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Neurons in the brain communicate with each other by transmitting electrical
spikes known as action potentials (see Figure 1). An action potential propagates
along the axon of a neuron until it reaches a terminal that forms the upstream
or presynaptic component of the synaptic connection to a downstream or postsy-
naptic neuron. The arrival of the action potential induces the release of chemical
transmitters into the synapse. These subsequently bind to receptors in the postsy-
naptic membrane resulting in the opening of various ion channels. This generates
a synaptic current that flows along the dendritic tree of the postsynaptic neuron
and combines with currents from other activated synapses. If the total synaptic
current forces the membrane potential at a certain location within the cell body to
cross some threshold, then the postsynaptic neuron fires an action potential and the
process continues. One can thus view the brain as a vast collection of synaptically–
coupled networks of spiking neurons. Each network is specialized for a particular
range of tasks and receives inputs from other networks and possibly from external
sources (eg. sensory stimuli). Some of the networks generate motor commands that
control the movement of the organism in its environment. Many of the synaptic
connections within and between networks are modifiable by experience (synaptic
plasticity).

Figure 1. Communication with spikes. [Reprinted from [1], figure
1.1, by permission of the MIT Press.]
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4 PAUL C. BRESSLOFF, MATHEMATICAL NEUROSCIENCE

One of the ultimate challenges in neuroscience is to understand how networks
of spiking neurons with modifiable connections allow an organism to carry out
goal–directed behavior within a changing environment, based on current sensory
input and previous experience? In addition to understanding computation and
information processing during normal brain function, there is also the important
clinical goal of finding the causes of dysfunctional brain states and behavior. In
these lectures we will carry out the much more modest goal of unraveling some
of the molecular, cellular and network mechanisms underlying the dynamics of
synaptically–coupled spiking neurons. We will not focus on any particular special-
ized region of the brain, but consider some general principles of neuronal dynam-
ics together with illustrative examples. The basic topics covered are single neuron
models (Lecture 1), synaptic and dendritic processing (Lecture 2), firing rates, spike
train statistics and the neural code (Lecture 3), network oscillations and synchrony
(Lecture 4), and neural pattern formation (Lecture 5). In each lecture we describe
in some detail a particular mathematical or modeling approach. For example, in
Lecture 1 we consider phase reduction methods for analyzing single neural oscilla-
tors, which are extended to the case of synaptically coupled oscillators in Lecture 4.
In Lecture 2 we emphasize the biophysical modeling of synapses at the molecular
level, paying particular attention to the important topic of synaptic plasticity. In
Lecture 3 we focus on the use of stochastic methods for studying noise in spiking
neuron models. Finally, in Lecture 5 we consider the analysis of integrodifferential
equations describing the large-scale dynamics of cortical tissue.



LECTURE 1

Single Neuron Models

We begin the first lecture by considering conductance–based models of a sin-
gle neuron, in which the spatial structure of the neuron is neglected [2, 3]. Such
models can reproduce electrophysiological measurements to a high degree of accu-
racy, but their intrinsic complexity makes them difficult to analyze, particularly at
the network level. One way around this is to simplify the single neuron dynamics
by carrying out some form of dimensional reduction. Reduction schemes typically
exploit the presence of some small parameter in the system such as the strength
of input, the degree of nonlinearity (as determined by distance from a bifurcation
point, for example), or the rate of change of one or more slow variables. Regular
or singular perturbation methods can then be combined with techniques from low–
dimensional dynamical systems theory such as phase–plane analysis and bifurcation
theory in order to analyze neural excitability, spiking and bursting [4, 5, 1]. Here
we focus on the so–called phase reduction method [6], which is used to analyze the
dynamics of a regular spiking neural oscillator under weak periodic forcing. One of
the important applications of this method is analyzing conditions for synchrony in
networks of synaptically coupled neural oscillators (see §4). We end the lecture by
describing some formal threshold models of neuronal firing that are highly popu-
lar in studies of neural information processing, large–scale network dynamics, and
memory [7].

1.1. Conductance–based models

The standard biophysical model for describing a neuron with spatially constant
membrane potential u is based upon conservation of electric charge, so that

C
du

dt
= −F + Isyn + Iext,(1.1)

where C is the cell capacitance, F the membrane current, Isyn the sum of synaptic
currents entering the cell (see §2) and Iext describes any externally injected currents.
Ions can diffuse in and out of the cell through ion specific channels embedded in
the cell membrane. Ion pumps within the cell membrane maintain concentration
gradients, such that there is a higher concentration of Na+ and Ca2+ outside the cell
and a higher concentration of K+ inside the cell. The membrane current through
a specific channel varies approximately linearly with changes in the potential u
relative to some equilibrium or reversal potential, which is the potential at which
there is a balance between the opposing effects of diffusion and electrical forces.
Summing over all channel types, the total membrane current (flow of positive ions)
leaving the cell through the cell membrane is

F =
∑

i

gi(u − ui),(1.2)

5



6 LECTURE 1. SINGLE NEURON MODELS

where gi is the conductance due to channels of type i and ui is the corresponding
reversal potential. In the case of a channel selective to a single ion, ui satisfies the
Nernst equation

ui =
kBT

q
ln

(
[outside]i
[inside]i

)
,(1.3)

where q is the charge of the ion, kB is the Boltzman constant, T is temperature (in
degrees Kelvin) and [outside]i, [inside]i denote the extracellular and intracellular
concentrations of the given ion. Typical values for the common ion species are
uK ≈ −75mV , uNa ≈ 50mV , uCa ≈ 150mV and uCl ≈ −60mV (which is close to
the resting potential of the cell).

The generation and propagation of an action potential arises from nonlinearities
associated with active membrane conductances. Recordings of the current flowing
through single channels indicate that channels fluctuate rapidly between open and
closed states in a stochastic fashion. Nevertheless, most models of a neuron use
deterministic descriptions of conductance changes, under the assumption that there
are a large number of approximately independent channels of each type. It then
follows from the law of large numbers that the fraction of channels open at any
given time is approximately equal to the probability that any one channel is in an
open state. The conductance gi for ion channels of type i is thus taken to be the
product gi = ḡiPi where ḡi is equal to the density of channels in the membrane
multiplied by the conductance of a single channel and Pi is the fraction of open
channels. The voltage-dependence of the probabilities Pi in the case of a delayed-
rectifier K+ current and a fast Na+ current were originally obtained by Hodgkin
and Huxley [8] as part of their Nobel prize winning work on the generation of action
potentials in the squid giant axon. The delayed-rectifier K+ current is responsible
for repolarizing a neuron after an action potential. One finds that opening of the
K+ channel requires structural changes in 4 identical and independent subunits so
that PK = n4 where n is the probability that any one gate subunit has opened. In
the case of the fast Na+ current, which is responsible for the rapid depolarization
of a cell leading to action potential generation, the probability of an open channel
takes the form PNa = m3h where m3 is the probability that an activating gate
is open and h is the probability that an inactivating gate is open. Depolarization
causes m to increase and h to decrease, whereas hyperpolarization has the opposite
effect.

The dynamics of the gating variables m,n, h are usually formulated in terms of
a simple kinetic scheme that describes voltage-dependent transitions of each gating
subunit between open and closed states. More specifically, for each X ∈ {m,n, h}

dX

dt
= αX(u)(1−X)− βX(u)X,(1.4)

where αX(u) is the rate of the transition closed → open and βX(u) is the rate
of the reverse transition open → closed. Equation (1.4) can be rewritten in the
alternative form

τX(u)
dX

dt
= X∞(u)−X, with X ∈ {m,n, h},(1.5)

where

τX(u) =
1

αX(u) + βX(u)
, X∞(u) = αX(u)τX(u).
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It follows that the conductance variablesm, n and h approach the asymptotic values
m∞(u), n∞(u) and h∞(u) exponentially with time constants τm(u), τn(u) and
τh(u) respectively. The following voltage-dependent rates αX(u) and βX(u), X ∈
{m,n, h} were obtained by Hodgkin and Huxley [8] using fits with experimental
data:

αm =
0.1(u+ 40)

1− exp[−0.1(u+ 40)]
αh = 0.07 exp[−0.05(u+ 65)],

αn =
0.01(u+ 55)

1− exp[−0.1(u+ 55)]
βm = 4.0 exp[−0.556(u+ 65)],

βh =
1

1 + exp[−0.1(u+ 35)]
βn = 0.125 exp[−0.125(u+ 65)].

All potentials are measured in mV, all times in ms and all currents in µA per
cm2. The corresponding asymptotic functions X∞(u) and time constants τX(u)
are plotted in Figure 1.

u u

Figure 1. Voltage-dependent steady-state levels of activation and
inactivation (left panel) and voltage-dependent time constants (right
panel) for the Hodgkin-Huxley model.

We can now write down the Hodgkin-Huxley model for the generation of an
action potential, which takes the membrane current to be the sum of a leakage
current, a delayed-rectifier K+ current and a fast Na+ current,

F (u,m, n, h) = gL(u− uL) + gKn
4(u− uK) + gNahm

3(u− uNa).(1.6)

The maximal conductances and reversal potentials used in the model are gL =
0.003 ms/mm2, gK = 0.36 mS/mm2, gNa = 1.2 mS/mm2, uL = −54.387 mV ,
uK = −77 mV and uNa = 50 mV . Note that the leakage current groups together
various voltage-independent processes such as the currents carried by ion pumps
that maintain the concentration gradients. The variables m,n, h evolve according
to equation (1.4). The temporal evolution of the variables u,m, n, h during a single
action potential is shown in Figure 2. Injection of a depolarizing current induces
a rapid increase in the m variable describing activation of the Na+ current. Since
the slower h variable is initially around 0.6, there is a large influx of Na+ ions,
producing a sharp downward spike in the membrane current and a rapid depolar-
ization through positive feedback. However, the rise in the membrane potential
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causes the Na+ conductance to inactivate by driving h towards zero. In addition,
the depolarization activates the K+ conductance by driving n towards a, resulting
in a subsequent hyperpolarization.

u 
(m

V
)

F

Figure 2. The dynamics of u, n,m, h in the Hodgkin-Huxley model
during the firing of an action potential induced by a current injection at
t = 5 ms.

Since the introduction of the Hodgkin-Huxley model, there has been consid-
erable experimental progress in identifying the molecular mechanisms underlying
the opening and closing of ion channels, and many other types of ion channels and
associated currents have been discovered [3]. This has led to the development of
more detailed conductance–based models that can account for a much wider variety
of complex spiking behavior including bursting. In these lectures we mainly focus
on regular spiking (§1.2 and §4) and irregular spiking behavior (§3). However, we
do briefly describe some reduced integrate–and–fire models of bursting in §1.3. For
extensive reviews of conductance–based models of bursting see [1] and the collection
of articles in [9].

1.2. Periodically forced neural oscillator

We can generally formulate a conductance-based model of a neuron with constant
input current as an M -dimensional (M ≥ 2) system of ODEs

dx

dt
= f(x), x = (x1, . . . xM ).(1.7)

Here x1, say, represents the membrane potential of the neuron (treated as a point
processor) and xm, m > 1, represent various ionic channel gating variables. Suppose
that the neuron has a stable periodic solution x(t) = x(t+ ∆0) where ω0 = 2π/∆0

is the natural frequency of the oscillator. In phase space the solution is an isolated
attractive trajectory called a limit cycle. The dynamics on the limit cycle can be
described by a uniformly rotating phase such that

dφ

dt
= ω0(1.8)

and x(t) = g(φ(t)) with g a 2π-periodic function. Note that the phase is neutrally
stable with respect to perturbations along the limit cycle – this reflects invariance
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of an autonomous dynamical system with respect to time shifts. Now suppose that
a small external periodic input is applied to the oscillator such that

dx

dt
= f(x) + εp(x, t),(1.9)

where p(x, t) = p(x, t+∆) and ω = 2π/∆ is the forcing frequency. If the amplitude
ε is sufficiently small and the cycle is stable then deviations transverse to the limit
cycle are small so that the main effect of the perturbation is to induce shifts in the
phase. Therefore, we need to extend the definition of phase to a neighborhood of
the limit cycle. We accomplish this using the notion of an isochrone [10, 11, 12].

Isochrones

Suppose that we observe the unperturbed system stroboscopically at time intervals
of length ∆0. This leads to a Poincare mapping

x(t)→ x(t+ ∆0) ≡ Φ(x(t)).

This mapping has all points on limit cycle as fixed points. Choose a point x∗

on the cycle and consider all points in the vicinity of x∗ that are attracted to it
under the action of Φ. They form an (M −1)-dimensional hypersurface I, called an
isochrone, crossing the limit cycle at x∗ (see Figure 3). A unique isochrone can be
drawn through each point on the limit cycle so we can parametrize the isochrones by
the phase I = I(φ). Finally, we extend the definition of phase by taking all points
on I(φ) to have the same phase φ, which then rotates at the natural frequency ω0.

x*

I(φ)

Figure 3. Isochrones in the neighborhood of a stable limit cycle

Example: Limit cycle oscillator Consider as an example the amplitude equation
that arises for a limit cycle oscillator close to a Hopf bifurcation [13]:

dA

dt
= (1 + iη)A− (1 + iα)|A|2A.(1.10)

In polar coordinates A = Reiθ,

dR

dt
= R(1−R2),

dθ

dt
= η − αR2.
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The solution for arbitrary initial data R(0) = R0, θ(0) = θ0 is

R(t) =

[
1 +

1−R2
0

R2
0

e−2t

]−1/2

,

(1.11)

θ(t) = θ0 + ω0t−
α

2
log(R2

0 + (1−R2
0)e

−2t),

where ω0 = η − α is the natural frequency of the stable limit cycle at R = 1.
Strobing the solution at times t = n∆0, we see that

lim
n→∞

θ(n∆0) = θ0 − α lnR0.

Hence, we can define a phase on the whole plane

φ(R, θ) = θ − α lnR.(1.12)

It follows that the isochrones are logarithmic spirals with θ − α lnR = constant.

Phase equation

For an unperturbed oscillator in the vicinity of the limit cycle we have

ω0 =
dφ(x)

dt
=
∑

k

∂φ

∂xk

dxk
dt

=
∑

k

∂φ

∂xk
fk(x).

Now consider the perturbed system but with the unperturbed definition of the
phase:

dφ(x)

dt
=
∑

k

∂φ

∂xk
(fk(x) + εpk(x, t)) = ω0 + ε

∑

k

∂φ

∂xk
pk(x, t).

To a first approximation we can neglect deviations of x from the limit cycle which
we denote by x∗:

dφ(x)

dt
= ω0 + ε

∑

k

∂φ(x∗)

∂xk
pk(x

∗, t).

Finally, since points on the limit cycle are in 1:1 correspondence with the phase φ
we obtain the closed phase equation

dφ

dt
= ω0 + εQ(φ, t),(1.13)

where

Q(φ, t) =
∑

k

∂φ(x∗(φ))

∂xk
pk(x

∗(φ), t)(1.14)

is a 2π-periodic function of φ and a ∆-periodic function of t.
Example: forced limit cycle oscillator. Rewrite equation (1.10) in Cartesian coor-
dinates

dx

dt
= x− ηy − (x2 + y2)(x− αy) + ε cosωt,

dy

dt
= y + ηy − (x2 + y2)(y + αx),
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where we have added a periodic modulation in the x-direction. Rewrite the phase
(1.12) as

φ = tan−1 y

x
− α

2
log(x2 + y2)

so that

∂φ

∂x
= − y

x2 + y2
− α x

x2 + y2
.

On the limit cycle x0(φ) = (cosφ, sinφ) and hence

∂φ(x0)

∂x
= − sinφ− α cosφ.

It follows that the corresponding phase equation is

dφ

dt
= ω0 − ε(α cosφ+ sinφ) cosωt.

Phase resetting curves for conductance-based models

The phase reduction method is particularly useful because the function Q(φ, t) can
be related to an easily measurable property of a neural oscillator, namely its phase
resetting curve (PRC), which we denote by the 2π-periodic function R(φ). The
PRC is found experimentally (or numerically) by perturbing the oscillator with a
brief depolarizing voltage stimulus at different times in its cycle and measuring the
resulting phase-shift from the unperturbed system [10, 12]. Taking the coordinate
x1 as the membrane potential, it follows from equation (1.13) that

dφ

dt
= ω0 + ε

∂φ(x∗(φ))

∂x1
δ(t− t0).(1.15)

Integrating this equation over a small interval around t0, we see that the impulse
induces a phase-shift ∆φ = εR(φ0) where R(φ) = ∂φ(x∗(φ))/∂x1. Thus comparing
the phase at large times for the unperturbed and perturbed cases generates the
phase resetting curve. Given the phase resetting curve R(φ), the response of the
neuron to a more general time-dependent voltage perturbation εP (t) is determined
by the phase equation

dφ

dt
= ω0 + εR(φ)P (t).(1.16)

We can also express the PRC in terms of the firing times of a neuron (assuming
fast reconvergence to the limit cycle). Suppose that there exists a well-defined
threshold κ signalling the onset of fast somatic membrane depolarization and the
subsequent firing of an action potential spike. If T n denotes the nth firing time of
the neuron then

u(T n) = κ,
du

dt
(T n) > 0,(1.17)

where u(t) is the membrane potential at time t. (Alternatively we could define the
firing times in terms of when the neuron reaches its maximum depolarization). Since
u(t) = x1(φ(t)), the threshold corresponds to a particular phase of the limit cycle,
which we choose to be φ = 0. Since φ(t) = 2πt/∆0 in the absence of perturbations,
the firing times are T n = n∆0 where ∆0 is the natural period of oscillation. On
the other hand, a small perturbation applied at the point φ on the limit cycle at
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time t, T n < t < T n+1, induces a phase-shift that changes the next time of firing
according to (see Figure 4)

T n+1 − T n
∆0

= 1− R(φ)

2π∆0
.(1.18)

For certain types of neuron a depolarizing stimulus always advances the onset of

R(φ)

φ
t

phase-advanced

phase-retarded

Tn Tn+1

Tn Tn+1

Figure 4. Phase-shift R(φ) induced by a small perturbation of the
membrane potential applied at time t = 0 when the phase of the limit
cycle is φ

the next spike, that is, the PRC is always positive, whereas for others the stimulus
may also delay the next spike. We refer to models with a strictly positive PRC as
Type I and those for which the PRC has a negative regime as Type II.

Example: Morris-Lecar model. A numerical example illustrating both types of PRC
is shown in Figure 5(a) for the Morris–Lecar model of a neuron, which was originally
introduced to describe how under constant current injection barnacle muscle fibers

-100

0

200

400

R(φ)

φ0 2π

Type II

Type I

-0.1

0

0.1

0.2

φ0

R(φ)

2π

-80

-60

-40

-20

0

20
V

0 2πφ

Figure 5. (a) Morris-Lecar model showing two different response
types. In both cases uk = −0.7, uL = −0.5, uCa = 1, gK = 2, gL = 0.5,
u1 = −0.01, u2 = 0.15. For a type I response, gCa = 1.33, u3 = 0.1,
u4 = 0.145, φ = 1/3 and I = 0.0695. For a type II response, gCa = 1.1,
u3 = 0, u4 = 0.3, φ = 0.2 and I = 0.25. Responses have been scaled to
the same ranges. (b) Hodgkin-Huxley model with external drive I = 10
showing Type II phase resetting curve. Corresponding orbit over a single
cycle is shown in the inset.
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respond with a host of oscillatory voltage waveforms [14]. It takes the form

du

dt
= I − gL(u− uL)− gKw(u − uK)− gCam∞(u)(u− uCa),

dw

dt
= λ(u)(w∞(u)− U),(1.19)

with

m∞(u) = 0.5(1 + tanh[(u− u1)/u2]),

w∞(u) = 0.5(1 + tanh[(u− u3)/u4]),

λ(u) = φ cosh[(u− u3)/(2u4)].

Here gL is the leakage conductance, gK , gCa are potassium and calcium conduc-
tances, uL, uK , uCa are corresponding reversal potentials, m∞(u), w∞(u) are volt-
age-dependent gating functions and λ(u) is a voltage-dependent rate. The Type II
PRC for the Hodgkin-Huxley model is shown in Figure 5(b)

Averaging theorem

Expand Q(φ, t) in the phase equation (1.13) as a double Fourier series

Q(φ, t) =
∑

l,k

al,ke
ikφ+ilωt.

Substitute for φ using the zero-order approximation φ = ω0t+ φ0:

Q(φ, t) =
∑

l,k

al,ke
ikφ0+i(kω0+lω)t.

It follows that Q contains fast oscillating terms (compared to the time-scale 1/ε)
together with slowly varying terms that satisfy the resonance condition

kω0 + lω ≈ 0.(1.20)

Only the latter will lead to large variations in the phase, so we can average the
forcing term Q keeping only the resonant terms. The simplest case is ω ≈ ω0 for
which the resonant terms satisfy l = −k and

Q(φ, t)→
∑

k

a−k,ke
ik(φ−ωt) = q(φ− ωt).(1.21)

The phase equation then becomes

dφ

dt
= ω0 + εq(φ− ωt).

The phase difference between the oscillator and external drive, ψ = φ − ωt, then
satisfies the equation

dψ

dt
= −∆ω + εq(ψ),(1.22)

where ∆ω = ω − ω0 is the degree of frequency detuning. Similarly, if ω ≈ mω0/n
then

Q(φ, t)→
∑

k

a−nj,mje
ij(mφ−nωt) = q̂(mφ− nωt)(1.23)

and
dψ

dt
= mω0 − nω + εmq̂(ψ),(1.24)
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where ψ = mφ− nωt.
The above is an example of an application of the averaging theorem [13]. As-

suming that ∆ω = ω − ω0 = O(ε) and defining ψ = φ− ωt we have

dψ

dt
= −∆ω + εQ(ψ + ωt, t) = O(ε).(1.25)

Define

q(ψ) = lim
T→∞

1

T

∫ T

0

Q(ψ + ωt, t)dt,(1.26)

and consider the averaged equation

dψ

dt
= −∆ω + εq(ψ).(1.27)

It is easy to establish that q only contains the resonant terms of Q as above. The
averaging theorem states that there exists a change of variables that maps solutions
of the full equation to those of the averaged equation. The question then remains
as to what extent solutions of the averaged equations are a good approximation to
the solutions of the full equation. In general, one can only establish that a solution
of the full equation is ε-close to a corresponding solution of the averaged system
for times of O(ε−1). No such problem occurs however for hyperbolic fixed points
corresponding to phase-locked states.

Phase-locking and synchronization

Suppose that the 2π-periodic function q(ψ) has a unique maximum qmax and a
unique minimum qmin in the interval [0, 2π). We can then distinguish between two
regimes:
Synchronization regime: If the degree of detuning for a given drive amplitude is
sufficiently small,

εqmin < ∆ω < εqmax,

then there exists at least one pair of stable/unstable fixed points (ψs, ψu). (This
follows from the fact that q(ψ) is 2π-periodic and thus has to cross any horizontal
line an even number of times). The system evolves to the synchronized state

φ(t) = ωt+ ψs,

in which the oscillator is phase-locked to the external drive and is frequency en-
trained. Note that the stability of a phase-locked state is determined by the sign of
q′(ψ) with q′(ψs) < 0 and q′(ψu) > 0 (see Figure 6(a)).

ψ
.

ψ
.

ψ
.

ψ ψ ψ

Figure 6. Saddle-node bifurcation signalling transition from a syn-
chronized to a drifting state as size of frequency detuning |∆ω| increases.
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Drift regime: As |∆ω| increases it approaches one of the critical values εqmin,max
where the two fixed points coalesce in a saddle-node bifurcation and phase-locking
disappears, see Figure 6(b,c). Hence, if the degree of tuning is large then dψ/dt
never changes sign and the oscillation frequency differs from the drive frequency ω.
The phase ψ(t) rotates through 2π with period

Tψ =

∣∣∣∣
∫ 2π

0

dψ

εq(ψ)−∆ω

∣∣∣∣ .(1.28)

The mean frequency of rotation is thus Ω = ω + Ωψ where Ωψ = 2π/Tψ is known
as the beat frequency. One is often interested in how the behavior varies in the
(∆ω, ε)-plane (see Figure 7). First the boundary between the two regimes consists
of the two straight lines ∆ω = εqmax,min. Second, close to the boundary Ωψ has
a characteristic form. Suppose, for example, that ∆ω −∆ωmax is small for fixed ε
with ∆ωmax = εqmax. The integral in equation (1.28) is then dominated by a small
region around ψmax. Expanding q(ψ) as a Taylor series,

Ωψ =
2π

Tψ
≈ 2π

∣∣∣∣
∫ ∞

−∞

dψ

εq′′(ψmax)ψ2 − (∆ω −∆ωmax)

∣∣∣∣
−1

(1.29)

=
√
ε|q′′(ψmax)|(∆ω −∆ωmax).

ε

∆ω

∆ω

Ωψ

0

Figure 7. (a) Synchronization regime (shaded) in (∆ω, ε)-plane. (b)
Variation of beat frequency with ∆ω for fixed ε.

