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Active processes play a major role in the formation of membraneless cellular structures (biological con-
densates). Classical coarsening theory predicts that only a single droplet remains following Ostwald ripening.
However, in both the cell nucleus and cytoplasm there coexist several membraneless organelles of the same
basic composition, suggesting that there is some mechanism for suppressing Ostwald ripening. One potential
candidate is the active regulation of liquid-liquid phase separation by enzymatic reactions that switch proteins
between different conformational states (e.g., different levels of phosphorylation). Recent theoretical studies
have used mean-field methods to analyze the suppression of Ostwald ripening in three-dimensional (3D) systems
consisting of a solute that switches between two different conformational states, an S state that does not phase
separate and a P state that does. However, mean-field theory breaks down in the case of 2D systems, since the
concentration around a droplet varies as ln R rather than R−1, where R is the distance from the center of the
droplet. It also fails to capture finite-size effects. In this paper we show how to go beyond mean-field theory
by using the theory of diffusion in domains with small holes or exclusions (strongly localized perturbations).
In particular, we use asymptotic methods to study the suppression of Ostwald ripening in a 2D or 3D solution
undergoing active liquid-liquid phase separation. We proceed by partitioning the region outside the droplets into
a set of inner regions around each droplet together with an outer region where mean-field interactions occur.
Asymptotically matching the inner and outer solutions, we derive leading-order conditions for the existence and
stability of a multidroplet steady state. We also show how finite-size effects can be incorporated into the theory
by including higher-order terms in the asymptotic expansion, which depend on the positions of the droplets and
the boundary of the 2D or 3D domain. The theoretical framework developed in this paper provides a general
method for analyzing active phase separation for dilute droplets in bounded domains such as those found in
living cells.

DOI: 10.1103/PhysRevE.101.042804

I. INTRODUCTION

Membraneless subcellular structures (biological conden-
sates) are ubiquitous in both the cytoplasm and nucleus of
cells. Examples include stress granules and processing (P)
bodies in the cytoplasm [1], and nucleoli and Cajal bodies in
the nucleus [2]. All of these structures consist of enhanced
concentrations of various proteins and RNA, and proteins
are continually exchanged with the surrounding medium.
Major insights into the nature of biological condensates have
been obtained from studies of P granules in germ cells of
Caenorhabditis elegans. P granules are RNA and protein-rich
bodies located in the cytosplamic region around the nucleus
(perinuclear region), which play a role in asymmetric cell
division. Their relatively large size (diameters of 2–4 μm)
make them particularly amenable to quantitative analysis [3].
In particular, it has been shown that P granules fuse with one
another and subsequently relax back into a spherical shape,
flow freely under shear forces, and deform around surfaces of
other structures. Moreover, photobleaching experiments have
demonstrated that proteins are highly mobile within P gran-
ules and exchange rapidly with the surrounding cytoplasm.
Taken together with subsequent studies of many other conden-
sates, there is a growing body of evidence supporting the hy-
pothesis that membrane-less organelles are multicomponent,
viscous liquidlike structures that form via liquid-liquid phase

separation (see the reviews [4–8] and references therein).
The onset of phase separation can be regulated by a number
of factors: changes in protein or RNA concentration via
gene expression, post-translational modifications in protein
structure, and changes to salt or proton concentration and/or
temperature (osmotic or pH shocks) [3]. Although intracel-
lular biological condensates are multicomponent structures,
typically containing dozens of different types of proteins
and RNA, it is possible to reconstitute in vitro droplets that
have similar features using only one or two molecular com-
ponents [9,10]. This suggests that, at least in some cases,
a single protein may be necessary and sufficient to drive
assembly.

Classical liquid-liquid phase separation occurs when it is
thermodynamically favorable for a homogeneous solution to
separate or demix into two coexisting liquid phases with
different densities, a high-density phase φb and a low-density
phase φa. From a kinetic perspective, there are two basic
dynamical mechanisms for phase separation, depending on
which region of the associated phase diagram the homoge-
neous solution is initially placed by, for example, changing the
temperature: (i) spinodal decomposition, which occurs when
the solution is in a thermodynamically unstable state, and
(ii) nucleation and growth, which occurs when the solution
is in a metastable state. Spinodal decomposition involves
the rapid demixing from one thermodynamic phase to two
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coexisting phases due to the fact that there is essentially
no thermodynamic barrier to nucleation of the two phases.
In early stages of phase separation, solute molecules cluster
together to form microscopic solute-rich domains dispersed
throughout the liquid. These droplets then rapidly grow and
coalesce to form macroscopic clusters or droplets. As phase
separation proceeds, the growth of clusters approximately
ceases when the local concentration reaches φa or φb, resulting
in the separation of the solution into domains of low- and
high-solute concentrations. Although the concentration no
longer changes within each droplet, the size and shape of the
droplets evolve due to the effects of interfacial tension τs. If
the characteristic size of a droplet is R, then the interfacial
energy per unit volume is τs/R. Structural changes of the
droplets can thus reduce this contribution to the free energy
by effectively increasing the average size R, in a coarsening
process known as Ostwald ripening [11,12]. Diffusion also
plays a role in coarsening because the concentrations φa and
φb in a neighborhood of a droplet deviate slightly from their
thermodynamic values according to the Gibbs-Thompson law
[13]. The first quantitative formulation of Ostwald ripening
was developed by Lifshitz and Slyozov [11] and Wagner
[12], and is commonly referred to as classical LSW theory.
These authors derived an equation for the number density of
droplets in the dilute regime (total volume fraction of droplets
is small), under the crucial assumption that the interaction
between droplets can be expressed solely through a common
mean field.

A major feature of biological cells is that they are often
driven away from equilibrium by multiple energy-consuming
processes, including adenosine triphosphate–(ATP) driven
protein phosphorylation. There is growing experimental evi-
dence that active processes also influence the phase separation
of biological condensates [7,14]. For example, various ATP-
dependent disaggregases (molecules that break up molecular
aggregates) and molecular motors are present in many RNA
granules and are thus in a position to control the physical
properties of condensates. Indeed, depletion of ATP increases
the viscosity of stress granules and nucleoli [15]. Another
example is the regulation of the size distribution of nucleoli
by the actin cytoskeleton, the dynamics of which is itself con-
trolled by ATP hydrolysis [16]. One suggested consequence
of active processes is the suppression of Ostwald ripening.
Classical coarsening theory predicts that only a single droplet
remains following Ostwald ripening. However, in both the
nucleus and cytoplasm there coexist several membrane-less
organelles of the same basic composition, suggesting that
there is some mechanism for suppressing Ostwald ripening.
One potential candidate is the active regulation of liquid-
liquid phase separation by ATP-driven enzymatic reactions
that switch proteins between different conformational states
(e.g., different levels of phosphorylation) [14,17–19]. Such a
scheme has also been proposed as a mechanism for localized
phase separation in C. elegans [20,21] and the organization of
the centrosomes prior to cell division [22].

Theoretical models of the active suppression of Ostwald
ripening have focused primarily on three-dimensional (3D)
systems for which the LSW mean-field approximation can
be applied [14,17–19]. The solute is assumed to exist in two
different conformational states, an S state that does not phase

separate and a P state that does. However, mean-field theory
breaks down in the case of circular droplets in 2D systems,
since the concentration around a droplet varies as ln R rather
than R−1, where R is the distance from the center of the
droplet. Thus, more care must be taken in imposing far-field
conditions, as previously shown for classical Ostwald ripening
[23,24]. Mean-field theory also fails to capture finite-size
effects. In this paper we use asymptotic methods to study
the suppression of Ostwald ripening in a 2D or 3D solution
undergoing active liquid-liquid phase separation. Assuming
that droplets are well separated with mean separation L, we
take R/L = ερ for 0 < ε � 1. We partition the region outside
the droplets into a set of inner regions around each droplet
together with an outer region where mean-field interactions
occur. Matching the inner and outer solutions expressed as
asymptotic expansions in ν = −1/ ln ε (2D) or ε (3D), we
derive leading-order conditions for the existence and stability
of a multidroplet steady state. We also show how finite-
size effects can be incorporated into the theory by including
higher-order terms in the asymptotic expansion, which depend
on the positions of the droplets and the boundary of the 2D or
3D domain.

We begin in Sec. II by briefly reviewing the mean-field
approach to analyzing Ostwald ripening in 3D, before devel-
oping the asymptotic analysis of the corresponding problem
in 2D. The latter uses a modified version of the formulation
presented in Ref. [24]. We also highlight the relationship
between the mean-field and asymptotic approaches in 3D.
In Sec. III we apply the asymptotic method to the model
for active phase separation introduced in Refs. [14,18]. In
particular, we derive asymptotic expansions for the P-state
and S-state concentrations inside and outside each droplet. We
show that to leading order, the concentrations in a neighbor-
hood of the ith droplet interface depend on the droplet radius
ρi, the continuous S concentration �i at the interface, the
rates of switching α, β between the two conformational states,
the width ξ = √

D/(α + β ) of the interfacial region (with
D denoting the diffusion coefficient), and the total far-field
concentration u∞. We then use our results to calculate the
effective P flux into each droplet, and obtain an equation for
the rate of change of a droplet radius (on a relatively slow
timescale).

In Sec. IV we derive conditions for the existence and
stability of a multidroplet steady state. One crucial obser-
vation is that the stability of the steady state depends on
fluctuations in �i as well as ρi, with the former determined
by requiring that continuity of the S flux is preserved by
the perturbations. This establishes that stability depends on
the local spatial gradient of the total solute concentration.
That is, one cannot treat the total solute concentration in
a neighborhood of a droplet as spatially uniform when the
system is perturbed away from a multidroplet steady state.
Indeed, the contribution from the total diffusive flux of
the inner solution plays a crucial role in stabilizing the
steady state, while ensuring continuity of the S flux across
each droplet interface. Finally, following previous mean-field
studies, we further develop the asymptotic analysis of 2D
droplets in Sec. V by considering two particular regimes: a
large-droplet regime (ρ∗/ξ � 1) and a small-droplet regime
(ρ∗/ξ � 1), where ρ∗ is the steady-state droplet radius.

042804-2



ACTIVE SUPPRESSION OF OSTWALD RIPENING: … PHYSICAL REVIEW E 101, 042804 (2020)

We show that one difference between 2D and 3D in the
small-droplet regime is that the in-flux has an additional
logarithmic factor of the form −1/ ln(ρ∗/ξ ).

A final comment is in order. Membraneless structures such
as P granules and nucleoli are 3D rather than 2D droplets,
so it is not immediately clear why the analysis of 2D active
phase separation is relevant within the context of biological
condensates. However, it has recently been shown that active
processes also occur within cell membranes, and contribute
to various forms of phase separation [25–29]. One notable
example is the clustering of curvature-inducing proteins that
regulate cell shape. It should also be noted that understanding
the behavior of active emulsions is of considerable interest
within the wider physics community [19], and has many
technological applications to the pharmaceutical, chemical,
and food industries, where droplet size distribution and its
stability needs to be controlled [30]. A number of applications
involve thin films that can be treated as 2D domains.

