Let $f: \Omega \rightarrow \mathbb{C}$ be locally univalent (i.e. f^{\prime} is nowhere zero). Then the Schwarzian derivative is

$$
S f(z)=\left(\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{\prime}-\frac{1}{2}\left(\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{2}
$$

One can calculate all the usual properties of the Schwarzian directly from this formula but we will try to give a more motivated definition where the properties are more transparent.

Define $M_{f}: \Omega \rightarrow P S L_{2} \mathbb{C}$ to be the osculating Möbius transformation to f. That is $M_{f}(z)$ is the unique Möbius transformation that agrees with f to second order:

$$
M_{f}(z)(z)=f(z),\left(M_{f}(z)\right)^{\prime}(z)=f^{\prime}(z) \text { and }\left(M_{f}(z)\right)^{\prime \prime}(z)=f^{\prime \prime}(z) .
$$

The derivative

$$
d\left(M_{f}\right): T \Omega \rightarrow T P S L_{2} \mathbb{C}
$$

is a map from tangent spaces. Each tangent space of $P S L_{2} \mathbb{C}$ is canonically identified with the Lie algebra, $s l_{2} \mathbb{C}$. Each tangent space of Ω is canonically identified with \mathbb{C} which has canonical basis $\frac{\partial}{\partial z}$. Define a map

$$
M_{f}^{\prime}: \Omega \rightarrow s l_{2} \mathbb{C}
$$

by

$$
M_{f}^{\prime}(z)=d\left(M_{f}\right)_{z}\left(\frac{\partial}{\partial z}\right)
$$

1. Define a map $\pi: P S L_{2} \mathbb{C} \rightarrow \widehat{\mathbb{C}}$ by $\pi(\phi)=\phi(0)$. Show that this map is a submersion.
2. Let $\pi: M \rightarrow N$ be a submersion and \tilde{v} a vector field on M with flow ϕ_{t}. Assume that there are diffeomorphisms $\psi_{t}: N \rightarrow N$ with $\pi \circ \phi_{t}=\psi_{t} \circ \pi$. Show that the pushforward $\pi_{*} \tilde{v}$ is well defined. That is show that if $\pi\left(x_{0}\right)=\pi\left(x_{1}\right)$ then $\pi_{*} v\left(x_{0}\right)=\pi_{*} v\left(x_{1}\right)$.
3. The Lie algebra $s l_{2} \mathbb{C}$ is the space of left-invariant vector fields of $P S L_{2} \mathbb{C}$. If v is a left invariant vector field show that the push-forward $\pi_{*} v$ is well defined.
4. A vector field is conformal if its flow is conformal. Show that $v=f \frac{\partial}{\partial z}$ is conformal if and only if f is holomorphic.
5. Show that a conformal vector field on all of $\widehat{\mathbb{C}}$ is of the form $\left(a z^{2}+b z+c\right) \frac{\partial}{\partial z}$.
6. Show that $\left(\pi_{*} v\right)(z)=\left(a w^{2}+b w+c\right) \frac{\partial}{\partial w}$ for some $a, b, c \in \mathbb{C}$.
7. The Lie algebra $s l_{2} \mathbb{C}$ is the space of two-by-two complex, traceless matrices. Explicitly give the isomorphism between $s l_{2} \mathbb{C}$ and conformal vector fields on $\widehat{\mathbb{C}}$.
8. Let $\phi(z)$ be a holomorphic family in $P S L_{2} \mathbb{C}$. If we write $\phi(z)(w)$ as a power series, centered at z, we have

$$
\phi(z)(w)=\sum_{n=0}^{\infty} a_{n}(z)(w-z)^{n}
$$

where the $a_{n}(z)$ are holomorphic functions. If we differentiate with respect to z this becomes

$$
\phi^{\prime}(z)(w)=\sum_{n=0}^{\infty}\left(a_{n}^{\prime}(z)(w-z)^{n}-n a_{n}(z)(w-z)^{n-1}\right) .
$$

Assuming that $\phi\left(z_{0}\right)$ is the identity show that $\phi^{\prime}\left(z_{0}\right)(w)$ is quadratic polynomial in w and conclude that

- $a_{1}\left(z_{0}\right)=1$;
- $a_{n}\left(z_{0}\right)=0$ if $n \neq 1$ (these first two only require that $\phi\left(z_{0}\right)$ is the identity);
- $a_{n}^{\prime}\left(z_{0}\right)=0$ if $n \geq 3$.