1.3. Integrate–and–fire models

Integrate–and–fire (IF) neuron models neglect details regarding the spike gener-
ation process by reducing the latter to an all–or–nothing threshold event. That
is, whenever the membrane potential crosses a firing threshold, the neuron fires a
spike, typically modeled as a Dirac delta function, and the membrane potential is
reset to some subthreshold value. The output of a spiking neuron can thus be char-
acterized in terms of the sequence of threshold–crossing or firing times. Although
they are less realistic than conductance–based models, they have provided a very
useful platform for exploring computational issues such as neural coding and spike
train statistics (see §3).
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Leaky integrate–and–fire model

The simplest example of a spiking neuron is the so–called leaky integrate–and–fire
(LIF) model [15]. The basic circuit of the LIF model consists of a capacitor C in
parallel with a resistor R driven by a total current I(t) = Iext(t) + Isyn(t). The
voltage u(t) across the resistor then satisfies the differential equation

du

dt
= −u(t)

τ
+
Iext(t) + Isyn(t)

C
,(1.30)

where τ = RC is the membrane time constant of the cell. The form of the action
potential is not described explicitly. Spikes are formal events characterized by the
ordered sequence of firing times {Tm,m ∈ Z} determined by the threshold crossing
conditions

Tm = inf{t|u(t) = uκ, t > Tm−1},(1.31)

where uκ is the firing threshold. Immediately after firing, the potential is reset to
a value ur < uκ,

lim
t→Tm

+

u(t) = ur.(1.32)

For simplicity we set uκ = 1, ur = 0 and C = 1.
One of the useful features of the LIF model is that one can analyze the response

of a neuron to external and synaptic input currents without requiring that the
inputs are sufficiently small as in phase reduction methods. We will illustrate this
in the case of periodic forcing. Suppose that Isyn(t) = 0 and decompose the external
drive as Iext(t) = I0 + εI1(t) with I1(t) assumed to be ∆-periodic. Integrate the
LIF equation between successive firing times T n and T n+1 using u(T n+) = 0 and

u(T n+1
− ) = 1:

eT
n+1/τ = τI0

[
eT

n+1/τ − eT
n/τ
]

+ ε

∫ Tn+1

Tn

et/τ I1(t)dt.(1.33)

When ε = 0 this equation can be solved explicitly to give

T n+1 − T n = τ log
τI0

τI0 − 1
≡ ∆0,(1.34)

which describes an oscillator that fires at uniform time intervals of length ∆0 (pro-
vided that τI0 > 1), see Figure 8(a). We interpret ω0 = 2π/∆0 as the natural

Ith
I

f(I)u(t)

t
Tn

Tn+1

(a) (b)

uκ

ur

Figure 8. Integrate-and-fire oscillator. (a) Plot of u(t) as a function
of time t for constant current I . (b) Firing rate r as a function of current
injection I with Ith = 1/τ when uκ = 1, ur = 0.
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frequency of the LIF oscillator. The so–called f − I curve relating the steady–state
firing rate as a function of input current I0 is then given by the firing rate function

f(I0) =
1

τ

[
1

log(τI0/[τI0 − 1])

]

+

.(1.35)

where [x]+ = 1 if x > 0 and zero otherwise. The firing rate function f is plotted in
Figure 8(b).

In order to analyze the case ε 6= 0, it is useful to introduce the function

F (t) = [τI0 − 1]et/τ + ε

∫ t

−∞

es/τI1(s)ds(1.36)

such that the iterative firing time map can be written in the form

F (T n+1) = F (T n) + eT
n/τ .(1.37)

This equation has been studied in great detail by Keener et al [15] for the particular
case of the sinusoidal forcing I(t) = I0 + ǫ sin(2πt). Here the time-scale has been
chosen so that the forcing period ∆ = 1. The function F then has the explicit form

F (t) = et/τ
(
τI0 − 1 +

ǫτ√
1 + 4π2τ2

sin(2πt− η)
)
,(1.38)

where tan η = 2πτ . Keener et al [15] showed that major differences in behavior
occur depending upon whether or not F is invertible. If F is invertible then we
have an explicit first–order map

T n+1 = Ψ(T n) ≡ F−1
[
F (T n) + eT

n/τ
]
.(1.39)

The condition for invertibility is that F ′(t) 6= 0 for all t, which implies that

I0 −
1

τ
> εmax

t
{−I1(t)}.(1.40)

The invertibility condition reduces to I0− τ−1 > ε in the case of sinusoidal forcing.
Since (for ∆ = 1)

F (Ψ(t+ 1)) = e1/τ [F (t) + et/τ ] = e1/τF (Ψ(t)) = F (Ψ(t) + 1),

it follows that Ψ(t+ 1) = Ψ(t) + 1. By identifying the interval 0 ≤ t < 1 with the
unit circle we thus obtain a smooth invertible circle map. When F is not invertible,
the mapping T n → T n+1 of equation (1.37) can still be defined provided that F−1

is taken to be the smallest branch of the inverse of F , that is, T n+1 is taken to be
the smallest value of t, t > T n, for which equation (1.37) is satisfied. The dynamics
is now described by a discontinuous, piecewise monotonic circle map.

The qualitative dynamics of the equivalent circle map can be characterized in
terms of its rotation number ρ. This is defined according to [15]

ρ = lim
n→∞

T n − T 0

n
,(1.41)

and measures the mean inter-spike interval (time between successive firings). It can
be shown that ρ is independent of the initial state T 0 and is a continuous function
of parameters in both the invertible and non–invertible regimes. If ρ is rational ,
that is, ρ = p/q for integers p, q, then every sequence of firing times converges to a
periodic orbit on which T n+p = T n + q, and p : q phase–locking is said to occur.
In the invertible regime, ρ is irrational on a parameter set of positive Lebesgue
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Figure 9. (a) Plot of the inverse mean firing period as a function of
the membrane time constant τ for I0 − ǫ = τ−1 with I0 = 2. Note that
the dominant solutions are 1 : 1, 3 : 4, 2 : 3 and 3 : 5 (with increasing τ ).
(b) The Arnold tongue structure for the dominant modes. The dashed
curve shows the boundary between invertible and non-invertible regimes
of the firing time map

measure and the resulting quasiperiodic solutions are ergodic, that is, the sequence
Tn mod 1 is dense in the interval [0, 1). On the other hand, in the noninvertible
regime, ρ is irrational on a set of Lebesgue measure zero and the quasiperiodic
orbits are no longer ergodic in [0, 1). In Figure 9(a) we plot 1/ρ as a function of τ
for ε = I0 − τ−1. The resulting devil’s staircase structure shows that the preferred
mode-locked solutions are those with low ratios of q to p. In Figure 9(b) we plot
the borders of the Arnold tongues where these dominant modes become unstable
in the (τ, ǫ)-plane. In the invertible regime both boundaries are associated with
the disappearance of a phase–locked state via a smooth saddle-node bifurcation,
whereas in the noninvertible regime the left–hand boundary signals the non-smooth
disappearance of a stable phase-locked state [15].

Weak periodic forcing and phase averaging

For sufficiently small ε, the conditions for mode–locking reduce to those obtained
using the phase reduction method of §1.2. Consider an LIF neuron with a weak
periodic input εI(t) evolving as

du

dt
= f(u) + εI(t),

where f(u) = I0 − u and we have set τ = 1. Taking ur = 0 and uκ = 1 the period
of oscillation for ε = 0 is

T0 =

∫ 1

0

dx′

f(x′)
= log[I0/(I0 − 1)].

Introducing the phase variable

θ(t) =
2π

T0

∫ u

0

dx′

f(x′)
,(1.42)

we can transform the LIF equation to a phase equation identical in form to (1.16)

dθ(t)

dt
= ω0 + εR(θ)I(t),
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where ω0 = 2π/T0 and

R(θ) =
2π

I0T0
eT0θ/2π, 0 ≤ θ < 2π.(1.43)

We identify the 2π–periodic function R(θ) as the PRC of an LIF neuron (see §1.2).
Suppose that the input I(t) = cosωt with ω − ω0 = O(ε). Introduce the slowly
varying phase variable ψ(t) = θ(t)− ωt such that

dψ(t)

dt
= ε [∆ω +R(ψ + ωt) cos(ωt)] ,

with ω − ω0 = ε∆ω. From the averaging theorem [13], solutions of this equation
can be approximated by solutions of the reduced equation (at least up to times of
order 1/ε)

dψ(t)

dt
= ε [∆ω + q(ψ))] ,

where

q(ψ) =
1

T

∫ T

0

R(ψ + ωt) cos(ωt)dt

and ω = 2π/T . A fixed point of the reduced phase equation corresponds to a 1 : 1
mode–locked solution, and from this the boundaries of the 1 : 1 Arnold tongue can
be deduced for small ε.

Spike response model

The LIF model assumes that it is the capacitative nature of the cell that in conjunc-
tion with a simple thresholding process dominates the production of spikes. The
spike response (SR) model is a more general framework that can accommodate the
apparent reduced excitability (or increased threshold) of a neuron after the emission
of a spike [16, 17, 7]. Spike reception and spike generation are combined with the
use of two separate response functions. The first, η(t), describes the postsynaptic
response to an incoming spike in a similar fashion to the LIF model, whereas the
second, η(t), mimics the effect of refractoriness. The refractory function η(t) can
in principle be related to the detailed dynamics underlying the description of ionic
channels. In practice an idealized functional form is often used, although numerical
fits to the Hodgkin-Huxley equations during the spiking process are also possible
[18]. In more detail, a sequence of incoming spikes {Tm} evokes a postsynaptic
potential in the neuron of the form us(t) =

∑
m ǫ(t− Tm) where ǫ(t) incorporates

details of axonal, synaptic and dendritic processing (see §2). The total membrane
potential of the neuron is then taken to be

u(t) =
∑

p

η(t− T̂ p) +
∑

m

ǫ(t− Tm),(1.44)

where {T̂ p} is the sequence of output firing times and η(t) is the the refractory func-
tion reflecting the reduced excitability seen after firing. Since the reset condition of

the LIF model is equivalent to a sequence of current pulses, −(uκ−ur)
∑

p δ(T̂
p), the

LIF model is a special case of the SR model. More specifically, integrating the LIF
equation (1.30) in the case of a synaptic input of the form I(t) =

∑
m gsyn(t−Tm),
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we obtain the equivalent formulation (1.44) with

η(t) = −(uκ − ur)e−t/τ , ǫ(t) =

∫ t

0

e−(t−t′)/τgsyn(t′)dt′, t > 0.(1.45)

Nonlinear IF model and parabolic bursting

In a general nonlinear IF model, equation (1.30) is replaced by [19]

τ
du

dt
= F (u) +G(u)I.(1.46)

(Note that one can always eliminate the nonlinear factor G(u) by a change of
variables). A specific example of a nonlinear IF model is the quadratic model

τ
du

dt
= a0(u− urest)(u − uc) +RI,(1.47)

with a0 > 0 and uc > urest. For I = 0 and initial condition u < uc, the voltage
decays to the resting potential urest. For u > uc it increases to infinity in a finite
time due to the quadratic nonlinearity, which defines when a spike is emitted. Im-
mediately after firing, the neuron is reset to −∞. Again the quadratic nonlinearity
ensures that the membrane potential returns to a finite value in a finite time.

After shifting the voltage and current variables, the quadratic IF model can be
rewritten as

du

dt
=
(
p+ qu2

)
,(1.48)

which represents the normal form of any neuron exhibiting a saddle–node on a
limit cycle bifurcation [20, 21], see Figure 10. Such a neuron displays Class I ex-
citability, which is characterized by the appearance of oscillations with arbitrary
low frequency; the frequency increases with increasing injected current. This should
be contrasted with Class II excitability for which the onset of repetitive firing oc-
curs at a non-zero frequency that is relatively insensitive to changes in the applied
current. Class II excitability is usually associated with a Hopf bifurcation. The

(a) I < I* (b) I = I* (c) I > I*

Figure 10. Schematic diagram of a saddle-node bifurcation on a limit
cycle occurring as the applied current I is increased. (a) For I < I∗ there
is a unique asymptotically stable fixed point and a saddle-point with a
one-dimensional unstable manifold whose branches form a closed loop.
(b) At criticality, I = I∗, the node and saddle coalesce. (c) For I > I∗

all that remains is a limit cycle
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behavior of the model becomes more transparent by performing the change of vari-
ables u = tan(θ/2) which gives the so–called theta model [22]

dθ

dt
= q(1 − cos(θ)) + p(1 + cos(θ)).(1.49)

If q and p have opposite signs then equation (1.49) has two fixed points, one stable
and the other unstable, and the neuron is in an excitable state. On the other hand,
if q and p have the same sign (which we take to be positive) then there are no fixed
points and the phase monotonically increases with time. In fact, one can solve
equation (1.49) explicitly to obtain the solution

θ(t) = 2 tan−1

[√
p

q
tan (
√
pqt+ φ)

]
(1.50)

for some arbitrary phase φ. It follows that the frequency of rotation is ω = 2
√
pq.

Each time θ(t) passes through π the potential u(t) ‘blows up’ thus signalling the
firing of a single spike in the full system.

A simple extension of the above canonical model of a Class I excitable neuron
can be used to describe what is known as a parabolic burster [20]. Bursting is
the rhythmic generation of several action potentials during a short time, followed
by a period of inactivity. There are a wide variety of burst phenomena, but it
appears that many are due to a similar underlying mechanism. We first note that
the various chemical and electrical dynamics of the neuron operate on many time-
scales, and for some neurons one can dissect their full dynamics into a fast system
coupled to a slowly oscillating sub-system [23, 1, 4, 5]. Typically the fast system
has a time-scale of milliseconds and models the membrane potential, and hence
spike generation. The slow sub-system operates on a time-scale that varies from
hundreds of milliseconds to tens of seconds and typically models trans-membrane
ionic currents. For many types of bursting, the fast subsystem exhibits bistability
between a quiescent fixed point and an active oscillatory state. At least one slow
variable is then required to alternate back and forth through the region of bistability
such that the neuron periodically jumps between the active and quiescent phases
along a hysteresis loop. It is also possible to generate bursting without bistability
in the fast subsystem, as in the case of parabolic bursting, provided there are at
least two variables in the slow subsystem that periodically sweep the fast subsystem
through a sequence of bifurcations. Both cases are illustrated in Figure 11.

Ermentrout and Kopell [20] showed how parabolic bursting models can be
reduced to the following canonical form

θ̇ = [1− cos(θ)] + [1 + cos(θ)] g(φ), φ̇ = ω(1.51)

where (φ, θ) ∈ S1×S1 is on a torus, the frequency of the slow oscillations is ω ≪ 1,
and g : S1 → R is a continuous function describing the influence of φ on the fast
variable θ. If g is negative for all φ then the fast variable is quiescent, and there is
no bursting. If g(φ) > 0 the fast variable fires all the time and is never quiescent.
Bursting occurs when g changes sign over the interval φ ∈ [0, 2π). A typical choice
of g is g(φ) = a+ b cosφ resulting in the so called atoll model. Typical activity of
this system in the (θ, φ) plane is shown in Figure 12 for (a, b) = (0, 1).
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Figure 11. Slow variation in the parameter s switches the neuron
between quiescent and spiking states resulting in bursting. In the case
of slow wave bursting the periodic variation of s is independent of the fast
system, whereas in hysteresis type bursting the slow and fast systems
are mutually coupled. [Reprinted from [1], figure 9.17, by permission of
the MIT Press.]

φ

θ Atoll

Figure 12. Activity of the atoll model for ω = 0.05, a = 0, b = 1.
The dashed circle is the set of equilibria for the fast variable θ. Outside
the atoll region, θ completes full 2π rotations, so that the neuron fires
action potentials whereas within the atoll θ is attracted to a fixed point
and the neuron is quiescent. The system periodically enters and leaves
the atoll due to the periodic rotation of the slow phase variable φ.

Integrate-and-fire-or-burst model

Several models of bursting neurons include a low-threshold calcium T -current [24].
Such a current is slowly de–inactivated when the neuron is sufficiently hyperpolar-
ized so that it can cause the neuron to fire a burst of action potentials when released
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from sustained inhibition, so-called post-inhibitory rebound. Recently the integrate-
and-fire model has been extended to incorporate this slow acting T -current leading
to the aptly named integrate-and-fire-or-burst (IFB) model [25]. The current bal-
ance equation for the model is

C
du

dt
= −I − IL − IT ,(1.52)

where C is a membrane capacitance, I represents external or synaptic current,
gL(u−uL) is a leakage current with constant conductance gL and reversal potential
uL. The low-threshold Ca2+ current is given by

IT = gTh(t)(u − uT )H(u− uh),(1.53)

where H is a Heaviside function and the slow variable h has the dynamics

dh

dt
=

{
−h/τ−, u ≥ uh

(1− h)/τ+, u < uh
.(1.54)

The variable h, which represents slow de-inactivation of the low-threshold Ca2+

conductance, relaxes to zero with time constant τ− when u ≥ uh and relaxes to
unity with time constant τ+ when u < uh. Assuming uh < ur < uκ, where uκ is
the firing threshold, it follows that sustained hyperpolarization is required in order
that the potential crosses the uh boundary from above resulting in an increase in h.
If the cell is then released from inhibition so that u recrosses the threshold uh from
below, a non-zero IT current is generated that can depolarize the cell and produce
a burst of spikes. In the absence of such hyperpolarization, the system acts as a
regular integrate-and-fire neuron. Also note that if ur < uh < uκ then bursting can
be induced by direct excitation, as occurs for inhibitory reticular cells (see below).
In the case of a constant external input, it is possible to obtain an exact solution
of the IFB model in terms of characteristic curves in the (u, h)–plane [26]. The
Arnold tongue structure for the IFB model under periodic forcing has also been
determined [27].

One particular structure where calcium T –currents are thought to be important
is the thalamus. The thalamus is the primary relay station for most of the sen-
sory information on route to the cerebral cortex. Oscillations at 7-14 Hz (spindles)
and 4-7 Hz (delta) are common in cortex and thalamus during various stages of
non-REM sleep [28, 29]. The EEG spindles are typical of brain electrical synchro-
nization at the onset of sleep associated with the loss of perceptual awareness. It
has been established that these oscillations are generated as the result of synaptic
interactions between excitatory thalamocortical cells and GABA inhibitory neu-
rons of the thalamic reticular nucleus. The latter is a thin sheet of inhibitory cells
between the thalamus and cortex that is uniquely placed to play a regulatory role
in levels of awareness. From a computational perspective, one can basically reduce
sleep into two phases that correspond roughly speaking to two modes of firing of
thalamic cells. During the slow oscillations of non-REM sleep, thalamic cells are in
a bursting mode in which there is sufficient hyperpolarization to de-inactivate the
low-threshold calcium current. Rather than communicating information about the
sensory world, the thalamocortical neurons participate in a globally synchronized
bursting state mediated by the corticothalamic loop. Such a coherent brain state
may perform the function of consolidating memory traces acquired during wakeful-
ness [28]. However, it can also lead to hypersynchronous episodes similar to those
observed in some epileptic seizures. During REM sleep, the thalamic neurons are
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more depolarized such that the calcium current is inactivated. The neurons now
fire in a tonic (regular spiking) rather than a bursting mode and may exhibit high
frequency γ oscillations similar to the awake state. Transitions between non-REM
sleep, REM sleep, and arousal are controlled by a variety of neurotransmitters re-
leased from brain stem nuclei including acetylcholine, norepinephrine and serotonin
[31]. Until recently, it was thought that during wakefulness the thalamic cells only
operate in tonic mode, which relays sensory information to the cortex. However,
recent experimental studies indicate that burst firing can also serve as an effective
relay mode in the awake state [30], see Figure 13. In particular burst firing is
more effective than tonic firing in detecting weak signals in background noise. It

Figure 13. Two modes of firing in thalamic cells during the wake
state. (A) Tonic firing with T–current inactivated. (B) Burst firing when
the T–current is de-inactivated. (C) Firing rate as a function of current
injection in the tonic mode (at -47 and -59 mV) and in the burst mode (-
77 and -83 mV). The former is approximately linear whereas the latter
is approximately a step function. (D) Peri-stimulus time histograms
of a neuron in tonic mode showing response to a periodic stimuli and
spontaneous activity in the absence of the stimulus. (E) Corresponding
histograms in burst mode. [Reprinted from [30], with permission of

Elsevier.]
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is also possible that bursting is more effective in stimulating neurons downstream.
This has led to the suggestion that the burst mode is used to detect novel stimuli.
Once the change is detected, the neuron switches to tonic mode so that the new
object can be analyzed more faithfully. Recently, IFB models have been used to
investigate both bursting and tonic firing in models of thalamic tissue [32, 33].





LECTURE 2

Synaptic and Dendritic Processing

In the single neuron models discussed in §1, we decomposed the total input
current into an external part Iext(t) and a synaptic part Isyn(t). In order to de-
velop recurrent network models, it is necessary to consider the detailed form of
the synaptic current Isyn(t) that mediates neuronal interactions. In this lecture
we begin by considering a single synapse and the sequence of events underlying
conductance changes in the postsynaptic membrane due to the arrival of an ac-
tion potential at the presynaptic terminal. We then show how these conductance
changes can be modeled in terms of a kinetic scheme describing the opening and
closing of ion channels in the postsynaptic membrane. Typically, a single neuron
in cerebral cortex has up to 10,000 synapses, which are spatially distributed along
the dendritic tree (and perhaps on the cell body and proximal part of the axon). In
order to find the total synaptic current Isyn(t) entering the cell body, it is necessary
to determine how the various local currents flow along the dendritic tree and com-
bine at the soma. We show that if the dendrites are modeled as passive electrical
cables, then the dendritic tree acts as a linear spatio-temporal filter of synaptic
currents. We end the lecture by describing some biophysical models of synaptic
plasticity, in which the strength or weight of a synapse is modifiable by experience.
(The synaptic weight can be identified as the maximal conductance change induced
by a single action potential). In particular, we consider the phenomenon of spike
timing–dependent plasticity (STDP), where changes in synaptic weights depend on
the precise timing of pre– and post–synaptic spikes at the millisecond level. STDP
is emerging as an important paradigm in computational approaches to adaptive
behavior and learning.

2.1. Excitatory and inhibitory synapses

The basic stages of synaptic processing induced by the arrival of an action potential
at an axon terminal are shown in Figure 1. (See [3] for a more detailed description).
An action potential arriving at the terminal of a presynaptic axon causes voltage-
gated Ca2+ channels within an active zone to open. The influx of Ca2+ produces
a high concentration of Ca2+ near the active zone [34, 35], which in turn causes
vesicles containing neurotransmitter to fuse with the presynaptic cell membrane
and release their contents into the synaptic cleft (a process known as exocytosis).
The released neurotransmitter molecules then diffuse across the synaptic cleft and
bind to specific receptors on the post-synaptic membrane. These receptors cause
ion channels to open, thereby changing the membrane conductance and membrane
potential of the postsynaptic cell. A single synaptic event due to the arrival of an
action potential at time T induces a synaptic current of the form

Isyn(t) = gsyn(t− T )(usyn − u(t)),(2.1)

27
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where u is the voltage of the postsynaptic neuron, usyn is the synaptic reversal
potential and gsyn(t) is the change in synaptic conductance with gsyn(t) = 0 for
t < 0. The sign of usyn relative to the resting potential urest (typically urest ≈
−65mV ) determines whether the synapse is excitatory (usyn > urest) or inhibitory
(usyn < urest). For simplicity, it is often assumed that a neuron spends most of its
time close to rest such that usyn − u ≈ usyn − urest, with the factor usyn − urest

absorbed into gsyn (see also §3.3). One is then effectively taking the arrival of a
spike as generating a synaptic current rather than a change in conductance.

Figure 1. Basic stages of synaptic processing shown for an excitatory
synapse. See text for details. [Adapted from Kandel et al [36]]

The predominant fast, excitatory neurotransmitter of the vertebrate central
nervous system is the amino acid glutamate, whereas in the peripheral nervous
system it is acetylcholine. Glutamate-sensitive receptors in the post-synaptic mem-
brane can be subdivided into two major types, namely, NMDA and AMPA [3].
At an AMPA receptor the postsynaptic channels open very rapidly. The result-
ing increase in conductance peaks within a few hundred microseconds, with an
exponential decay of around 1 msec. The time course of the synaptic conductance
change can be modeled in terms of an nth state Markov process [37] (see §2.2).
Usually a simplified representation of gsyn(t) is used that is given by the difference
of exponentials

gsyn(t) = ḡ

(
1

τ2
− 1

τ1

)
(e−t/τ1 − e−t/τ2)H(t),(2.2)

with H(t) the Heaviside function. In the limit τ2 → τ1 = α−1, equation (2.2)
reduces to the well known α function

gsyn(t) = ḡα2te−αtH(t).(2.3)

These expressions for the conductance are also used for GABA inhibitory synapses
(see below). In contrast to an AMPA receptor, the NMDA receptor operates about
10 times slower and the amplitude of the conductance change depends on the post-
synaptic membrane potential, see Figure 2. If the postsynaptic potential is at rest
and glutamate is bound to the NMDA receptor then the channel opens but it is
physically obstructed by Mg2+ ions. As the membrane is depolarized, the Mg2+

ions move out and the channel becomes permeable to Na+ and Ca2+ ions. The
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rapid influx of calcium ions due to the opening NMDA channels is thought to be
the critical trigger for the onset of long term potentiation or LTP, a major compo-
nent of synaptic plasticity (see §2.4).

Figure 2. An NMDA synapse. Arrival of an action potential at the
presynaptic terminal induces vesicles containing glutamate to merge
with the cell membrane and release the neurotransmitter into the synap-
tic cleft. This binds to NMDA and AMPA receptors on the postsynaptic
cell membrane. The AMPA associated channel opens but the NMDA
channel is blocked by magnesium. Depolarization of the postsynaptic
membrane unblocks magnesium allowing the influx of calcium. Depolar-
ization may be caused by a back propagating action potential (BPAP)
that travels up the dendrites.[Reprinted from [38], with permission from

AAAS.]

The most common inhibitory neurotransmitter in the central nervous system
of both vertebrates and invertebrates appears to be GABA. There are two major
forms of postsynaptic receptors termed A and B. The GABAA receptors opens
channels selective to chloride ions, whose reversal potential usyn = −70mV is close
to that of the resting potential. The postsynaptic conductance change is quite fast,
rising within 1 msec and decaying within 10-20 msec. GABAB receptors are at
least 10 times slower and open ion channels selective for K+ ions. Thus they tend
to be considerably more hyperpolarizing with usyn ≈ −100mV . The two receptor
classes tend to be segregated with GABAA occurring at or close to the soma and
GABAB further out on the dendrites. Another way to distinguish between GABAA

and GABAB receptors is that the former is ionotropic (as are NMDA and AMPA)
whilst the latter is metabotropic [3]. Neurotransmitter binding to an ionotropic
receptor directly opens an ion channel through a series of conformational changes
of the receptor. On the other hand, neurotransmitter binding to a metabotropic
receptor indirectly opens an ion channel elsewhere in the membrane through a
sequence of biochemical steps.

Synaptic facilitation and depression

A single synaptic event due to the arrival of an action potential at time T induces a
synaptic current of the form (2.1). As a crude approximation we might try summing
individual responses to model the synaptic current arising from a train of action
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potentials arriving at times Tm, integer m:

Isyn(t) =
∑

m

gsyn(t− Tm)(usyn − u(t)).(2.4)

Note that this sum only includes spikes for which Tm < t since gsyn(t) = 0 for
t < 0 (causality condition). For many synapses such a simple ansatz does not hold,
since processes such as synaptic facilitation and short-term depression cause the
amplitude of the response to depend on the previous history of presynaptic firing
[39, 40]. One way to incorporate these history–dependent effects is to take [41]

Isyn(t) =

[
∑

m

A(Tm)gsyn(t− Tm)

]
(usyn − u(t)),(2.5)

where the factor A(Tm) scales the response evoked by an action potential by an
amount that depends upon the details of the previous spike train data. One inter-
pretation of the factor A is that it represents short-term (reversible) changes in the
release probability for synaptic transmission. One possible mechanism for synaptic
depression is a depletion in the number of vesicles that can readily fuse with the cell
membrane, whereas facilitation is thought to be due to residual calcium remaining
in active fusion regions [42].

