
PHYSICAL REVIEW E 101, 042404 (2020)

Stochastically gated diffusion model of selective nuclear transport
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Nuclear pore complexes (NPCs) allow the selective exchange of molecules between the cytoplasm and cell
nucleus. Although small molecules can diffuse freely through a NPC, the transport of proteins and nucleotides
requires association with transport factors (kaps). The latter transiently bind to disordered flexible polymers
within the NPC, known collectively as phenylalanine-glycine-nucleoporins (FG-Nups). It has recently been
shown that transient binding combined with diffusion in the bound state is a sufficient mechanism for selective
transport. However, selectivity is significantly reduced if the mobility of the bound state is too slow. In this
paper we formulate the binding-diffusion mechanism of selective transport in terms of a “stochastically gated”
diffusion process in which each bound particle undergoes confined diffusion within a subdomain of the NPC.
This allows us to make explicit the fact that the diffusion of a particle when bound to a polymer tether is spatially
confined rather than simply reduced. We calculate the selectivity of the NPC and explore its dependence on the
size of the confinement domains. We then use probabilistic methods to determine the splitting probability and
mean first passage time (MFPT) for an individual particle to pass through the pore. Our analysis establishes
that spatial confinement can significantly reduce selectivity in a binding-diffusion model, suggesting that other
biophysical mechanisms such as interchain transfer are required.
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I. INTRODUCTION

The nucleus of eukaryotes is surrounded by a protective
nuclear envelope within which are embedded nuclear pore
complexes (NPCs). The NPCs are the sole mediators of
exchange between the nucleus and the cytoplasm. In general,
small molecules of diameter ≈5 nm can diffuse through the
NPCs unhindered, whereas larger molecules up to around 40
nm in diameter are excluded unless they are bound to a family
of soluble protein receptors known as karyopherins (kaps); see
the reviews [1–4]. Within the cytoplasm, kap receptors bind
cargo to be imported via a nuclear localization signal (NLS)
that results in the formation of a kap-cargo complex. This
complex can then pass through a NPC to enter the nucleus,
where a small enzyme RanGTP binds to the kap, causing a
conformational change that releases the cargo. The sequence
of events underlying the import of cargo is shown in Fig. 1(a).
In the case of cargo export from the nucleus, kaps bind to
cargo with a nuclear export signal (NES) in the presence
of RanGTP, and the resulting complex passes through the
NPC. Once in the cytoplasm, RanGTP is hydrolyzed by the
cytoplasmic factor RanGAP1 to form RanGDP, resulting in
the release of the cargo. The export process is illustrated
in Fig. 1(b). Finally, RanGDP is recycled to the nucleus by
another molecule NFT2 and is reloaded with GTP to begin
another import-export cycle. The conversion to RanGTP is
mediated by a chromatin-associated guanine exchange factor
RanGEF. This cycle allows a single NPC to support a very
high rate of transport on the order of 1000 translocations/s
and a typical transit time of ≈10 ms [5]. Since the trans-
portation cycle is directional and accumulates cargo against
a concentration gradient, an energy source combined with a
directional cue is required. Both of these are provided by the

hydrolysis of RanGTP and the maintenance of a concentration
gradient of RanGTP across the NPC. The RanGTP gradient is
continuously regenerated by GTP hydrolysis in the cytoplasm,
translocation of RanGTD into the nucleus by NFT2, and
replacement of GDP by GTP in the nucleus. It is important
to note that the energy generated from RanGTP hydrolysis is
ultimately used to create a concentration gradient of RanGTP
between the nucleus and cytoplasm, so that the actual translo-
cation across the NPC occurs purely via diffusion.

Although the above basic picture is now reasonably well
accepted, the detailed mechanism underlying facilitated diffu-
sion of kap-cargo complexes within the NPC is still not un-
derstood. The NPC is composed of about 30 distinct proteins
known collectively as nucleoporins (Nups). It has emerged in
recent years that individual Nups are directly related to a num-
ber of human diseases including influenza and cancers such
as leukemia [6], as well as playing an important role in viral
infections by providing docking sites for viral capsids [7].
Associated with many of the Nups are natively unfolded
phenylalanine-glycine (FG) repeats, known collectively as
FG-Nups [8,9]. The FG-Nups set up a barrier to diffusion
for large molecules so that the key ingredient in facilitated
diffusion through the NPC is the interaction between kap
receptors with the FG-Nups. In essence, the major difference
between most theoretical models of NPC transport concerns
the built-in assumptions regarding the properties and spatial
arrangements of FG-Nups within the NPC, and the nature
of interactions with kaps during translocation through the
NPC [4,10]. One important feature that emerges from the
various theoretical studies is that kap complexes should also
be mobile in the bound state.