II. OSTWALD RIPENING IN 2D AND 3D

A. Mean-field theory in 3D

Consider some macroscopic domain � ⊂ R3 containing a
collection of N microscopic droplets that are well separated
from each other and whose total volume fraction is small. A
no-flux boundary condition on ∂� ensures mass conservation.
Represent each droplet as a sphere of radius Ri centered
about xi, and assume that the dynamics of the droplet radii
is much slower than the equilibration of the concentration
profile (quasistatic approximation). The solute concentration
φ exterior to the droplets then satisfies a simplified Mullins-
Sekerka model:

∇2φ = 0, r ∈ �\ ∪N
i=1 �i, ∂nφ = 0 on ∂�, (2.1a)

and

φ = φa

(
1 + c

Ri

)
≡ φa(Ri ) on ∂�i, (2.1b)

where �i = {r ∈ �, |r − xi| � Ri} and c is the capillary
length. The boundary condition (2.1b) on the droplet interface
is known as the Gibbs-Thomson law, and results in a net
diffusive flux between droplets of different sizes. For example,
suppose that there exist two droplets �1 and �2 with R2 < R1,
see Fig. 1. From Eq. (2.1b), the concentration outside the
smaller droplet will be higher than the concentration outside
the larger droplet. Therefore, there will be a diffusive flux
of solute from �2 to �1, resulting in the growth of �1 at
the expense of �2. The same mechanism holds for multiple
droplets, and results in a coarsening of the system in the form
of Ostwald ripening [13].

The main approximation of LSW theory is to replace
boundary effects and interactions between droplets by a
mean field φ∞ such that φ(x) ≈ φ∞ for |r − xi| � Ri, i =
1, . . . , N , and φ∞ a constant to leading order. The quantity
� = φ∞ − φa is known as the supersaturation, and needs
to be determined self-consistently from mass conservation.
Hence, it will depend on the concentration of the original
homogeneous solution and the sizes of the droplets. The
mean-field approximation means that we can focus on a single
droplet of radius R, say. Given the above assumptions, we
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FIG. 1. Ostwald ripening. Schematic diagram showing the con-
centration profile as a function of x along the axis joining the centers
of two well-separated droplets with different radii R1 > R2. The
solute concentration φa(R1) around the larger droplet is lower than
the concentration φa(R2) around the smaller droplet, resulting in a
net diffusive flux from the small droplet to the large droplet. Here
φ∞ denotes the mean field of LSW theory.

take the concentration around the droplet to satisfy the radially
symmetric diffusion equation

0 = D

r2

∂

∂r
r2 ∂φ

∂r
, r > R, (2.2)

supplemented by the boundary conditions

φ(R) = φa(R), φ(r) → φ∞ as r → ∞. (2.3)

Performing the change of variables c(r) = rφ(r), one finds
that c satisfies the 1D diffusion equation so that

φ(r) = φ∞ − R

r

(
� − φac

R

)
. (2.4)

The corresponding diffusive flux of solute molecules entering
the droplet at its interface is

JR = D∇φ(R) = D

R

(
� − φac

R

)
. (2.5)

It follows that there exists a critical radius Rc = φac/� such
that JR > 0 when R > Rc and the droplet grows due to a posi-
tive influx of solute molecules, see Fig. 1. On the other hand,
small droplets with R < Rc shrink as JR < 0. [Within the
context of the asymptotic methods developed below, Eq. (2.4)
can be interpreted as the O(1) inner solution for the solute
concentration in a neighborhood of the droplet, which matches
the mean-field concentration φ∞ in the far-field limit.]

We can also write down a dynamical equation for the
rate of change of the size of the droplet. When the radius
increases by an amount dR, the volume increases by dV =
4πR2dR. Given that the expansion of the droplet involves
the conversion of solute molecules from a low concentration
φa(R) to a high concentration φb, it follows that the number
of molecules required to enlarge the droplet by an amount dR
is [φb − φa(R)]dV . These molecules are supplied by the flux
at the interface. Hence, assuming that the change in radius
occurs over an infinitesimal time dt , we have

4πR2[φb − φa(R)]dR = 4πR2JRdt,
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which yields

dR

dt
= D

R[φb − φa(R)]

(
� − φac

R

)
≡ �

R

(
1

Rc
− 1

R

)
, (2.6)

where

� = Dφac

[φb − φa(R)]
≈ Dφac

φb
.

One gap in the above formulation of Ostwald ripening is
how one determines the mean field φ∞. In classical LSW
theory, it is taken to be a constant in space and for each time
t is determined by the constraint that the volume fraction of
droplets is conserved. Assuming that there are N droplets at
time t , we have

dRi

dt
= �

R2
i

(
Ri

Rc
− 1

)
, i = 1, . . . , N. (2.7)

Multiplying both sides by R2
i , summing over i, and imposing

conservation of the volume fraction, 4π
∑

i R3
i (t )/3 = con-

stant, gives

Rc = 1

N

N∑
i=1

Ri(t ). (2.8)

In other words,

φ∞(t ) = φa

[
1 + cN∑N

i=1 Ri(t )

]
. (2.9)

Equation (2.9) implies that φ∞(t ) decreases as the mean
radius increases. The latter will occur due to the disappearance
of small droplets at the expense of larger droplets. As the
saturation �(t ) = φ∞(t ) − φa decreases the critical radius Rc

increases so that, ultimately, only a single droplet remains.

B. Asymptotic analysis in 2D

As we mentioned in the Introduction, classical LSW the-
ory breaks down in the case of circular droplets in two-
dimensional systems, since the concentration around a droplet
varies as ln R rather than R−1. Here we show how matched
asymptotics can be used to handle the far-field behavior,
following along similar lines to Ref. [24] (but with a modified
choice of scalings). This will then be extended to active
processes in Sec. III.

Consider N droplets of radii Ri and centers xi, i =
1, . . . , N , located in a bounded 2D domain � ⊂ R2. The basic
assumption of the asymptotic method is that the droplets are
small and well separated. We fix length scales by setting
the mean separation L = 1 and take c = ε, Ri = ερi with
0 < ε � 1 and ρi = O(1), and |xi − x j | = O(1) for j �= i. Let
�i = {x ∈ �; |x − xi| � ερi}. The concentration φ outside
the droplet satisfies the quasistatic diffusion equation

∇2φ = 0, x ∈ �\ ∪N
i=1 �i, (2.10a)

supplemented by the boundary conditions

∂nφ = 0 on ∂�, φ = φa

(
1 + 1

ρi

)
on ∂�i. (2.10b)

ρi

φb

φa(ρi)

Ω R2

ΔΦi = 0Δφ = 0

∂nφ = 0

FIG. 2. Construction of the inner solution in terms of stretched
coordinates y = ε−1(x − xi ), where xi is the center of the ith droplet.
Rescaled radius is ρi and the region outside the droplet is taken to
be R2 rather than the bounded domain �. The concentration inside
the droplet is given by the constant φb, with a discontinuity at the
interface so that �i(ρ+

i ) = φa(ρi ) = φa(1 + 1/ρi ).

First, consider the inner solution around the ith droplet,

�i(y) = φ(xi + εy), y = ε−1(x − xi ),

where we have introduced stretched coordinates and replaced
the domain � by R2, see Fig. 2. It follows that

∇2
y�i = 0 for y ∈ R2\�i, �i = φa

(
1 + 1

ρi

)
on |y| = ρi,

which can be expressed in polar coordinates as

1

ρ

d

dρ
ρ

d�i

dρ
= 0, ρi < ρ < ∞, �i(ρi ) = φa

(
1 + 1

ρi

)
.

The solution takes the form

�i(ρ) = φa

(
1 + 1

ρi

)
+ νAi(ν) ln(ρ/ρi ), (2.11)

where

ν = − 1

ln ε
, (2.12)

and Ai(ν) is some undetermined function of ν. The corre-
sponding solution in the original coordinates is

�i(x) = φa

(
1 + 1

ρi

)
+ νAi(ν) ln(|x − xi|/ερi ). (2.13)

The coefficients Ai(ν), i = 1, . . . , N , can be determined
by matching the inner solutions with the corresponding outer
solution (see below). The presence of the small parameter
ν rather than ε in the matched asymptotic expansion is a
common feature of strongly localized perturbations in 2D
domains. It is well known that ν → 0 much more slowly
than ε → 0. Hence, if one is interested in obtaining O(ε)
accuracy, then it is necessary to sum over the logarithmic
terms nonperturbatively. This can be achieved by matching
the inner and outer solutions using Green’s functions [31],
which is equivalent to calculating the asymptotic solution for
all terms of O(νk ) for any k. We will follow this approach
here, but for actual calculations we will expand in powers
of ν. Note that 2D singular perturbation problems involving
infinite logarithmic expansions arise in many other application
areas, such as mean first passage time problems for Brownian
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Ω Ω

xi

xjΔφ = 0Δφ = 0

∂nφ = 0 ∂nφ = 0

FIG. 3. Construction of the outer solution φ. Each droplet is
shrunk to a single point. The outer solution can be expressed in terms
of the corresponding modified Neumann Green’s function and then
matched with the inner solution � around each droplet.

motion in a domain with small traps [31–36] and diffusion-
limited reaction rates in the case of small targets [37,38]. For
a complementary approach to these types of problems see
Refs. [39,40] and references therein.

The outer solution is obtained by treating each droplet
as a point source or sink, see Fig. 3. The resulting time-
independent diffusion equation takes the form

∇2φ = 0, x ∈ �\{x1, . . . , xN }, ∂nφ = 0, x ∈ ∂�,

(2.14a)

together with the matching condition

φ ∼ φa

(
1 + 1

ρ j

)
+ Aj (ν) + νAj (ν)[ln |x − x j | − ln ρ j]

(2.14b)

as x → x j . The next step is to introduce the 2D Neumann
Green’s function G(2)(x, y), which is uniquely defined by

∇2G(2) = 1

|�| − δ(x − y), x ∈ � (2.15a)

and

∂nG(2) = 0 on ∂�,

∫
�

G(2)dx = 0 (2.15b)

for fixed y. Note that G(2) can be decomposed as

G(2)(x, y) = − ln |x − y|
2π

+ R(2)(x, y), (2.16)

where R(2) is the regular part of the Green’s function. We now
make the ansatz

φ(x) ≈ φ∞ − 2πν

N∑
i=1

Ai(ν)G(2)(x, xi ) (2.17)

for x /∈ {x j, j = 1, . . . , N} for some constant φ∞. Observe
that for x /∈ {x j, j = 1, . . . , N},

∇2φ(x) ≈ −2πν

N∑
i=1

Ai(ν)∇2G(2)(x, xi ) = − 2π

|�|
N∑

i=1

Ai(ν).

Hence, the outer solution satisfies the steady-state diffusion
equation if and only if

N∑
i=1

Ai(ν) = 0. (2.18)

The latter is equivalent to imposing the condition that the total
area occupied by droplets is conserved.