A common phenomenological model of facilitation or depression is to assume
that between spikes A(t) relaxes at a rate τA to its steady state value of one, but
that directly after the arrival of a spike it changes discontinuously. τA can vary
between around 100msecs and a few seconds [40]. For facilitation A is increased,
whilst for depression it is decreased. It is mathematically convenient to model the
former as an additive process and the latter as a multiplicative process in order to
avoid possible divergences. That is, A→ A+ γ − 1 with γ > 1 for facilitation, and
A→ γA with γ < 1 for depression. The two models may be written succinctly as

τA
dA

dt
= (1−A) + (γ − 1)

∑

n

Aβδ(t− T n), A(0) = 1(2.6)

with β = 1 for the multiplicative model and β = 0 for the additive model. They
have solutions of the form

A(Tm) = 1 + (γ − 1)
∑

n<m

γ̂[m−n−1]βe−(Tm−Tn)/τA ,(2.7)

where γ̂ = γ (depression) and γ̂ = 1 (facilitation). Assuming a regular sequence of
incoming spikes T n − T n−1 = ∆ for all n we find that the asymptotic amplitude
A∞(∆) ≡ limm→∞A(Tm) is given by

A∞(∆) = 1 +
(γ − 1)

(e∆/τA − 1)
(facilitation),(2.8)

and

A∞(∆) =
1− e−∆/τA

1− γe−∆/τA
(depression).(2.9)

One possible computational role for synaptic depression is as a mechanism for
cortical gain control [40]. The basic idea can be understood from the dependence
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of the asymptotic amplitude A∞(∆) on the stimulus frequency f = ∆−1. Assuming
that τA ≫ ∆, we can Taylor expand A∞ in equation (2.9) to find that

A∞(f) ≈ Γ

f
,(2.10)

where Γ = τA/(1−γ). The main point to note is that the postsynaptic response per
unit time is approximately independent of f (assuming that each spike elicits the
same response in the steady-state). This means that the synapse is very sensitive to
changes in the stimulus frequency. The instantaneous response to a rapid increase
∆f in the stimulus rate is given by Γ∆f/f . In other words, the synapse responds
to relative rather than absolute changes in the rate of input stimulation.

2.2. Kinetic model of a synapse

Let gsyn(t) ∼ s(t) where s(t) is the fraction of synaptic receptor channels that are
in an open conducting state. The probability of being in an open state depends
on the presence and concentration T of neurotransmitter released by the presynap-
tic neuron. Assuming a first order kinetic scheme, in which a closed receptor in
the presence of a concentration of neurotransmitter T equilibrates with the open
receptor state, we have

C
r1(u,T )

⇋

r2(u)
O,

where C and O represent the closed and open states of the channel and r1(u, T ) and
r2(u) are the associated rate constants. However, in many cases synaptic channels
are found to have time dependent properties that are more accurately modeled with
a second order kinetic scheme. In fact the presence of one or more receptor sites on
a channel allows the possibility of transitions to desensitized states. Such states are
equivalent to the inactivated states of voltage-dependent channels. The addition of
such a desensitized state to the first order process generates a second order scheme:

ds

dt
= r1(u, T )(1− s− z)− [r2(u) + r3(u)]s+ r4(u)z,

dz

dt
= r6(u, T )(1− s− z)− [r4(u) + r5(u)]z + r3(u)s,(2.11)

where z is the fraction of channels in the desensitized state. All neurotransmitter
dependent rate constants have the form ri(u, T ) = ri(u)T . It is common for detailed
Markov models of voltage-gated channels to assume that the voltage dependence
of all rates takes a simple exponential form. However, it has been shown that the
number of states needed by a model to more accurately reproduce the behavior of a
channel may be reduced by adopting sigmoidal functions for the voltage-dependent
transition rates (see Destexhe et al [37] for a discussion), so that we write

ri(u) =
ai

1 + exp [−(u− ci)/bi]
.(2.12)

The ai set the maximum transition rate, bi the steepness of the voltage dependence
and ci the voltage at which the half-maximal rate is reached. Furthermore, the
concentration of neurotransmitter can also often be successfully approximated by
a sigmoidal function of the presynaptic potential upre:

T (upre) =
Tmax

1 + exp[−(upre − u∆)/∆]
.(2.13)



32 LECTURE 2. SYNAPTIC AND DENDRITIC PROCESSING

Here Tmax is the maximal concentration of transmitter in the synaptic cleft, upre is
the presynaptic voltage, ∆ gives the steepness and u∆ sets the value at which the
function is half activated. It is common to take ∆ = 5mV and u∆ = 2mV. One
of the main advantages of using an expression such as (2.13) is that it provides a
smooth transformation between presynaptic voltage and transmitter concentration
from which postsynaptic currents can be easily calculated from (2.1), (2.11) (2.12)
and (2.13).

Now consider the following second-order gating scheme

C
r1(T )
⇋
r2

C1

տ
r4

ւ
r3

O

where C and C1 are the closed forms of the receptor, O is the open (conducting)
form, and the ri are voltage independent transition rates. Under certain assump-
tions it may be shown that this particular second order scheme describes the so-
called alpha function response commonly used in synaptic modeling. The following
approximations are required: (i) The transmitter concentration (T ) occurs as a
pulse δ(t− t0) for a release event occurring at time t = t0. Then r1(T ) = r1δ(t− t0)
and (ii) The fraction of channels in C is considered constant and ∼ 1. Then the
kinetic equations (2.11) reduce to

dp(t)

dt
= Qp(t) + I(t)

(assuming p(0) = 0) where

Q =

( − 1
τ1

0

r3 − 1
τ2

)
, I(t) =

(
r1δ(t− t0)

0

)
, p =

(
z
s

)

and τ1 = 1/(r2 + r3), τ2 = 1/r4 and z and s represent the fraction of receptors in
the forms C1 and O respectively. This Markov chain system has a solution of the
form

p(t) =

∫ t

0

G(t− s)I(s)ds, G(t) = etQ.

The eigenvectors of Q are (1, r3/(τ
−1
2 −τ−1

1 )) and (0, 1) with associated eigenvalues
−1/τ1 and −1/τ2 respectively. Hence, one finds that

s(t) = r1r3

(
1

τ2
− 1

τ1

)−1

(e−(t−t0)/τ1 − e−(t−t0)/τ2), t > t0.

In the limit τ2 → τ1 → τs this reduces to an alpha function

s(t) = r1r3(t− t0)e−(t−t0)/τs , t > t0.

This kinetic derivation of the alpha function only holds for s≪ 1 in order to remain
consistent with condition (ii).

The time course of some ion channel open and closed states seem to follow
a power law rather than multiexponential law at large times [43]. In order to
understand such power law behavior, consider an ion channel with N closed states



PAUL C. BRESSLOFF, MATHEMATICAL NEUROSCIENCE 33

such that the transition to an open state can only take place from state 1 at one
end of a chain

0
α←1

γ1
⇋

β1

2 . . .
βN−1

⇋
γN−1

N.

The corresponding kinetic equations are

dp1

dt
= β1p2 − (γ1 + α)p1,

dpn
dt

= γn−1pn−1 + βnpn+1 − (γn + βn−1)pn, 1 < n < N,

dpN
dt

= γN−1pN−1 − βN−1pN .

In the following we take γn = βn = 1 for all n and α = 1, so that the system
of equations describes a discrete diffusion process along a chain with a reflecting
boundary at n = N and an absorbing boundary at n = 0. In the large N limit, it
can be shown that given the initial condition pn(0) = δn,1, the exact solution is

pn(t) = e−2t[In−1(t)− In+1(t)],(2.14)

where In(t) is the modified Bessel function of integer order:

In(t) =

∫ π

−π

einke2t cos(k) dk

2π
.

By carrying out an asymptotic expansion for large t, it can be shown that

pn(t) ≈
n

2π1/2t3/2
.

Define F (t) to be the total probability of finding the system in a closed state:

F (t) =
N∑

n=1

pn(t).

It follows that dF/dt = −αp1 and, hence, F (t) ≈ (πt)−1/2 for large N, t and α = 1.
More recently, it has been suggested that synapses with multiple states, which
exhibit dynamics over a wide-range of time-scales and show power–law like behavior,
could have some interesting computational properties [44, 45]. For example, it has
been suggested that such synapses could provide a way of combining high levels of
memory storage with long retention times [44].

Stochastic model of receptor binding

In the above kinetic scheme, the stochastic opening and closing of ion channels
was modeled in terms of deterministic rate equations that keep track of the mean
number of channels in each available state. An implicit assumption of such a
model is that the number of ion channels is sufficiently large so that one can ignore
fluctuations. In order take into account such fluctuations, it is necessary to consider
the associated master equation. We will illustrate this by considering a simple first
order kinetic scheme, in which the opening or closing of a channel is equivalent to the
binding or unbinding a neurotransmitter to a postsynaptic receptor. For simplicity,
we will assume that there is a fixed, uniform concentration T of neurotransmitter
in the synaptic cleft. Consider a cell surface with a fixed number N of receptors.
Let k+ and k− denote the binding and disassociation rates of neurotransmitter
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molecules. If B denotes the mean fraction of bound receptors then the standard
kinetic binding equations is (from the law of mass action)

dB

dt
= k+T (1−B)− k−B.

However, this equation ignores fluctuations in the number of bound receptors, which
become significant when N is sufficiently small. A stochastic version of the bind-
ing problem is described by an associated master equation for transitions between
bound and unbound states. More specifically, if P (n, t) denotes the probability that
n out of N receptors are bound at time t, then the master equation takes the form

∂P

∂t
= λ+(n− 1)P (n− 1, t) + λ−(n+ 1)P (n+ 1, t)− [λ+(n) + λ−(n)]P (n, t),

with

λ+(n) = (N − n)k+T , λ−(n) = nk−.

Define the mean number of bound receptors at time t by

n(t) =

N∑

n=0

np(n, t).

By differentiating both sides with respect to t and using the master equation, it
can be shown that in the limit of large N (where the upper limit in the sum can
be taken to be ∞) we recover the kinetic equation with B = n/N .

The steady-state solution Ps(n) satisfies J(n) = J(n+ 1) with

J(n) = λ−(n)Ps(n)− λ+(n− 1)Ps(n− 1).

Using the fact that n is a nonnegative integer, that is, Ps(n) = 0 for n < 0, it
follows that J(n) = 0 for all n. Hence, by iteration,

Ps(n) = Ps(0)

n∏

m=1

λ+(m− 1)

λ−(m)
= Ps(0)

[
k+T
k−

]n
N !

n!(N − n)!
.(2.15)

Taking logs of both sides of this equation and use Stirling’s formula log(n!) ≈
n logn− n it can be shown that for large n,N , Ps(n) ≈ p(φ) where φ = n/N ,

p(φ) = p(0)eNA(φ)(2.16)

and

A(φ) = φ log(k+T /k−)− φ log(φ)− (1 − φ) log(1− φ).

Let φ∗ be the (unique) stationary solution, that is, A′(φ∗) = 0. Since N is large,
the method of steepest descent leads to the Gaussian approximation

p(φ) ≈ p(0) exp
[
NA(φ∗) +NA′′(φ∗)(φ − φ∗)2/2

]
.(2.17)

Under this approximation, the mean and variance of the fraction of bound receptors
are given by

〈φ〉 = φ∗ =
k+T

k− + k+T
, 〈(φ − φ∗)2〉 = φ∗(1− φ∗)

N
.(2.18)

It is clear that fluctuations become negligible in the large–N limit.
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2.3. Dendritic filtering of synaptic inputs

So far we have neglected the fact that the synapses of a neuron are spatially dis-
tributed across the neuron’s dendritic tree, see Figure 3(a). At the simplest level,
the dendritic tree can be treated as a passive electrical medium that filters incoming
synaptic stimuli in a diffusive manner. The current flow and potential changes along
a branch of the tree may be described with a second–order, linear partial differen-
tial equation commonly known as the cable equation [46, 2]. The cable equation is
based on a number of approximations: (i) magnetic fields due to the movement of
electric charge can be neglected, (ii) changes in ionic concentrations are sufficiently
small so that Ohm’s law holds, (iii) radial and angular components of voltage can
be ignored so that the cable can be treated as one-dimensional medium, and (iv)
dendritic membrane properties are voltage-independent, that is, there are no active
elements. Given a distribution of synaptic inputs innervating the dendritic tree,
what is the net synaptic current Isyn entering the soma or cell body of a neuron?
In order to address this problem we consider, for simplicity, a semi-infinite uni-
form dendritic cable, 0 ≤ x < ∞, with the soma located at the end x = 0, see
Figure 3(b). We model the soma as a LIF neuron that is passively coupled to the
dendritic cable via a resistor with conductance σ,

τ
du

dt
= −u+RIext + σ[v(0, t)− u(t)],(2.19)

soma dendrite

Isyn(t)

u(t)
σ

synapse∆g(x,t)

Dendrites

Soma

Axon

v(x,t)

(a)

(b)

Figure 3. (a) Branching dendritic tree of an idealized single neuron.
(b) Schematic diagram of a neuron consisting of a soma resistively cou-
pled to one end of a dendritic cable. A synaptic conductance change
∆g(x, t) at position x on the cable induces a synaptic current into the
soma at x = 0.
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where σ[v(0, t) − u(t)] is the net current density flowing into the soma from the
dendritic cable at x = 0 and v(x, t) is the membrane potential of the cable at
position x. The dendritic potential v(x, t) evolves according to the cable equation

τ̂
∂v(x, t)

∂t
= −v(x, t) + λ2 ∂

2v(x, t)

∂x2
+ I(x, t),(2.20)

where τ̂ is the dendritic membrane time constant and λ is the corresponding space
constant, both of which are determined by the passive electrical properties of the
cable. Here I(x, t) is the synaptic input at location x at time t:

I(x, t) = g(x)[Vsyn − v(x, t)]
∑

m

α(t− Tm(x)),(2.21)

where α(t) is an α function, say, g(x) determines the maximal conductance and
{Tm(x)} is the sequence of spikes arriving into the synapses located at x. It follows
from current conservation that we also have the boundary condition

−1

r

∂v

∂x
(0, t) = σ[v(0, t)− u(t)],(2.22)

where r is the intracellular resistance per unit length of cable. Since we can elimi-
nate the term −σu(t) in equation (2.19) by shifting the somatic membrane time con-
stant τ , it follows that the total synaptic current into the soma is Isyn(t) = σv(0, t).

Under the approximations Vsyn ≫ v, we can formally solve the inhomogeneous
boundary value problem for v(0, t) using the Green’s function G for the semi-infinite
cable with a closed boundary [47]:

v(0, t) = Vsyn

∫ t

−∞

∫ ∞

0

G(0, x′, t− t′)I(x′, t′)dx′dt′

−σ
∫ t

−∞

G(0, 0, t− t′)[v(0, t′)− u(t′)]dt′,(2.23)

with

G(x, y, t) = G0(x − y, t) +G0(x+ y, t),(2.24)

and

G0(x, t) =
1

2λ
√
πt/τ̂

e−t/bτ e−bτx2/4λ2t(2.25)

is the Green’s function of the cable equation on an infinite domain. We see that the
effective synaptic current Isyn flowing into the soma will itself be affected by the cell
firing an action potential, due to the dependence of v(0, t) on u(t). This could be
taken into account within the spike response model framework by using an effective
reset function [7]. Here we will assume for simplicity that the second term on the
r.h.s. of equation (2.23) is small compared to the first term arising from synaptic
inputs. This approximation corresponds to imposing the homogeneous boundary
condition ∂v/∂x|x=0 = 0. It then follows that the total synaptic input into the
soma is

Isyn(t) = σVsyn

∫ t

−∞

∫ ∞

0

G(0, x′, t− t′)I(x′, t′)dx′dt′.(2.26)

A similar analysis can also be carried out for more general dendritic topologies with
the soma coupled to one of the terminals of the tree. We conclude that under the
given approximations, the passive dendritic tree acts like a spatio-temporal linear
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filter on incoming spike trains, whose properties are determined by the underlying
Green’s function on the tree. The effects of the dendritic filtering of synaptic inputs
on network dynamics is reviewed in some detail by Bressloff and Coombes [48].

Dendritic spines

The majority of excitatory synapses that occur in the cortex are located on tiny
specialized protoplasmic protuberances called dendritic spines [49], see Figure 4.
They typically occupy 20–70% of the total dendritic membrane. Since the input
impedance of a spine head is typically large, a small excitatory synaptic current can
produce a large local depolarization. Moreover, the thin stem neck connecting the
spine to the main body of the dendrite provides an axial resistance that partially
decouples the spine-head dynamics from the dendritic tree. Hence, it has long been
theorized that the dendritic spine is a favorable site for the initiation of an action
potential [50, 51], and is thus a possible substrate for local computations [52].
Modeling studies also suggest that if the heads of dendritic spines have excitable
membrane properties, then the spread of current from one spine along the dendrites
could bring adjacent spines to their thresholds for impulse generation. The result
would be a sequence of spine-head action potentials, representing a saltatory propa-
gating wave in the distal dendritic branches [53, 54]. Calcium imaging experiments
provide strong evidence that the spine heads are endowed with voltage-dependent
Ca2+ channels that can indeed support an all-or-nothing response to an excitatory
synaptic input [55].

Figure 4. Dendritic spines. (A,B) Dendritic spines of a cultured hip-
pocampal neuron revealed by green fluorescent protein (GFP) tagged
actin. (C) A single spine revealed by electron microscopy. (D)
Schematic diagram of a spine with barbed lines representing actin fila-
ments.[Reprinted from Matus [56], with permission of AAAS.]

Early theoretical studies of spines also considered their potential role in synaptic
plasticity and Hebbian learning. This was motivated by the idea that small changes
in spine morphology, such as changes in the width of the spine neck, could lead to
large changes in the amplitude of response to excitatory synaptic inputs on to the
spine. It is now known that spines are rich in actin filaments, which have the
capacity to drive such changes in spine shape [56]. Moreover, there is increasing
experimental evidence that the growth and removal of spines provides an important
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substrate for structural changes during brain development [57, 58, 59]. It is less
clear whether changes in spine morphology play a significant role in adult plasticity.
Nevertheless, the basic geometry of a spine does provide an isolated biochemical
microenvironment for Ca2+ to accumulate, and Ca2+ is thought to be a major
chemical signal for the induction of synaptic plasticity [60, 61], see §2.4. The
dynamics of calcium diffusion in dendritic spines has been explored in a number of
computational models [62, 63].

2.4. Synaptic plasticity

An important property of a synapse is its effective strength, which can be identi-
fied as the maximal conductance change induced by the arrival of a single action
potential eg. the factor ḡ in equation (2.3). A great deal of experimental evidence
has accumulated that these synaptic weights can undergo experience–dependent
persistent changes over time. Such changes are thought to be the neural correlates
of learning and memory. Most experimental studies of synaptic plasticity have
focused on refining the original theoretical postulate due to Hebb [64]: When an
axon of cell A is near enough to excite cell B or repeatedly or persistently takes
part in firing it, some growth process or metabolic change takes place in one or both
cells such that A’s efficiency, as one of the cells firing B, is increased. A more
modern interpretation of this postulate is that synaptic modification is driven by
correlations in the firing activity of presynaptic and postsynaptic neurons.

In many regions of the brain, neurons are found to exhibit bidirectional plas-
ticity in which the strength of a synapse can increase or decrease depending on
the stimulus protocol [65, 66, 67, 68, 69]. Long term potentiation (LTP) is a
persistent increase in synaptic efficacy produced by high-frequency stimulation of
presynaptic afferents or by the pairing of low frequency presynaptic stimulation
with robust postsynaptic depolarization. Long–term synaptic depression (LTD) is
a long-lasting decrease in synaptic strength induced by low-frequency stimulation of
presynaptic afferents. More recent experimental studies suggest that both the sign
and degree of synaptic modification arising from repeated pairing of pre- and post-
synaptic action potentials depend on their relative timing [70, 71, 72]. Long-term
strengthening of synapses occurs if presynaptic action potentials precede postsynap-
tic firing by no more than about 50 ms. Presynaptic action potentials that follow
postsynaptic spikes produce long-term weakening of synapses. The largest changes
in synaptic efficacy occur when the time difference between pre- and postsynaptic
action potentials is small, and there is a sharp transition from strengthening to
weakening. This phenomenon of spike timing–dependent plasticity (STDP) is illus-
trated in Figure 5. In the following, we consider some of the molecular mechanisms
underlying bidirectional synaptic plasticity and how they can be modeled. Before
proceeding, however, it is useful to distinguish between the induction, expression
and maintenance of LTP and other forms of synaptic plasticity. LTP induction
refers to the early steps that trigger the modification process, LTP expression is
the proximal cause of synaptic modifications that may last hours or days, and
LTP maintenance concerns the more general problem of how a synaptic change can
endure over longer periods in the face of constant molecular turnover. The main-
tenance of synaptic plasticity, which requires modifications in gene expression and
protein synthesis, is still poorly understood and will not be discussed further here.
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Figure 5. Spike-timing-dependent synaptic plasticity observed in hip-
pocampal neurons. Each data point represents the relative change in the
amplitude of evoked postsynaptic current after repetitive application of
pre- and postsynaptic spiking pairs (1 Hz for 60 s) with fixed spike timing
∆t, which is defined as the time interval between pre- and postsynaptic
spiking within each pair. Long-term potentiation (LTP) and depression
(LTD) windows are each fitted with an exponential function. [Reprinted
from Bi and Poo [73], with permission from J. Neurosci.]

NMDA receptors and calcium influx

Calcium has long been suggested as a major signaling agent for the induction of
LTP and LTD [74, 75, 66, 76], and more recently for STDP [72]. However, the
details of the induction mechanism depend on the type of synapse and the stim-
ulus protocol. We will focus on NMDA–dependent mechanisms, which arise in
the most commonly studied synapses, namely those connecting the axons of the
Schaffer collateral/commissural system to pyramidal neurons in the CA1 region of
the hippocampus. As illustrated in Figure 2, calcium can enter these cells through
channels controlled by NMDA receptors. Two conditions are necessary for the open-
ing of such channels: (i) arrival of an action potential at the presynaptic terminal
releases the excitatory neurotransmitter glutamate which then binds to NMDA re-
ceptors and (ii) the postsynaptic cell is sufficiently depolarized so that magnesium
ions are unblocked from the NMDA channels allowing the influx of calcium. One
source of strong depolarization is the back propagation of an action potential into
the dendritic tree, which is a signature that the postsynaptic neuron has fired a
spike. Given that calcium ions can enter the cell only if glutamate has been released
by presynaptic activity and if the postsynaptic membrane is sufficiently depolar-
ized, it follows that the NMDA receptor is a natural candidate for the biophysical
implementation of a Hebbian–like mechanism for detecting correlations between
presynaptic and postsynaptic activity.
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Recently Shouval et al [77] have proposed a mechanism for calcium–induced
bidirectional synaptic plasticity, based on the idea that the maximum level of post-
synaptic calcium concentration determines whether LTP or LTD occurs. That is, at
intermediate calcium levels LTD occurs whereas at high calcium levels LTP occurs.
Suppose that a presynaptic spike arrives at an NMDA synapse at time T and the
postsynaptic membrane potential is u(t). The calcium current through an NMDA
receptor–controlled channel is taken to be of the form [77]

ICa(t) = ḡCaα(t− T )[u(t)− uCa]B(u(t)),(2.27)

where ḡCa is the maximal conductance of the channel and uCa is the reversal poten-
tial of calcium (130mV ). The function α(t−T ) describes the time course of binding
to NMDA receptors and is typically taken to be the sum of a fast (τf = 50ms) and
a slow (τs = 200ms) exponential:

α(t) = Ife
−t/τf + Ise

−t/τs , t > 0.(2.28)

The experimentally fitted function

B(u) =
1

1 + η[Mg2+]e−γu
,(2.29)

with γ = 0.062, η = 1/3.57, describes the unblocking of the channel at depolarized
levels of membrane potential [78]. The extracellular magnesium concentration is
approximately 1mM (10−3 molars or moles per liter). If there are several presy-
naptic spikes within 100ms then calcium accumulates inside the cell. The change in
the calcium concentration [Ca2+] can be described by the simple first order kinetic
equation

d[Ca2+]

dt
= ICa(t)−

[Ca2+]

τCa
(2.30)

with τCa = 50ms.
In order to completely determine the calcium current, it is necessary to specify

the dynamics of the postsynaptic membrane potential u(t). In the case of STDP,
the main source of depolarization is thought to arise from a back propagating action
potential (although this might not be the whole story [79]). This can be modeled
by taking [77]

u(t) = η(t− T̂ ), η(t) = U
(
Îse

−t/τ̂s + Îf e
−t/τ̂f

)
(2.31)

where T̂ is the last firing time of the postsynaptic cell and η(t) is the profile of the
BPAP, which is taken to be the sum of a fast (τ̂s = 5ms) and a slow (τ̂f = 25ms)
exponential. Equations (2.27), (2.30) and (2.31) determine how the maximum level
of calcium influx depends on the relative timing of presynaptic and postsynaptic
spikes, and hence whether LTP or LTD occurs (see Figure 6) [77]. One potential
problem with this particular calcium control mechanism for STDP is that it pre-
dicts LTD can also be induced by a sequence of pre–post spikes if the separation
between spikes is larger than about ∆t = 40ms. The reason is that in this case the
removal of the magnesium block (induced by the BPAP) occurs at a time when the
probability of glutamate binding is reduced. As a consequence less calcium enters
the cell so that only the LTD threshold is reached. There is currently no convincing
experimental evidence for such a form of LTD. This has motivated a more detailed
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biophysical model in which the time course of the calcium current rather than just
its level acts as signal for STDP [80].

Figure 6. (1,2) Presynaptic stimulation alone results in the binding
of glutamate to NMDA receptors but only a small depolarization so
that there is only moderate calcium influx. (3,4) Post–pre stimulation
(∆t = −10ms) results in a large brief depolarization due to a BPAP,
which partially overlaps with the onset of glutamate binding to NMDA
receptors. The calcium influx is increased so that it crosses the thresh-
old θd for LTD and there is a negative weight change. (5,6) Pre–post
stimulation (∆t = +10ms) results in a large brief depolarization that
completely overlaps with the period of significant glutamate binding to
NMDA receptors. The resulting calcium influx is well above the thresh-
old θp for LTP and there is a positive weight change. [Reprinted from
Shouval et al [77], with permission of the National Academy of Sciences.]

