next up previous
Next: Creation of complex numbers Up: Expansion by inversion Previous: Creation of fractions

Creation of negative numbers

By the same scheme, transform

\begin{displaymath}f(x)=x + A \end{displaymath}

(where $ A $ is a natural number), if applied to natural numbers, leads to negative integers.

  1. Original set: Consider the set of natural numbers

    \begin{displaymath}1, 2, 3, 4, \ldots
\end{displaymath}

  2. Image: Find the image of the set under the transform

    \begin{displaymath}f(x)=x + 3. \end{displaymath}

    Set of images is

    \begin{displaymath}4, 5, 6, 7, \ldots
\end{displaymath}

  3. Complement: The set of images is naturally complemented to the set $Z$ of all natural numbers:

    \begin{displaymath}Z= \{ 1, 2, 3, 4, 5, 6, 7, \ldots \} \end{displaymath}

  4. Inverse Transform: Now apply the inverse transform

    \begin{displaymath}f^{-1}(x)=x - 3 \end{displaymath}

    to the complemented set $Z$ of images
  5. Negative Numbers!

    We arrive at new numbers: These are new negative numbers.

    \begin{displaymath}f^{-1}( Z ) =\{ -2, -1, 0, 1, 2, 3, 4, 5 \ldots \}
\end{displaymath}



Andre Cherkaev
2001-11-16