As x → x j ,

φ(x) → φ∞ + νAj (ν) ln |x − x j | − 2πνAj (ν)R(2)(x j, x j )

− 2πν

N∑
i �= j

Ai(ν)G(2)(x j, xi ). (2.19)

Comparison with the asymptotic limit in Eq. (2.14b) yields
the self-consistency conditions

− [1 − ν ln ρ j + 2πνR(2)(x j, x j )]Aj (ν)

− 2πν
∑
i �= j

Ai(ν)G(2)(x j, xi ) = φa

(
1 + 1

ρ j

)
− φ∞

(2.20)

for j = 1, . . . , N . In particular, Eq. (2.20) can be rewritten as
a matrix equation

N∑
i=1

(δi, j + νMji )Ai(ν) = � − φa

ρ j
, (2.21)

with � = φ∞ − φa the supersaturation and

Mj j = 2πR(2)(x j, x j ) − ln ρ j,

Mji = 2πG(2)(x j, xi ), j �= i. (2.22)

We thus obtain the solution

Ai(ν) =
N∑

j=1

[I + νM]−1
i j

(
� − φa

ρ j

)
, (2.23)

which is clearly nonperturbative with respect to ν.
It remains to determine the supersaturation �. Using the

fact that
∫

G(2)dx = 0, it follows from Eq. (2.17) that

φ∞ = |�|−1
∫

�

φ(x)dx = φout,

where φout is the mean concentration of solute outside the
droplets. Early on during phase separation, the fractional
volume of droplets is negligible so one can take φ∞ = φtot,
where φtot is the concentration of the homogeneous solution.
However, as phase separation proceeds the volume fraction of
droplets reaches a steady state so that Ostwald ripening pre-
serves the total area occupied by droplets. The area-preserving
condition (2.18) then holds, which combined with Eq. (2.23)
implies that

� = φa

∑N
i, j=1[I + νM]−1

i j ρ−1
j∑N

i, j=1[I + νM]−1
i j

. (2.24)

Hence, to leading order in ν,

� ≈ N−1
N∑

i=1

φa

ρi
= φa

ρharm
, (2.25)
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where ρharm is the harmonic mean. This is one major dif-
ference from 3D, where � is given by the inverse of the
arithmetic mean of the radii. Substituting the leading-order
expression for the coefficients Ai into Eqs. (2.13) and (2.17)
shows that the concentration outside droplets is

φ(x) = φ∞ − 2πν

N∑
i=1

(
� − φa

ρi

)
G(2)(x, xi ) + O(ν2),

(2.26)

and the inner solution near the ith droplet with |x − xi| = ερ

is

�i(ρ) = φa

(
1 + 1

ρi

)
+ ν

(
� − φa

ρi

)
ln(ρ/ρi ) + O(ν2).

(2.27)

Given the quasistatic solution for the concentration, we can
now write down a dynamical equation for the rate of change
of the size of each circular droplet along analogous lines to
the 3D case. When the radius Ri increases by an amount
dRi, the area increases by dAi = 2πRidRi and the number
of molecules required to enlarge the droplet by an amount
dRi is φbdAi [assuming for simplicity that φb � φ(Ri )]. These
molecules are supplied by the flux at the interface. Hence after
rescaling time by t = ε2τ , we have

dρi

dτ
= D

φb
�′

i(ρi ) = D

φb

νAi(ν)

ρi
, (2.28)

where �i(ρ) is the inner solution (2.11). Now carrying out a
perturbation expansion in ν shows that to leading order

dρi

dτ
≈ D

φb

ν

ρi

(
� − φa

ρi

)
. (2.29)

C. Asymptotic analysis in 3D

Although mean-field theory yields the leading-order dy-
namics of droplets in 3D, it is useful to see how higher-order
corrections can be determined using asymptotic methods.
These higher-order terms take into account finite-size effects
associated with the boundary of the domain and the positions
of the droplet centers. Consider Eqs. (2.10a) and (2.10b) with
� ⊂ R3 and �i now a spherical droplet with radius ρi and
center xi ∈ �. Introducing stretched coordinates as in the 2D
case, the inner solution around the ith droplet satisfies

∇2
y�i = 0 for y ∈ R3\�i, �i = φa

(
1+ 1

ρi

)
on |y| = ρi,

which can be expressed in spherical polar coordinates as

1

ρ2

d

dρ
ρ2 d�i

dρ
= 0, ρi < ρ < ∞, �i(ρi ) = φa

(
1+ 1

ρi

)
.

In the 2D case the far-field behavior of the inner solution
is dominated by a logarithmic term, whose coefficient is
determined by matching with the O(ν) outer solution. A major
difference in the 3D case is that the inner solution vanishes
as ρ → ∞ unless its far-field behavior is explicitly matched

with the outer solution (whose leading-order term is the mean
field φ∞). This is achieved by expanding both the inner and
outer solutions as power series in ε along analogous lines to
Ref. [41]. We will proceed to O(ε).

First, expand the outer solution as

φ(x) = φ0(x) + εφ1(x) + · · · , (2.30)

with

∇2φ0 = 0, x ∈ �, ∂nφ0 = 0, x ∈ ∂�, (2.31)

∇2φ1 = 0, x ∈ �\{x1, . . . , xN }, ∂nφ1 = 0, x ∈ ∂�,

(2.32)

and φ1(x) singular as x → xi. If we now introduce a cor-
responding ε-expansion of the inner solution around the ith
droplet

�i(y) = �i,0(y) + ε�i,1(y) + · · · , (2.33)

we then have

∇2
y�i,0 = 0 for y ∈ R3\�i,

�i,0 = φa

(
1 + 1

ρi

)
on |y| = ρi, (2.34)

�i,0 → φ0(xi ) as |y| → ∞,

and

∇2
y�i,1 = 0 for y ∈ R3\�i,

�i,1 = 0 on |y| = ρi, (2.35)

�i,1 → φ
reg
i as |y| → ∞,

Here φ
reg
i denotes the nonsingular part of φ1(x) as x → xi.

Finally, Eq. (2.32) is supplemented by the matching condition
εφ1 ∼ �i,0 as x → xi.

We now proceed iteratively. First, Eq. (2.31) has the mean-
field solution φ0(x) = φ∞. It follows that �i,0 is given by the
mean-field solution (2.4) in rescaled variables:

�i,0(ρ) = φ∞ − ρi

ρ

(
� − φa

ρi

)
. (2.36)

The outer solution φ1 of Eq. (2.32) can now be obtained by
introducing the 3D version of the Neumann Green’s function,
G(3)(x, y), which is uniquely defined by Eqs. (2.15a) and
(2.15b). In 3D the Green’s function G(3) can be decomposed
as

G(3)(x, y) = 1

4π |x − y| + R(3)(x, y), (2.37)

where R(3) is the regular part. The solution to Eq. (2.32) is
then

φ1(x) ≈ −4π

N∑
i=1

ρi

(
� − φa

ρi

)
G(3)(x, xi ) (2.38)
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for x /∈ {x j, j = 1, . . . , N} for some constant φ∞. Observe
that for x /∈ {x j, j = 1, . . . , N},

∇2φ1(x) ≈ −4π

N∑
i=1

ρi

(
� − φa

ρi

)
∇2G(3)(x, xi )

= − 4π

|�|
N∑

i=1

ρi

(
� − φa

ρi

)
.

Hence, the O(ε) term in the expansion of the outer solution
satisfies the steady-state diffusion equation if and only if∑N

i=1 (ρi� − φa) = 0, which recovers Eq. (2.9) in rescaled
variables. Finally, we can determine the O(ε) correction to
the inner solution by substituting the regular part of φ1(x) as
x → xi into Eq. (2.35):

�i,1(ρ) =
(

1 − ρi

ρ

)
φ

reg
i , (2.39)

with

φ
reg
i = −4π

∑
j �=i

ρ j

(
� − φa

ρ j

)
G(3)(xi, x j )

− 4πρi

(
� − φa

ρi

)
R(3)(xi, xi ). (2.40)

In Appendix A we list a few well-known Neumann Green’s
function in simple 2D and 3D geometries.

III. ACTIVE PHASE SEPARATION DRIVEN BY
NONEQUILIBRIUM CHEMICAL REACTIONS

The model of a biological condensate introduced by Wurtz
et al. [14,18] considers a ternary mixture consisting of two
solute states, one phase separating (P) and the other soluble
(S), together with the solvent or cytosol (C). It is assumed
that switching between the states P and S occurs according to
the chemical reactions

P
k
�
h

S,

where k and h are concentration-independent reaction rates.
The latter reflects the nonequilibrium nature of the chemical
reactions, in which detailed balance does not hold due to the
phosphorylating action of ATP, say. Note that there is ex-
perimental evidence that the phase separation of intrinsically
disordered proteins depends on their phosphorylation state
[9]. As in Sec. II, we will consider N small droplets with
radii Ri and positions xi ∈ � ⊂ Rd , d = 2, 3. Denoting the
concentrations of P and S molecules inside the ith droplet by
φ̂i and ψ̂i, respectively, we have the quasistatic equations

D∇2φ̂i − kφ̂i + hψ̂i = 0, (3.1a)

D∇2ψ̂i + kφ̂i − hψ̂i = 0, x ∈ �i, (3.1b)

together with the boundary condition s

φ̂i = φb, ψ̂i = �i on ∂�i, (3.1c)

with �i to be determined (see Sec. III C). For simplicity,
both solute species are assumed to have the same diffusion

ρi

φb
φa(ρi)

Rd

ΔΦi − ξ−2Φi = −αUi/D

ΔΦi − ξ−2Φi = −αQi/D
^ ^

FIG. 4. Interior and exterior droplet regions in stretched coor-
dinates. The P concentration satisfies an inhomogeneous modified
Helmholtz equation with length constant ξ = √

D/(α + β ) and U
the total solute concentration (including molecules in the P and
S states). The total concentration within the droplet is a constant
Qi. The P-state concentration is discontinuous at the interface with
�̂i(ρi ) = φb and �i(ρi ) = φa(ρi ) ≡ φa(1 + 1/ρi ). On the other hand
the S-state concentration is continuous at the interface.

coefficient D. Similarly, denoting the corresponding concen-
trations outside the droplets by φ and ψ , respectively, we have

D∇2φ − kφ + hv = 0, (3.2a)

D∇2ψ + kφ − hψ = 0, x ∈ �\ ∪N
i=1 �i, (3.2b)

supplemented by the boundary and continuity conditions

∂nφ = 0 = ∂nψ on ∂�,

φ = φa

(
1 + c

Ri

)
, ψ = �i on ∂�i. (3.2c)

Again we will fix the length scale by setting L = 1 such
that c = ε and Ri = ερi.