Regulation of AMPA receptors

There is growing experimental evidence that a major component of the postsy-
naptic expression of LTP and LTD is the regulation of AMPA receptor trafficking,
which results in changes in receptor number at the postsynaptic membrane, and
hence modifications in synaptic strength [81, 82, 83]. The total number of synap-
tic AMPA receptors is determined by a nonequilibrium steady–state, in which the
flux of receptors between the synaptic and extrasynaptic regions of the postsynap-
tic membrane is balanced by the rate of exchange of receptors with intracellular
recycling pools (see Figure 7).

A mathematical model of AMPA receptor trafficking has recently been con-
structed [84] in terms of a simplified two-compartment model of a dendritic spine’s
surface membrane (see Figure 8). The first compartment represents the postsy-
naptic density (PSD) of the spine head, which is the protein-rich domain in the
postsynaptic membrane of a dendritic spine that is directly apposed to the presy-
naptic active zone, and the second compartment represents the extrasynaptic mem-
brane (ESM) of the remaining spine head and neck. AMPA receptors are assumed
to diffuse freely in the extrasynaptic membrane. Within and near the PSD, how-
ever, AMPA receptor diffusion proceeds in a highly obstructed fashion. This is
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Figure 7. AMPA receptor trafficking involves exchanges between
synaptic, extrasynaptic and intracellular compartments. The extrasy-
naptic diffusive receptors are immobilized by the scaffold-cytoskeleton
complex at postsynaptic densities (PSDs). The extrasynaptic receptors
are also exchanged with the intracellular recycling pool. Increasing or di-
minishing the number (or affinity) of scaffold molecules at the synapse
changes proportionally the confinement capabilities, and subsequently
the number of receptors at steady state. [Reprinted from Choquet and
Triller [82], with permission from Macmillan Publishing Ltd: Nature

Reviews Neuroscience, copyright 2003.]
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Figure 8. Compartmental model of AMPA receptor trafficking. (A)
Schematic of AMPA receptor trafficking at a dendritic spine. Recep-
tors stored in intracellular pools are continually exchanged with surface
receptors through exo/endocytosis (EXO/END) and sorted for degra-
dation (DEG). Surface receptors diffuse in the dendritic membrane and
can be immobilized at the PSD through interactions with scaffolding
proteins. (B) Simplified two-compartment model of a dendritic spine.
Free receptors (P ) bind to scaffolding proteins within the PSD to form
bound receptors (Q) at a rate α and unbind at a rate β. Free recep-
tors flow between the the PSD and ESM at a hopping rate h, and flow
between the ESM and surface of the dendritic cable at a rate Ω. Free
receptors (R) within the ESM are internalized at a rate k. Receptors
are inserted into the PSD at a rate σ.
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probably due to a number of factors including the attraction and binding of re-
ceptors to scaffolding proteins, the transient corralling of receptors to restricted
domains by the underlying actin cytoskeleton, and the repulsion of receptors by
picket-like transmembrane proteins. Single-particle tracking data suggests that the
PSD acts as a confinement domain for diffusing receptors, and that about half of
the AMPA receptors within the PSD are mobile [82]. Experimental estimates for
the diffusivity D in the PSD and ESM range from 0.01 to 0.5 µm2s−1. Given
that the typical length–scale of a spine is ℓsp = 1µm, it follows that the time–scale√
ℓ2sp/D for diffusion within each compartment is 1-10 sec, which is faster than

the typical time–scale (minutes) for the expression of LTP/LTD. Thus, assuming
that each compartment is homogeneous, the corresponding free receptor concen-
tration can be taken to be spatially uniform. In order to model the confinement
of diffusing particles within the PSD, the boundary between the PSD and ESM
compartments is treated as a potential barrier over which receptors must hop in
order to enter or exit the PSD. For simplicity, the net flux across the boundary
is taken to be proportional to the difference in concentrations on either side of
the barrier, with the hopping rate dependent on the barrier height. Receptors can
also hop between the ESM and the surrounding membrane of the dendritic cable,
with the net flux proportional to the difference between the free receptor concen-
trations in the ESM and dendrite. The latter is taken to have a fixed background
receptor density. The hopping rate between the ESM and dendrite incorporates
the effects of spine neck geometry on restricting the flow of receptors. In addition
to the lateral movement of AMPA receptors within the plasma membrane, there
is a continual exchange of surface receptors with pools of intracellular receptors
through exo/endocytosis. Experimentally it is found that under basal conditions,
the rates of receptor exo/endocytosis are of the order 10-30 minutes. (In fact there
are at least two separate sources of intracellular AMPA receptors, one consisting of
GluR1/2 heteromers that are inserted into the ESM during LTP and the other con-
sisting of GluR2/3 heteromers that are inserted into the PSD during constitutive
recycling. Here we do not distinguish between the two receptor types.)

Let P,Q denote the concentration of free and bound receptors in the PSD
and R denote the corresponding free receptor concentration in the ESM. It is also
assumed that there is a fixed concentration L of active binding sites within the PSD.
Receptor trafficking in the PSD is then described in terms of the kinetic equations
[84]

dP

dt
= σ − α[L−Q]P + βQ− h[P −R](2.32)

dQ

dt
= α[L−Q]P − βQ(2.33)

where σ is the rate of exocytosis of receptors into the PSD, and α, β denote the
rates at which receptors bind and unbind to scaffolding proteins. The corresponding
kinetic equation for the receptor concentration in the ESM is given by

dR

dt
= σ̂ − kR+ h[P −R]− Ω[R −R](2.34)

where σ̂ is the rate of exocytosis into the ESM and k is the rate of endocytosis.
The last term on the right–hand side of equation (2.34) represents the hopping of
receptors between the ESM and surrounding dendritic cable with hopping rate Ω.
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The fixed background receptor concentration in the dendritic membrane is denoted
by R. Two basic assumptions of the model are (1) the strength of a synapse can
be identified with the number of synaptic receptors (P + Q) and (2) there is a
separation of time-scales between the activation of the signaling pathways by the
postsynaptic calcium signal during the induction of LTP/LTD (seconds) and the
subsequent expression of LTP/LTD via receptor trafficking (minutes). One can
then determine the time–dependent variation in receptor number induced by rapid
modifications in one or more model parameters and compare these with experi-
mentally measured time courses for LTP/LTD. Good agreement is obtained for
physiologically reasonable choices of parameters provided that changes in receptor
trafficking are correlated with changes in the concentration L of binding sites (see
[84] for more details)

Model of a CaMKII switch

One of the major challenges concerning synaptic plasticity is unraveling the signal-
ing pathways that convert a transient elevation in Ca2+ concentration, which can
last for just a few hundred milliseconds, to a persistent change in synaptic strength,
which can last for hours or even days. One molecule that appears to play a critical
role in LTP is calcium/calmodulin–dependent protein kinase II (CaMKII). It has
been shown that CaMKII activation is persistent, is required for LTP and can by
itself produce potentiation (see [85] for a review). Further evidence that CaMKII
may serve as a memory molecule is provided by the finding that it has autocat-
alytic properties that would allow it to act as a bistable molecular switch. The basic
biochemical autocatalytic mechanism is as follows (see Figure 9(a,b)). CaMKII is
composed of two rings, each with six kinase subunits. Each subunit has a single
phosphorylation site that, when activated, makes the subunit active independently

c

Figure 9. (a) At low Ca2+ concentrations there is little autophos-
phorylation, so that subunits of CaMKII are only active if bound by
Ca2+/calmodulin. (b) A transient increase in Ca2+ concentration causes
an increase in the rate of phosphorylation leading to persistent activ-
ity after Ca2+ falls. [Reprinted from Lisman et al [85], with permission
from Macmillan Ltd: Nature Reviews Neuroscience, copyright 2002.] (c)
Steady–state levels of phosphorylation as a function of Ca2+ concentra-
tion calculated using a biophysical model [86]. A pair of stable states
exists over a range of concentrations.
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of Ca2+. In the absence of phosphorylation, a subunit is only active when bound by
a calcium binding protein known as Ca2+/calmodulin. Initial autophosphorylation
of a CaMKII ring requires the binding of two Ca2+/calmodulin molecules, one to
activate a catalytic subunit and another to expose the phosphorylation site of a
neighboring substrate subunit. At the resting Ca2+ concentration, this process is
slow with an average rate of one initial autophosphorylation every few hours. Once
one or more sites of a ring are phosphorylated, subsequent phosphorylation is much
faster since only a single Ca2+/calmodulin molecule is required, namely, to expose
the phosphorylation site on a substrate subunit adjacent to an already activated
subunit.

A recent biophysical model [86, 87, 88] has shown how the interplay between
autophosphorylation and dephosphorylation by phosphotase-1 (PP1) enzymes can
generate two stable states of phosphorylation at resting levels of Ca2+, see Fig-
ure 9(c). A transient increase of Ca2+, induced for example by an LTP stimulus
protocol, can switch the system from an unphosphorylated (DOWN) state to a
persistent, highly phosphorylated (UP) state. Such a persistent change in the acti-
vation of CaMKII following LTP induction could then mediate persistent changes
in synaptic strength. The system of equations describing the reaction kinetics takes
the following form [86, 87]:

dP0

dt
= −v1MP0 + v3P1

dP1

dt
= v1MP0 − v3P1 − v2P1 + v32P2

dPj
dt

= v2wj−1Pj−1 − v3jPj − v2wjPj + v3(j + 1)Pj+1

dPM
dt

= v2PM−1 − v3MPM

where Pj denotes the concentration of j–fold phosphorylated rings, M is the num-
ber of subunits on a ring, v1 is the initial per site rate of autophosphorylation, v2 is
the per site rate of autophosphorylation of partially phosphorylated CaMKII, and
v3 is the rate of dephosphorylation by PP1. The factors wj count the number of
ring configurations that can undergo the transition Pj → Pj+1. The autophospho-
rylation rates v1 and v2 are taken to depend on calcium concentration according
to

v1 =
k1([Ca

2+]/KH1)
8

(1 + ([Ca2+]/KH1)4)2
, v2 =

k1([Ca
2+]/KH1)4

1 + ([Ca2+]/KH1)4
(2.35)

where k1 is a rate constant, and the resting Ca2+ concentration (100nM) is well
below the constant KH1 (0.7µM). Dephosphorylation proceeds according to a
Michaelis-Menten scheme:

SP + E ⇋ SPE → E + S,

where S is an unphosphorylated subunit, SP is a phosphorylated subunit, and E
denotes the enzyme PP1. Thus

v3 =
k2[E]

KM +
∑M

j=1 jPj
(2.36)
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for constants k2,KM . The concentration [E] of PP1 is itself modulated by calcium
concentration as detailed elsewhere [86]. The resulting full system of equations can
be solved numerically to determine the steady state levels of phosphorylation as a
function of Ca2+ concentration, and hence establish bistability.

Recall from §2.2 that certain care has to be taken in using rate equations when
the number of reacting molecules is small, since stochastic fluctuations become im-
portant. Recent measurements indicate that for a typical postsynaptic density the
number of CaMKII molecules is only around 30 [89]. In order to determine the
stability of the CaMKII switch with respect to fluctuations, Monte Carlo simula-
tions of the full stochastic chemical equations have recently been carried out. These
simulations suggest that even a small number of molecular switches can maintain
stable persistent activation [88].

Computational role of STDP

One of the problems with standard formulations of Hebbian learning is that without
additional constraints, the level of activity in a network can grow or shrink in an
uncontrolled manner. The observation that LTP and LTD can occur at the same
synapse depending on the pre-post correlations suggests that STDP can provide
a mechanism for self-stabilization of weights and firing rates in a network. A sec-
ond important requirement of any learning scheme is that networks need to operate
competitively. Thus, normally it does not make sense to drive all synapses into sim-
ilar states through learning, because the network will then no longer contain inner
structure. Instead, most real networks in the brain are highly structured, forming
maps or other subdivisions. There have been a number of recent theoretical studies
exploring the possible role of STDP in stability and competition during learning
(see [7] for a review). We end this lecture by briefly describing another potential
application of STDP, namely to prediction and reward learning [90]. Animals in
the environment often have to react quickly to the earliest signs of harmful stimuli
or potential prey. That is, they have to predict or anticipate future events. STDP
provides a hint at how a simple form of predictive coding could be implemented at
the cellular level. Consider as an example a single neuron receiving inputs from a
set of N presynaptic cells that fire sequentially (see Figure 10). This could be the
result of a moving stimulus. Initially all synapses have the same weight wj = w0

for all j = 1, . . .N . Suppose that the postsynaptic neuron initially fires at time
T during the presentation of the sequence. All synapses that have been activated
prior to the postsynaptic spike are strengthened while synapses that have been ac-
tivated immediately afterward are depressed. After many trials, the firing time of
the postsynaptic neuron within the sequence has shifted by an amount −∆t. Inter-
estingly, this effective shift in the distribution of synaptic connections is consistent
with experimental observations of a shift in the place fields of hippocampal neurons
[91].

The shift of responses towards earlier predictors plays a central role in classical
conditioning as exemplified by Pavlov’s dog. An unconditioned stimulus (US) –
food – is preceded by a conditioned stimulus (CS) – a bell – at a fixed time interval
∆T . Before learning the US evokes an immediate response – salivation – wheres the
CS evokes no response. After learning, the dog starts to salivate in response to the
CS. Thus the reaction has moved from the US to the CS, which reliably predicts the
US. STDP can replicate this result if the time difference ∆T between two stimuli
is less than the width of the learning window. The mechanism is identical to the
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Figure 10. A) A sequence of presynaptic spikes is presented to a single
neuron. Such a sequence could be generated by a moving stimulus. B)
After many trials the synapses in the early part of the sequence have
been strengthened so that the neuron fires earlier by an amount ∆t.
Initial response is shown by thin lines and adapted response by thick

lines

previous example illustrated in Figure 10, except that the inputs are clustered
into two groups corresponding to US and CS. A shift to early predictors is also
observed experimentally in recordings from dopamine neurons in the basal ganglia
concerned with reward processing [92]. Before learning some dopamine neurons
respond to an unpredicted reward. During learning this response decreases and
the neurons now increase their firing to a reward-predicting stimulus. The more
predictable the reward becomes, the less strongly the neurons fire when it appears,
and if it does not appear the neurons are inhibited. There are in fact a number
of different types of reward–predicting dopamine neurons with distinct responses.
For example, some neurons fire a prolonged discharge following a trigger stimulus
until a reward is delivered. Dopamine neurons have a central role in guiding our
behavior and thoughts [93]. Their performance is impaired by every addictive
drug and in mental illness. They are also lost in dramatically impairing illnesses
such as Parkinson’s disease. If dopamine systems are overstimulated, we may hear
voices, experience elaborate bizarre cognitive distortions, or engage excessively in
dangerous goal-directed behavior. Dopamine function is also central to the way
that we value our world, including the way that we value money and other human
beings.





LECTURE 3

Firing Rates, Spike Statistics and the Neural Code

A major debate in the neuroscience literature is whether neurons use a rate
code or a spike code to carry out information processing [94, 95]. The former is
some form of smoothed version of the sequence of spikes obtained by averaging with
respect to time, experimental trials or populations of neurons. The latter on the
other hand preserves temporal information at the level of individual spikes, that is,
on a millisecond time scale. Since generating a rate code requires averaging over
a distribution of spikes, it is necessary to specify the associated spike statistics.
It turns out that in many cases the output spike train of a single neuron can
be modeled quite well by an inhomogeneous Poisson process. Such a spike train
generates a stochastic input current to other neurons via synaptic coupling. Hence,
it is important to understand how neurons respond to stochastic inputs at both the
single neuron and network levels. In the latter case, the degree of cross– correlation
between spike trains of distinct neurons is an important factor in determining the
appropriate description of network dynamics. In cases where the spike trains are
incoherent, it is often possible to carry out some form of population averaging,
leading to a rate–based description of network dynamics (see §5). On the other
hand, when there is a high level of coherence across spike trains the rate reduction
procedure breaks down. One situation where this occurs is when the individual
neurons act as intrinsic oscillators along the lines of §1.2. One can then use phase
reduction methods to investigate network oscillations and synchrony as outlined
in §4. In this third lecture, we focus on some of the basic issues regarding neural
coding and noise.

3.1. The neural code

Rate codes

The most commonly used definition of a firing rate ν(t) refers to a temporal average.
Suppose that we represent a sequence of spikes at times {T 1, . . . , T n} in terms of
the sum of delta functions

ρ(t) =
∑

m

δ(t− Tm).(3.1)

Introducing a temporal filter function K(t) with K(t) = 0 for t < 0, we set

ν(t) =

∫ ∞

−∞

K(t− τ)ρ(τ)dτ =
∑

m

K(t− Tm).(3.2)

The degree of smoothing will depend on the choice of K as illustrated in Figure 1.
Note that if K(t) = T−1 for 0 ≤ t < T and is zero otherwise, then ν(t) is simply
the mean number of spikes within the time interval [t− T, t]. There are a number
of problems with the idea that neurons use a time–averaged rate code [97]. From
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Figure 1. Firing rates obtained by filtering a spike train with various
convolution functions K(t). (A) Spike train recorded from a neuron
in the inferotemporal lobe of a monkey. (B) Discrete-time firing rate
obtained by binning time and counting spikes with ∆t = 100 ms. (C)
Filtering with a step function of width 100 ms. (D) Filtering with a

Gaussian K(t) = (2πσ2)−1/2e−t2/2σ2

with σ−1 = 100 ms. (E) Filtering
with an alpha function having α−1 = 100ms. [Reprinted from Baddeley,
et al [96], with permission from the Royal Society.]

behavioral experiments it is known that reaction times tend to be too short for
neurons to sample over a sufficient number of spikes. For example, a fly can react
to new stimuli and change the direction of flight within 30 − 40 ms [94]. More-
over, humans can recognize certain aspects of visual scenes in just a few hundred
milliseconds [98], even though recognition is believed to involve several processing
stages. (See, however, Rossum et al [99] who show how fast computation through a
number of processing levels can be achieved using a population rate code). Finally,
given that real spike trains are highly irregular, a reliable estimate of the mean
firing rate requires averaging over a larger number of spikes.

There is a second definition of rate, which is more applicable to time-dependent
stimuli. This is constructed by averaging over experimental trials and representing
the data in a Peri-Stimulus-Time-Histogram (PSTH). For each trial the time inter-
val is divided into bins of size ∆t and the number of spikes appearing in each bin is
counted. Summing over the N trials, the total number of spikes n(t, t+ ∆) in the
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interval [t, t+ ∆t) is

n(t, t+ ∆t) =

N∑

j=1

∫ t+∆t

t

ρj(t)dt,(3.3)

where j, j = 1, . . . , N , labels trials. That is, ρj(t) =
∑

m δ(t−Tmj ) where Tmj is the
mth firing time of the jth trial. We then identify the rate with the spike density

ν(t) =
1

∆t

n(t, t+ ∆t)

N
= 〈ρ(t)〉,(3.4)

where 〈〉 denotes trial averaging. Sometimes this is combined with time averaging
to obtain a smooth rate variable. An obvious problem with this approach is that
it cannot be used by neurons in the brain – a frog does not catch a fly by waiting
for the insect to fly repeatedly along exactly the same trajectory; it has to act
on a single trial! Nevertheless, the spike density can make sense experimentally
if there is a large population of independent neurons that respond to the same
stimulus. Instead of recording from the population of N neurons in a single run,
it is experimentally easier to record from a single neuron and average over many
trials. This leads to the third definition of rate based on population averaging.
Given a homogeneous population of N identical neurons, the rate is defined by
equations (3.3) and (3.4) except that now j = 1, . . .N labels the neurons within
the population and Tmj is the mth firing time of the jth neuron. One of the useful
properties of the population activity is that it can respond very quickly to changes
in inputs [100], see §3.4. However, it does require that the population is sufficiently
homogeneous. Population rate codes are used extensively in modeling the large–
scale spatio-temporal dynamics of cortex [101, 102], see §5.

Spike codes

Three possible coding strategies based on spike timing are shown in Figure 2:

stimulus

a) time to first spike b) phase

background oscillation

c) synchrony

Figure 2. Three examples of spike codes
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Time-to-first-spike: Suppose that there is a rapid change of input at a time t0.
Such an abrupt change could be due to a saccade, for example, in which an ani-
mal’s gaze jumps to a new location. One can then imagine a code based on how
quickly a neuron fires after t0, with a shorter latency signalling a stronger stimulus.
This form of coding scheme has been advocated as a means of carrying out fast
computations [98]. However, as we have already mentioned, it is also possible to
achieve fast computations using a population code. Moreover, one expects there to
be a correlation between the time-to-first-spike and the firing rate of a neuron.

Phase: A second coding strategy is based on the timing of spikes relative to some
reference background oscillation. For example, extensive studies of rodents have
demonstrated direct behavioral correlates of hippocampal neuronal activity, the
most robust of which is the selective activation of certain hippocampal cells at
particular locations in space called place fields [103]. When a rodent is exploring
its environment (or is in REM sleep) cells in the hippocampus participate in 4-10
Hz theta rhythms. A key observation is that the spike activity of a hippocampal
place cell advances to earlier phases of the theta cycle as the animal passes through
the cell’s place field [103]. One possible interpretation of this phase advance is
that it reflects a prediction of the sequence of upcoming locations based on the
rat’s current position [104], that is, it is part of a path integration system. Theta
oscillations are superimposed upon faster gamma (40 Hz) oscillations, and these
may organize the readout of sequential locations during a theta cycle.

Correlations/Synchrony: Various experimental studies have shown that correlations
in the firing patterns of groups of neurons are stimulus-dependent. For example,
neurons in the antennal lobe of insects are typically synchronized by 20 Hz oscilla-
tions – when such synchronization is artificially disrupted the specificity of down-
stream responses to different odors decreases [105]. Stimulus-induced oscillations
have also been observed in the olfactory lobe of mollusks and rabbits [106], and the
visual cortex of cats [107]. Correlated activity between neurons can also be consid-
ered without reference to intrinsic oscillations. For example, analysis of the activity
of visual neurons in the lateral geniculate nucleus has shown that significantly more
information about the stimulus can be extracted from their spike trains if coinci-
dent spikes are taken into account separately from the non-coincident ones [108].
Similarly, recordings from primary auditory cortex indicate that when a stimulus is
turned on, neurons respond by changing their firing rates and their correlations; in
many cases, the firing rate modulations are transient whereas the evoked changes in
correlations can be sustained [109]. The possible role of stimulus-induced correlated
or synchronous activity is still unclear. One suggestion is that synchrony between
pairs of neurons in the visual cortex provides a mechanism for signalling whether
or not such neurons are responding to a single object or two distinct objects that
induce the same firing rates [110]. Indeed, stimulus-induced phase synchronization
has been proposed as a solution to the so-called binding problem, that is, how to
bind together the multitude of different representations (color, form, location) of an
object, although it remains a controversial issue [111, 112]. An alternative sugges-
tion is that correlations do not contain information about the nature of a stimulus,
but provide an attentional gating mechanism that controls the flow of information
[113]. The issue of network oscillations and synchrony will be considered in §4.
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Reverse correlation methods

One important question concerns how a spike or rate code is used to represent
information about a stimulus. Reverse correlation methods provide a powerful tool
for investigating stimulus encoding and decoding [94, 95]. Consider a neuron that is
driven by a time dependent stimulus s(t). Suppose that every time a spike occurs,
we record the time course of the stimulus in a time window of about 100 msec
immediately before the spike. Averaging the results for several spikes yields the
typical time course of the stimulus just before a spike. Such a procedure is called
a reverse correlation method. In contrast to the Peri-Stimulus-Time-Histogram
(PSTH), which is constructed by averaging the neuron’s response over several trials
with the same stimulus, reverse correlation involves averaging the stimulus under
the condition of the same response, that is, the firing of a single spike. The so-called
spike-triggered average stimulus C(τ) is defined according to

C(τ) =

〈
1

M

M∑

m=1

s(Tm − τ)
〉
≈ 1

〈M〉

〈
M∑

m=1

s(Tm − τ)
〉

(3.5)

where the stimulus is first averaged over all M spikes T 1, . . . , TM in a given trial of
length T and then it is averaged over trials. It is also assumed that for large N the
total number of spikes on each trial is well approximated by the average number of
spikes per trial, M ≈ 〈M〉. Under such an approximation, we can rewrite C(τ) in
the form

C(τ) =
1

〈M〉

∫ T

0

〈ρ(t)s(t − τ)〉dt =
1

ν̄T

∫ T

0

ν(t)s(t − τ)dt(3.6)

where ρ(t) =
∑
m δ(t− Tm), ν̄ = 〈M〉/T is the mean firing rate and

ν(t) = 〈ρ(t)〉 =
1

N

N∑

j=1

M∑

m=1

δ(t− Tmj )(3.7)

with j labeling the trial. A schematic illustration of the spike-triggered average
is shown in Figure 3. One common application of spike–triggered averaging is to
determine the linear response properties of a neuron. That is, using a white noise
stimulus one can identify the resulting spike–triggered average as the optimal linear
filter for modeling the relationship between an input stimulus and the output firing
rate of a neuron [95]. Another interesting application has been to decoding the
spike trains of the H1 neuron of the fly [94]. The H1 neuron detects the motion
of visual images during flight in order to generate and guide stabilizing motor
corrections. In experiments, the fly is usually held fixed while a visual image with
a time-varying velocity is presented. The basic idea of spike decoding is to generate
a linear estimate of a stimulus based on the neuron’s firing times.

3.2. Spike statistics and the Poisson process

In vivo recordings of neuronal activity are characterized by a high degree of irreg-
ularity. One often finds that the statistics of neuronal spike trains can be modeled
quite well by a Poisson process. Suppose that a neuron emits a sequence of spikes
at times T 1, T 2, . . . , T n. One way to characterize this sequence statistically is in
terms of the probability density ρ(T 1, . . . T n) of finding such a sequence over many
experimental trials. In other words, the probability of having a sequence of n spikes
in the interval [0, T ] with the ith spike falling between the times T i and T i + ∆t is
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+
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=

stimulus

spikes

spike-triggered average

τ

Figure 3. Schematic diagram illustrating the procedure for computing
the spike-triggered average. Each gray rectangle contains the stimulus
prior to one of the spikes shown along the time axis. These are averaged
over spikes and trials to produce the waveform shown in the lower right.