Two complementary approaches to modeling the interior
of a NPC are based on polymer brushes and polymer gels,
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FIG. 1. Schematic illustration of the (a) import and (b) export
process underlying the karyopherin-mediated transportation of cargo
between the nucleus and cytoplasm via a nuclear pore complex
(NPC). See text for details.

respectively. The former treats the FG-Nups as flexible poly-
mer tethers to which kaps can temporarily bind and undergo
confined diffusion in the bound state [11–13]. The mechanical
properties of the tethers contribute to the effective diffusivity
of the complexes in the bound state. It is also possible that
complexes undergo interchain transfers without unbinding
(sliding) [8]. The other type of model treats the NPC as a
weakly reversible gel [5,14–16]. A gel is a jelly like material
that is mostly liquid by weight, yet behaves like a solid due
to a three-dimensional (3D) cross-linked polymer network
within the liquid. (A gel is said to be reversible if the crosslink-
ing is reversible.) Particles smaller than the mesh size of the
network can diffuse freely through the NPC, whereas non-
selective macromolecules larger than the mesh size cannot.
On the other hand, kap-cargo complexes can “dissolve” in
the gel due to the presence of hydrophobic domains on the
surface of the kap receptors, and then diffuse through the pore
by breaking the weak bonds of the reversible gel [5,14,17].
Alternatively, one can treat the gel as a continuum of binding
sites for kap complexes, with the gel properties determining
the effective diffusivity in the bound state [18].

A number of recent modeling studies have included more
details concerning the binding interactions between kap com-
plexes and FG-Nupss [11–13,18]. Consider, in particular, the
binding-diffusion model of Maguire et al. [13]. This is a
minimal one-dimensional (1D) model of selective transport
in which kap-cargo complexes (particles) randomly switch
between a freely diffusing state and a more slowly diffusing
state in which the particle is bound to a FG-Nup tether.
The FG-Nups are assumed to be uniformly distributed along
the pore at some fixed concentration. Combining numerical
simulations with analytical results in the low-binding limit,
the authors show how transient tethered diffusion can lead to
significant selectivity.

In this paper, we show how the binding-diffusion mech-
anism can be mapped onto a model of stochastically gated

diffusion, analogous to the case of an array of cells coupled by
stochastically gated gap junctions [19,20], and use this to cal-
culate the selectivity of a nuclear pore. The basic assumption
of the model is that the FG-Nups are distributed in clusters
in such a way that they define confinement domains. This
then allows us to make explicit the fact that the diffusion of
a particle when bound to a tether is spatially confined rather
than simply reduced (at least in the absence of sliding). The
structure of the paper is as follows: In Sec. II we introduce the
model and show how it relates to the model of Ref. [13]. We
also highlight the analogy with stochastically gated diffusion
through gap junctions. In Sec. III we explicitly calculate the
selectivity of the model pore, and explore its parameter depen-
dence. We also compare our results with those of Ref. [13].
Finally, in Sec. IV we use probabilistic methods previously
developed in Refs. [20] to determine the mean first passage
time (MFPT) for an individual particle to pass through the
pore.

II. BINDING-DIFFUSION MODEL

Consider diffusing particles (kap complexes) moving
through a 1D pore of length Ltot = ML, which is partitioned
into M domains of size L; see Fig. 2(a). Let x ∈ [( j −
1)L, jL], j = 1, . . . , M, denote the spatial coordinates of the
jth domain. Suppose that a cluster of FG-Nups is tethered
at the center x = ( j − 1/2)L of each domain j = 1, . . . , M.
The FG-Nups are flexible polymers that act as transient,
partially mobile traps for the diffusing particles. This has
two consequences. First, a particle can potentially bind to a
FG-Nup anywhere in a given domain. For simplicity, we take
the binding rate to be independent of the current location of
the head of a FG-Nup, which is reasonable if the effective
reaction radius is sufficiently large. Thus one can treat the
binding sites within a domain as spatially uniform. Second,
in the bound state the complex continues to diffuse within the
domain but cannot escape it. That is, each cluster defines a
confinement domain of size L. As an additional simplification,
we do not include any potential-energy contributions to the
stochastic motion of the bound complex, other than it being
confined to the given domain.

