
Let f : Ω → C be locally univalent (i.e. f ′ is nowhere zero). Then the Schwarzian
derivative is

Sf(z) =

(
f ′′(z)
f ′(z)

)′
− 1

2

(
f ′′(z)
f ′(z)

)2

.

One can calculate all the usual properties of the Schwarzian directly from this formula but
we will try to give a more motivated definition where the properties are more transparent.

Define Mf : Ω → PSL2C to be the osculating Möbius transformation to f . That is
Mf (z) is the unique Möbius transformation that agrees with f to second order:

Mf (z)(z) = f(z), (Mf (z))
′(z) = f ′(z) and (Mf (z))

′′(z) = f ′′(z).

The derivative
d(Mf ) : TΩ → TPSL2C

is a map from tangent spaces. Each tangent space of PSL2C is canonically identified
with the Lie algebra, sl2C. Each tangent space of Ω is canonically identified with C

which has canonical basis ∂
∂z . Define a map

M ′
f : Ω → sl2C

by

M ′
f (z) = d(Mf )z

(
∂

∂z

)
.

1. Define a map π : PSL2C → Ĉ by π(φ) = φ(0). Show that this map is a submersion.

2. Let π : M → N be a submersion and ṽ a vector field on M with flow φt. Assume
that there are diffeomorphisms ψt : N → N with π ◦ φt = ψt ◦ π. Show that
the pushforward π∗ṽ is well defined. That is show that if π(x0) = π(x1) then
π∗v(x0) = π∗v(x1).

3. The Lie algebra sl2C is the space of left-invariant vector fields of PSL2C. If v is a
left invariant vector field show that the push-forward π∗v is well defined.

4. A vector field is conformal if its flow is conformal. Show that v = f ∂
∂z is conformal

if and only if f is holomorphic.

5. Show that a conformal vector field on all of Ĉ is of the form (az2 + bz + c) ∂
∂z .

6. Show that (π∗v)(z) = (aw2 + bw + c) ∂
∂w for some a, b, c ∈ C.

7. The Lie algebra sl2C is the space of two-by-two complex, traceless matrices. Ex-
plicitly give the isomorphism between sl2C and conformal vector fields on Ĉ.
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8. Let φ(z) be a holomorphic family in PSL2C. If we write φ(z)(w) as a power series,
centered at z, we have

φ(z)(w) =

∞∑
n=0

an(z)(w − z)n

where the an(z) are holomorphic functions. If we differentiate with respect to z
this becomes

φ′(z)(w) =
∞∑
n=0

(a′n(z)(w − z)n − nan(z)(w − z)n−1).

Assuming that φ(z0) is the identity show that φ′(z0)(w) is quadratic polynomial
in w and conclude that

• a1(z0) = 1;

• an(z0) = 0 if n �= 1 (these first two only require that φ(z0) is the identity);

• a′n(z0) = 0 if n ≥ 3.

9. Assume that Mf (z0) is the identity and apply the above result to show that

M ′
f (z0) =

f ′′′(z0)
2

(w − z0)
2 ∂

∂w
.

10. Given locally univalent maps f : Ω → C and g : f(Ω) → C show that

Mg◦f (z) =Mg(f(z)) ◦Mf (z).

11. Define a map PSL2C × PSL2C → PSL2C by (ψ, φ) �→ ψ ◦ φ. Given (v,w) ∈
sl2C × sl2C (where we view v and w as conformal vector fields on Ĉ) show that
the derivative of this map at (ψ, φ) is given by (v,w) �→ φ∗v + w.

12. We can write Mg◦f as a composition of maps

Ω → f(Ω)× PSL2C → PSL2C× PSL2C → PSL2C

where the first map on the left is z �→ (f(z),Mf (z)), the second map is (z, φ) �→
(Mg(z), φ) and the last map is the composition map from the previous problem.
Applying the chain rule to this composition show that

M ′
g◦f (z) = f ′(z)(Mf (z))

∗(M ′
g(f(z))) +M ′

f (z).
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13. Given φ ∈ PSL2C show that M ′
φ◦f (z) =M ′

f (z).

14. Let φ = (Mf (z0))
−1 be the unique element in PSL2C such that Mφ◦f (z0) is the

identity and show that

M ′
f (z0) =

(φ ◦ f)′′′(z0)
2

(w − z0)
2 ∂

∂w
.

15. Consider ((Mf (z0))
−1◦f)(z) as a function of z and let Rf(z0) be its third derivative

evaluated at z0. Show that

M ′
f (z) =

Rf(z)

2
(w − z)2

∂

∂w
.

(This is just a rephrasing of the previous problem.)

16. Given φ ∈ PSL2C let v(w) = (w − φ(z))2 ∂
∂w . Show that

(φ∗v)(w) = φ′(z)(w − z)2
∂

∂w
.

17. Show that

M ′
g◦f (z) =

(
f ′(z)2Rg(f(z)) +Rf(z)

2

)
(w − z)2

∂

∂w
.

18. Show that Sf(z) = Rf(z) and conclude that S(g ◦ f) = Sg(f(z))f ′(z)2 + Sf(z).
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