9. Assume that $M_{f}\left(z_{0}\right)$ is the identity and apply the above result to show that

$$
M_{f}^{\prime}\left(z_{0}\right)=\frac{f^{\prime \prime \prime}\left(z_{0}\right)}{2}\left(w-z_{0}\right)^{2} \frac{\partial}{\partial w} .
$$

10. Given locally univalent maps $f: \Omega \rightarrow \mathbb{C}$ and $g: f(\Omega) \rightarrow \mathbb{C}$ show that

$$
M_{g \circ f}(z)=M_{g}(f(z)) \circ M_{f}(z) .
$$

11. Define a map $P S L_{2} \mathbb{C} \times P S L_{2} \mathbb{C} \rightarrow P S L_{2} \mathbb{C}$ by $(\psi, \phi) \mapsto \psi \circ \phi$. Given $(v, w) \in$ $s l_{2} \mathbb{C} \times s l_{2} \mathbb{C}$ (where we view v and w as conformal vector fields on $\widehat{\mathbb{C}}$) show that the derivative of this map at (ψ, ϕ) is given by $(v, w) \mapsto \phi^{*} v+w$.
12. We can write $M_{g \circ f}$ as a composition of maps

$$
\Omega \rightarrow f(\Omega) \times P S L_{2} \mathbb{C} \rightarrow P S L_{2} \mathbb{C} \times P S L_{2} \mathbb{C} \rightarrow P S L_{2} \mathbb{C}
$$

where the first map on the left is $z \mapsto\left(f(z), M_{f}(z)\right)$, the second map is $(z, \phi) \mapsto$ $\left(M_{g}(z), \phi\right)$ and the last map is the composition map from the previous problem. Applying the chain rule to this composition show that

$$
M_{g \circ f}^{\prime}(z)=f^{\prime}(z)\left(M_{f}(z)\right)^{*}\left(M_{g}^{\prime}(f(z))\right)+M_{f}^{\prime}(z)
$$

13. Given $\phi \in P S L_{2} \mathbb{C}$ show that $M_{\phi \circ f}^{\prime}(z)=M_{f}^{\prime}(z)$.
14. Let $\phi=\left(M_{f}\left(z_{0}\right)\right)^{-1}$ be the unique element in $P S L_{2} \mathbb{C}$ such that $M_{\phi \circ f}\left(z_{0}\right)$ is the identity and show that

$$
M_{f}^{\prime}\left(z_{0}\right)=\frac{(\phi \circ f)^{\prime \prime \prime}\left(z_{0}\right)}{2}\left(w-z_{0}\right)^{2} \frac{\partial}{\partial w} .
$$

15. Consider $\left(\left(M_{f}\left(z_{0}\right)\right)^{-1} \circ f\right)(z)$ as a function of z and let $R f\left(z_{0}\right)$ be its third derivative evaluated at z_{0}. Show that

$$
M_{f}^{\prime}(z)=\frac{R f(z)}{2}(w-z)^{2} \frac{\partial}{\partial w} .
$$

(This is just a rephrasing of the previous problem.)
16. Given $\phi \in P S L_{2} \mathbb{C}$ let $v(w)=(w-\phi(z))^{2} \frac{\partial}{\partial w}$. Show that

$$
\left(\phi^{*} v\right)(w)=\phi^{\prime}(z)(w-z)^{2} \frac{\partial}{\partial w} .
$$

17. Show that

$$
M_{g \circ f}^{\prime}(z)=\left(\frac{f^{\prime}(z)^{2} R g(f(z))+R f(z)}{2}\right)(w-z)^{2} \frac{\partial}{\partial w} .
$$

18. Show that $S f(z)=R f(z)$ and conclude that $S(g \circ f)=S g(f(z)) f^{\prime}(z)^{2}+S f(z)$.