Denote the state of a freely diffusing particle by n = 0 and
the state of a bound particle by n = 1. Let U (x, t ) and V (x, t )
be the concentration of particles in the states n = 0 and n =
1, respectively. Let Ntot denote the uniform concentration of
FG-Nup binding sites. The corresponding two-state reaction-
diffusion equations are

∂U

∂t
= D0

∂2U

∂x2
− (Ntot − V )konU + koffV, (2.1a)

∂V

∂t
= D1

∂2V

∂x2
+ (Ntot − V )konU − koffV, (2.1b)

where Ntot − V is the concentration of unbound FG-Nup
binding sites, kon and koff are the binding and unbinding rates,
and Dn is the diffusivity of a particle in state n, with D0 � D1.
We will assume that a bound particle cannot escape the NPC,
whereas an unbound particle is free to enter or leave the
NPC. Moreover, the external concentration of freely diffusing
particles on either side of the NPC is fixed. Hence, the external
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FIG. 2. Examples of stochastically gated diffusion. (a) Binding-diffusion model of selective transport in a nuclear pore. Each particle (kap
complex) switches between a freely diffusing state (n = 0) and a bound state (n = 1) in which it is tethered to a FG-Nup cluster. The latter state
has a smaller diffusivity (D1 < D0) and is confined to a domain of size L. (b) 1D array of cells of size L coupled by gap junctions. Diffusing
particles randomly switch between two different conformational states labeled n = 0, 1 and can only pass through a gap junction when in the
state n = 0.

boundary conditions are given by

U (0, t ) = 0, ∂xV (0, t ) = 0,

U (Ltot, t ) = η, ∂xV (Ltot, t ) = 0. (2.2)

As they stand, Eqs. (2.1) and (2.2) are identical in form to
those considered in Ref. [13]. The one major difference in our
model is that bound particles are confined to a domain of size
L associated with a given cluster of FG-Nups. This means that
we also have to impose interior boundary conditions. These
take the form

[U (x)]
x=L+

j

x=L−
j

= 0, [∂xU (x)]
x=L+

j

x=L−
j

= 0, (2.3a)

∂xV (L−
j ) = 0 = ∂xV (L+

j ). (2.3b)

Equations (2.3) ensure continuity of the concentration and
flux across the point x = Lj = jL when the particle is freely
diffusing, whereas the reflecting boundary conditions (2.3 b)
implement the constraint that a bound particle attached to a
tethered FG-Nup cannot switch to a neighboring domain (this
condition could be weakened by incorporating sliding).

For analytical tractability, we focus on the weak binding
regime for which Ntot − V ≈ Ntot and the effective binding
rate is the constant Ntotkon. The model defined by Eqs. (2.1)–
(2.3) is then formally similar to a model of a 1D array of cells
coupled by gap junctions [19,20]; see Fig. 2(b). Suppose that
diffusing particles within the cytoplasm of a cell randomly
switch between two conformational states, n = 0, 1, and can
only pass through a gap junction to an adjoining cell if it is in
the state n = 0. Thus each cell acts as a confinement domain
when a particle is in the state n = 1. The selective transport

model can be mapped onto the gap junction model by rein-
terpreting U (V ) as the concentration of diffusing molecules
in conformational state n = 0 (n = 1) and replacing kon and
koff by the rates of switching between the two states. One
major difference between the two models is the length scale,
with Ltot ≈ 100 nm for a nuclear pore and L ≈ 1–100 μm
for a cell. A second difference is that the diffusivity in the
two conformational states is approximately the same for gap-
junction transport [21].

In this paper we assume parameter values similar to
those considered in Ref. [13]. In particular, we take D0 =
0.12 μm2/s, D1/D0 ≈ 0.05–1, kon = 103 μM−1 s−1, K ≡
koff/kon ≈ 10−2–103 μM−1, NT = 4.7 × 103 μM, and Ltot =
0.1 μm. Note that binding is ultrafast [22].

III. CALCULATION OF SELECTIVITY

We are interested in calculating the steady-state flux at
the end x = 0 and comparing it to pure diffusion in order
to determine the selectivity of the nuclear pore. (This is
analogous to calculating the effective permeability in an array
of cells coupled by stochastically gated gap junctions [19,20].)
Following Ref. [13], we perform the change of variables V̂ =
V − NtotKAU , with KA = K−1 = kon/koff being the binding
equilibrium constant. The steady-state version of Eqs. (2.1)
can then be rewritten as

0 = D0
d2U

dx2
+ koffV̂ , (3.1a)

0 = D1
d2V̂

dx2
− koffV̂ + NtotKAD1

d2U

dx2
. (3.1b)
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Substituting for koffV̂ in Eq. (3.4 b) using Eq. (3.4 a) leads
to the fourth-order equation

d4U

dx4
= λ2 d2U

dx2
, λ2 = koff D0 + NtotkonD1

D0D1
. (3.2)

The general solution in the jth domain is thus of the form
(Uj,Vj ), j = 1, . . . , M, with