P [T 1, . . . T n] = ρ(T 1, . . . T n)(∆t)n. In principle, the probability of an event occur-
ring, namely the firing of the next spike, could depend on the entire history of past
spikes. If this dependence only extends to the previous spike so that the inter-spike
intervals are statistically independent, then the stochastic process is said to be a
renewal process. If there is no dependence at all on preceding spikes so that the
firing times are themselves independent then we have a Poisson process.

Homogeneous Poisson process

Consider a sequence of spikes generated by a homogeneous Poisson process, that
is, one with a time-independent mean firing rate r. Divide a given time interval
T into M bins of size ∆t = T/M and assume that ∆t is small enough so that the
probability of finding two spikes within any one bin can be neglected. Then the
probability PT [n] of finding n spikes over the interval T is given by

PT [n] = lim
∆t→0

M !

(M − n)!n!
(r∆t)n(1 − r∆t)M−n.

This consists of the probability (r∆t)n of finding n spikes in n specific bins multi-
plied by the probability (1− r∆t)M−n of not finding spikes in the remaining bins.
The binomial factor is the number of ways of choosing n out of M bins with spikes.
Using the approximation M − n ≈ M = T/∆t and defining ε = −r∆t, we have
that

lim
∆t→0

(1− r∆t)M−n = lim
ε→0

(
(1 + ε)1/ε

)−rT
= e−rT .

For large M , M !/(M − n)! ≈ Mn = (T/∆t)n, so that we obtain the Poisson
distribution

PT [n] =
(rT )n

n!
e−rT .(3.8)
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Given that there are n independent spikes over the interval [0, T ], the probability
that these spikes lie within specified bins of size ∆t is n!(∆t/T )n. Hence

ρ(T 1, . . . T n) = n!

(
1

T

)n
PT [n] = rne−rT .(3.9)

Also note that the fastest way to generate a sequence of Poisson spikes for constant
r is to iterate the firing times T n+1 = T n − log(xrand)/r with xrand uniformly
distributed over [0, 1]. A simple method for calculating the moments of the Poisson
distribution is to introduce the moment generating function

G(s) =

∞∑

n=0

PT [n]esn.(3.10)

Differentiating with respect to s shows that

dkG(s)

dsk

∣∣∣∣
s=0

= 〈nk〉.(3.11)

The generating function for the Poisson process can be evaluated explicitly as

G(s) = exp(−rT ) exp(rT es),(3.12)

from which we deduce that

〈n〉 = rT, σ2
n = rT.(3.13)

Another useful quantity is the interspike-interval (ISI) distribution. Suppose
that a spike was last fired at time T n. The probability of a homogeneous Poisson
process generating the next spike in the interval T n + τ ≤ T n+1 ≤ T n + τ + ∆τ is
equal to the probability that no spike is fired for a time τ , which is Pτ [0] = e−rτ

multiplied by the probability r∆τ of generating a spike within the following interval
∆τ :

Pr[τ ≤ T n+1 − T n ≤ τ + ∆τ ] = r∆τe−rτ .

The ISI probability density is thus an exponential, ρ(τ) = re−rτ . It follows that
the mean interspike interval is

〈τ〉 =

∫ ∞

0

re−rτ τdτ =
1

r

and the variance is

σ2
τ =

∫ ∞

0

re−rτ τ2dτ − 〈τ〉2 =
1

r2
.

The ratio of the standard deviation to the mean is called the coefficient of variation
CV = στ/〈τ〉. It follows that for a homogeneous Poisson process CV = 1.

How well do Poisson statistics describe experimentally measured spike trains?
One often finds that for ISIs longer than about 10msec the ISI distribution is indeed
approximately exponential. However, for shorter intervals there is a rapid decrease
in the distribution reflecting the fact that neurons are refractory immediately after
firing. This is illustrated in Figure 4. The data can be fitted more accurately by
a gamma distribution ρ[τ ] = r(rτ)ke−tτ/k!. Alternatively, one can introduce a
refractory period into a standard Poisson model. Note that CV values extracted
from the spike trains of cortical neurons also take values around unity, provided
that the mean interspike interval is not too small [115].
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Figure 4. (A) Interspike interval distribution from a neuron from the
MT cortical visual area of a macaque monkey responding to a moving
image. (B) Interspike interval generated with a Poisson model with a
stochastic refractory period. [Reprinted from [114], with permission
from J. Neurosci.]

Inhomogeneous Poisson process

It is possible to generalize the above Poisson model to the case of a time-dependent
rate r(t). The simplest way to analyze this inhomogeneous Poisson process is to
consider the probability distribution ρ(T 1, . . . T n). This is given by the product of
the probabilities r(T i)∆t that the neuron fires within the time intervals T i ≤ t ≤
T i+∆t and the probabilities of not firing during the interspike intervals. The latter
is given by

Pr[no spikes in (T i, T i+1)] =

M∏

m=1

(1− r(T i +m∆t)∆t),

where we have partitioned the interval (T i, T i+1) into M bins of size ∆t. Taking
the logarithm,

logPr[no spikes in (T i, T i+1)] =

M∑

m=1

log(1− r(T i +m∆t)∆t)

≈ −
M∑

m=1

r(T i +m∆t)∆t.

Taking the limit ∆t→ 0 and exponentiating again shows that

Pr[no spikes in (T i, T i+1)] = exp

(
−
∫ T i+1

T i

r(t)dt

)
.

Hence

ρ(T 1, . . . T n) =

n∏

i=1

r(ti) exp

(
−
∫ T

0

r(t)dt

)
.(3.14)

In the case of a time-dependent rate, one generates xrand at each time step and a
spike is fired if r(t)∆t > xrand.

3.3. Stochastically driven IF neuron

The origin of neural irregularity is still not very well understood, and whether the
variability is simply noise or some intricate neural encoding of information remains
unclear. Nevertheless, one can distinguish between intrinsic sources of noise that
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generate stochastic behavior at the level of single neuron dynamics, and extrinsic
sources that arise from network effects. Examples of the former include thermal
noise inducing membrane fluctuations, fluctuations in the opening and closing of ion
channels in the postsynaptic cell membrane (see §2.2), and synaptic transmission
failure. One way to model the effects of intrinsic noise is to define a noisy threshold
in terms of an instantaneous escape rate, which depends on the distance of the
membrane potential from the threshold [7]. Extrinsic noise reflects the fact that
a typical neuron such as a pyramidal cell in the cerebral cortex receives input
spikes from thousands of other neurons, which in turn receive input from their own
presynaptic neurons and so forth. Rather than trying to model the brain as a single
huge network, one typically focuses on a specific subset of neurons and treat inputs
from other parts of the brain as a stochastic background. The stochastic arrival
of excitatory and inhibitory pulses leads to a diffusion of the membrane potential
that can be analyzed using Fokker–Planck equations [116, 117, 118]. We shall
consider the effects of such diffusive noise on the dynamics of IF neurons.

Suppose that an IF neuron receives an external input Iext(t) together with a
set of N spike trains generated by N background neurons. Denote the arrival times
of the spikes from the kth presynaptic neuron by {T nk , n ∈ Z} for k = 1, . . . , N .
The membrane potential evolves according to the equation

τ
du

dt
= −u+RIext + τ

∑

n∈Z

N∑

k=1

wkgsyn(t− T nk ),(3.15)

together with the reset condition that u(t+) = 0 whenever u(t) = 1. Here gsyn(t)
represents a normalized synaptic conductance and wk is the strength or efficacy of
the kth synapse. Note that this equation treats input spikes as generating current
rather than conductance fluctuations (ie. we have dropped the factor usyn − u).
The latter can be accounted for heuristically by introducing an input–dependent
effective membrane time constant [119]. As a further simplification, we will ignore
the shape of each postsynaptic potential by taking gsyn(t) = δ(t), where δ(t) is a
Dirac delta function. Each input spike from the kth neuron then generates a change
in the postsynaptic potential of the form

∆u(t) = wkh(t− T nk ), h(t) = e−t/τH(t),

where H(t) is the Heaviside function. Thus each spike induces a jump of size wk,
which represents the strength of the connection or synapse from the kth presynaptic
neuron, and then decays exponentially. Suppose that the spikes at synapse k are
generated by an inhomogeneous Poisson process with arrival rate νk(t). This means
that in each small time interval [t, t + ∆t] the probability that a spike arrives on
the kth synapse is νk(t)∆t, and each spike is uncorrelated with any other. We will
derive a Fokker–Planck equation for the probability density p(u, t) for u evolving
according to the stochastic ODE (3.15), assuming that the neuron last fired at
t = 0. We also set Iext = 0 for simplicity.

The probability that no spike arrives in a short time interval ∆t is

Prob{no spike in [t, t+ ∆t]} = 1−
∑

k

νk(t)∆t.(3.16)

If no spike arrives then the membrane potential changes from u(t) = u′ to u(t +
∆t) = u′e−∆t/τ . On the other hand, if a spike arrives at synapse k, the membrane
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changes from u′ to u′e−t/τ+wk. Therefore, given a value u′ at time t, the probability
density of finding a membrane potential u at time t+ ∆t is

P (u, t+ ∆t|u′, t) =

[
1−∆t

∑

k

νk(t)

]
δ
(
u− u′e−∆t/τ

)

+∆t
∑

k

νk(t)δ
(
u− u′e−∆t/τ − wk

)
.(3.17)

Since the input spikes are generated by a Poisson process, it follows that the random
variable u(t) evolves according to a Markov process:

p(u, t+ ∆t) =

∫
P (u, t+ ∆t|u′, t)p(u′, t)du′.(3.18)

Substituting for P using equation (3.17) shows that

p(u, t+ ∆) =

[
1−∆t

∑

k

νk(t)

]
e∆t/τp(e∆t/τu, t)

+∆t
∑

k

νk(t)e
∆t/τp(e∆t/τu− wk, t).(3.19)

Rearranging and taking the limit ∆t→ 0 leads to the master equation

∂p

∂t
=

1

τ

∂

∂u
[up(u, t)] +

∑

k

νk(t)[p(u − wk, t)− p(u, t)].(3.20)

If the jump amplitudes wk are sufficiently small, then we can formally Taylor
expand the right–hand side of the master equation as a series in wk corresponding
to the so–called Kramers–Moyall expansion [117, 118]. Neglecting terms of order
w3
k then leads to the Fokker–Planck equation

∂p

∂t
= −1

τ

∂

∂u

[
−u+ τ

∑

k

νk(t)wk

]
p(u, t) +

1

2

[
∑

k

νk(t)w
2
k

]
∂2

∂u2
p(u, t).

(3.21)

The Fokker-Planck equation determines the time evolution of the probability den-
sity of a membrane potential evolving according to the equivalent stochastic differ-
ential equation (Langevin equation)

τdu = −u(t)dt+ µ(t)dt+ dξ(t).(3.22)

Here µ(t) is the mean background synaptic input

µ(t) = τ
∑

k

νk(t)wk(3.23)

and ξ(t) is a Gaussian white noise process,

〈ξ(t)〉 = 0, 〈ξ(t)ξ(t′)〉 = τσ2(t)min(t, t′),(3.24)

with the size of the membrane fluctuations given by

σ2(t) = τ
∑

k

νk(t)w
2
k.(3.25)
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In the case of constant noise, the resulting Langevin equation describes the well
known Ornstein–Uhlenbeck process. Note that in the derivation of the Fokker–
Planck equation we have suppressed higher–order terms of the form

∞∑

n=3

(−1)n

n!
An(t)

∂n

∂un
p(u, t),

with An =
∑
k νk(t)w

n
k . This becomes exact in the so–called diffusion limit wk → 0

such that µ(t), σ2(t) are unchanged and An → 0 for n ≥ 3.

First passage times

In our derivation of the Fokker–Planck equation we neglected the threshold uκ.
This can be incorporated as an absorbing boundary condition

p(uκ, t) ≡ 0 for all t.(3.26)

We can then look for the solution p = p(u, t|U, 0) of the Fokker–Planck equation
assuming the initial condition p(u, 0|U, 0) = δ(u − U). At any time t > 0, the
probability that the neuron has not reached threshold is

S(U, t) =

∫ uκ

−∞

p(u, t|U, 0)dt.(3.27)

Let ψ(U, t)∆t be the probability that the neuron fires its next spike between t and
t+∆t. It follows that ψ(U, t)∆t = S(U, t)−S(U, t+∆t) so that in the limit ∆t→ 0,

ψ(U, t) = − d

dt

∫ uκ

−∞

p(u, t|U, 0)du.(3.28)

The density ψ(U, t) determines the distribution of first passage times. When this
is combined with the reset condition U = ur, we see that it also determines the
distribution of interspike intervals ∆n = T n+1 − T n. Unfortunately, no general
solution is known for the first passage time problem of the Ornstein–Uhlenbeck
process. However, in the case of constant inputs such that µ(t) = µ0 and σ(t) = σ,
one can carry out a moment expansion of the first passage time distribution. In
particular, a closed form expression for the mean first passage time can be obtained.

In the case of constant inputs, p(u, t|U, 0) evolves according to the Fokker–
Planck equation

τ
∂p

∂t
= − ∂

∂u
[−u+ µ0]p+

σ2

2

∂2p

∂u2
,

with p(u, 0|U, 0) = δ(u−U) and absorbing boundary condition p(uκ, t|U, 0) = 0. It
can then be shown that S(U, t) satisfies the backwards FP equation [116, 117]

τ
∂S

∂t
= [−U + µ0]

∂S

∂U
+
σ2

2

∂2S

∂U2
,(3.29)

with S(U, 0) = 1 for U ≤ uκ and zero otherwise. Defining the mean first passage
time (MFPT) by

T (U) =

∫ ∞

0

tψ(U, t)dt,

it follows that T (U) satisfies the ODE

−τ = [−U + µ0]
dT

dU
+
σ2

2

d2T

dU2
.(3.30)
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The solution for T (U) is then

T (U) =
2τ

σ2

∫ uκ

U

due2Φ(u)/σ2

∫ u

−∞

e−2Φ(u′)/σ2

du′,(3.31)

where Φ(u) = u2/2−µ0u. Hence, we obtain the following expression for the MFTP
of an IF neuron whose initial state is the reset potential, U = ur:

T (ur) =

∫ ∞

0

sψ(s)ds = τ
√
π

∫ (uκ−µ0)/σ

(ur−µ0)/σ

eu
2

(1 + erf(u))du.(3.32)

Subthreshold regime

A major aim of noisy neuron models is to try to understand the large variability
of interspike intervals found in vivo [97, 120]. Given that a neuron receives a
large number of inputs at any one time, one might expect the law of large num-
bers to apply so that the neuron’s output reflects the average input activity and
thus exhibits small fluctuations about a mean firing rate. This is certainly true if
the neuron operates in the superthreshold regime, in which the total input to the
neuron in the absence of noise drives it to fire. Diffusive noise has little influence
other than slightly broadening the interspike interval distribution. On the other
hand, if the noise–free input is subthreshold, that is, it generates a membrane po-
tential that remains below the firing threshold, then diffusive noise has a significant
effect. In the subthreshold regime spikes are generated by the fluctuations of the
membrane potential, rather than by its mean, and the interspike interval distribu-
tion is broad. The differences between the two regimes are illustrated in Figure
5. Another interesting subthreshold effect is stochastic resonance. This refers to
a range of phenomena in which noise improves the signal transmission properties
of a system and this effect is optimal at a particular noise level [121]. Within the
neural context, a subthreshold input stimulus without noise does not generate ac-
tion potentials, so no information regarding the stimulus is transmitted. However,
if noise is added then spikes occur and there is an optimal noise level for signal
transmission [122]. A related phenomenon is coherence resonance [123]. Here it
is assumed that an excitable neuron is at rest in the absence of noise, but fires a
sequence of spikes when noise is added. The optimal noise level now corresponds
to the condition under which the resulting spike train is most regular.

3.4. Homogeneous population of IF neurons

Let us now consider a large population of identical IF neurons each being driven
by a set of Poisson distributed spike trains. We assume that the kth synapse of
every neuron receives a Poisson spike train with the same instantaneous rate νk(t),
but that the spike trains across the population are statistically independent. The
derivation of the Fokker–Planck equation proceeds along very similar lines to the
single neuron case, and takes the form

∂p

∂t
= − ∂

∂u

[−u+ µ(t) +RIext(t)

τ

]
p(u, t) +

σ2(t)

2τ

∂2

∂u2
p(u, t),(3.33)

with µ(t), σ(t) given by equations (3.23) and (3.25) and we now include an external
input. However, there are a number of important differences between the single
neuron and population cases. First, p(u, t) is now interpreted as the probability
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Figure 5. IF neuron with superthreshold (left column) and subthresh-
old (right column) inputs. (A,B) Noise–free case showing either regular
firing or zero firing. (C,D) Spike trains in the presence of diffusive noise.
(E,F) Corresponding interspike intervals. [Reprinted from [7], with per-
mission of Cambridge University Press.]

density of membrane potentials across the population of neurons. Consequently,
the normalization is different. In the case of a single neuron, the integrated density

∫ uκ

−∞

p(u, t)du ≤ 1

was interpreted as the probability that the neuron under consideration has not yet
fired, which changes over time. On the other hand, if a neuron in the population
fires, it remains part of the population so that we have the constant normalization

∫ uκ

−∞

p(u, t)du = 1.(3.34)

The second major difference is that we now have to incorporate the reset con-
dition explicitly in the evolution of the probability density. First, note that the
Fokker–Planck equation can be rewritten as a continuity equation reflecting con-
servation of probability:

∂

∂t
p(u, t) = − ∂

∂u
J(u, t), for u 6= uκ, ur,(3.35)

where

J(u, t) =
1

τ
[−u+ µ(t) +RIext(t)] p(u, t)−

σ2(t)

2τ

∂

∂u
p(u, t).(3.36)
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In a population of N neurons, the fraction of active neurons is calculated by count-
ing the number of output spikes n(t; t+∆t) in a small time interval ∆t and dividing
by N . Further division by ∆t yields the population activity

ν(t) = lim
∆t→0

1

∆t

n(t, t+ ∆t)

N
=

1

N

N∑

j=1

∑

m

δ(t− Tmj ).(3.37)

The double sum runs over all firing times Tmj of all neurons in the population. The
fraction of neurons that flow across the threshold per unit time should then be
equal to the population averaged activity ν(t), that is, ν(t) = J(uκ, t). Equation
(3.36) together with the absorbing boundary condition

p(uκ, t) = 0(3.38)

implies that

∂

∂u
p(uκ, t) = −2ν(t)τ

σ2(t)
.(3.39)

Due to the reset condition, the neurons that “disappear” across threshold are rein-
jected at the reset potential ur, which implies that there is a discontinuity in the
flux at ur, J(u+

r , t)− J(u−r , t) = ν(t). Continuity of p,

p(u+
r , t)− p(u−r , t) = 0,(3.40)

together with equation (3.36) then shows that there is a discontinuity in the first
derivative of p(u, t) at u = ur:

∂

∂u
p(u+

r , t)−
∂

∂u
p(u−r , t) = −2ν(t)τ

σ2(t)
.(3.41)

In summary, one has to solve the Fokker–Planck equation (3.33) together with the
boundary conditions (3.38), (3.39), (3.40) and (3.41).

Steady–state solution

Suppose that the background rates νk and external input Iext are time–independent
so that the total mean input

h0 = RI0 + τ
∑

k

νkwk(3.42)

is a constant. The steady–state Fokker–Planck equation implies that the flux

J(u) =
−u+ h0

τ
p(u)− 1

2

σ2

τ

∂

∂u
p(u)(3.43)

is constant except at u = ur where it jumps by an amount ν0, which is the steady–
state population activity. Taking J(u) = 0 for u < ur we can solve equation (3.43)
to obtain the Gaussian distribution

p0(u) =
c1
σ

exp

[
− (u− h0)

2

σ2

]
, for u ≤ ur(3.44)

for some constant c1. However, such a solution cannot be valid for u > ur, since it
does not satisfy the absorbing boundary condition p0(uκ) = 0. It turns out that in
this domain the solution is of the form [124]

p0(u) =
c2
σ2

exp

[
− (u− h0)

2

σ2

] ∫ uκ

u

exp

[
(x− h0)

2

σ2

]
dx, for ur < u ≤ uκ(3.45)
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for some constant c2. Equation (3.43) shows that c2 = 2τJ(u) for ur < u ≤ uκ
with J(u) = ν0. Continuity of the solution at u = ur implies that

c1 =
c2
σ

∫ uκ

u

exp

[
(x − h0)

2

σ2

]
dx.(3.46)

Finally, the constant c2 is determined by the normalization condition (3.34). On
setting ν0 = c2/2τ , one finds a firing rate that is consistent with the MFPT of
equation (3.32):

ν0 =

[
τ
√
π

∫ (uκ−h0)/σ

(ur−h0)/σ

eu
2

(1 + erf(u))du

]−1

≡ f(h0),(3.47)

where f is the so–called gain function for the population.

Asynchronous firing in recurrent networks

The above analysis assumed that the neurons were independent of each other so
that the only synaptic inputs were from some stochastic background. Now suppose
that we have a fully connected network such that there is an additional contribution
to the synaptic current into each neuron of the form

Irec(t) =
τ

R

Γ0

N

N∑

j=1

∑

m

δ(t− Tmj ) = τΓ0ν(t)/R,(3.48)

where Γ0/N is the strength of connection between any pair of neurons within the
population, and we have used the definition (3.37) of the population activity ν(t).
Suppose that the neuronal population is in a macroscopic state with constant activ-
ity ν(t) = ν0, which is referred to as a state of asynchronous firing. The steady–state
activity can then be determined self–consistently from equation (3.47) by setting

h0 = RI0 + τ

[
∑

k

νkwk + Γ0ν0

]
.(3.49)

This is illustrated in Figure 6(a). One can also determine the stability of the asyn-
chronous state by considering small perturbations of the steady–state probability
distribution. One finds that in the limit of low noise, the asynchronous state is
unstable and the neurons tend to split up into several synchronized groups that
fire alternately. The overall activity then oscillates several times faster than the
individual neurons [125, 126, 124], see §4.3. One of the interesting properties of
the asynchronous state from a computational perspective is that the population
activity can respond rapidly to a step input [7], as illustrated in Figure 6(b). The
basic intuition behind this is that in the asynchronous state there will always be a
significant fraction of neurons that are sitting close to the firing threshold so that
as soon as a step increase in input current occurs they can respond immediately.
However, the size of the step has to be at least as large as the noise amplitude σ,
since the threshold acts as an absorbing boundary, that is, the density of neurons
vanishes as u→ uκ.

In the above example noise is added explicitly in the form of stochastic back-
ground activity. It is also possible for a network of deterministic neurons with fixed
random connections to generate its own noise [124, 127, 128, 129]. In particular,
suppose that each neuron in the population of N neurons receives input from C
randomly selected neurons in the population with C ≪ N . The assumption of
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(a) (b)

Figure 6. (a) Steady–state population activity ν0 as a function of ex-
ternal input I0 for different levels of noise (increasing from right to left).
Thick curve shows firing rate function for a single noiseless IF neuron.
Intersection with the dashed line of slope 1/Γ0 gives possible solutions
for the stationary activity in a population with excitatory coupling Γ0.
(b) Response of a network of 1000 IF neurons with diffusive noise to
a step current input. Rapid response to a large current step for low
noise (upper figure). Slow response to a small current step for high
noise (lower figure). [Reprinted from [7], with permission of Cambridge
University Press.]

sparse connectivity means that two neurons share only a small number of common
inputs. Hence, if the presynaptic neurons fire stochastically then the input spike
trains that arrive at distinct postsynaptic neurons can be treated as statistically
independent. Since the presynaptic neurons belong to the same population, it fol-
lows that each neuron’s output should itself be stochastic in the sense that it should
have a sufficiently broad distribution of interspike intervals. This will tend to occur
if the neurons operate in a subthreshold regime, that is, the mean total input is
below threshold so that threshold crossings are fluctuation driven. Finally, note
that there have been a number of studies of recurrent network dynamics based on
extensions of the single neuron master equation (3.20) to neural populations. In
the case of large populations, numerical solutions of the resulting master equation
compare very well with direct simulations of the full network equations, capturing
fine details not possible under the diffusion approximation [130]. In certain special
cases, it is also possible to obtain analytical solutions [131]. One recent applica-
tion of the master equation approach has been to the study of fluctuation–driven
dynamics in recurrent network models of primary visual cortex [132].



LECTURE 4

Network Oscillations and Synchrony

Synchronized neural activity appears to be prevalent in many areas of the brain
including sensory cortices, thalamus and hippocampus. Synchrony can occur on the
spike-to-spike level or on the bursting level, and is usually associated with oscilla-
tory activity. Oscillations may be generated by intrinsic properties of single cells
or may arise through excitatory and inhibitory synaptic interactions within a local
population of cells. In this lecture we explore some of the mechanisms underlying
oscillatory activity and synchronization at the network level by considering popula-
tions of synaptically coupled spiking neurons. From a theoretical perspective there
are a number of issues that need to be addressed: Is the basic oscillatory unit a
single neuron or a local population of neurons? What are the roles of recurrent exci-
tatory and inhibitory connections in determining the patterns of oscillations? How
are the patterns affected by the intrinsic ionic properties of the neurons? Which
conditions determine whether synchronous activity is at the level of spikes, bursts
or firing rates, and in which frequency range? How are synchronous states affected
by external inputs? Under what conditions does one expect to observe traveling
(phase) waves rather than synchronous oscillations?