A. Droplet interior

Introduce stretched coordinates inside the ith droplet,

�̂i(y) = φ̂i(xi + εy), �̂i(y) = ψ̂i(xi + εy)

for y = ε−1(x − xi ) and |y| � ρi, see Fig. 4. Equation (3.1)
then take the form

D∇2
y �̂i − β�̂i + α�̂i = 0, (3.3a)

D∇2
y �̂i + β�̂i − α�̂i = 0, |y| � ρi, (3.3b)

where we have introduced the rescaled reaction rates

α = ε2h, β = ε2k,

supplemented by the boundary conditions �̂i = φb and �̂i =
�i for |y| = ρi. Adding Eqs. (3.3) and (3.3b), we have

D∇2
y (�̂i + �̂i ) = 0, |y| � ρi. (3.4)
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Introducing polar coordinates shows that

�̂i(ρ) + �̂i(ρ) =
{

Qi + Q̂i ln ρ (2D)

Qi + Q̂i/ρ (3D)

for 0 � ρ � ρi. In order to avoid the singularity at ρ = 0
we set Q̂i = 0, which implies that �̂i(ρ) + �̂i(ρ) = Qi ≡
φb + �i is a constant inside the droplet. This then allows us
to decouple Eqs. (3.3) and (3.3b) such that �̂i satisfies the
modified Helmholtz equation

∇2
y �̂i − ξ−2�̂i = −α(φb + �i )

D
, 0 � ρ � ρi, (3.5)

where we have introduced the new length scale

ξ =
√

D

α + β
. (3.6)

1. Two-dimensional droplets

For a circular droplet, Eq. (3.5) can be written in polar
coordinates

1

ρ

d

dρ
ρ

d�̂i

dρ
− ξ−2�̂i = −α(φb + �i )

D
, 0 � ρ � ρi,

(3.7)

where Eq. (3.7) has the nonsingular solution

�̂i(ρ) = ciI0(ρ/ξ ) + α[φb + �i]

α + β
. (3.8)

Imposing the boundary condition �i(ρi ) = φb then deter-
mines the coefficient ci:

�̂i(ρ) =
(

β

α + β
φb − α�i

α + β

)
I0(ρ/ξ )

I0(ρi/ξ )
+ α[φb + �i]

α + β
.

(3.9)

2. Three-dimensional droplets

Similarly, using spherical polar coordinates in 3D, we have

1

ρ2

d

dρ
ρ2 d�̂i

dρ
− ξ−2�̂i = −α(φb + �i )

D
, 0 � ρ � ρi,

(3.10)

Performing the change of variables ci(ρ) = ρ�̂i(ρ), we have

d2ci

dρ2
− ξ−2ci = −ρ

α(φb + �i )

D
, 0 � ρ � ρi. (3.11)

The solution is thus

�̂i(ρ) =
(

φb − α[φb + �i]

α + β

)
ρi

ρ

sinh(ρ/ξ )

sinh(ρi/ξ )
+ α[φb + �i]

α + β
.

(3.12)

The sinh function is required for the inner solution so that it is
nonsingular at ρ = 0

B. Droplet exterior

Let us now turn to the region exterior to droplets. First,
adding Eqs. (3.2a) and (3.2b) and setting φ + ψ = u, we have

D∇2u = 0, x ∈ �\ ∪N
i=1 �i, ∂nu = 0 on ∂� (3.13a)

and

u = Ui ≡ �i + φa

(
1 + 1

ρi

)
on ∂�i. (3.13b)

Equation (3.13a) can be analyzed along almost identical lines
to Secs. II B and II C by partitioning the exterior domain into
an outer region and a set of N inner regions. Denote the
resulting outer and inner solutions by u and Ui, respectively.
Given these solutions, we define the inner solutions for the P
and S concentrations according to

�i(y) = φi(xi + εy), �i(y) = ψi(xi + εy)

for y = ε−1(x − xi ) and ρi < |y| < ∞, see Fig. 4. It follows
that �i(y) = Ui(y) − �i(y) with �i satisfying the inhomoge-
neous modified Helmholtz equation

∇2
y�i − ξ−2�i = −αUi(y)

D
, |y| � ρi, (3.14a)

and

�i = φa

(
1 + 1

ρi

)
, |y| = ρi. (3.14b)

(We focus on the inner solutions, since these determine the
fluxes at the interface.) Since ∇2

yUi = 0, the solution of
Eq. (3.14a) is of the general form

�i(y) =
{
φa

(
1 + 1

ρi

)
− αUi

α + β

}
Ci(y) + αUi(ρ)

α + β
, (3.15)

where Ci(y) is the solution of the homogeneous modified
Helmholtz equation

∇2
yCi − ξ−2Ci = 0 for |y| � ρi,

Ci = 1 on |y| = ρi. (3.16)

1. Two-dimensional droplets

In the case of 2D droplets, summing up all logarithmic
singularities yields the inner and outer solutions

Ui(ρ) = Ui + νBi(ν) ln(ρ/ρi ) (3.17)

for ρi < ρ < ∞, and

u(x) = u∞ − 2πν

N∑
i=1

Bi(ν)G(2)(x, xi ) (3.18)

for x /∈ {x j, j = 1, . . . , N}. The coefficients Bi(ν) are given
by

Bi(ν) =
N∑

j=1

[I + νM]−1
i j (u∞ − U j ) ≈ u∞ − Ui (3.19)

and

u∞ =
∑N

i, j=1[I + νM]−1
i j U j∑N

i, j=1[I + νM]−1
i j

≈ φa

(
1 + 1

ρharm

)
+ � (3.20)
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with � = N−1 ∑N
i=1 �i. Now solving the modified Helmholtz

equation (3.16) in polar coordinates yields

�i(ρ) =
{
φa

(
1 + 1

ρi

)
− αUi

α + β

}
K0(ρ/ξ )

K0(ρi/ξ )
+ αUi(ρ)

α + β
,

(3.21)

where K0(z) is the modified Bessel function of zeroth order
that is nonsingular at infinity. However, it has a logarithmic
singularity at z = 0. Note that the inner solution automatically
matches the outer solution

φ(x) ≈ α

α + β
u(x), ψ (x) ≈ β

α + β
u(x), (3.22)

since K0(ρ/ξ ) → 0 as ρ → ∞.

2. Three-dimensional droplets

Similarly, in the case of 3D droplets, the inner solution Ui

is given by

Ui(ρ) = u∞ − ρi

ρ
[u∞ − Ui] + ε

(
1 − ρi

ρ

)
�i(ρ,�) + O(ε2),

(3.23)

with ρ = (ρ1, . . . , ρN ), � = (�1, . . . , �N ),

�i(ρ,�) = −4π
∑
j �=i

ρ j[u∞ − U j]G
(3)(xi, x j )

− 4πρi[u∞ − Ui]R
(3)(xi, xi ) + O(ε2), (3.24)

and Ui defined in Eq. (3.13b). The corresponding outer solu-
tion is

u(x) = u∞ − 4πε

N∑
i=1

ρi[u∞ − Ui]G
(3)(x, xi ) + O(ε2).

(3.25)

Finally, solving the modified Helmholtz equation (3.16) in
spherical polar coordinates yields

�i(ρ) =
{
φa

(
1 + 1

ρi

)
− αUi

α + β

}
ρi

ρ
e−(ρ−ρi )/ξ + αUi(ρ)

α + β
.

(3.26)

C. Interfacial fluxes and droplet dynamics

As in the classical theory of Ostwald ripening, the rate of
change of the radius ρi (in rescaled variables) is given by the
jump in the flux normal to the interface at ρ = ρi:

dρi

dτ
= 1

φb
[Ji,+ − Ji,−], (3.27)

where we have rescaled time according to t = ε2τ , which
is consistent with the rescaling of the reaction rates, and
introduced the P fluxes

Ji,− = D
d�̂i

dρ

∣∣∣∣
ρ=ρ−

i

≡ J−(ρi,�i ), (3.28a)

Ji,+ = D
d�i

dρ

∣∣∣∣
ρ=ρ+

i

≡ J+(ρi,�i ) + ji(ρ,�), (3.28b)

Using Eq. (3.15), we have further decomposed the exterior
flux into two components:

J+(ρi,�i ) = D

{
φa

(
1 + 1

ρi

)
− αUi

α + β

}
dCi

dρ

∣∣∣∣
ρ=ρ+

i

,

(3.28c)

where Ci(ρi ) is the solution to Eq. (3.16) in polar or spherical
polar coordinates, and

ji(ρ,�) = α

α + β
DU ′

i (ρi ). (3.28d)

Note that if one includes higher-order terms in the asymptotic
expansion of the inner solution Ui, then the flux ji depends
on all radii ρ = (ρ1, . . . , ρN ) and all concentrations � =
(�1, . . . , �N ), see Appendix B. Hence, the asymptotic anal-
ysis is crucial for determining the local flux ji, which is pro-
portional to the gradient U ′ of the total solute concentration.
As we will see in Sec. IV, although this flux vanishes when
the system is in a multidroplet steady state, it has nonzero
fluctuations that contribute to the stability of the steady state.

The N unknown constants �i can now be determined
by imposing continuity of the S flux at the interface. More
specifically, let

J̃i,− = D
d�̂i

dρ

∣∣∣∣
ρ=ρ−

i

, J̃i,+ = D
d�i

dρ

∣∣∣∣
ρ=ρ+

i

. (3.29)

Since

�̂i(ρ) = φb + �i − �̂i(ρ), for 0 < ρ < ρi,

�i(ρ) = Ui(ρ) − �i(ρ) for ρ > ρi, (3.30)

it follows that

J̃i,− = −J−(ρi,�i ),

J̃i,+ = β

α
ji(ρ,�) − J+(ρi,�i ). (3.31)

Continuity of the S flux at the interface ρ = ρi then requires

J+(ρi,�i ) − J−(ρi,�i ) = β

α
ji(ρ,�). (3.32)

The various contributions to the P flux and S flux across a
droplet interface are illustrated in Fig. 5.

1. Two-dimensional droplets

From Eqs. (3.9), (3.17), and (3.21) and the definitions of
the fluxes in Eq. (3.28), we find that for circular droplets

J+(ρ,�) = D

ξ

{
β

α + β
φa

(
1 + 1

ρ

)
− α�

α + β

}
K ′

0(ρ/ξ )

K0(ρ/ξ )
,

(3.33a)

J−(ρ,�) = D

ξ

(
β

α + β
φb − α�

α + β

)
I ′
0(ρ/ξ )

I0(ρ/ξ )
, (3.33b)

and

ji(ρ,�) = α

α + β

νDBi(ρ,�)

ρi
. (3.33c)

The coefficients Bi, which are given by Eq. (3.19), have
an O(ν) dependence on all radii ρ = (ρ1, . . . , ρN ) and all
concentrations � = (�1, . . . , �N ).