Uj (x) = a j + b j[x − x j−1] + c je
λ[x−x j−1] + d je

−λ[x−x j−1]

(3.3)
and

Vj (x) = NtotKAUj (x) − D0

koff

d2Uj

dx2
, x ∈ (x j−1, x j ), (3.4)

with the coefficients a j , b j , c j , d j determined by the boundary
conditions at the endpoints x j−1 = ( j − 1)L and x j = jL. The
latter can be rewritten as

Uj (x j ) = Uj+1(x j ), U ′
j (x j ) = U ′

j (x j ), (3.5a)

V ′
j (x j−1) = 0 = V ′

j (x j ). (3.5b)

Imposing the continuity conditions (3.8 a) yields

a j + b jL + c je
λL + d je

−λL = a j+1 + c j+1 + d j+1, (3.6a)

b j + λc je
λL − λd je

−λL = b j+1 + λc j+1 − λd j+1.

(3.6b)

Similarly, the no-flux conditions (3.8 b) give

0 = NtotKA[b j + λ(c j − d j )] − D0λ
3

koff
(c j − d j ), (3.6c)

0 = NtotKA[b j + λ(c je
λL − d je

−λL )]

−D0λ
3

koff
(c je

λL − d je
−λL ). (3.6d)

Combining Eqs. (3.9 c) and (3.9 d) shows that

λ
(
c j − d j

) = λ
(
c je

λL − d je
−λL

) = �0b j, (3.7)

and d j = −eλLc j , with

�0 =
[

D0λ
2

koff NtotKA
− 1

]−1

= NtotkonD1

koff D0
(3.8)

for all j = 1, . . . , M. It then follows from Eq. (3.9 b) that b j =
B and, hence,

c j = �0

λ
(
eλL + 1

)B, d j = − �0

λ(1 + e−λL )
B (3.9)

for all j = 1, . . . , M. Finally, substituting for bj , c j , and d j in
Eq. (3.9 a), we have the iterative equation

a j+1 = a j +
(

L + 2�0[eλL − 1]

λ
(
eλL + 1

) )
B ≡ aj + RB,

that is,

a j+1 = a1 + jRB, 1 � j < M − 1. (3.10)

There remain two unknowns, namely a1 and B. These are
determined by the exterior boundary conditions (2.2) for U :

U1(0) = 0, UM (ML) = η.

The latter yield the pair of equations

a1 + �0(1 − eλL )

λ(1 + eλL )
B = 0,

a1 + (M − 1)RB + BL + �0[eλL − 1]

λ(eλL + 1)
B = η,

which can be rearranged to give

a1 = �0

λ
tanh (λL/2)B, (3.11)

with

B = η

M

(
L + 2�0

λ
tanh (λL/2)

)−1

. (3.12)

Finally, the flux out of the end x = 0 is

J = D0
∂U

∂x

∣∣∣∣
x=0

= U ′
1(0) = D0(1 + �0)B. (3.13)

Substituting for B and setting L = Ltot/M, the flux can be
written as

J = ηD0

M
(1 + �0)

(
Ltot

M
+ 2�0

λ
tanh (λLtot/2M )

)−1

, (3.14)

with �0 given by Eq. (3.8). To determine the selectivity of the
pore, we need to compare J with the flux J0 of freely diffusing
particles,

J0 = ηD0

Ltot
. (3.15)

The selectivity is then defined according to S = J/J0, which is
independent of η (in the low-binding limit). Note that, in the
limit kon → 0, we have �0 → 0 and S → 1.

We would like to compare the selectivity of our model
with that of Ref. [13], which corresponds to the case M = 1.
[After some algebra, it can be shown that, if M = 1, then
Eq. (3.14) reduces to the expression for the flux obtained in
Ref. [13].] For concreteness, we assume that all parameters
are fixed at their base values (as specified at the end of Sec. II),
except for K = koff/kon, � = D1/D0, and M. We also set S =
S(K,�, M ). One way to characterize the difference between
the two models is as follows: We take � ≈ 1 and impose a
hard limit on the confinement region of a bound particle so
that M > 1. On the other hand, Maguire et al. [13] take M = 1
and incorporate a soft version of confinement by modeling
each bound molecule as a Brownian particle diffusing in a
harmonic potential well; this then implies that � < 1 (D1 <

D0). More specifically, the position X (t ) of a bound particle
relative to the center of the well evolves according to the
Langevin equation

dX = −kX (t )

γ
+

√
2D0dW (t ), (3.16)

where W (t ) is a Wiener process, and γ is a friction coeffi-
cient with D0γ = kBT . The spring constant k is estimated by
treating the polymer as a worm-like chain [23], that is, k =
3kBT/2�pLc, where �p is the persistence length of the poly-
mer and Lc is its contour length. Solving the corresponding
Fokker-Planck equation for X (0) = 0 yields the mean-square
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FIG. 3. Plot of selectivity S = S(K,�, 1) as a function of the
dissociation constant K = koff/kon for various values of � = D1/D0.
Other parameters are specified at the end of Sec. II.

displacement (MSD) [13]

〈X 2(t )〉 = 1 − e−2kDAt/kBT

k/kBT
.