One popular approach to tackling some of these issues is to assume that each
neuron (or group of neurons) is intrinsically oscillatory, and that interactions among
the neurons, or groups of neurons that comprise an oscillator unit, are weak. The
phase reduction method outlined in §1 can then be applied at the network level.
This leads to a system of coupled equations for the phases of the oscillators in the
network, in which the effective phase interaction function H depends on both the
nature of the synaptic interactions and the intrinsic properties of each oscillator as
expressed through its phase resetting curve. For simplicity, we shall take the fun-
damental oscillatory unit to be a single neuron that transmits a regular sequence of
spikes to other neurons in the network (see Figure 1). The relative shift in the spike
trains of two oscillating neurons will then depend on the relative phases of the two
oscillators. Note, however, that the phase reduction techniques outlined below can
also be applied to models in which the basic oscillator consists of more than one
neuron. For example, when modeling spindle oscillations in thalamus, the minimal
oscillator might consist of an excitatory thalamocortical neuron and an inhibitory
reticular neuron. As another example, we note that stimulus-induced oscillations
in visual cortex are likely to arise at the level of a cortical column, involving sev-
eral thousand excitatory and inhibitory neurons that form the basic oscillatory
unit. In this case it is more appropriate to express the output of the oscillator in
terms of a population-averaged firing rate (see §3). Networks of weakly interacting
cortical columns can then be described in terms of a set of coupled phase equa-
tions, whose phase interaction function is stimulus–dependent [133, 134]. Note
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that oscillations at the population level can occur, even when the individual neu-
rons are not themselves intrinsic oscillators, due to the combined effects of external
stimuli and recurrent synaptic interactions. One particular network mechanism for
stimulus–induced oscillations is through a Hopf bifurcation of a stationary activity
bump, leading to the formation of a spatially–localized oscillation or breather that
is aligned with the stimulus [135, 136]. Activity bumps are discussed in §5.3.

φj
φi

H(φj − φi)

Figure 1. A system of two synaptically coupled limit cycle oscillators
can be reduced to a pair of phase equations involving an effective phase
interaction function H . See text for details.

4.1. Phase reduction for synaptically coupled neural oscillators

Let us consider a network of N neural oscillators labeled i = 1, . . . , N . Denoting
the state of the ith neuron by xi ∈ Rm, the general form of the network dynamics
is the coupled system of ODEs

dxi
dt

= f(xi) + ε

N∑

j=1

wijP(xi,xj),(4.1)

where wijP(xi,xj) represents the synaptic input from the jth to the ith neuron.
We assume that the synaptic interactions are identical in form but are allowed to
have different relative strengths or weights wij . (It is straightforward to extend
the analysis to non-identical oscillators with different intrinsic frequencies for ex-
ample). If the coupling between the oscillators is weak then one can derive closed
equations for the phases of the oscillators. We shall establish this using the method
of isochrones [11], following along similar lines to the analysis of a periodically
forced oscillator described in §1. An alternative derivation based on the Fredholm
alternative is described at the end of the section.

Method of isochrones

Suppose that in the absence of interactions each neuron has a stable limit cycle X

with natural frequency ω0. For each oscillator we introduce the phase variable φi
such that

dφi
dt

= ω0,(4.2)

and there is a one-to-one mapping φi → X(φi). The definition of the phase is
then extended into a neighborhood of the limit cycle using isochrones. That is, we
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associate with any point xi in the vicinity of the ith limit cycle a phase φi(xi) such
that

dφi(xi)

dt
= ω0 + ε

∂φi
∂xi

.

N∑

j=1

wijP(xi,xj).

To a first approximation we can evaluate the r.h.s on the unperturbed limit cycles
X. Since these are defined uniquely by the phase we obtain the coupled phase
equations

dφi
dt

= ω0 + ε

N∑

j=1

wijQ(φi, φj),(4.3)

where

Q(φi, φj) =
∂φi
∂xi

(X(φi)).P(X(φi),X(φj)).(4.4)

Q is a 2π-periodic function of the phases.
It remains the specify the structure of P. The first point to note is that the

coupling term only contributes to the equation for the membrane potential ui =
[xi]1 so that Pk = δ1,kP and we can write

Q(φi, φj) = R(φi)P (X(φi),X(φj)),(4.5)

whereR is the phase response curve of the oscillator, see §1.2. If we neglect dendritic
processes and synaptic depression then the synaptic input from the jth to the ith
neuron is of the form

Isyn(t) = wij
∑

m

gsyn(t− Tmj − τa)[usyn − ui(t)],(4.6)

where the sum is taken over all the spikes emitted by neuron j at the firing times
Tmj , gsyn(t) is the alpha function (2.3) and τa is a discrete axonal delay. The firing
times can be related to the phase of the oscillators as follows. Assume that the
neuron fires whenever the phase φj crosses zero. The firing times then satisfy the
condition

φj(T
m
j ) = 2πm, φ̇j(T

m
j ) > 0.(4.7)

If we now set ψj = φj − ω0t then ψi is a slowly varying function of time so that to
a first approximation

Tmj = (m− ψj/2π)∆0 = t+ (m− φj(t)/2π)∆0.(4.8)

Hence

P (φi, φj) ≡ P (X(φi),X(φj)) =
∑

m

gsyn((φj/2π −m)∆0 − τa)[usyn − u∗(φi)].
(4.9)

Thus we can rewrite Q as

Q(φi, φj) = R̂(φi)P̂ (φj − ω0τa),(4.10)

where

R̂(φi) = [usyn − u∗(φi)]R(φi), P̂ (φj) =
∑

m

gsyn((φj/2π −m)∆0).(4.11)
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The final step of the analysis is to use the method of averaging to obtain effective
interactions that depend only on phase differences. Substituting ψi = φi−ω0t into
the phase equation (4.3) gives

dψi
dt

= ε

N∑

j=1

wijQ(ψi + ω0t, ψj + ω0t).(4.12)

The corresponding averaged equation is then

dψi
dt

= ε
N∑

j=1

wijH(ψj − ψi − ω0τa),(4.13)

where

H(ψj − ψi) =
1

∆0

∫ ∆0

0

R̂(ψi + ω0t)P̂ (ψj + ω0t])dt

=
1

2π

∫ 2π

0

R̂(φ+ ψi − ψj)P̂ (φ)dφ,(4.14)

and we have exploited the periodicity of the functions R̂, P̂ . A useful alternative

expression for H is obtained by substituting for P̂ :

H(ψ) =
1

2π

∫ 2π

0

R̂(φ− ψ)
∑

m

gsyn([φ/2π −m]∆0)dφ

=
1

2π

∫ ∞

0

R̂(φ− ψ)gsyn(φ∆0/2π)dφ.(4.15)

Our analysis also establishes that averaging in the weak coupling regime reduces
the effect of an axonal delay to that of an additional phase-shift.

Fredholm alternative

An alternative derivation of the phase equation (4.13) involves the Fredholm al-
ternative and perturbation theory [137, 138]. To simplify the notation we set
∆0 = 2π. The basic idea is to seek solutions of equation (4.1) of the form

xi = X(t+ ψi(τ)) + εUi(t, τ, ε),(4.16)

where X(t) represents the 2π-periodic solution of the uncoupled equation. Substi-
tuting into equation (4.1) yields at order ε

f(X(t+ ψi))
dψi
dτ

+
dUi(t, τ, 0)

dt
(4.17)

= Df(X(t + ψi))Ui(t, τ, 0) +
N∑

j=1

wijP(X(t + ψi),X(t+ ψj)),

where Df is the Jacobian of f . This equation may be rewritten in the more sugges-
tive form

L(t+ ψi)Ui(t, τ, 0) ≡
[
d

dt
−Df(X(t + ψi))

]
Ui(t, τ, 0) = bi(t, τ),(4.18)

where

bi(t, τ) = −f(X(t+ ψi))
dψi
dτ

+

N∑

j=1

wijP(X(t + ψi),X(t+ ψj)).(4.19)
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Using the Fredholm alternative, the inhomogeneous linear equation (4.18) has
a periodic solution if and only if

1

∆0

∫ ∆0

0

Z(t+ ψi).bi(ω0t, τ)dt = 0,(4.20)

where Z(t) is the unique 2π-periodic solution of the adjoint homogeneous equation
[
d

dt
+Df(X(t))†

]
Z(t) = 0(4.21)

with chosen normalization

1

2π

∫ 2π

0

Z(t).f(X(t))dt = 1.(4.22)

Using this normalization condition and the expression for bi, we conclude that
equation (4.18) has a solution if and only if

dψi
dτ

=
1

2π

∫ 2π

0

Z(t+ ψi).

N∑

j=1

wijP(X(t + ψi),X(t+ ψj))dt.(4.23)

Exploiting the periodicity of the functions on the r.h.s, we can shift t to obtain the
phase-difference equation (4.13) with H given by

H(ψj − ψi) =
1

2π

∫ 2π

0

Z(t).P(X(t),X(t + ψj − ψi))dt.(4.24)

Equation (4.24) can be further reduced by substituting the explicit form for the
synaptic interactions P as given by equation (4.9). One then recovers equation
(4.14) with Z1 replacing the phase resetting curve R. (The two forms of H are
equivalent to lowest order in ε). Note that the adjoint solution can be determined
using standard numerical methods. On the other hand, the phase resetting curve
has a more direct physical interpretation, and hence we will adopt the version given
by equation (4.14) in our subsequent analysis.

4.2. Phase-locked solutions

We define a 1 : 1 phase-locked solution of the phase equation (4.13) to be of the
form

ψi(t) = ∆ω t+ ψ̄i,(4.25)

where ω = ω0 + ∆ω is the collective frequency of the coupled oscillators and Ψ =
(ψ̄1, . . . , ψ̄n) is a set of constant phases. Substitution into equation (4.13) leads to
the fixed point equations

∆ω = ε
∑

j

wijH(ψ̄j − ψ̄i), j = 1, . . . , N.(4.26)

After choosing some reference oscillator, the N phase equations determine the col-
lective period ω and N − 1 relative phases with the latter independent of ǫ. In
order to analyze the local stability of a phase-locked solution Ψ, we linearize equa-
tion (4.13) by setting ψi(t) = ψ̄i + ∆ωt + ∆ψi(t) and expanding to first-order in
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ψ̃i:

d∆ψi
dt

= ǫ

N∑

j=1

Ĥij(Φ)∆ψj ,(4.27)

where

Ĥij(Φ) = wijH
′(ψ̄j − ψ̄i)− δi,j

∑

k

wikH
′(ψ̄k − ψ̄i),(4.28)

and H ′(ψ) = dH(ψ)/dψ. One of the eigenvalues of the Jacobian Ĥ is always
zero, and the corresponding eigenvector points in the direction of the flow, that
is (1, 1, . . . , 1). The phase-locked solution will be stable provided that all other
eigenvalues have a negative real part [139].

Pair of identical neural oscillators

Consider the case of two identical oscillators (N = 2) that are symmetrically cou-
pled, in other words w12 = w21 = 1 and w11 = w22 = 0. The phase difference
ψ = ψ2 − ψ1 satisfies the simple equation

dψ

dt
= εH−(ψ),(4.29)

where H−(ψ) = H(−ψ) −H(ψ). Phase-locked states are then given by the zeros
of the odd function H−:

H−(ψ) = 0.(4.30)

A given phase-locked state is stable provided that

ǫ
dH−(ψ)

dψ
< 0.(4.31)

Note that by symmetry both the in-phase (ψ = 0) and anti-phase (ψ = π) states are
guaranteed to exist [140]. However, there may be additional fixed points depending
on the parameters. The collective frequency of oscillation is determined by the even
part of H , H+(ψ) = H(ψ) +H(−ψ):

ω = ω0 +
ε

2
H+(ψ).(4.32)

It turns out that the stability of the in-phase state for a pair of neurons depends
on a number of factors [141, 142]: whether the synapses are excitatory (usyn > 0)
or inhibitory (usyn > 0), whether the kinetics are fast (large α) or slow (small α),
whether the phase resetting curve is Type I or Type II, and the size of axonal delays.

We shall illustrate this by considering two simple examples with R̂(φ) ≈ usynR(φ)
and usyn absorbed into ε: the sign of ε will then determine whether the neurons
are excitatory or inhibitory.
Example: Hodgkin-Huxley neuron. In Figure 2 we show a typical phase-resetting
curve R(φ) for the Hodgkin-Huxley model together with the resulting phase inter-
action function H(ψ) for an α function synapse, calculated using equation (4.15),



PAUL C. BRESSLOFF, MATHEMATICAL NEUROSCIENCE 71

-0.1

0

0.1

0.2

φ0

R(φ)

2π
-0.5

0

1

2

ψ−π

Η(ψ)

π

Figure 2. Plot of Type II phase resetting curve R(φ) for the Hodgkin-
Huxley model together with effective phase interaction function H(ψ).

and zero axonal delays. If we approximate the PRC by R(φ) = − sinφ then

H(ψ) =
1

2π

∫ ∞

0

R(φ− ψ)P (φ∆0/2π)dφ

=
α2

2π

d

dα

∫ ∞

0

sin(φ− ψ)e−αφ∆0/2πdφ

=
α2

2π
Im

d

dα

∫ ∞

0

ei(φ−ψ)e−αφ∆0/2πdφ.

Now

1

2π

d

dα

∫ ∞

0

eiφe−αφ∆0/2πdφ = − ∆0

(α∆0 − 2πi)2
,(4.33)

and so

H(ψ) = A sinψ −B cosψ,(4.34)

where

A = [(α∆0)
2 − (2π)2]K, B = 4πα∆0K, K =

α2∆0

[(2π)2 + (α∆0)2]2
.(4.35)

The odd part is then

H−(ψ) =
2α2∆0[4π

2 − α2∆2
0] sinψ

∆0[α2∆2
0 + 4π2]2

.(4.36)

As long as 2π/α∆0 6= 1 there are phase-locked states at ψ = 0, π as expected.

The synchronous solution is stable if εH−′
(0) < 0. This implies that synchroniza-

tion will occur for excitatory coupling if α > 2π/∆0 and for inhibitory coupling
if α < 2π/∆0. Thus, inhibition rather than excitation synchronizes the neurons
when the synapses have sufficiently slow kinetics. The reverse is true for the anti-
phase solution ψ = π. If higher-order terms in the Fourier series expansion of H
are included, H(ψ) =

∑
n hne

inψ, then the transition from synchronous to antisyn-
chronous behavior is smoother, that is, the system no longer makes a sudden jump
from one to the other at a critical value of α.

Example: Integrate-and-fire model. Substituting into equation (4.14) the PRC of
an IF neuron given by equation (1.43), the α-dependence of phase-locked solutions
in the case of a symmetric pair of excitatory or inhibitory IF neurons can be deter-
mined [141]. The results are summarized in Figure 3(a). For excitatory coupling
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(ǫ > 0) the synchronous state is unstable for all 0 < α < ∞. On the other hand,
the anti-synchronous solution is stable for α < αc but loses stability when α > αc
with the creation of two stable partially synchronized or asynchronous states. The
emergence of these two additional states can be understood in terms of the behavior
of the odd part of the interaction function H−(ψ) as shown in Figure 3(b). In the
limit α → ∞ the two asynchronous states asymptotically approach the synchro-
nous state so that the neurons are almost perfectly synchronized. This is consistent
with the analysis of Mirollo and Strogatz [143] who proved rigorously that globally
coupled IF oscillators almost always synchronize in the presence of instantaneous
excitatory interactions. The stability properties of all solutions are reversed in the
case of inhibitory coupling (ǫ < 0) so that, in particular, the synchronous state is
now stable for all α. Introduction of a discrete axonal delay τa produces a checker-
board pattern of alternating stable/unstable solution branches that can overlap to
produce multistable solutions [144].

0

2π

2 4 6 8 10 12 14 16 18 20
α

(a)

H−(ψ)

synchronous

anti-synchronous

ψ

ψ0 2π

0

(b)

π

Figure 3. (a) Relative phase ψ = ψ2 − ψ1 for a pair of IF oscillators
with symmetric excitatory coupling as a function of α with I0 = 2. In
each case the anti-phase state undergoes a bifurcation at a critical value
of α = αc where it becomes unstable and two additional stable solutions
ψ, 2π − ψ are created. The synchronous state remains unstable for all
α. (b) Odd part of the phase interaction function for α just above the
critical value αc showing two new phase-locked solutions.

Traveling oscillatory waves on a chain

Both vertebrates and invertebrates have dedicated networks of cells that contain
the information necessary to activate different motor neurons in the appropriate
sequence and intensity to generate a variety of motor patterns. Such networks
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are known as central pattern generators (CPGs). The simplest CPGs control reflex
actions, swallowing and coughing. At the next level are those that control rhythmic
movements such as breathing and locomotion. A well studied example of the latter
is swimming locomotion in vertebrates such as the lamprey [145, 146, 147]. The
basic mechanism for such coordinated movement is alternating left-right activity
within each segment of the spinal cord, combined with a phase lag between the
activation of consecutive segments along the body (see Figure 4). This generates
an undulatory wave that propagates along the body and pushes the animal forwards
through the water. An analogous mechanism also occurs in invertebrates such as
the leech [148].

Figure 4. Neural activity recorded from four locations on the body
of a lamprey during swimming locomotion. The body can be segmented
into a bilateral chain of alternating left/right oscillators such as the
pairs 1,3 and 2,4. There is also an intersegmental phase-lag between the
activity of the pair 1,3 and 2,4.

At the simplest level, the spinal cord may be modeled as a chain N phase
oscillators with nearest-neighbor coupling as shown in Figure 5. A traveling wave
of activity along the chain then corresponds to a phase-locked solution in which φn

H+ H+ H+ H+

H− H− H− H−

φn φn+1φn-1

Figure 5. A chain of N phase oscillators.
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is a monotonically increasing or decreasing function of n. At least two mechanisms
have been identified for generating such a phase gradient along the chain [149, 150]:
a) Heterogeneity in the form of a gradient in intrinsic frequencies of the individual
neurons, that is, ωn = ω0 + nω1 where ω0,1 are constants, will induce a gradient
in the relative phases of the coupled system. Such a frequency gradient has been
found in the leech CPG for swimming [148]. The resulting plane wave propagates
opposite to the direction of the gradient, that is, from high to low frequencies.
Interestingly, a spatial gradient of frequencies has been observed experimentally
in slices of molluscan olfactory lobe, with the wave propagating from high to low
frequencies as predicted by the theory [151].

b) In the lamprey CPG for swimming, there is no evidence for a gradient in fre-
quency. Moreover, unlike the observed wave in the lamprey, waves produced by
frequency gradients do not have constant phase lags along the chain, that is, the
wave is not of constant speed. However, it is possible to produce approximately
constant speed waves in the bulk of an oscillator chain by having anisotropic inter-
actions, H+ 6= H−, together with the so-called edge property that H+(θ) or H−(θ)
vanishes at a non-zero value of θ.
We briefly illustrate the above results using a simple model of a chain with H±(φ) =
W±H(φ). Such a network is described by the following system of coupled phase
equations:

φ̇1 = ω1 +W+H(φ2 − φ1)

φ̇i = ωi +W+H(φi+1 − φi) +W−H(φi−1 − φi), i = 2, . . . , N − 1

φ̇N = ωN +W−H(φN−1 − φN ).(4.37)

Introducing the intersegmental phase differences θi = φi+1 −φi leads to the N − 1-
dimensional system of equations

θ̇i = ∆ωi +W+[H(θi+1)−H(θi)] +W−[H(−θi)−H(−θi−1)], i = 1, . . . , N − 1,

(4.38)

with boundary conditions

H(−θ0) = 0 = H(θN )(4.39)

and ∆ωi = ωi+1 − ωi.
Suppose that there is a gradient of frequencies along the chain, that is, ∆ωi has

the same sign for all i. Also take an isotropic, odd interaction function, W± = 1
and H(θ) = −H(−θ). Then

θ̇i = ∆ωi +H(θi+1) +H(θi−1)− 2H(θi), i = 1, . . . , N − 1.(4.40)

The phase-locked solutions Θ = (θ1, . . . , θN−1) then satisfy the matrix equation

H(Θ) = −A−1D,(4.41)

where H(Θ) = (H(θ1), . . . , H(θN−1))
T , D = (∆ω1, . . .∆ωN−1) and A is a tridiago-

nal matrix with elements Aii = −2, Ai,i+1 = 1 = Ai+1,i. Suppose, for concreteness,
that H(θ) = sin θ, Then a solution Θ will exist only if every component of A−1D

lies between ±1. Let a0 = max{|A−1Di|}. If a0 < 1 then for each i = 1, . . . , N − 1
there are two distinct solutions θ±i in the interval [0, 2π) with H ′(θ−i ) > 0 and
H ′(θ+i ) < 0. In other words, there are 2N phase-locked solutions. Linearizing
about each phase-locked solution and exploiting the structure of the matrix A, it
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can be proven that only the solution Θ− = (θ−1 , . . . θ
−
N−1) is stable ([149]. As-

suming that the frequency gradient is monotonic, this solution corresponds to a
stable traveling wave. When the frequency gradient becomes too steep to allow
phase-locking, that is a0 > 1, two or more pools of oscillators (frequency plateaus)
tend to form and oscillate at different frequencies. Waves produced by a frequency
gradient do not have a constant speed or, equivalently, constant phase lags along
the chain.

Constant speed waves can be generated from equations (4.38) by considering
phase-locked solutions defined by θi = θ for all i with a collective period of oscilla-
tion determined using θ̇i = Ω such that

Ω = ω1 +W+H(θ),(4.42)

such that speed of the wave is Ω/θ. The steady state solutions are then

∆ω1 +W−H(−θ) = 0

∆ωi = 0, i = 2, . . . , N − 2

∆ωN−1 −W+H(θ) = 0.(4.43)

This implies that all internal oscillators (i = 2, . . . , N − 2) have the same intrinsic
frequency. If we further assume that ∆w1 = 0 = ∆ωN−1 then a constant speed
wave will exist provided that (i) the interactions are unidirectional with W− = 0
say, and (ii) H satisfies the edge property H(θ) = 0 for some θ 6= 0. For example, if
H(θ) = sin(θ + σ) for a fixed phase-shift σ, then the steady-state phase solution is
θ = −σ. It also follows that although the speed of the wave can change by changing
the intrinsic frequency ω1, the phase lag θ remains the same. This is consistent
with the swimming motion of invertebrates. Finally, note that if coupling is in
both directions, as in the lamprey CPG, one finds that for sufficiently long chains
and H+ 6= H−, the system typically behaves like the unidirectional case except
that there is a small boundary layer close to one end [150].

Phase–locking in strongly coupled IF networks

One of the useful features of the IF model is that one can go beyond the weak
coupling regime by studying the existence and stability of phase–locked states di-
rectly in terms of the firing time map [152, 153]. This generalizes the analysis of
the firing time map for a single periodically forced IF neuron (see §1.3) to the net-
work level. It can be shown that increasing the strength of the synaptic coupling
can lead to new dynamical instabilities not found in the phase–reduced models.
Such instabilities generate non–phase–locked states, characterized by periodic or
quasiperiodic variations of the inter-spike intervals (ISIs) on closed orbits. The cor-
responding mean firing rates exhibit complex spatio-temporal patterns including
network–induced bursting.

Consider a network of identical leaky IF neurons labeled by the indices i =
1, . . . , N such that neuron i makes synapses with neuron j:

dui
dt

= −ui + I0 + ǫ

M∑

j=1

wij
∑

m∈Z

gsyn(t− Tmj )(4.44)

where Tmj is themth firing time of the jth neuron, ǫwij is the strength of the synapse

between neuron i and j and the function gsyn(t) represents the effects of synaptic
filtering. Equation (4.44) is supplemented by the reset condition limδ→0+ ui(T

m
i +
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δ) = 0. Suppose that an IF neuron operates as an oscillator such that the inter-spike
interval Tm+1

j −Tmj = ∆ for all j,m in the absence of synaptic inputs. Conditions for
phase-locking can be derived for arbitrary coupling strength ε by solving equation
(4.44) under the ansatz that the firing times are of the form T nj = (n − ψj/2π)∆

for some self-consistent period ∆ and constant phases ψj [141, 140]. Integrating
over the interval t ∈ (−∆ψi/2π,∆−∆ψi/2π) and incorporating the reset condition
leads to the result

1 = (1− e−∆)I0 + ε

N∑

j=1

wijH(ψj − ψi)(4.45)

with

H(φ) = e−∆

∫ ∆

0

dt et
∑

k∈Z

gsyn(t+ (k + φ/2π)∆)(4.46)

Note that up to a positive constant factor, H(φ) reduces to the weak coupling

phase interaction function of equation (4.13) for ∆ → ∆0 and R̂ taken to be the
PRC (1.43). It can be seen that equation (4.45) has an identical structure to that of
equation (4.26). However, the former is exact whereas the latter is only strictly valid
to O(ε), since it is derived under the assumption of weak coupling. Moreover, the
collective period of oscillations ∆ must be determined self-consistently in equation
(4.45), since H depends on ∆ rather than the natural period ∆0. The stability of
the phase–locked solutions can be determined by considering perturbations of the
firing times, as detailed elsewhere [152, 153].

4.3. Oscillations in large homogeneous networks

In §2 we pointed out that neurons often form large homogeneous stochastic net-
works. This suggests that rather than considering individual neurons as determin-
istic oscillators, it might be more appropriate to consider collective oscillations at
the population level. In this section we show how a fully connected network of IF
neurons can exhibit collective oscillations through destabilization of an asynchro-
nous state [19]. Consider the following synaptically coupled network of nonlinear
IF neurons

dui
dt

= F (ui) +
ε

N

N∑

j=1

∫ ∞

−∞

gsyn(t′ − τa)
∑

m

δ(t− t′ − Tmj )dt′,(4.47)

with gsyn given by the alpha function (2.3), τa a discrete axonal delay and ε deter-
mines the strength of coupling. We take a threshold uκ = 1 and a reset ur = 0.
In the case of a large network, we can replace the sum over delta functions by the
population activity ν(t) so that

dui
dt

= F (ui) + εν̂(t),(4.48)

where ν̂(t) =
∫∞

−∞ gsyn(t′−τa)ν(t−t′)dt′. Suppose that there exists an asynchronous

state ν(t) = ν0. Since the α function is normalized to unity it follows that ν̂(t) = ν0
as well. An implicit equation for ν0 is then obtained by integrating equation (4.48)
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between successive firing times:

1

ν0
=

∫ 1

0

du

F (u) + εν0
.(4.49)

We will assume that there exists a unique solution to this equation for given F and
ε.