042804-9



PAUL C. BRESSLOFF PHYSICAL REVIEW E 101, 042804 (2020)

Ji,+(ρ,Θ)

Ji,-(ρ,Θ)

ji(ρ,Θ)

- Ji,-(ρ,Θ)

-Ji,+(ρ,Θ)

βji(ρ,Θ)/α

(a) P-fluxes

(b) S-fluxes

FIG. 5. (a) Various P fluxes crossing the ith droplet interface.
There is one outward current Ji,−(ρ,�) and two inward currents
Ji,+(ρ,�) and ji(ρ,�), where ρ is the droplet radius and � is the
continuous S concentration at the interface. The current ji depends
on the local gradient U ′

i of the total solute concentration outside
the droplet. The fluxes balance at the steady-state solution (ρ∗, �∗)
with ji(ρ∗, �∗) = 0. (b) Corresponding S fluxes. The net S flux is
continuous across the interface.

2. Three-dimensional droplets

From Eqs. (3.12), (3.23), and (3.26) and the definitions of
the fluxes in Eq. (3.28), we find that for spherical droplets

J+(ρ,�) = D

ξ

{
α�

α + β
− β

α + β
φa

(
1 + 1

ρ

)}(
1 + ξ

ρ

)
,

(3.34a)

J−(ρ,�) = D

ξ

(
β

α + β
φb − α�

α + β

)[
coth(ρ/ξ ) − ξ

ρ

]
,

(3.34b)

and

ji(ρ,�) = α

α + β

D

ρi

[
u∞ − �i − φa

(
1 + 1

ρi

)]
+ ε

α

α + β

D

ρi
�i(ρ,�) + O(ε2). (3.34c)

The term �i(ρ,�), which is given by Eq. (3.24), depends
on all radii ρ = (ρ1, . . . , ρN ) and all concentrations � =
(�1, . . . , �N ).

IV. EXISTENCE AND STABILITY
OF MULTIDROPLET STATES

We are interested in the existence and stability of a steady
state ρi = ρ∗ and �i = �∗ for all i = 1, . . . , N . A major
observation is that �∗ and ρ∗ are related according to

�∗ + φa

(
1 + 1

ρ∗

)
= u∞. (4.1)

This means that the far-field and near-field total solute concen-
trations are the same, that is, the total exterior concentration is
spatially uniform. Hence,

ji(ρ
∗,�∗) = 0 for all i = 1, . . . N,

and we obtain the P-flux balance condition

J+(ρ∗,�∗) = J−(ρ∗,�∗). (4.2)

Continuity of the S flux at the interface then immediately
follows from Eq. (3.32).

The local stability of the multidroplet steady state can be
determined by considering perturbations of the form ρi =
ρ∗ + δρi, �i = �∗ + δ�i, such that u∞ is unchanged. The
corresponding P flux into the ith droplet is then

δJi =
[

∂J+
∂ρ∗ − ∂J−

∂ρ∗

]
δρi +

[
∂J+
∂�∗ − ∂J−

∂�∗

]
δ�i

+
N∑

l=1

{
∂ ji
∂ρl

δρl + ∂ ji
∂�l

δ�l

}
, (4.3)

where all derivatives are evaluated at the steady state. How-
ever, there is a relationship between the perturbations δ� and
δρ, since continuity of the S fluxes at the interface must be
preserved. From Eq. (3.32), this takes the form

β

α

N∑
l=1

{
∂ ji
∂ρl

δρl + ∂ ji
∂�l

δ�l

}

=
[

∂J+
∂ρ∗ − ∂J−

∂ρ∗

]
δρi +

[
∂J+
∂�∗ − ∂J−

∂�∗

]
δ�i. (4.4)

Introducing the scalar and matrix functions

P = ∂J+
∂ρ∗ − ∂J−

∂ρ∗ , (4.5a)

Q = ∂J+
∂�∗ − ∂J−

∂�∗ , (4.5b)

Pil = ∂ ji
∂ρl

(ρ∗,�∗), Qil = ∂ ji
∂�l

(ρ∗,�∗), (4.5c)

Eqs. (4.3) and (4.4) can be rewritten as

δJi = β + α

β

{[
∂J+
∂ρ∗ − ∂J−

∂ρ∗

]
δρi +

[
∂J+
∂�∗ − ∂J−

∂�∗

]
δ�i

}
,

(4.6)

with

δ�i = −
N∑

l,k=1

[
QI − β

α
Q

]−1

il

[
PI − β

α
P
]

lk

δρk . (4.7)

Considerable simplification occurs if we only keep the
leading-order terms in the asymptotic expansion of the fluxes
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ji. In the case of 3D droplets, substituting Eq. (3.13b) into
(3.34) shows that to O(1)

Pil = α

α + β

Dφa

ρ∗3 δi,l + O(ε), (4.8)

Qil = − α

α + β

D

ρ∗ δi,l + O(ε). (4.9)

Similarly, keeping the leading-order term in the ν series
expansion of the coefficients Bi(ν) in Eq. (3.33),

Pil = α

α + β

νDφa

ρ∗3 δi,l + O(ν2),

Qil = − α

α + β

νD

ρ∗ δi,l + O(ν2). (4.10)

Substituting these approximations into Eqs. (4.3) and (4.4)
yields to leading order

δJi ≈ �d

{
1

ρ∗

[
∂J+
∂ρ∗ − ∂J−

∂ρ∗

]
+ φa

ρ∗3

[
∂J+
∂�∗ − ∂J−

∂�∗

]}
δρi

(4.11)

for all i = 1, . . . , N and d = 2, 3, with

�2 = νD

[
∂J+
∂�∗ − ∂J−

∂�∗ + β

α + β

νD

ρ∗

]−1

, (4.12a)

�3 = D

[
∂J+
∂�∗ − ∂J−

∂�∗ + β

α + β

D

ρ∗

]−1

. (4.12b)

Finally, requiring that δJi and δρi have opposite signs leads to
the O(1) stability condition

φa

ρ∗2

[
∂J+
∂�∗ − ∂J−

∂�∗

]
+

[
∂J+
∂ρ∗ − ∂J−

∂ρ∗

]
< 0, (4.13)

since one finds that �d > 0. The stability condition (4.13)
reduces to one obtained previously for 3D systems [14,18,19],
under the mean-field approximation

�i + φa

(
1 + 1

ρi

)
= u∞

for all perturbations of the multidroplet steady state. However,
the above condition does not preserve continuity of the S
flux across the interface, and thus fails to capture the phys-
ical mechanism for stabilizing the steady state. In addition,
mean-field theory does not allow one to take into account
higher-order corrections to the stability condition. The latter
are considered further in Appendix B.

V. SUPPRESSION OF OSTWALD RIPENING IN 2D

Since the balance condition (4.2) and the leading-order
stability condition (4.13) are identical in form to those ob-
tained previously using mean-field theory in 3D, we will
focus on analyzing the suppression of Ostwald ripening for
circular droplets. Analogous to Refs. [14,18], we analyze the
dynamics in two separate regimes corresponding to the cases
ρ∗ � ξ (small-droplet regime) and ρ∗ � ξ (large-droplet
regime). Here the size of a droplet is in reference to the length
constant ξ rather than the mean separation L.

A. Large-droplet regime

Suppose that ρ∗ � ξ . Consider the asymptotic expansions

I0(z) ∼ ez

√
2πz

[
1 + 1

8z
+ O(z−2)

]
,

I ′
0(z) ∼ ez

√
2πz

[
1 − 3

8z
+ O(z−2)

]
, (5.1)

and

K0(z) ∼ e−z

√
π

2πz

[
1 − 1

8z
+ O(z−2)

]
,

K ′
0(z) ∼ −e−z

√
π

2πz

[
1 + 3

8z
+ O(z−2)

]
. (5.2)

These imply that

I ′
0(z)

I0(z)
= 1 − 3/8z

1 + 1/8z
+ O(z−2) ≈ 1 − 1

2z
(5.3)

and

−K ′
0(z)

K0(z)
= 1 + 3/8z

1 − 1/8z
+ O(z−2) ≈ 1 + 1

2z
. (5.4)

Substituting these asymptotic expansions into Eq. (3.33),
gives to leading order in ξ/ρ∗

J−(ρ,�) ≈ D

ξ

(
β

α + β
φb − α�

α + β

)(
1 − ξ

2ρ

)
, (5.5a)

J+(ρ,�) ≈ D

ξ

{
α�

α + β
− β

α + β
φa

(
1 + 1

ρ

)}
×

(
1 + ξ

2ρ

)
. (5.5b)

1. Steady-state radius

Substituting Eqs. (5.5) into the balance condition (4.2)
shows that to leading order in ξ/ρ∗,

β

α + β
φb − α�∗

α + β
= α�∗

α + β
− β

α + β
φa

(
1 + 1

ρ∗

)
Combining with Eq. (4.1) implies that

φb − �b ≈ φ∞ − φa

(
1 + 1

ρ∗

)
, (5.6)

where �b is the mean concentration within each droplet,

�b = α

α + β
(�∗ + φb). (5.7)

Next, imposing solute mass conservation gives

πρ∗2N�b + (A − πρ∗2N )φ∞ ≈ Aφtot, (5.8)

where A = |�| is the total area of the system and φtot =
αutot/(α + β ) is the original homogeneous concentration of
P molecules. For simplicity, the concentration gradients near
the interface have been neglected since the interfacial region
is small compared to the size of the droplets (ξ � ρ∗). Rear-
ranging Eq. (5.8),

πρ∗2 = A

N

φtot − φ∞
�b − φ∞

.
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Following along similar lines to Ref.[14], Eqs. (5.6) and (5.7)
imply that

πρ∗2 ≈ A

N

[
utot − φa(1 + 1/ρ∗)

φb
− β

2α

]
, (5.9)

after using φb � φa. For the sake of illustration, suppose that
ρ∗ � 1. Taking A/N2 = L2 = 1, with L the average droplet
separation, we then have

πρ∗2 = N

(
utot − φa

φb
− β

2α

)
. (5.10)

Note that the radius ρ∗ is an extensive variable, that is, it
depends on the number of droplets N . Assuming that N � 1,
then this condition will be satisfied if β < βu(α) with

βu(α) = 2α

(
utot − φa

φb

)
. (5.11)

2. Stability of the multidroplet state

In order to determine the stability of the multidroplet solu-
tion, we have to calculate the various first-order derivatives in
Eq. (4.13). From Eqs. (5.5),

∂J−
∂ρ

≈ D

2ρ2

βφb − α�

α + β
,

∂J+
∂ρ

≈ − D

2ρ2

α� − βφa[1 + 1/ρ]

α + β
+ D

ξ

βφa

ρ2(α + β )
,

∂J−
∂�

≈ − αD

ξ (α + β )

(
1 − ξ

2ρ

)
,

∂J+
∂�

= αD

ξ (α + β )

(
1 + ξ

2ρ

)
.

Substituting into Eq. (4.11) shows that

δJi ∼ νD

ρ∗3

[
φa − β(φbξ − 2φa)

2α

]
δρi, (5.12)

after using φb � φa and ξ � ρ∗. We conclude that the
droplets will be stable with respect to local perturbations
provided that β > βl (α) where

βl (α) = 2φaα

φbξ − 2φa
. (5.13)

In summary, in the large-droplet regime, a stable mul-
tidroplet steady state with ρi = ρ∗ and �i = �∗ exists for a
range of values of the switching rate β and fixed α:

βl (α) < β < βu(α).