However, one also has to take into account the fact that the
probability density of being bound for a time t is

ρ(t ) = τ−1e−t/τ , τ = 1

koff
,

so that the effective MSD is

〈X 2〉 =
∫ ∞

0
ρ(t ′)〈X 2(t ′)〉dt ′ = 2D0Lc�p

Lc�pkoff + 3D0
. (3.17)

after using the explicit formula for the spring constant k.
The diffusivity D1 is then estimated by treating the confined
diffusion over the mean bound time τ as Fickian, that is [13],

D1 = 〈X 2〉
2τ

= D0

1 + 3D0/Dp
, (3.18)

where Dp = Lc�pkoff quantifies how the physical properties
of the polymer determine the diffusivity in the bound state. In
particular, mobility in the bound state increases with increas-
ing chain length Lc or persistence length �p and decreases with
increasing binding lifetime k−1

off . For large Dp it can be seen
that D1 approaches the free diffusivity D0, whereas D1 
 D0

when Dp is small.
One central result of Ref. [13] is that, for fixed K , the

selectivity is a maximum when D0 = D1. However, if the soft
confinement by FG-Nup tethers is taken into account, then
D1 < D0 and selectivity is reduced. This suggests that taking
D1 = D0, say, and increasing M should also reduce selectivity,
and this is precisely what we find. In Fig. 3 we plot the
selectivity S(K,�, 1) as a function of K for various values
of �, 0 < � � 1. This recovers the results of Ref. [13] in the
low-binding regime. Similarly, in Fig. 4 we plot S(K, 1, M ) as
a function of K for various values of M, M � 1. Comparison
of the two figures shows that hard confinement has a much
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FIG. 4. Plot of selectivity S = S(K, 1, M ) as a function of the
dissociation constant K = koff/kon for various values of M = Ltot/L.
Other parameters are specified at the end of Sec. II.

stronger effect then soft confinement in terms of reducing
selectivity. Note that this argument holds even though we
have restricted our analysis to the low-binding regime by
taking K � 1 in Figs. 3 and 4. If nonlinearities associated
with the saturation of binding sites were included, then the
system of equations would have to be solved numerically. As
shown in Ref. [13] for M = 1 and D1 ≈ D0, the selectivity
curves are unimodal, with a peak around K = 1 and S → 0
as K → 0. The latter limit is a consequence of the fact that,
when K → 0, particles cannot unbind from FG-Nups, which
thus act as permanent traps. Hence particles cannot exit the
NPS and the selectivity vanishes. This argument also holds for
M > 1. Moreover, it is clear from Fig. 4 that the selectivity
curves for M > 1 have reached a maximum at K = 1, and
will thus decrease to zero in the domain K < 1. In other
words, restricting our analysis to the low-binding regime is
sufficient to identify the maximum possible selectivity of the
diffusion-binding model with hard confinement.

The assumption of low binding also arises in other models
of the NPC. For example, consider the entropic (virtual)
gating model [2,24], which takes into account the fact that
macromolecules diffusing in a confined geometry (such as a
nuclear pore) experience an entropic barrier due to excluded-
volume effects. Within the NPC this would be enhanced by the
densely packed FG-Nups. One way to counteract the effects of
the entropic barrier is for the kaps to have an affinity for and
bind to the FG-repeat regions, thus lowering the effective free
energy of the cargo complex within the NPC. The degree of
affinity has to be sufficiently high to overcome the entropic
barrier but not too high otherwise the complex can be trapped
within the NPC and the rate of translocation would be too
small. One possible solution is to have a large number of low-
affinity binding sites within the nuclear pore. Mathematically
speaking, this can be modeled in terms of diffusion through
an effective energy landscape, which approximates the effects
of multiple binding sites when the binding-unbinding rates are
relatively fast compared with the diffusion rate [24].
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IV. FIRST PASSAGE TIME FOR A SINGLE PARTICLE

So far we have considered the diffusion of many particles
through the nuclear pore. Here we follow a complementary
single-particle perspective and use probabilistic arguments
previously developed for gap junctions [20] to investigate the
splitting probability and MFPT for a particle to exit a pore. We
assume that the particle exits the pore at x = 0 or x = L only
when n(t ) = 0, otherwise it is reflected. We also set D1 = D0

and focus on the effect of varying M.