In order to study the stability of the asynchronous state, it is convenient to
carry out the change of variables

yi = ν0

∫ ui

0

du

F (u) + εν0
,(4.50)

with 0 < yi < 1 such that equation (4.48) becomes

dyi
dt

= ν0 + Γ(yi)[ν̂(t)− ν0](4.51)

and

Γ(y) =
ν0ε

F (u) + ν0ε
.(4.52)

In order to incorporate the effects of noise, we include an additive white noise term
ξi(t),

dyi
dt

= ν0 + Γ(yi)[ν̂(t)− ν0] + ξi(t),(4.53)

with

〈ξi(t)〉 = 0, 〈ξi(t)ξj(t′)〉 = σ2δijδ(t− t′).(4.54)

(Note that diffusive fluctuations of the membrane potential due to stochastic back-
ground activity would lead to an additive white noise term in equation (4.48) rather
than in equation (4.54). The corresponding stochastic equation for yi would then
involve multiplicative noise, which is much harder to analyze). In the presence of
noise the variable yi can become negative so −∞ < yi < 1. The Langevin equation
(4.54) has an associated Fokker–Planck equation

∂

∂t
p(y, t) = − ∂

∂y
J(y, t),(4.55)

where J(y, t) is the probability flux

J(y, t) = [ν0 + Γ(y)[ν̂(t)− ν0]] p(y, t)−
σ2

2

∂

∂y
p(y, t).(4.56)

This is supplemented by the boundary conditions arising from reset (see §3)

p(1, t) = 0, J(1, t) = ν(t),(4.57)

p(0+, t) = p(0−, t), J(0+, t)− J(0−, t) = ν(t),(4.58)

We also require p(−∞, t) = 0 and J(−∞, t) = 0. The steady-state solution of the
Fokker–Planck equation is J(y, t) = ν0 and p(y, t) = p0(y) with

p0(y) =

{
e2ν0y/σ

2 − e2ν0(y−1)/σ2

, y < 0

1− e2ν0(y−1)/σ2

, 0 < y < 1
.(4.59)

The stability of the steady–state can be determined by setting

p(y, t) = p0(y) + ρ(y)eλt, ν(t) = ν0 + ν1e
λt(4.60)
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and expanding to first order in ρ, ν1. This gives the eigenvalue equation

λρ(y) =
σ2

2

∂2

∂y2
ρ(y)− ν0

∂

∂y
ρ(y)− ν1g̃syn(λ)

∂

∂y
[Γ(y)p0(y)],(4.61)

where g̃syn(λ) is the Laplace transform

g̃syn(λ) =

∫ ∞

0

gsyn(t− τa)e−λt =
α2

(λ + α)2
eτaλ.(4.62)

Defining the function

h(y) = ν1g̃syn(λ)
∂

∂y
[Γ(y)p0(y)],(4.63)

we can write equation (4.61) as the inhomogeneous equation

[L − λ1]ρ(y) = h(y;λ),(4.64)

where

L =
σ2

2

∂2

∂y2
− ν0

∂

∂y
.(4.65)

This inhomogeneous equation can be solved in terms of the associated one–dimensional
Green’s function satisfying [L − λ1]G(y, y′;λ) = δ(y − y′) and G(1, y′, λ) = 0:

ρ(y) =

∫ 1

−∞

G(y, y′;λ)h(y′;λ)dy′ − ν1G(y, 0;λ)(4.66)

with

G(y, y′;λ) =

{
A
(
eµ+(λ)[y−1] − e−µ−(λ)[y−1]

)
eµ−(λ)[y′−1], y′ < y < 1

A
(
eµ−(λ)[y′−1] − e−µ+(λ)[y′−1]

)
eµ+(λ)[y−1], y < y′,

(4.67)

where

A =
2

σ2

1

µ+ + µ−
,(4.68)

µ±(λ) =
1

σ2

[√
ν02 + 2λσ2± ν0

]
.(4.69)

Note that the term ν1G(y, 0;λ) ensures that the flux discontinuity at y = 0 is satis-
fied. Finally, an implicit equation for the eigenvalues λ can be obtained by substitut-
ing equation (4.63) into (4.66) and imposing the boundary condition J(1, t) = ν(t),
which corresponds to the following first–order condition

−σ2

2

∂

∂y
ρ(y, t)|y=1 = ν1.(4.70)

The resulting characteristic equation is [19]
(
eµ−(λ) − 1

)
= µ−(λ)g̃syn(λ)

∫ 1

−∞

p0(y)Γ(y)eµ−(λ)ydy.(4.71)

In the zero noise limit σ → 0, we have µ−(λ) → λ/ν0 and p0(y) → 1 for
0 < y < 1 and is zero otherwise. Thus, equation (4.71) becomes

(
eλ/ν0 − 1

)
=

λ

ν0
g̃syn(λ)

∫ 1

0

Γ(y)eλy/ν0dy.(4.72)

In the weak coupling regime, solutions of equation (4.72) are of the form λ =
2πinν0 + Λn for integer n with Λn = O(ǫ). The term Λn can be calculated by
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performing a perturbation expansion in the coupling ǫ. The lowest order contribu-
tion is simply determined by setting λ = 2πinν0 on the right-hand side of equation
(4.72). In the case of a linear IF model with F (u) = I0 − u, we have Γ(y) = ey/ν0

so that

Λn = ǫ

(
2πinν0

1 + 2πinν0

)
g̃syn(2πinν0) +O(ǫ2).(4.73)

We then have the following stability results in the absence of noise [19, 125]:
(i) For zero axonal delays (τa = 0) and excitatory coupling (ǫ > 0), the asynchro-
nous state is stable with respect to excitation of the nth mode if and only if α < αn
where

αn = −1 +
√

1 + 4n2π2ν2
0 .(4.74)

Hence, it is stable for sufficiently slow synapses, that is, α < α1. The asynchronous
state is always unstable in the case of inhibitory coupling since the condition for
stability with respect to the nth harmonic is now α > αn, which cannot be satisfied
for all n.
(ii) The asynchronous state is almost always unstable for non-zero delays (in the
noise-free case).
(iii) For large n, |Λn| ∼ 1/n2 so that higher harmonics grow or decay slowly.

Note that although the zero delay case is a singular limit in the absence of noise,
it becomes non-singular for arbitrarily small amounts of noise, where instabilities
with respect to higher harmonics are suppressed [19, 125]. One finds that for
sufficiently high noise levels the asynchronous state is always stable. Reducing the
noise for fixed delay induces an instability due to excitation of one of the harmonic
modes with frequency ω ≈ ωn = 2πnν0. A bifurcation at ω ≈ ω1 implies that the
period of the resulting collective oscillation is identical to the period of the individ-
ual oscillators. Higher harmonics correspond to instabilities of the asynchronous
state that lead to the formation of cluster states [125, 154]: each neuron fires with
mean rate ν0, but the population of neurons splits up into several groups that fire
in sequence so that the overall activity exhibits faster oscillations. In Figure 6 we
show the stability diagram for the asynchronous state of an IF network calculated
within the context of the spike response model [17]. In this version of the model,
the source of noise is now reset noise rather than membrane fluctuations; each time
the neuron fires the membrane potential is reset to a random value ur generated
from a Gaussian distribution of width σ. Nevertheless, the qualitative behavior is
very similar. Finally, note that fast oscillations are also found in sparsely connected
random networks [124].
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ν ν
νν

τdν0

Figure 6. Stability diagram (center) for asynchronous state in an IF
network as a function of noise amplitude σ and delay τa for fixed synaptic
time constant α−1 = 4ms and membrane time constant τ = 10ms. The
input I0 was chosen so that the population activity of the asynchronous
state was ν0 = 0.5α. The diagram shows the borders of the stabil-
ity region with respect to the harmonic frequencies ω1 (solid lines), ω2

(long–dashed lines), ω3 (short–dashed lines) and ω4 (long–short dashed
lines). Insets show typical patterns of activity from a simulation of
N = 1000 neurons. [Reprinted from [7], with permission of Cambridge
University Press.]



LECTURE 5

Neural Pattern Formation

Wilson and Cowan [155, 156] introduced a rate–based population model of
cortical tissue based on the idea that the identity of individual presynaptic neurons
is not important, but only the distribution of their level of activity. This leads to
a statistical description of cortical activity in which the proportion of active neu-
rons is chosen as a model variable. A justification for a statistical approach can be
given in terms of the spatial clustering of neurons with similar response properties
in cortex. These cells form vertical columns within the thin convoluted sheet of
neural tissue that constitutes the cerebral cortex. For example, Hubel and Wiesel
[157] reported a columnar-like arrangement of neurons in primary visual cortex
that prefer stimuli of similar orientation. Neurons within a cortical column share
many inputs and are tightly interconnected, so that it is reasonable to consider the
mean activity ν(t) of the given neural population, rather than keeping track of the
spiking of individual cells. However, in order to construct a closed set of equations
for population activity, it is necessary that the total input into a population is
slowly varying relative to the time-scale of action potential generation. Hence, an
implicit assumption in rate–based population models is that neurons within a pop-
ulation have spike trains that are temporally incoherent (see also §3). In this final
lecture, we derive integrodifferential equations describing the dynamics of synap-
tically coupled neuronal populations in spatially structured cortical networks. We
then use these equations to investigate a variety of problems regarding large–scale
cortical dynamics. First, we consider a Turing–like mechanism for spontaneous pat-
tern formation in visual cortex, and show how this provides a neural mechanism for
geometric visual hallucinations. We then show how cortical networks can support
persistent spatially coherent states that could provide a basis for working memory.
Finally, we study traveling waves in disinhibited cortical slices.

5.1. Reduction to rate models

Suppose that there exist M populations each consisting of N neurons labeled by
i ∈ Ip, p = 1, . . . ,M and |Ip| = N , see Figure 1. Assume that all neurons of a
given population are equivalent in the sense that the interaction between neuron
i ∈ Ip and neuron j ∈ Iq only depends on p and q. Each neuron i in population p
receives input from all neurons j in population q with strength wij = Wpq/N . The
total synaptic current to neuron i ∈ Ip from the various populations is thus

Xp(t) =

M∑

q=1

Wpq

∫ ∞

0

gsyn(τ)ν
(N)
q (t− τ)dτ,(5.1)

81
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ν1

ν2

ν3

Figure 1. Interacting populations of spiking neurons each with its
own population activity νp, p = 1, 2, 3.

where

ν(N)
q (t) =

1

N

∑

j∈Iq

∑

m∈Z

δ(t− Tmj ).(5.2)

Now take the thermodynamic limit N → ∞ with νq(t) = limN→∞ ν
(N)
q . The

macroscopic variable νq(t) represents the total activity of the qth population, that
is, the fraction of neurons firing at time t. An asynchronous state may then be

defined as one with constant activity νq(t) = ν
(0)
q for all q = 1, . . . ,M . It follows

that the total synaptic current is also time-independent with

Xp(t) = X(0)
p =

∑

q

Wpqν
(0)
q .(5.3)

From our previous analysis, we have seen that each homogeneous population’s ac-
tivity is related to the synaptic input (assuming zero external inputs) according to

some effective gain function which we denote by f , ν
(0)
q = f(X

(0)
q ). This then yields

the steady-state equation

X(0)
p =

∑

q

Wpqf(X(0)
q ).(5.4)

This analysis can now be extended to the case of time-varying activities provided
that each population remains in a state of incoherent firing so that the synaptic
input is slowly varying in time. We can then make the approximation νq(t) ≈
f(Xq(t)) to obtain the closed integral equation

Xp(t) =
∑

q

Wpq

∫ ∞

0

gsyn(τ)f(Xq(t− τ))dτ.(5.5)

In the case of exponential synapses this reduces to the well–known form

τs
dXp

dt
= −Xp(t) +

∑

q

Wpqf(Xq(t)).(5.6)

The reduction to a rate equation breaks down, however, when the population ac-
tivity changes rapidly during one period due to fast transients or the existence of
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a coherent state exhibiting collective oscillations, such as when the asynchronous
state becomes unstable.

Spatial continuum limit

The physical location of a column of neurons in a region of cortex often reflects
the task of that population of neurons. For example, in the auditory system, neu-
rons are organized along an axis that reflects the cell’s preferred frequency. As
one moves along the axis the preferred frequency changes gradually from high to
low frequency tones. Thus there is a one–dimensional frequency or tonotopic map
in auditory cortex. Similarly, in primary visual cortex (V1) there is an orderly
retinotopic mapping of the visual field onto its surface, with left and right halves
of the visual field mapped onto right and left V1 respectively. Superimposed upon
this are additional two–dimensional maps reflecting the fact that neurons respond
preferentially to stimuli with particular features such as orientation [158]. This sug-
gests labeling neurons according to their cortical position. We now give a heuristic
argument for how such labeling leads to a continuum model of cortex.

Consider a population of neurons distributed along a one–dimensional axis.
Suppose that we partition space into segments of length d such that the number of
neurons in segment [nd, (n + 1)d] is N = ρd where ρ is the cell density. We treat
neurons in that interval as a homogeneous population of cells (cortical column)
labeled by the integer n, and assume that synaptic interactions between the nth
andmth populations only depend on the discrete locations of the populations on the
line. Writing Wnm = ρdw(nd,md) and Xn(t) = a(nd, t), equation (5.5) becomes

a(nd, t) = ρd
∑

m

w(nd,md)

∫ ∞

0

gsyn(τ)f(a(md, t − τ))dτ.(5.7)

Taking the limit d→ 0, the summation on the right–hand side can be replaced by
an integral to give

a(x, t) = ρ

∫
w(x, y)

∫ ∞

0

gsyn(τ)f(a(y, t− τ))dτdy.(5.8)

In the case of exponential synapses this reduces to the integro–differential equation

τ
∂

∂t
a(x, t) = −a(x, t) + ρ

∫
w(x, y)f(a(y, t))dy.(5.9)

Equation (5.9) is an example of a neural field equation [156, 159, 101, 102],
which is widely used to study large–scale spatio–temporal dynamics of cortical
tissue. It can easily be extended to higher spatial dimensions as well as to separate
populations of excitatory and inhibitory neurons, see below.

5.2. Turing mechanism for cortical pattern formation

Let aE(r, t) be the activity of excitatory neurons in a given volume element of a
slab of neural tissue located at r ∈ R2, and aI(r, t) be the corresponding activity of
inhibitory neurons. Assuming for concreteness a rate-based model with exponential
synapses, we have an evolution equation of the form

τl
∂al(r, t)

∂t
= −al(r, t) +

∑

m=E,I

∫

R2

wlm(r|r′)fm[am(r′, t)]dr′ + hl(r, t)(5.10)
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for l = E, I, where wlm(r|r′) = wlm(|r − r′|) gives the weight per unit volume of
all synapses to the lth population from neurons of the mth population a distance
|r− r′| away, fE and fI are taken to be smooth output functions

fl(x) =
1

1 + e−ηl(x−κl)
, l = E, I,(5.11)

where ηl determines the slope or sensitivity of the input–output characteristics of
the population and κl is a threshold, hE and hI are external stimuli, and τE,I are
synaptic time constants. From a mathematical viewpoint, it is often convenient to
reduce the above two-population model to an effective one-population model. In
particular, suppose that τI ≪ τE , wII = 0 and fI is a linear function. We can then
eliminate aI in terms of aE such that

τ
∂a(r, t)

∂t
= −a(r, t) +

∫

R2

w(|r − r′|)f [a(r′, t)]dr′ + h(r, t),(5.12)

where we have dropped the index E and

w(|r − r′) = wEE(|r− r′)−
∫
wEI(|r− r′′)wIE(|r− r′′)dr′′.(5.13)

In the case of a constant external input, hl(r) = h̄l, there exists at least one
fixed point solution al(r) = āl of equation (5.10), where

āl =
∑

m=E,I

Wlmf(ām) + h̄l(5.14)

and Wlm =
∫
R2 wlm(r)dr. If h̄l is sufficiently small relative to the threshold κ

then this fixed point is unique and stable. Under the change of coordinates al →
al − h̄l, it can be seen that the effect of h̄l is to shift the threshold by the amount
−h̄l. Thus there are two ways to increase the excitability of the network and thus
destabilize the fixed point: either by increasing the external input h̄l or reducing the
threshold κ. The latter can occur through the action of drugs on certain brain stem
nuclei which provides a mechanism for generating geometric visual hallucinations
[160, 161], see below. The local stability of (āE , āI) is found by linearization:

τl
∂bl(r, t)

∂t
= −bl(r, t) + µ

∑

m=E,I

∫

R2

wlm(|r− r′|)bm(r′, t)dr′,(5.15)

where bl(r, t) = al(r, t)− āl and we have performed a rescaling of the local weights
f ′(āl)wlm → µwlm with µ a measure of the degree of network excitability. Assuming
solutions of the form bl(r, t) = bl(r)e

−λt/τl we are left with the spectral problem:

λbl(k) = −bl(k) + µ
∑

m

Wlm(|k|2)bm(k),(5.16)

where bl(k) and Wlm(|k|2) are, respectively, the Fourier coefficients of bl(r) and
wlm(r). This leads to a matrix dispersion relation for λ as a function of k = |k|:

det([λ + 1]I − µW(k)) = 0,(5.17)

where W is the matrix of Fourier coefficients of the wlm. Similarly, in the corre-
sponding one–population model (5.12), we obtain the dispersion relation

λ = −1 + µW (k) ≡ λ(k),(5.18)
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with W (k) the Fourier transform of w(r). One major difference between the one-
population and two-population models is that the latter can exhibit time-periodic
solutions [101]. We will restrict our discussion to static solutions here.

W(r)

r

(a) λ(k)

k

kc

increasing µ

(b)

Figure 2. Neural basis of the Turing mechanism. (a) Mexican hat
interaction function showing short-range excitation and long-range in-
hibition. (b) Dispersion curves λ(k) for Mexican hat function. If
the excitability µ of the cortex is increased, the dispersion curve is
shifted upwards leading to a Turing instability at a critical parame-
ter µc = W (kc)

−1 where W (kc) = [maxk{W (k)}]. For µc < µ < ∞ the
homogeneous fixed point is unstable.

We now determine conditions under which the homogeneous state loses stabil-
ity leading to the formation of spatially periodic patterns. The standard mecha-
nism for such an instability, which is the neural analog of the Turing instability in
reaction-diffusion equations, is a combination of short-range excitation and long-
range inhibition. In the case of a one-population model this can be represented by
the so-called “Mexican Hat” function (see Figure 2(a)):

w(|r|) = (
A+

σ+
)e−r

2/σ2
+ − (

A−

σ−
)e−r

2/σ2
− ,(5.19)

the Fourier transform of which is:

W (k) =
1

2
(A+e

− 1
4
σ2
+k

2 −A−e
− 1

4
σ2
−
k2

).(5.20)

It is simple to establish that λ passes through zero at the critical value µc signalling
the growth of spatially periodic patterns with wave number kc, where W (kc) =
maxk{W (k)}, see Figure 2(b). Close to the bifurcation point these patterns can be
represented as linear combinations of plane waves

b(r) =
∑

n

(cne
ikn·r + c∗ne

−ikn·r),

where the sum is over all wave vectors with |kn| = kc. Rotation symmetry implies
that the space of such modes is infinite-dimensional. That is, all plane-waves with
wave vectors on the critical circle |k| = kc are allowed (see Figure 3(a)). However,
translation symmetry means that we can restrict the space of solutions to that of
doubly-periodic functions corresponding to regular tilings of the plane. That is,
b(r + ℓ) = b(r) for all ℓ ∈ L where L is a regular square, rhomboid or hexagonal
lattice as illustrated in Figure 3(b). The sum over n is now finite with N = 2
(square, rhomboid) or N = 3 (hexagonal) and, depending on the boundary condi-
tions, various patterns of stripes or spots can be obtained as solutions. Amplitude
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Figure 3. (a) Critical circle for Turing instability. (b) Planar lattices:
hexagonal, square, rhomboid. (c) Bifurcation diagram showing the vari-
ation in amplitude C with parameter µ for patterns on a hexagonal
lattice. Solid and dashed curves indicate stable and unstable solutions
respectively. The different patterns are distinguished by the coefficients
c = (c1, c2, c3) with c = (1, 0, 0) for roll or stripe patterns, c = (1, 1, 1)
for 0-hexagons and c = (1, 1,−1) for π-hexagons. It is also possible
for additional patterns to form through secondary bifurcations (such as
rectangular (RA) patterns). However, higher-order contributions to the
amplitude equation are needed to determine such bifurcations.

equations for the coefficients cn can then be obtained using perturbation methods
[102]. However, their basic structure can be determined from the underlying rota-
tion and translation symmetries of the network model. In the case of a square or
rhombic lattice, we can take k1 = kc(1, 0) and k2 = kc(cosϕ, sinϕ) such that (to
cubic order)

dcn
dt

= cn



µ− µc − Γ0|cn|2 − 2Γϕ
∑

m 6=n

|cm|2


 , n = 1, 2,(5.21)

where Γϕ depends on the angle ϕ. In the case of a hexagonal lattice we can take
kn = kc(cosϕn, sinϕn) with ϕ1 = 0, ϕ2 = 2π/3, ϕ3 = 4π/3 such that

dcn
dt

= cn
[
µ− µc − Γ0|cn|2 −−ηc∗n−1c

∗
n+1

]
− 2Γϕ2

cn
(
|cn−1|2 + |c2n+1|

)
,(5.22)

where n = 1, 2, 3( mod 3). These ordinary differential equations can then be ana-
lyzed to determine which particular types of pattern are selected and to calculate
their stability [160, 161, 102]. The results can be summarized in a bifurcation
diagram as illustrated in Figure 3(c) for the hexagonal lattice with h > 0 and
2Γϕ2

> Γ0.
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Geometric visual hallucinations

The primary visual cortex (V1) is the first cortical area to receive visual information
from the retina (see Figure 4). The output from the retina is conveyed by ganglion

Figure 4. Visual pathways from the retina through the lateral genic-
ulate nucleus (LGN) of the thalamus to the primary visual cortex (V1)

cells whose axons form the optic nerve. The optic nerve conducts the output spike
trains of the retinal ganglion cells to the lateral geniculate nucleus (LGN) of the
thalamus, which acts as a relay station between retina and primary visual cortex
(V1). Prior to arriving at the LGN, some ganglion cell axons cross the midline at
the optic chiasm. This allows the left and right sides of the visual fields from both
eyes to be represented on the right and left sides of the brain, respectively. Note
that signals from the left and right eyes are segregated in the LGN and in input
layers of V1. This means that the corresponding LGN and cortical neurons are
monocular, in the sense that they only respond to stimuli presented to one of the
eyes but not the other (ocular dominance).

One of the striking features of the visual system is that the visual world is
mapped onto the cortical surface in a topographic manner. This means that neigh-
boring points in a visual image evoke activity in neighboring regions of visual cortex.
Moreover, one finds that the central region of the visual field has a larger represen-
tation in V1 than the periphery, partly due to a non–uniform distribution of retinal
ganglion cells. The retinotopic map is defined as the coordinate transformation
from points in the visual world to locations on the cortical surface. In order to
describe this map, we first need to specify visual and cortical coordinate systems.
Since objects located a fixed distance from one eye lie on a sphere, we can introduce
spherical coordinates with the “north pole” of the sphere located at the fixation
point, the image point that focuses onto the fovea or center of the retina. In this
system of coordinates, the latitude angle is called the eccentricity ǫ and the longi-
tudinal angle measured from the horizontal meridian is called the azimuth ϕ. In
most experiments the image is on a flat screen such that, if we ignore the curvature
of the sphere, the pair (ǫ, ϕ) approximately coincides with polar coordinates on the
screen. One can also represent points on the screen using Cartesian coordinates
(X,Y ). In primary visual cortex the visual world is split in half with the region



88 LECTURE 5. NEURAL PATTERN FORMATION

ε = 1Ο ε = 2.3Ο
ε = 5.4Ο

Figure 5. An autoradiograph from the primary visual cortex in the
left side of a macaque monkey brain. The pattern is a radioactive trace
of the activity evoked by the image shown to the left. [Reprinted from
[162], with permission from J. Neurosci.]

−90o ≤ ϕ ≤ 90o represented on the left side of the brain, and the reflection of
this region represented on the right side brain. Note that the eccentricity ǫ and
Cartesian coordinates (X,Y ) are all based on measuring distance on the screen.
However, it is customary to divide these distances by the distance from the eye
to the screen so that they are specified in terms of angles. The structure of the
retinotopic map in monkey is shown in Figure 5, which was produced by imaging
a radioactive tracer that was taken up by active neurons while the monkey viewed
a visual image consisting of concentric circles and radial lines. The fovea is repre-
sented by the point F on the left hand side of the cortex, and eccentricity increases
to the right. Note that concentric circles are approximately mapped to vertical
lines and radial lines to horizontal lines.

Motivated by Figure 5, we assume that eccentricity is mapped on to the hori-
zontal coordinate x of the cortical sheet, and ϕ is mapped on to its y coordinate.
An approximate equation for the retinotopic map can then be obtained for eccen-
tricities greater than 1o:

x ≈ λ ln(ǫ/ǫ0), y ≈ −λπϕ
180o

.(5.23)

It follows that the retinotopic map can be approximated by a complex logarithm
[163]. That is, introducing the complex representations Z = (ǫ/ǫ0)e

−iπϕ/180o

and
z = x + iy then z = λ logZ. Now suppose that a doubly periodic pattern of
activity is formed in cortex. If the cortical patterns are mapped back into visual
field coordinates using the inverse of the above retinicortical map, then a number of
common visual hallucinations are generated [160]. This is illustrated in Figures 6
and 7. A more detailed model of visual hallucinations has recently been developed
that takes into account the fact that neurons signal the orientation as well as the
location of a visual stimulus [161, 102]. This model can reproduce a broader
range of hallucinations and also has some interesting symmetries arising from the
distribution of long-range connections in cortex.
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Figure 6. Doubly-periodic activity patterns in cortex

Figure 7. Corresponding hallucinatory images generated using the
inverse retinocortical map

5.3. Persistent localized states

In addition to spatially periodic patterns, neural networks with Mexican hat inter-
actions also support spatially localized persistent activity states known as bumps.
Wilson and Cowan [156] showed numerically how solitary stationary bumps can
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arise in a one-dimensional network of excitatory and inhibitory neurons, with short-
range excitation keeping the bump active and longer–range inhibition preventing
the bump from spreading. Amari [159] subsequently obtained analytical solutions
for bump states in a simplified one–population model with a step–function nonlin-
earity. In contrast to the spatially periodic patterns discussed in §4.2, these bump
states are highly nonlinear and are far from any spatially and temporally uniform
states. We will present the details of Amari’s analytical construction.