The upper and lower bounds βu and βl are almost identical to
the 3D case [14]. However, there are O(ν) corrections to these
bounds, see Appendix B.

B. Small-droplet regime

Now suppose that ρ∗ � ξ and consider the following
small-z expansion of the modified Bessel function I0(z),

I0(z) = 1 + z2

4
+ 1

(2!)2

(
z2

4

)2

+ · · · , (5.14)

we have

I ′
0(z)

I0(z)
= z/2 + z3/16 + · · ·

1 + z2/4
= z

2
− z3

16
+ O(z5).

Hence, to leading order in ρ/ξ ,

J−(ρ,�) ≈ D

2ξ 2

(
β

α + β
φb − α�

α + β

)
ρ ≈ β

2
φbρ. (5.15)

This flux is consistent with the fact that the number of droplet
P molecules converted to S molecules per unit time is p =
βπρ2

i φb and the S molecules rapidly diffuse out of the droplet
to generate a flux J ≈ p/(2πρi ) = βπρiφb/2. Similarly, us-
ing a small-z expansion of the modified Bessel function K0(z),

K0(z) = −[ln(z/2) + γ ]I0(z) + z2

2
+ 3

2

z4

64
+ · · · , (5.16)

where γ is the Euler constant, we find that

J+(ρ,�) ≈ D

ρ

{
α�

α + β
− β

α + β
φa

(
1 + 1

ρ

)}
1

| ln(ρ/2ξ )| .

(5.17)

Substituting these asymptotic expansions into Eq. (4.2) and
using Eq. (4.1), gives to leading order in ρ∗/ξ the balance
condition

β

2
φbρ

∗ = D

ρ∗

{
� − φa

ρ∗

}
1

| ln(ρ∗/2ξ )| , (5.18)

where � = φ∞ − φa is the supersaturation. Equation (5.18) is
similar in form to the balance equation for small 3D droplets
derived in Refs. [14,18] using mean-field theory. One major
difference is the presence of the additional logarithmic factor
1/ln(ρ∗/2ξ ), which means that the existence of a multidroplet
steady state now depends on ξ to leading order. The existence
of steady-state multidroplet solutions can be investigated
graphically as illustrated in Fig. 6. Here we plot the fluxes
J±(ρ∗,�∗) as functions of ρ∗ with �∗ given by Eq. (4.1). The
latter holds in the case of a solution for which all droplets
have the same radius. Points of intersection of the curves
J± correspond to multidroplet solutions that are stationary
with respect to droplet growth due to the fluxes balancing.
It can be seen that for a range of supersaturations � and
interfacial length constants ξ , there exists a pair of steady state
radii ρ∗

±. However, these steady-state solutions disappear for
sufficiently small � or large ξ .

We also see that the solution with radius ρ∗
+ is stable,

whereas the other solution with radius ρ∗
− is unstable. This

is based on the observation that J+ > J− for ρ∗ < ρ∗
+ and

J+ < J− for ρ∗ > ρ∗
+ so that a larger droplet has a net efflux,

whereas a smaller droplet has a net influx. The opposite holds
in a neighborhood of ρ∗

−. In other words, a multidroplet state
is stable if

∂J+
∂ρ∗ <

∂J−
∂ρ∗ . (5.19)

VI. DISCUSSION

In this paper we used asymptotic methods to investigate the
suppression of Ostwald ripening in a model of active liquid-
liquid phase separation, which was previously analyzed using
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FIG. 6. Active suppression of Ostwald ripening in the small-droplet regime (ξ/ρ∗ � 1). In a multidroplet state (ρi, �i ) = (ρ∗,�∗), i =
1, . . . , N , the net flux at a droplet interface is a combination of an influx J∗

+ = J+(ρ∗) and an efflux J∗
− = J−(ρ∗) where we have set �∗ =

u∞ − φa(1 + 1/ρ∗). A solution is a steady state with respect to droplet growth provided that the fluxes are balanced. For fixed supersaturation
� = φ∞ − φa and interfacial length constant ξ , steady states correspond to points of intersection of the curves J+(ρ∗) and J−(ρ∗). (a) Plots of
J+(ρ∗) as a function of ρ∗ for various ξ values and fixed supersaturation � = 1.2 (b) Plots of J+(ρ∗) as a function of ρ∗ for various � values
and fixed ξ = 100. For a range of values of � and ξ , there exist two steady-state radii ρ∗

± for which the fluxes cancel. These steady states
disappear below a critical supersaturation or above a critical interfacial length constant ξ . Other parameters are D = 1 and φa = 1.

mean-field theory [14,18,19]. Two limitations of the latter
approach are that (i) it breaks down in the case of 2D droplets
due to logarithmic singularities, and (ii) it cannot take into
account finite size effects. The two main assumptions of our
analysis were that the droplets are well separated and that they
are relatively small. In particular, taking the mean separation
to be L, we introduced the small parameter ε = c/L, where
c is the capillary length associated with the Gibbs-Thomson
law, and took the droplet radii to have the scaling Ri/L = ερi.
It immediately follows that one limitation of our approach is
that it cannot deal with dense droplet condensates or droplets
whose size are comparable to the size of the domain. The main
results and implications of our analysis are as follows.

(i) The existence and stability of multiple droplet states
in active liquid-liquid phase separation (active suppression of
Ostwald ripening) can be formulated as a diffusion problem
in a domain with small exclusions or holes. This type of prob-
lem requires dealing with strongly localized perturbations,
that is, perturbations of large magnitude but small spatial
extent [31,34,35]. Such singular perturbations have received
considerable attention in recent years within the context of
the so-called narrow escape problem, see the recent reviews
[39,40]. That is, molecules inside the cell are often confined
to a domain with small exits on the boundary of the do-
main or traps within the interior of the domain. Examples
include the transport of newly transcribed mRNA from the
nucleus to the cytoplasm via nuclear pores, the confinement
of neurotransmitter receptors within a synapse of a neuron,
and the confinement of calcium and other signaling molecules
within subcellular compartments such as dendritic spines. In
the case of narrow escape problems, one is typically interested
in solving a first passage time problem in which the boundary
of each exclusion is taken to be absorbing. This differs sig-
nificantly from the problem considered in this paper, where
one also has to consider diffusion within the interior of each
exclusion or droplet, and impose (possibly discontinuous)
boundary conditions across each droplet interface. Moreover,

the diffusing species are in quasisteady state due to the slow
growth or shrinkage of the droplets.

(ii) In determining the stability of a multidroplet state, it
is necessary to consider fluctuations in each droplet radius
ρi and the corresponding concentration �i of the non-phase-
separating (S) solute at the interface. The latter is determined
by imposing continuity of the S flux. One consequence of
this is that, away from the steady state, there is an additional
contribution to the influx of the phase-separating (P) solute at
the interface, which is given by the spatial gradient of the total
solution concentration. Thus, within a boundary layer around
each droplet, one cannot take this gradient to be zero.

(iii) One major difference between the asymptotic analysis
of 2D and 3D droplets is that the former involves an asymp-
totic expansion in ν = −1/ ln ε, whereas the latter involves
an asymptotic expansion in ε. Since ν → 0 more slowly than
ε → 0, one can achieve greater accuracy for fixed ε in the
3D case. Following [31], it is possible to sum all logarithmic
terms, but this is less useful for practical calculations except
in the simplest geometric configurations.

(iv) Keeping only leading-order terms in the asymptotic
expansions, it is possible to derive explicit conditions for the
existence and stability of a multidroplet state, which recover
the results of mean-field theory for 3D droplets. A number
of differences emerge, however, when analyzing the corre-
sponding leading-order conditions in 2D. First, fluctuations
about the multidroplet steady state are O(ν) rather than O(1).
Second, in the small-droplet regime (ρ∗ � ξ ) the in-flux has
an additional logarithmic factor of the form −1/ ln(ρ∗/ξ ),
where ρ∗ is the steady-state droplet radius and ξ is the width
of each interfacial region. This means that the existence of
the multidroplet state has a leading-order dependence on ξ

as well as the supersaturation �. Higher-order terms in the
asymptotic expansions take into account finite-size effects
associated with the boundary of the domain and the positions
of the droplets. These modify the stability condition for the
multidroplet solution, but not the existence condition.
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(v) Although we applied the theory of strongly localized
perturbations to a specific model of active liquid-liquid phase
separation [14,18,19], the underlying asymptotic methods
have a wide range of applicability, as has been demonstrated
in other problem domains [31–40]. Possible generalizations
include different mechanisms for active phase separation
such as autocatalysis [19,22], heterogeneous media including
droplet ripening in protein concentration gradients [21], dif-
ferent interfacial boundary conditions, and eigenvalue prob-
lems associated with the approach to steady state. In the case
of the regulation of droplet ripening by protein concentration
gradients, one finds that perturbations of spherical droplets are
no longer radially symmetric, and this induces a slow drift
of 3D droplets down the concentration gradient [19,21]. This
is analogous to the observation of droplet segregation during
asymmetric cell division of C. elegans zygotes. It should be
possible to investigate analogous drift phenomena in the case
of 2D droplets by adapting the asymptotic methods of this
paper.

APPENDIX A: NEUMANN GREEN’S FUNCTIONS
IN SIMPLE GEOMETRIES.

(a) The disk. Let � ⊂ R2 be the unit circle centered at the
origin. The 2D Neumann Green’s function is given by [24]:

G(2)(x, ξ) = 1

2π

[
− ln(|x − ξ|) − ln

(∣∣∣∣x|ξ| − ξ

|ξ|
∣∣∣∣)

+ 1

2
(|x|2 + |ξ|2) − 3

4

]
, (A1)

with the regular part obtained by dropping the first logarithmic
term.

(b) The sphere. Let � ⊂ R3 be the sphere of radius a
centered about the origin. The 3D Neumann Green’s function
takes the form [41]

G(3)(x, ξ) = 1

4π |x − ξ| + a

4π |x|r′

+ 1

4πa
ln

(
2a2

a2 − |x||ξ| cos θ + |x|r′

)
+ 1

6|�| (|x|2 + |ξ|2) + B, (A2)

where the constant B is chosen so that
∫
�

G(3)(x, ξ)dx = 0,
and

cos θ = x · ξ

|x||ξ| , x′ = a2x
|x|2 , r′ = |x′ − ξ|.