A. Splitting probabilities

Let X (t ) ∈ [0, Ltot] denote the position of the particle at
time t and define the stopping time

T = inf{t � 0 : {X (t ) ∈ {0, Ltot}} ∩ {n(t ) = 0}}. (4.1)

This is the FPT for the particle to reach either external bound-
ary and is in the freely diffusing state n(t ) = 0, so that it is
absorbed by the boundary (exits the pore). For n ∈ {0, 1}, we
introduce the splitting probability that the particle is absorbed
at the left-hand boundary x = 0 given that X (0) = x and
n(0) = n:

πn(x) = P (X (T ) = 0|{X (0) = x} ∩ {n(0) = n}). (4.2)

From the backward two-state diffusion equation, one finds
that πn satisfies [20]

0 = D0
d2π0

dx2
− Ntotkonπ0 + Ntotkonπ1, (4.3a)

0 = D0
d2π1

dx2
+ koffπ0 − koffπ1, (4.3b)

with exterior boundary conditions

π0(0) = 1, π0(Ltot ) = 0, π ′
1(0) = 0, π ′

1(Ltot ) = 0,

and interior boundary conditions

π0(L−
j ) = π0(L+

j ), π ′
0(L−

j ) = π ′
0(L+

j ),

π ′
1(L−

j ) = π ′
1(L+

j ) = 0.

Recall that Lj = jL = jLtot/M. Suppose that P [n(0) = n] =
ρn and set pn(x) := ρnπn(x) with

pn(x) = P ({X (T ) = 0} ∩ {n(0) = n}|X (0) = x),

and

ρ0 = koff

koff + Ntotkon
, ρ1 = 1 − ρ0.

That is, ρ0 is the stationary probability that the particle is in
the freely diffusing state. The pn satisfy

0 = D0
d2 p0

dx2
− Ntotkon p0 + koff p1, (4.4a)

0 = D0
d2 p1

dx2
+ Ntotkon p0 − koff p1, (4.4b)

with modified exterior boundary conditions

p0(0) = ρ0, p0(Ltot ) = 0, p′
1(0) = 0, p′

1(Ltot ) = 0,

and the same interior boundary conditions as πn.

From the definition of pn, we have

p(x) := p0(x) + p1(x) = P (X (T ) = 0|X (0) = x).

By the strong Markov property [25], if 0 � j � M − 1 and
x ∈ (Lj, Lj+1), then

p(x) = 1

ρ0
{q(s)p0(Lj ) + [1 − q(s)]p0(Lj+1)}, (4.5)

where s = x − Lj , q(s) is the splitting probability that the
particle first exits (Lj, Lj+1) at the left-hand boundary,

q(s) = P (X (τk ) = Lj |X (0) = s), (4.6)

and τk is the stopping time for the particle to first exit the
interval (Lj, Lj+1):

τ j = inf{t � 0 : {X (t ) /∈ (Lj, Lj+1)} ∩ {n(t ) = 0}}. (4.7)

Equation (4.5) can be understood as follows: The splitting
probability p(x) with x ∈ (Lj, Lj+1) can be decomposed into
the sum of (i) the probability q(s) that the particle first
escapes the interval at Lj times the probability π0(Lj ) that
it is subsequently absorbed at x = 0 starting from x = Lj in
the unbound state, and (ii) the probability 1 − q(s) that the
particle first escapes the interval at Lj+1 times the probability
π0(Lj+1) that it is subsequently absorbed at x = 0 starting
from x = Lj in the unbound state.

The calculation of q(s) is equivalent to obtaining the split-
ting probability of a particle in [0, L] escaping at the end x = 0
first. One finds that

q(x) = ρ0ξ (L − x) + eξL[ρ0([L − x]ξ − 1) + 1] + ρ0 − 1

ρ0(Lξ + 2) + eξL[ρ0(Lξ − 2) + 2] − 2
,

(4.8)

where

ξ =
√

Ntotkon + koff

D0
.

Note from Eq. (3.2) that λ = ξ when D1 = D0. In the case
of ultrafast binding, which occurs within the NPC, we have
ξL � 1 so that

q(x) ≈ ρ0(ξ [L − x] − 1) + 1

ρ0(Lξ − 2) + 2
.