Consider the neural field equation

∂a(x, t)

∂t
= −a(x, t) +

∫ ∞

−∞

w(x − x′)H [a(x′, t)]dx′ + h+ s(x, t),(5.24)

where w(x) is a symmetric integrable function, H(a) is the Heaviside step function

H [a] =

{
0 if a ≤ 0
1 if a > 0

.(5.25)

h is a homogeneous input and s(x, t) is a spatially patterned input. Following
Amari [159], we restrict w to be a Mexican hat function. Equilibrium solutions of
equation (5.24) with s(x, t) = 0 satisfy

A(x) =

∫ ∞

−∞

w(x − x′)H [A(x′)]dx′ + h.(5.26)

Let R[A] = {x|A(x) > 0} be the region over which the field is excited. Equation
(5.26) can then be rewritten as

A(x) =

∫

R[A]

w(x − x′)dx′ + h.(5.27)

Exploiting the fact that any solution can be arbitrarily translated so that it is
centered at the origin, we define a stationary pulse solution of width d to be one
that is excited over the interval (−d, d). Let

W (x) =

∫ x

0

w(y)dy(5.28)

and

Wm = max
x>0

W (x), W∞ = lim
x→∞

W (x)(5.29)

such that W (0) = 0 and W (−x) = −W (x). For a bump of width d, equation (5.27)
reduces to the form

A(x) = h+W (d+ x)−W (x− d).(5.30)

Since A(d) = 0 by definition, we obtain the following necessary condition for the
existence of a bump:

W (2d) + h = 0.(5.31)

This condition is also sufficient for the Mexican hat weight distribution [159]. It
will be shown below that a bump is stable provided the condition W ′(2d) < 0 is
satisfied. The existence and stability of activity bumps for a given h can thus be
determined graphically as illustrated in Figure 8(b). For a certain range of values
of h < 0 one finds bistability between a stable bump and a rest state for which
R[A] = ∅.
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u

u u u

Figure 8. Construction of a solitary pulse in the Amari model. (a)
The Mexican hat weight distribution w. (b) Integral W (x) of w(x).
Horizontal line shows the uniform stimulus −h whose intersections with
W (2d) determine the allowed stationary pulse solutions. (c) Unstable
pulse (broken) acts as a separatrix between the stable pulse and the rest
state. (d) Unstable pulse acts as a separatrix between a wavefront and
the rest state.

The linear stability of a stationary pulse can be determined by setting a(x, t) =
A(x) + p(x)eλt and expanding to first order in p [164, 135]. This leads to the
eigenvalue equation

(λ+ 1)p(x) =

∫ ∞

−∞

w(x − x′)δ(A(x′))p(x′)dx′.(5.32)

Using the identity

δ(A(x)) =

(
δ(x− d)
|A′(d)| +

δ(x−+d)

|A′(−d)|

)
,(5.33)

and setting |A′(d)| = |A′(−d)| = γ−1, we have

(λ+ 1)p(x) = γ (w(x − d)p(d) + w(x+ a)p(−d)) .(5.34)

There are two types of solution to this equation. The first consist of solutions p(x)
that vanish at x = ±d so that λ = −1. This defines the essential spectrum and does
not contribute to any instabilities. The second class of solution, which generates
the discrete spectrum, is obtained by setting x = ±d in the eigenvalue equation,

(λ+ 1)p+ = γ (w(0)p+ + w(2d)p−)(5.35)

(λ+ 1)p− = γ (w(−2d)p+ + w(0)p−) .(5.36)

This has the solutions p− = ±p+ with corresponding eigenvalues

λ± = −1 + γ(w(0)± w(2d)).(5.37)

Finally, using the fact that γ−1 = w(0)− w(2d) we deduce that λ− = 0 (reflecting
the translation invariance of the system) and λ+ = γw(2d). Thus the bump is
stable if w(2d) = W ′(2d) < 0.
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Note that the discrete spectrum is determined completely in terms of the per-
turbations p± = p(±d). This explains why it is also possible to analyze the stability
of the bumps by restricting attention to the effects of perturbations at the bound-
aries of the activity bump as originally formulated by Amari [159]. In particular,
if a(x, t) = 0 at x = x± d+ ∆±(t), then

0 = A(±d+ ∆±(t)) + p(d+ ∆±(t), t)

= A(±d) +A′(±d)∆±(t) + p(±d, t) +O(∆2),

that is,

∆±(t) = ±γp(±d, t)
since A(±d) = 0 and A′(±d) = ∓γ−1. It follows that p− = p+ generates a uniform
expansion of the bump (∆− = −∆+) and p− = −p+ generates a shift in the center
of the bump (∆− = ∆+).

There have been various extensions of Amari’s original analysis described above.
Kishimoto and Amari [165]) proved the existence of a solitary pulse for a smooth
sigmoidal nonlinearity f rather than a hard threshold using a fixed point theorem.
More recent extensions include weight distributions that are not of the lateral in-
hibition type (for which multiple bump states can arise) [166, 167], spiking rather
than rate-based models [168], two-dimensional bumps [169, 167, 135, 136], and
weakly interacting bumps [170]. (For a recent review see [171]). Another interest-
ing issue concerns the effect of inhomogeneous inputs. In the homogeneous case,
a stationary pulse is only marginally stable, since arbitrarily small fluctuations
can shift its center or peak as a consequence of translation symmetry. Amari [159]
showed that in the presence of small stationary inputs s(x) the peak moves towards
a local maximum of s(x). More recently it has been established that if a spatially
localized input is presented to a network with some form of slow negative feedback
such as spike frequency adaptation (see §5.4), then a stationary pulse can undergo
a Hopf instability leading to the formation of a spatially localized oscillation or
breather [135, 136]. This provides an alternative, recurrent network mechanism
for generating stimulus–induced oscillations and synchrony, rather than one based
on intrinsic single neuron oscillators (see §4).

Working memory and continuous attractors

One of the reasons why persistent activity bumps are of interest is that they are
thought to arise in cortical circuits performing certain spatial working memory
tasks. Working memory involves cortical “memory neurons” that establish a repre-
sentation of a stimulus that persists after the stimulus is removed (see Figure 9(a)).
A typical experiment is a delayed response task, in which a primate is required
to retain information regarding the location of a sensory cue across a delay pe-
riod between the stimulus and behavioral response. There are three basic kinds of
working memory that can be distinguished according to the type of sensory stimulus
[172, 173]. Discrete working memory: in a delayed match-to-sample experiment
the behavioral response depends on the memory of one of two items, for example,
the stimulus color red or green. Here working memory circuits store information
regarding a discrete set of categorical features such as a face, color or word [128].
Spatial working memory: neurons display persistent activity that is spatially se-
lective. One example is a delayed oculomotor experiment, in which a saccadic eye
movement is guided by the memory of the spatial location of a cue stimulus such as
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a flashed spot of light. Physiological recordings in prefrontal cortex have shown that
spatially localized groups of neurons fire during the recall task and then stop firing
once the task has finished [174]. The stimulus response of a cell is characterized
by a smooth tuning curve that is peaked at a preferred spatial cue and varies from
cell to cell. At the network level the memory of cue location is stored as an activity
bump. Persistent activity bumps occur in a number of other systems that encode
directional or spatial information, including head direction cells in thalamus and
basal ganglia [175] and place cells in the hippocampus [103]. Parametric working
memory: there is a continuous range of persistent activity that increases mono-
tonically with some stimulus parameter. One example is a delayed somatosensory
discrimination task, in which a monkey is trained to compare and discriminate the
frequencies of two vibrotactile stimuli separated by a delay period [176]. Here the
stimulus frequency is encoded by the firing rate of persistent activity. A similar
monotonic encoding scheme is used by goldfish oculomotor neurons for memory of
the current eye position [177, 178, 179]. A change in eye position in one direc-
tion is preceded by an increase in the activity of certain ON burst neurons. This
transient signal is then transformed into elevated persistent activity in the neurons
that encode eye position, supplying motorneurons with the tonic drive necessary
to maintain the new eye position. Similarly, OFF burst cells initiate movement in
the opposite direction by reducing the level of persistent activity (see Figure 9(b)).
An interesting aspect of the oculomotor system, which is shared with the head di-
rection system, is that some form of neural integrator is needed in order determine
the change in eye (or head) position based on velocity inputs.
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Figure 9. (a) An illustration of stimulus–dependent, persistent firing
rates in a working memory neuron. (b) Schematic illustration of eye
position and neural activity versus time in the oculomotor system. See
text for details. [Reprinted from [179], Copyright 2000, with permission
of Elsevier.]

A characteristic feature of persistent activity in both spatial and parametric
working memory is that there exists a continuous manifold of states forming an
attractor for the dynamics. Figure 10 shows some examples of such attractors
for a simple two–neuron system, in which the firing rates νj of the two neurons
evolve according to gradient dynamics. That is, there exists a potential function
L(ν1, ν2) such that ν̇j = −∂L/∂νj, j = 1, 2. Attracting fixed points of the system
then correspond to minima of L. A graded stimulus feature is usually represented
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by some form of ring attractor in models of spatial working memory, whereas in
models of parametric working memory it is represented by a line attractor. If
the stimulus feature is represented by the peak location of an activity bump in a
spatially-structured network, then the set of allowed features will form a continuous
manifold provided that the network is homogeneous. This manifold will reflect the
topology and dimensionality of the network. Thus, a periodic stimulus feature can
be encoded by a persistent activity bump in a homogeneous ring network. One of

(a) (b) (c)

ν1 ν1 ν1

ν2
ν2

ν2

Figure 10. Attractor dynamics for a pair of neurons whose firing rates
evolve according to a gradient dynamics that minimizes some potential
function L. Attracting fixed points correspond to minima of L. (a)
A pair of isolated fixed points that could represent discrete categorical
features. (b) A ring attractor that could represent head direction or
the directional position of some visual cue. (c) A line attractor that
could represent eye position or the frequency of a vibrotactile stimulus.
[Reprinted from [173], Copyright 2003, with permission of Elsevier.]

the major theoretical challenges is to understand how persistent working memory
can be implemented robustly in neural circuits. That is, from a dynamical systems
perspective, continuous attractors are structurally unstable so that their existence
requires a considerable degree of fine tuning of system parameters. For example, it
is necessary to impose strong symmetry constraints on the potential function of the
two–neuron system shown in Figure 10 in order to generate a ring or line attractor.
Similarly, a continuum of activity bumps only occurs in spatially homogeneous
networks. A related issue is that a persistent activity state will be marginally stable
with respect to perturbations in directions tangential to the attractor manifold. For
example, the peak of an activity bump will tend to drift over time in the presence
of arbitrarily small levels of noise. This latter effect may actually have a biological
interpretation in terms of the degradation in the memory recall performance of a
monkey when the delay in the response is increased. One suggested mechanism
for making network models more robust to noise and network inhomogeneities is
to introduce some form of bistability at the single neuron level. This idea has
been applied to bump formation in spatial working memory [180, 181], and to
the formation of line attractors in parametric working memory [182]. Another
important issue concerns how to generate persistent states consisting of neurons
with low firing rates, given that high levels of recurrent excitation are required in
order to maintain persistent activity when a stimulus is removed. (Low firing rates
are found in recordings from prefrontal cortex). Large–scale simulations of noisy
LIF networks with biophysically realistic synaptic dynamics suggest that robust low
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activity persistent states can be generated if a significant fraction of the excitatory
connections consist of slow NMDA synapses rather than fast AMPA synapses [183].
The stability of such states can be analyzed using a mean field reduction of the
population dynamics along the lines outlined in §3.4, see [184].

5.4. Traveling waves

In the case of excitatory rather than Mexican hat weight functions w, spatially
structured rate models can support the propagation of traveling waves of activity.
This is consistent with experimental studies that have revealed the propagation of
traveling bursts of activity in slices of disinhibited cortical tissue [185, 186, 187,

188]. The underlying mechanism for the propagation of such waves appears to be
synaptic in origin rather than diffusive, as in the case of action potentials travel-
ing along the axons of individual neurons. Since there is strong vertical coupling
between cortical layers, it is possible to treat a thin vertical cortical slice as an effec-
tive one–dimensional medium. Mathematically speaking, one can then distinguish
between traveling wavefronts and traveling pulses as illustrated in Figure 11. We
will restrict our discussion of analytical methods for studying wave propagation to
the simpler case of traveling fronts. However, these methods can be extended to
the more realistic case of traveling pulses (see below).

-d

κ

ζ

a(ζ)

ζ

a(ζ)

κ

(a) (b)

Figure 11. (a) Traveling wavefront (b) Traveling pulse of width d as
determined by the firing threshold κ

The existence of traveling front solutions in a one–dimensional network has been
analyzed by Ermentrout and Mcleod [189] for scalar integro–differential equations
of the form

∂a(x, t)

∂t
= −a(x, t) +

∫ ∞

−∞

w(x − x′)f(a(x′, t))dx′,(5.38)

with

f(a) =
1

1 + e−η(a−κ)
.(5.39)

The weight distribution w is assumed to be a positive, even, continuously differ-
entiable function of x with unit normalization

∫∞

−∞
w(y)dy = 1. Suppose that the

function F (a) = f(a)− a has precisely three zeros at a = A±, A0 with A− < A0 <
A+ and F ′(A±) < 0. It can then be shown that (modulo uniform translations) there
exists a unique traveling front solution of equation (5.38) such that a(x, t) = A(ξ),
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ξ = x − ct, with A(ξ) → A± as ξ → ∓∞ [189]. Moreover, the speed of the wave
satisfies

c =
Γ∫∞

−∞
a′2f ′(a)dξ

,(5.40)

where

Γ =

∫ A+

A−

F (a)da.(5.41)

Since the denominator of equation (5.40) is positive definite, the sign of c is deter-
mined by the sign of the coefficient Γ. In particular, if κ = 0.5 and η > 4, there
exists a pair of stable homogeneous fixed points with A− = −A+, which in turn
implies that Γ = 0 and the front solution is stationary, see Figure 12.
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Figure 12. Balance condition for the speed of a traveling wave front in
a scalar excitatory network with a(x, t) = A(x− ct) such that A(∓∞) =

A±. The solid curve is f(a) = 1/(1 + e−η(a−κ)) with η = 8 and the
dashed line is g(a) = a. The wave speed c is positive (negative) if the
gray shaded area is larger (smaller) than the black shaded area. (a)
κ = 0.5 such that c = 0. (b) κ = 0.4 such that c > 0.

Although the step function f(a) = H(a−κ) obtained in the high–gain limit η →
∞ is not itself continuously differentiable, the wavefront solution can be calculated
explicitly in this case [189]. Note that equation (5.38) is then equivalent to equation
(5.24). Since equation (5.38) is translation invariant, we are free to impose the
condition A(0) = κ, that is, the wavefront solution passes through threshold at the
origin. For concreteness, take A(ξ) to be a monotonically decreasing function of
ξ = x − ct such that A(ξ) < κ for ξ > 0 and A(ξ) > κ for ξ < 0. Equation (5.38)
then reduces to

−cA′(ξ) +A(ξ) =

∫ 0

−∞

w(ξ − ξ′)dξ′ =

∫ ∞

ξ

w(x)dx ≡ Ŵ (ξ),(5.42)

which has the solution

A(ξ) = eξ/c

[
κ− 1

c

∫ ξ

0

e−y/cŴ (y)dy

]
.(5.43)
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Requiring the solution to remain bounded as ξ → ∞ (ξ → −∞) for c > 0 (for
c < 0) implies that κ must satisfy the condition

κ =
1

|c|

∫ ∞

0

e−y/|c|Ŵ (sign(c)y)dy.(5.44)

In the case of an exponential weight distribution w(x) = (2d)−1e−|x|/d, with the
length–scale fixed by setting d = 1, the relationship between wave speed c and
threshold κ is

κ =
1

2(1 + c)
(for c > 0), κ =

1 + 2|c|
2(1 + |c|) (for c < 0)(5.45)

Wave stability

We now indicate how to determine the stability of a traveling wavefront by con-
structing the so–called Evans function [190, 191, 192]. Consider the evolution of
small smooth perturbations ϕ̄ of a traveling front solution A of equation (5.38) cen-
tered about ξ = 0. Linearizing about the wave solution, the perturbations evolve
according to

∂ϕ̄

∂t
− c∂ϕ̄

∂ξ
+ ϕ̄ =

∫

R

w(ξ − η)H ′(A(η) − κ)ϕ̄(η)dη.(5.46)

Separating variables, ϕ̄(ξ, t) = ϕ(ξ)eλt, we find that ϕ ∈ C1(R,C) satisfies the
eigenvalue problem

(L + Ns)ϕ = λϕ(5.47)

where

Lϕ = c
∂ϕ

∂ξ
− ϕ, Nsϕ (ξ) =

w(ξ)

|A′(0)| ϕ(0).(5.48)

We need to characterize the spectrum of the linear operator L + Ns : C
1(R,C) −→

C0(R,C) in order to determine the linear stability of the traveling pulse. The
following definitions concern linear operators T : D(T) −→ B where B is a Banach
space and the domain D(T) of T is dense in B. In our case D(L + Ns) = C1(R,C)
which is dense in C0(R,C). λ is in the resolvent set ρ, if λ ∈ C is such that T−λ has a
range dense in B and a continuous inverse or resolvent operatorRλ(T) = (T−λI)−1,
otherwise λ is in the spectrum σ. We decompose the spectrum into the following
disjoint sets. λ is an element of the point or discrete spectrum σp, if Rλ(T) does not
exist; λ is an element of the continuous spectrum σc if Rλ(T) exists, is defined on a
dense subset of B, but is not bounded; λ is an element of the residual spectrum σr if
Rλ(T) exists but its domain is not dense in B. We refer to elements of the discrete
spectrum as eigenvalues and the union of the continuous and residual spectra as the
essential spectrum. It can be shown that the essential spectrum lies in the left–half
complex plane so does not contribute to any instabilities [190]. Therefore, we will
focus on the discrete spectrum.
Resolvent and the discrete spectrum We seek to construct a bounded inverse
by solving the inhomogeneous equation

(L + Ns − λ)ϕ = −f,(5.49)
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where f ∈ C0(R,C), using a variation of parameters approach along the lines of
Zhang [190]. We write equation (5.49) as

∂

∂ξ

(
e−( 1+λ

c )ξ ϕ(ξ)
)

= −1

c
e−( 1+λ

c )ξ
(
Nsϕ(ξ) + f(ξ)

)
.(5.50)

For (Re(λ) + 1)/c > 0 , integrating equation (5.50) over [ξ,∞) yields

ϕ(ξ)− Λ+(λ; ξ)ϕ(0) = Hf (ξ).(5.51)

where

Λ+(λ; ξ) =
1

c|A′(0)|

∫ ∞

ξ

w(η)e(
1+λ

c )(ξ−η)dη,

Hf (ξ) =
1

c

∫ ∞

ξ

e(
1+λ

c )(ξ−η)f(η)dη.

Using the Hölder inequality, it can be shown that both Λ+(λ; ξ) and Hf (ξ) are
bounded for all ξ ∈ R and f ∈ C0(R,C). It is then seen from equation (5.51) that
ϕ(ξ) is determined by its restriction ϕ(0), in which case we obtain

(
1− Λ+(λ; 0)

)
ϕ(0) =

1

c

∫ ∞

0

e−( 1+λ
c )ηf(η)dη.

This can be solved for ϕ(0) and, hence for ϕ(ξ), if and only if 1−Λ+(λ; 0) 6= 0. This
results in a bounded inverse which is defined on all of C0(R,C), and, therefore, all
corresponding λ are in the resolvent set. On the other hand, we cannot invert the
operator for λ such that Λ+(λ; 0) = 1. In this case, the equation (L+Ns−λ)ϕ = 0
has nontrivial solutions, indicating that λ is in the discrete spectrum. Hence, if we
define the function

E+(λ) = 1− Λ+(λ; 0),
Re(λ) + 1

c
> 0,

then the eigenvalues correspond to the zeros of E+(λ). Proceeding along similar
lines for (Re(λ) + 1)/c < 0 by integrating equation (5.50) over (−∞, 0] shows that
the eigenvalues now correspond to the zeros of the function

E−(λ) = 1− Λ−(λ; 0), ,
Re(λ) + 1

c
< 0

where

Λ−(λ; ξ) = − 1

c|A′(0)|

∫ ξ

−∞

w(η)e−( 1+λ
c )ηdη.(5.52)

The zeros of the Evans function E(λ), which is defined as the composite of the
pair of functions E±(λ), then fully determine the discrete spectrum of the operator
obtained by linearizing about the wavefront solution.
Evans function for an exponential weight distribution We now explicitly

calculate the zeros of the Evans functions for an exponential weight distribution
w(x) = e−|x|/2. The region in the complex plane D = {z : Re(z) > −1} is
the domain of the Evans function E+, and we need only consider this region to
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determine the stability of the wave. For c > 0 and λ ∈ D

E+(λ) = 1− 1

c|A′(0)|

∫ ∞

0

w(η)e−( 1+λ
c )ηdη,

= 1− 1

2(1 + λ+ c)

1

|A′(0)| ,

and similarly for c < 0 and λ ∈ D

E−(λ) = 1 +
1

c|A′(0)|

∫ 0

−∞

w(η)e(−
1+λ

c )ηdη,

= 1 +
1

2(1 + λ+ c)

1

|A′(0)| .

From this we can directly solve E±(λ) = 0 for λ

λ = − (1 + |c|) +
1

2|A′(0)| , c ∈ R,(5.53)

with A′(0) determined from equation (5.43), that is, A′(0) = c−1(κ − 1/2). It
follows that the eigenvalues are given by

λ = −(1 + |c|) +
|c|

2
∣∣κ− 1

2

∣∣ , c ∈ R.(5.54)

Since κ satisfies equation (5.45), we see that the only eigenvalue in D is the zero
eigenvalue λ = 0. Moreover it can be shown that the eigenvalue is simple [190]
and, hence, that the natural front is linearly stable modulo uniform translations.

Traveling pulses

Traveling fronts are not particularly realistic representations of waves in cortical
slices, since populations of neurons do not stay in the excited state forever. Even in
the absence of synaptic inhibition, most neurons posses intrinsic negative feedback
mechanisms that slowly bring the cell back to resting voltages after periods of high
activity. Hence, rather than a traveling front, propagating activity in the brain is
better described as a traveling pulse. We can incorporate a recovery mechanism into
the rate equation with the addition of a slow, local negative feedback component q
such that equation (5.38) with Heaviside firing rate function becomes [193]

∂a(x, t)

∂t
= −a(x, t) +

∫ ∞

−∞

w(x − x′)H(a(x′, t)− κ)dx′ − βq(x, t),

1

ε

∂q(x, t)

∂t
= −q(x, t) + a(x, t).(5.55)

This negative feedback could represent spike frequency adaptation or synaptic
depression for example. Introducing the traveling wave coordinates (ξ, t), where
ξ = x− ct, we define a traveling pulse solution of equation (5.55) to be the pair of
functions (A,Q), satisfying the conditions

A(ξi) = κ, i = 1, 2; A(ξ) −→ 0 as ξ −→ ±∞;

A(ξ) > κ, −d < ξ < 0; A(ξ) < κ, otherwise,

with ξ = −d, 0 defining the points at which the activity A crosses threshold, and d
is the pulse width. Taking a(x, t) = A(x − ct) and q(x, t) = Q(x − ct), the profile
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of the pulse is governed by

−cAξ = −A− βQ+

∫ 0

−d

w(ξ − η)dη,(5.56)

−c
ǫ
Qξ = −Q + A.(5.57)

The existence and stability of traveling pulse solutions of equation (5.57) can be
analyzed by extending the basic methods used for the scalar equation (5.38) [190,

191, 192]. One typically finds two solution branches corresponding to a stable fast
wave and an unstable slow wave, see Figure 13.
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Figure 13. Existence of right–moving traveling pulses in the case of
the excitatory network (5.55) for an exponential weight distribution with

w(x) = e−σ|x|. Here σ = 1, ε = 0.01 and β = 2.5. (a) Plot of pulse
width d against threshold κ. (b) Plot of wave speed c against threshold
κ. Stable (unstable) branches indicated by black (gray) curves.

Analysis of the above model provides valuable information regarding how the
speed of a traveling wave, which is relatively straightforward to measure experimen-
tally, depends on various features of the underlying neural tissue [193]. Indeed, one
prediction of the model, concerning how the speed of the wave depends on the firing
threshold of the neurons, has recently been confirmed experimentally in disinhibited
rat cortical slices [194]. External electric fields are used to modulate the threshold
and thus control wave propagation, see Figure 14. Finally, note that traveling pulses
have also been studied in spiking neuron models, under the simplifying assumption
that each neuron only fires once in a propagating sequence [151, 195]. This sim-
plification is motivated by simulations of more detailed conductance–models sug-
gesting that the propagation velocity is determined primarily by the response of
the postsynaptic neuron to the first one or two presynaptic spikes [186].

Thalamic waves

There are significant differences in the mechanisms underlying the spread of activ-
ity in cortical and thalamic slices. In computational and experimental studies of
disinhibited neocortical slices, one finds that neuronal discharges propagate contin-
uously at a velocity c ∼ 10 cm/sec [186]. On the other hand, in models of thalamic
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(a)

(b)

global field local field field direction

Figure 14. (a) Rat cortical slices are bathed in picrotoxin (a GABAA

blocker) and a stimulation electrode (SE) is placed in layers 5-6 to ini-
tiate epileptiform bursts. An electric field is applied globally or locally
across the slice using Ag/AgCl electrodes (FE1,FE2). Layer 5 neurons
have long apical dendrites and are easily polarizable by an electric field,
which controls the effective firing threshold of the neuron. (b) The time
for an activity pulse to travel between two recording electrodes R1 and
R2 depends on the applied electric field, reflecting the dependence of
wave speed on the effective firing threshold. [Reprinted from Richard-
son, Schiff and Gluckman, [194], Copyright 2005, with permission from
the American Physical Society.]

slices, composed of excitatory thalamocortical neurons and inhibitory reticular tha-
lamic neurons, waves propagate in a lurching manner at a velocity c ∼ 1 cm/sec
[196]. This is thought to form the basic mechanism for the generation of 7- to
14-Hz spindle oscillations during the onset of sleep [28]. Each recruitment cycle of
the lurching waves has two stages (see Figure 15): I. A new group of inhibitory RE
cells is excited by synapses from TC cells, and this RE group then inhibits a new
group of TC cells. II. The new recruited TC cells rebound from hyperpolarization
and fire a burst of spikes, which further recruit more RE cells during next cycle.
A detailed analysis of the post inhibitory rebound mechanism underlying the gen-
eration of continuous and lurching waves in thalamic networks has recently been
carried out using conductance–based [197] and integrate–and–fire–or–burst models
[198].
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Figure 15. Two-layer thalamic model. Inhibitory reticular (RE) cells
inhibit excitatory thalamocortical (TC) cells, and TC cells excite RE
cells. Mutual inhibition between RE cells has a relatively small effect
on discharge propagation.
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