It can be shown that B is independent of ξ.
(c) Rectangular domain. Let � ⊂ R2 be a rectangular

domain [0, L1] × [0, L2]. The 2D Neumann Green’s function
has the logarithmic expansion [34]

G(2)(r, r′) = 1

L1
H0(y, y′) − 1

2π

∞∑
j=0

∑
n=±

∑
m=±

(ln |1 − τ j znζm|

+ ln |1 − τ j znςm|), (A3)

where

τ = e−2πL2/L1 , z± = eiπ (x±x′ )/L1 ,

ζ± = e−π |y±y′ |/L1 , ς± = e−π (2L2−|y±y′|)/L1 ,

and

H0(y, y′) = L2

3
+ 1

2L2
(y2 + y′2) − max{y, y′}, (A4)

Assuming that τ � 1, we have the approximation

G(2)(r, r′) = 1

L1
H0(y, y′) − 1

2π

∑
n=±

∑
m=±

(ln |1 − znζm|

+ ln |1 − znςm|) + O(τ ). (A5)

The only singularity exhibited by Eq. (A3) occurs when r →
r′, r′ /∈ ∂�, in which case z− = ζ− = 1 and the term ln |1 −
z−ζ−| diverges. Writing

ln |1 − z−ζ−| = ln |r − r′| + ln
|1 − z−ζ−|

|r − r′| , (A6)

where the first term on the right-hand side is singular and the
second is regular, we find that

G(2)(r, r′) = − 1

2π
ln |r − r′| + R(r, r′), (A7)

where R is the regular part of the Green’s function given by

R(r, r′) = − 1

L1
H0(y, y′) + 1

2π
ln

|1 − z−ζ−||1 − z−ζ+|
|r − r′|

1

2π
ln |1 − z−ς−||1 − z−ς+|

1

2π
ln |1 − z+ς−||1 − z+ς+|

1

2π
ln |1 − z+ζ−||1 − z+ζ+| + O(τ ). (A8)

APPENDIX B: HIGHER-ORDER CORRECTIONS
TO MULTIDROPLET STABILITY

In Sec. IV, we derived the O(1) stability condition (4.13)
by Taylor expanding the fluxes ji to leading order in ν (2D) or
ε (3D). Here we indicate how to extend the analysis to include
higher-order terms.

1. 2D droplets

In order to determine the matrices P and Q of Eq. (4.5), we
rewrite Eq. (3.19) as

N∑
i=1

[δi, j + νMji]Bi(ρ,�) = u∞ − φa

(
1 + 1

ρ j

)
− � j (B1)

Differentiating both sides of Eq. (B1) with respect to ρk and
noting from Eq. (2.22) that

∂Mj j

∂ρk
= −δ j,k

ρ j
,

∂Mji

∂ρk
= 0 for i �= j,

we have

∂Bj

∂ρk
+ ν

N∑
i=1

Mji
∂Bi

∂ρk
− ν

ρ j
B jδ j,k = φa

ρ2
j

δ j,k .
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Rearranging this equations yields

∂Bi

∂ρk
= [I + νM]−1

ik

[
ν

ρi
Bi + φa

ρ2
i

]
. (B2)

Similarly, differentiating both sides of Eq. (B1) with respect
to �k and noting from Eq. (2.22) that

∂Mi j

∂ρk
= 0 for all i, j = 1, . . . , N,

we have

∂Bj

∂�k
+ ν

N∑
i=1

Mji
∂Bi

∂�k
= −δ j,k .

and hence
∂Bi

∂�k
= −[I + νM]−1

ik . (B3)

It then follows from Eqs. (3.33d) and (4.5c) that

Pil = α

α + β

νDφa

ρ∗3 [I + νM(ρ∗)]−1
il , (B4a)

Qil = − α

α + β

νD

ρ∗ [I + νM(ρ∗)]−1
il , (B4b)

where

Mi j (ρ
∗) = [2πR(2)(xi, xi ) − ln ρ∗]δi, j

+ 2πG(2)(xi, x j )(1 − δi, j ).

We have used the identity Bi(ρ∗,�∗) = 0. Equations (4.6),
(4.7), (B4a), and (B4b) provide a nonperturbative approxima-
tion to the effects of fluctuations on the multidroplet state,
in which all logarithmic terms have been summed. Clearly
Eqs. (4.10) are recovered on dropping O(ν2) terms. Here
we determine the O(ν2) corrections to the stability condition
(4.13). Using

[I + νM]−1 = I − νM + O(ν2),

we have[
PI − β

α
P
]

lk

≈
{

∂J+
∂ρ∗ − ∂J−

∂ρ∗ − β

α + β

νDφa

ρ∗3

}
δl,k

+ β

α + β

ν2Dφa

ρ∗3 Mlk (ρ∗) + O(ν3),

and[
QI − β

α
Q

]
il

≈ 1

γ2
δi,l − β

α + β

ν2D

ρ∗ Mil (ρ
∗) + O(ν3),

γ2 = �2

νD
=

[
∂J+
∂�∗ − ∂J−

∂�∗ + β

α + β

νD

ρ∗

]−1

.

Equation (4.7) thus becomes

δ�i = −γ2

{
∂J+
∂ρ∗ − ∂J−

∂ρ∗ − β

α + β

νDφa

ρ∗3

}
δρi

− β

α + β

ν2Dγ2

ρ∗

[
φa

ρ∗2 + γ2

(
∂J+
∂ρ∗ − ∂J−

∂ρ∗

)]

×
N∑

k=1

Mik (ρ∗)δρk + O(ν3). (B5)

Finally, substituting into Eq. (4.6),

δJi ≈ νDγ2

ρ∗

{[
∂J+
∂ρ∗ − ∂J−

∂ρ∗

]
+ φa

ρ∗2

[
∂J+
∂�∗ − ∂J−

∂�∗

]}

×
[
δρi − νγ2

N∑
k=1

Mik (ρ∗)δρk

]
+ O(ν3) (B6)

Hence, the stability condition (4.13) will still hold provided
that

νλmax <
∂J+
∂�∗ − ∂J−

∂�∗ , (B7)

where λmax is the largest positive eigenvalue of the matrix M.
Consider as an example a pair of droplets in the unit

circle, whose Neumann Green’s function is given by Eq. (A1).
Taking both droplet centers to be on the x axis, x j = (x j, 0),
j = 1, 2, it follows that

G(2)(x1, x2) = 1

2π

[
− ln(|x1 − x2|) − ln (|x1x2 − 1|)

+ 1

2
(x2

1 + x2
2 ) − 3

4

]
= G(x2, x1), (B8)

and

R(2)(x j, x j ) = 1

2π

[
− ln

(∣∣x2
j − 1

∣∣) + x2
j − 3

4

]
(B9)

for j = 1, 2. The matrix M(ρ∗) is then

M(ρ∗) =
(

2πR11 − ln ρ∗ 2πG12

2πG12 2πR22 − ln ρ∗

)
, (B10)

where we have set Rj j = R(2)(x j, x j ) and G12 = G(2)(x1, x2).
The eigenvalues of M are thus

λ± = π [R11 + R22] − ln(ρ∗) ± π

√
(R11 − R22)2 + G2

12.

(B11)

2. Three-dimensional droplets

One can also derive higher-order corrections to the stability
condition for 3D droplets by carrying out a perturbation ex-
pansion in ε. We briefly highlight the leading-order correction.
From Eqs. (3.24) and (3.34) and

ji(ρ,�) = α

α + β

D

ρi

N∑
j=1

{[1 − 4πεR(3)(xi, xi )]δi, j

− 4πεG(3)(xi, x j )(1 − δi, j )}

×
[

u∞ − � j − φa

(
1 + 1

ρ j

)]
+ O(ε2). (B12)
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Hence,

Pil = α

α + β

Dφa

ρ∗3 {[1 − 4πεR(3)(xi, xi )]δi,l − 4πεG(3)(xi, xl )(1 − δi,l )}, (B13a)

Qil = − α

α + β

D

ρ∗ {[1 − 4πεR(3)(xi, xi )]δi,l − 4πεG(3)(xi, xl )(1 − δi,l )}. (B13b)

It follows that [
PI − β

α
P
]

lk

≈
{

∂J+
∂ρ∗ − ∂J−

∂ρ∗ − β

α + β

Dφa

ρ∗3

}
δl,k + ε

β

α + β

Dφa

ρ∗3 Glk + O(ε2)

and [
QI − β

α
Q

]
il

≈ 1

γ3
δi,l − ε

β

α + β

D

ρ∗Gil + O(ε2),

with

Gi j = 4πR(3)(xi, xi )δi, j + 4πG(3)(xi, x j )(1 − δi, j ), γ3 =
[

∂J+
∂�∗ − ∂J−

∂�∗ + β

α + β

D

ρ∗

]−1

.

Equation (4.7) thus becomes

δ�i = −γ3

{
∂J+
∂ρ∗ − ∂J−

∂ρ∗ − β

α + β

Dφa

ρ∗3

}
δρi − ε

β

α + β

Dγ3

ρ∗

[
φa

ρ∗2 + γ3

(
∂J+
∂ρ∗ − ∂J−

∂ρ∗

)] N∑
k=1

Gikδρk + O(ε2). (B14)

Substituting into Eq. (4.6),

δJi ≈ Dγ3

ρ∗

({[
∂J+
∂ρ∗ − ∂J−

∂ρ∗

]
+ φa

ρ∗2

[
∂J+
∂�∗ − ∂J−

∂�∗

]}
δρi − ε

[
φa

ρ∗2 + γ3

(
∂J+
∂ρ∗ − ∂J−

∂ρ∗

)] N∑
k=1

Gikδρk

)
+ O(ε2). (B15)

[1] C. P. Brangwynne et al., Germline P granules are liquid droplets
that localize by controlled dissolution/condensation, Science
324, 1729 (2009).

[2] C. P. Brangwynne, T. J. Mitchison, and A. A. Hyman, Active
liquid-like behavior of nucleoli determines their size and shape
in Xenopus laevis oocytes, Proc. Natl. Acad. Sci. USA 108,
4334 (2011).

[3] S. Elbaum-Garfinkle et al., The disordered P granule protein
LAF-1 drives phase separation into droplets with tunable vis-
cosity and dynamics, Proc. Natl. Acad. Sci. USA 112, 7189
(2015).

[4] A. A. Hyman, C. A. Weber, and F. Julicher, Liquid-liquid
phase separation in biology, Annu. Rev. Cell Dev. Biol. 30, 39
(2014).

[5] C. P. Brangwynne, P. Tompa, and R. V. Pappu, Polymer physics
of intracellular phase transitions, Nat. Phys. 11, 899 (2015).

[6] S. F. Banani, H. O. Lee, A. A. Hyman, and M. K. Rosen,
Biomolecular condensates: Organizers of cellular biochemistry,
Nat. Rev. Mol. Cell Biol. 18, 285 (2017).

[7] J. Berry, C. Brangwynne, and H. P. Haataja, Physical principles
of intracellular organization via active and passive phase transi-
tions, Rep. Prog. Phys. 81, 046601 (2018).

[8] H. Falahati and A. Haji-Akbari, Thermodynamically driven
assemblies and liquid-liquid phase separations in biology,
Soft Matter 15, 1135 (2019).

[9] P. Li et al., Phase transitions in the assembly of multivalent
signaling proteins, Nature 483, 336 (2012).