Since p0(0) = ρ0, p0(Ltot ) = 0, it follows that
p(x) is determined by the remaining M − 1 constants
p0(L1), . . . , p0(LM−1). Because the domains are evenly
spaced, we find that each of these constants is the average of
its neighbors [20],

p0(Lj ) = 1
2 [p0(Lj−1) + p0(Lj+1)], (4.9)

for j = 1, . . . , M − 1. Rearranging Eq. (4.9), we see that the
constants satisfy a discretized Laplace’s equation

p0(Lj−1) − 2p0(Lj ) + p0(Lj+1) = 0, (4.10)

for j = 1, . . . , M − 1, with boundary conditions p0(0) = ρ1,
p0(Ltot ) = 0. Solving this system and applying Eq. (4.5)
yields p(x).

Analogous to the analysis of selectivity in Sec. III, consider
the splitting probability 
 = p(Ltot ) for reaching the end x =

042404-6
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FIG. 5. Plot of splitting probability as a function of the dissoci-
ation constant K = koff/kon for various values of M and D1 = D0.
Other parameters are as in Fig. 4.

0 having started at x = Ltot . From Eq. (4.5) we see that


 = q(Ltot/M )

ρ0
p0(LM−1), (4.11)

where LM−1 = Ltot[1 − M−1]. Iterating Eq. (4.10), we find
that

p0(LM−1) = ρ0

M
.

That is, starting from j = M − 1 and using ρ(LM ) = 0, we
have

p(LM−2) − 2p0(LM−1) = 0,

p(LM−3) − 2p(LM−2) + p(LM−1) = 0,

from which we deduce p(LM−2) = 2p(LM−1) and p(LM−3) =
3p(LM−1). Iterating this procedure and using p(L0) = ρ0

yields the result. In conclusion,


 = q(Ltot/M )

M
. (4.12)

In Fig. 5 we plot the splitting probability as a function of
the dissociation constant for various M. Consistent with the
analysis of selectivity in Sec. III, reducing the size of the con-
finement domain (i.e., increasing M) reduces the probability
that the particle reaches the end x = 0.

B. Mean first passage times

To investigate how confinement affects the time to exit a
pore, we calculate the expected absorption time (MFPT) of
the particle to exit either of the ends X = 0, Ltot starting at
the center of the pore. Defining the stopping time

Tn(x) = inf{t � 0 : {X (t ) ∈ {0, Ltot}} ∩ {n(t ) = 0}|
× {X (0) = x} ∩ {n(0) = n}}, (4.13)

the corresponding MFPT is

ωn(x) = E[Tn(x)]. (4.14)

The analysis of ωn(x) proceeds along similar lines to the
splitting probability. First, one can show that wn satisfies the
ordinary differential equations [20]

−ρ0 = D
d2w0

dx2
− Ntotkonw0 + koffw1, (4.15a)

−ρ1 = D
d2w1

dx2
+ Ntotkonw0 − koffw1, (4.15b)

with exterior boundary conditions

w0(0) = 0, w0(Ltot ) = 0, w′
1(0) = 0, w′

1(Ltot ) = 0,

and the same interior boundary conditions as πn.
Let w(x) = w0(x) + w1(x). By the strong Markov prop-

erty [25], if 0 � j � M − 1 and x ∈ (Lj, Lj+1), then

w(x) = v(s) + 1

ρ0
{q(s)w0(Lj ) + [1 − q(s)]w0(Lj+1)},

(4.16)

where s = x − Lj , v(x) is the mean exit time to escape the
interval (Lj, Lj+1) starting at s, and the splitting probability
q(s) is given in Eq. (4.8). We can calculate v(x) by considering
the MFPT for a particle to escape from either end in the
interval [0, L]:

v(x) = 1

2

(
x(L − x) + Lρ1 coth

( Lξ

2

)
ρ0ξ

)
. (4.17)

Since w0(0) = w0(Ltot ) = 0, it remains to determine the M −
1 constants w0(L1), . . . ,w0(LM−1). For evenly spaced do-
mains, we find that [20]

w0(Lj ) = V + 1
2 [w0(Lj−1) + w0(Lj+1)] (4.18)

for j = 1, . . . , M − 1, where V is the MFPT to escape from
an interval of length 2L starting at the center of the domain
and n(0) = 0:

V = L
[
Lρ0ξ + 2ρ1 tanh

( Lξ

2

)]
2ξ

. (4.19)

Rearranging Eq. (4.18), we notice that these constants satisfy
a discretized Poisson equation

w0(Lj−1) − 2w0(Lj ) + w0(Lj+1) = −2V (4.20)

for j = 1, . . . , M − 1, and w0(0) = w0(Ltot ) = 0 can be in-
terpreted as boundary conditions.

