducing the impulse vector p = mr’ and we write canonical system as
1
!/ /
r = —p, = — T 18
P, P o(Ir)) (18)

Planar motion Analyzing system (18), we conclude that the movement is
planar. Indeed, consider vector product z = r X p and compute its time deriva-
tive:

dz d
dt  dt
This vector is constant because vector 7’ is proportional to p and p’ is propor-
tional to r, see (18). The constancy of z indicates that vectors r(t) and p(t)
remain all the time perpendicular to vector z; they are moving in a plane L,
that passes through the point of initial conditions r(0) = rg, p(0) = py and the
origin.
In the plane L, we introduce polar coordinates p, ; Potential energy depends
only on p, V = V(p), and kinetic energy becomes

(rxp)=r"xp+rxp =0

m 1 _
T — 5(p’2+p29'2) _ ngR 1y



where
_ (P _(m O
p<p2> ‘R<0 mﬁ2>

The canonical system becomes

1
= — 19
p=—p, (19)

1
0=—— 20
mp? P2 (20)
2 ov

—_— 21
p1 mp? b1 ap (21)
p2 =0 (22)

Hamiltonian The Hamiltonian is
H=T+V=_"(@+26)+v( (23)

One can check that the equations (19)-(22) can be obtained by differentiation
of H with respect of p, 6, p1, and ps

Invariants The Hamiltonian is independent of #; therefore p, is constant,
p2 = C1, see (22), and Hamiltonian becomes function of p and p; only:

1, o 1
H=—(p" + 0% 24
om P+ 2O TV () (24)

The Hamiltonian (24) is independent of time ¢ therefore is constant,

1 (0 1,

This equality allows to find p; as a function of p:

m:¢MQ—wm—;@

Then using (19) we end up with the first-order equation for p(¢) that permit
separation of variables

dp 1

m® =\ fam(Ca = V(o) - 53

2.3 Geometrical optics

In geometrical optics, Lagrangian

F=uwly)v1+y?



corresponds to Euler equation

d [ wy)y dw ——08
— P S, —_ 1 /2
dt <\/1+y’2 dy Y

To find the canonical system, we use the outlined procedure: Define a vari-

oL

able p by the relation p = 75

/

vy
VI+)?

Solving for 3, we obtain first canonical equation:

p==+

S
y - \/m ¢(w7y7p)a
Excluding y' from expression for L(z,y,y’) using (27), we find

w2

Vo=

and recalling the representation for the solution y of the Euler equation

L(z,y,y") = Le(z,y,9' (p)) =

,_OL_ oL 0w
Oy Ow Oy

p

we obtain the second canonical equation:

, w ow

PV Ay

(26)

(28)

Hamiltonian Hamiltonian H = p¢ — L. (x,y,p) can be simplified to the form

H=—/w?—p2
It satisfies the remarkably symmetric relation

H? 4+ p? = w?

that contains the whole information about the geometric optic problem. The
elegancy of this relation should be compared with messy straightforward calcu-

lations that we performed previously.