Set T = w(Ltot/2) and take M to be odd so that the
point Ltot lies at the center of the interval [L[M−1]/2, L[M+1]/2].
Equation (4.16) implies that

T = v(L/2) + 1

ρ0
q(L/2)w0(L[M−1]/2)

+ 1

ρ0
[1 − q(L/2)]w0(L[M+1]/2). (4.21)

Iterating Eq. (4.20) and using the boundary condition
ω0(Ltot ) = 0 establishes that

ω0(LM−r ) = rω0(LM−1) − r(r − 1)V, 1 < r < M.

Setting r = M and using ω0(0) = 0 gives

ω0(LM−1) = (M − 1)V,
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and hence

ω0(LM−r ) = r(M − r)V, 1 < r � M. (4.22)

Substituting into Eq. (4.21), we have

T = v(Ltot/2M ) + V

4ρ0
(M2 − 1), M � 1. (4.23)

In Fig. 6 we plot the MFPT T as a function of the dissociation
constant for various values of M. It can be seen that, in the
absence of confinement (M = 1, D0 = D1) the MFPT is a
decreasing function of K and is of the order of milliseconds
over the whole range of K . (This is consistent with timescales
observed experimentally [22].) However, for fixed K , the
MFPT is an increasing function of M so that fast transport
requires K to be large. Comparison of Fig. 6 with Figs. 4 and 5
also shows another important feature of binding-diffusion
models; namely, that increasing the dissociation constant re-
duces the MFPT but at the cost of reducing selectivity. This
makes sense, since more time is spent in the unbound state.

V. DISCUSSION

In this paper we formulated the binding-diffusion mecha-
nism of selective nuclear transport in terms of a stochastically
gated diffusion process, in which each bound particle under-
goes confined diffusion within a subdomain of the NPC. We
showed analytically that hard confinement can significantly
reduce selectivity and increase the time to pass through a
nuclear pore. This suggests that the minimal binding-diffusion
model needs to be supplemented by additional biophysical
mechanisms in order to counter the effects of confinement.

One possible candidate is a so-called sliding mechanism,
whereby additional mobility in the bound state arises from
multivalent interactions, which allow transfer of particles
between polymer chains while remaining bound [8,26]. For
example, a particle may bind simultaneously to more than one

FG-Nup and move hand-over-hand while remaining bound.
Thus particles slide between nearby FG-Nup sites rather than
fully unbinding and rebinding. The effects of interchain trans-
fer has been investigated numerically by using the binding-
diffusion model with soft confinement [13]. In particular,
diffusion in a harmonic potential is supplemented by hopping
between neighboring FG-Nup sites, and numerical simula-
tions are used to estimate the MSD and thus the effective
bound diffusivity D1. As expected, the inclusion of interchain
transfer increases D1 and thus enhances selectivity. In future
work we will explore how to incorporate biophysical mecha-
nisms such as interchain transfer into the stochastically gated
diffusion model. Another extension would be to take into
account the elastic properties of the tether; this could either
reduce the bound diffusivity D1 along the lines of Ref. [13],
but could also facilitate transport as suggested by Fogelson
and Keener [12].

One remaining issue is how one could determine whether
hard confinement (D1 ≈ D0 and M > 1) or soft confinement
(D1 < D0 and M = 1) is a more realistic description of FG-
Nup/kap interactions (in the absence of sliding). There are a
number of qualitative differences between the two cases, as
highlighted in Figs. 3 and 4. First, decreasing D1 displaces
the selectivity peak to smaller values of the dissociation
constant K = koff/kon, whereas the selectivity curves flatten
out around K = 1 for all M. Second, the reduction of D1 in
the soft-confinement model depends on the unbinding rate
koff , as illustrated by Eq. (3.18). That is, the particle only
experiences the harmonic potential when it is bound to a
FG-Nup. On the other hand, the size of a confinement domain
is determined by the effective length and distribution of FG-
Nups but is independent of koff . One experimental test would
be to image the precise motion of individual particles within
the NPC by using single-particle tracking, say, and seeing
whether the motion of bound particles is better described
by confined diffusion or by normal diffusion with a reduced
diffusion coefficient. One way to distinguish between the
two cases would be to plot the mean-squared displacement
as a function of time. However, such measurements could
be confounded by particles switching between bound and
unbound states, and by the sliding of bound particles to
neighboring FG-Nups. Another issue concerns the distribution
of FG-Nups within the NPC. One of the simplifications of
the hard-confinement model is to partition the NPC into a set
of equal-size confinement domains, based on the assumption
that FG-Nups are themselves regularly spaced (possibly in
clusters). Having a random distribution of FG-Nups could be
one way to “soften” the confinement. Irrespective of which
precise version of diffusion-binding is more realistic, it is clear
that switching between bound and unbound diffusing states
provides a simple mechanism for enhancing selectivity of the
NPC, provided that the binding affinity is neither too small
nor too large.
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