[10] S. Banjade and M. K. Rosen, Phase transitions of multivalent
proteins can promote clustering of membrane receptors, eLife
3, e04123 (2014).

[11] I. M. Lifshitz and V. V. Slyozov, The kinetics of precipitation
from supersaturated solid solutions, J. Phys. Chem. Solids. 19,
35 (1961).

[12] C. Wagner, Theorie der Alterung von Niederschlägen durch
Umlösen, Z. Elektrochem. 65, 581 (1961).

[13] M. Doi, Soft Matter Physics (Oxford University Press, Oxford,
2013).

[14] C. F. Lee and J. D. Wurtz, Novel physics arising from phase
transitions in biology, J. Phys. D 52, 023001 (2019).

[15] S. Jain et al., ATPase-modulated stress granules contain a
diverse proteome and substructure, Cell 164, 487 (2016).

[16] M. Feric and C. P. Brangwynne, A nuclear F-actin scaffold
stabilizes ribonucleoprotein droplets against gravity in large
cells, Nat. Cell Biol. 15, 1253 (2013).

[17] D. Zwicker, A. A. Hyman, and F. Jülicher, Suppression of
Ostwald ripening in active emulsions, Phys. Rev. E 92, 012317
(2015).

[18] J. D. Wurtz and C. F. Lee, Chemical-Reaction-Controlled Phase
Separated Drops: Formation, Size Selection and Coarsening,
Phys. Rev. Lett. 120, 078102 (2018).

[19] C. A. Weber, D. Zwicker, F. Jülicher, and C. F. Lee, Physics of
active emulsions. Rep. Prog. Phys. 82, 064601 (2019).

[20] C. F. Lee, C. P. Brangwynne, J. Gharakhani, A. A. Hyman,
and F. Julicher, Spatial Organization of the Cell Cytoplasm

042804-16

https://doi.org/10.1126/science.1172046
https://doi.org/10.1126/science.1172046
https://doi.org/10.1126/science.1172046
https://doi.org/10.1126/science.1172046
https://doi.org/10.1073/pnas.1017150108
https://doi.org/10.1073/pnas.1017150108
https://doi.org/10.1073/pnas.1017150108
https://doi.org/10.1073/pnas.1017150108
https://doi.org/10.1073/pnas.1504822112
https://doi.org/10.1073/pnas.1504822112
https://doi.org/10.1073/pnas.1504822112
https://doi.org/10.1073/pnas.1504822112
https://doi.org/10.1146/annurev-cellbio-100913-013325
https://doi.org/10.1146/annurev-cellbio-100913-013325
https://doi.org/10.1146/annurev-cellbio-100913-013325
https://doi.org/10.1146/annurev-cellbio-100913-013325
https://doi.org/10.1038/nphys3532
https://doi.org/10.1038/nphys3532
https://doi.org/10.1038/nphys3532
https://doi.org/10.1038/nphys3532
https://doi.org/10.1038/nrm.2017.7
https://doi.org/10.1038/nrm.2017.7
https://doi.org/10.1038/nrm.2017.7
https://doi.org/10.1038/nrm.2017.7
https://doi.org/10.1088/1361-6633/aaa61e
https://doi.org/10.1088/1361-6633/aaa61e
https://doi.org/10.1088/1361-6633/aaa61e
https://doi.org/10.1088/1361-6633/aaa61e
https://doi.org/10.1039/C8SM02285B
https://doi.org/10.1039/C8SM02285B
https://doi.org/10.1039/C8SM02285B
https://doi.org/10.1039/C8SM02285B
https://doi.org/10.1038/nature10879
https://doi.org/10.1038/nature10879
https://doi.org/10.1038/nature10879
https://doi.org/10.1038/nature10879
https://doi.org/10.7554/eLife.04123
https://doi.org/10.7554/eLife.04123
https://doi.org/10.7554/eLife.04123
https://doi.org/10.7554/eLife.04123
https://doi.org/10.1016/0022-3697(61)90054-3
https://doi.org/10.1016/0022-3697(61)90054-3
https://doi.org/10.1016/0022-3697(61)90054-3
https://doi.org/10.1016/0022-3697(61)90054-3
https://doi.org/10.1088/1361-6463/aae510
https://doi.org/10.1088/1361-6463/aae510
https://doi.org/10.1088/1361-6463/aae510
https://doi.org/10.1088/1361-6463/aae510
https://doi.org/10.1016/j.cell.2015.12.038
https://doi.org/10.1016/j.cell.2015.12.038
https://doi.org/10.1016/j.cell.2015.12.038
https://doi.org/10.1016/j.cell.2015.12.038
https://doi.org/10.1038/ncb2830
https://doi.org/10.1038/ncb2830
https://doi.org/10.1038/ncb2830
https://doi.org/10.1038/ncb2830
https://doi.org/10.1103/PhysRevE.92.012317
https://doi.org/10.1103/PhysRevE.92.012317
https://doi.org/10.1103/PhysRevE.92.012317
https://doi.org/10.1103/PhysRevE.92.012317
https://doi.org/10.1103/PhysRevLett.120.078102
https://doi.org/10.1103/PhysRevLett.120.078102
https://doi.org/10.1103/PhysRevLett.120.078102
https://doi.org/10.1103/PhysRevLett.120.078102
https://doi.org/10.1088/1361-6633/ab052b
https://doi.org/10.1088/1361-6633/ab052b
https://doi.org/10.1088/1361-6633/ab052b
https://doi.org/10.1088/1361-6633/ab052b


ACTIVE SUPPRESSION OF OSTWALD RIPENING: … PHYSICAL REVIEW E 101, 042804 (2020)

by Position-Dependent Phase Separation, Phys. Rev. Lett. 111,
088101 (2013).

[21] C. A. Weber, C. F. Lee, and F. Jülicher, F. Droplet ripening in
concentration gradients, New J. Phys. 19, 053021 (2017).

[22] D. Zwicker, M. Decker, S. Jaensch, A. A. Hyman, and F.
Jülicher, Centrosomes are autocatalytic drops of pericentriolar
material organized by centrioles, Proc. Natl. Acad. Sci. USA
111, E2636 (2014).

[23] N. D. Alikakos, G. Fusco, and G. Karali, Ostwald ripening in
two dimensions—The rigorous derivation of the equations from
the Mullins-Sekerka dynamics, J. Diff. Eqs. 205, 1 (2004).

[24] E. Kavanagh, Interface Motion in the Ostwald Ripening and
Chemotaxis Systems. Master’s thesis, University of British
Columbia (2014).

[25] S. Ramaswamy and M. Rao, The physics of active membranes,
C. R. Acad. Sci. Paris 2, 817 (2001).

[26] H. Y. Chen, Internal States of Active Inclusions and the Dynam-
ics of an Active Membrane, Phys. Rev. Lett. 92, 168101 (2004).

[27] A. Veksler and N. S. Gov, Phase transitions of the coupled
membrane-cytoskeleton modify cellular shape, Biophys. J. 93,
3798 (2007).

[28] M. M. Kozlov, F. Campelo, N. Liska, L. V. Chernomordik,
S. J. Marrink, and H. T. McMahon, Mechanisms shaping cell
membranes, Curr. Opin. Cell. Biol. 29, 53 (2014).

[29] N. S. Gov, Guided by curvature: Shaping cells by coupling
curved membrane proteins and cytoskeletal forces, Roy. Soc.
Phil Trans. B 373, 20170115 (2018).

[30] M. M. Fryd and T. G. Mason, Advanced nanoemulsions, Annu.
Rev. Phys. Chem. 63, 493 (2012).

[31] M. J. Ward, W. D. Henshaw, and J. B. Keller, Summing log-
arithmic expansions for singularly perturbed eigenvalue prob-
lems, SIAM J. Appl. Math. 53, 799 (1993).

[32] P. C. Bressloff, B. A. Earnshaw, and M. J. Ward, Diffusion
of protein receptors on a cylindrical dendritic membrane with
partially absorbing traps, SIAM J. Appl. Math. 68, 1223 (2008).

[33] D. Coombs, R. Straube, and M. J. Ward, Diffusion on a
sphere with localized traps: Mean first passage time, eigenvalue
asymptotics, and Fekete points, SIAM J. Appl. Math 70, 302
(2009).

[34] S. Pillay, M. J. Ward, A. Peirce, and T. Kolokolnikov, An
asymptotic analysis of the mean first passage time for narrow
escape problems: Part I: Two-dimensional domains, SIAM
Multiscale Model. Sim. 8, 803 (2010).

[35] A. F. Cheviakov, M. J. Ward, and R. Straube, An asymptotic
analysis of the mean first passage time for narrow escape
problems: Part II: The sphere, SIAM J. Multiscal Model. Sim.
8, 836 (2010).

[36] P. C. Bressloff and S. D. Lawley, Escape from subcellular do-
mains with randomly switching boundaries, Multiscale Model.
Simul. 13, 1420 (2015).

[37] R. Straube, M. J. Ward, and M. Falcke, Reaction rate of small
diffusing molecules on a cylindrical membrane, J. Stat. Phys.
129, 377 (2007).

[38] P. C. Bressloff and S. D. Lawley, Stochastically-gated diffusion-
limited reactions for a small target in a bounded domain,
Phys. Rev. E 92, 062117 (2015).

[39] D. Holcman and Z. Schuss, Control of flux by narrow passages
and hidden targets in cellular biology, Rep. Prog. Phys. 76,
074601 (2013).

[40] D. Holcman and Z. Schuss, The narrow escape problem, SIAM
Rev. 56, 213 (2014).

[41] A. F. Cheviakov and M. J. Ward, Optomizing the principal
eigenvalue of the Laplacian in a sphere with interior traps,
Math. Comp. Model. 53, 1394 (2011).

042804-17

https://doi.org/10.1103/PhysRevLett.111.088101
https://doi.org/10.1103/PhysRevLett.111.088101
https://doi.org/10.1103/PhysRevLett.111.088101
https://doi.org/10.1103/PhysRevLett.111.088101
https://doi.org/10.1088/1367-2630/aa6b84
https://doi.org/10.1088/1367-2630/aa6b84
https://doi.org/10.1088/1367-2630/aa6b84
https://doi.org/10.1088/1367-2630/aa6b84
https://doi.org/10.1073/pnas.1404855111
https://doi.org/10.1073/pnas.1404855111
https://doi.org/10.1073/pnas.1404855111
https://doi.org/10.1073/pnas.1404855111
https://doi.org/10.1016/j.jde.2004.05.008
https://doi.org/10.1016/j.jde.2004.05.008
https://doi.org/10.1016/j.jde.2004.05.008
https://doi.org/10.1016/j.jde.2004.05.008
https://doi.org/10.1103/PhysRevLett.92.168101
https://doi.org/10.1103/PhysRevLett.92.168101
https://doi.org/10.1103/PhysRevLett.92.168101
https://doi.org/10.1103/PhysRevLett.92.168101
https://doi.org/10.1529/biophysj.107.113282
https://doi.org/10.1529/biophysj.107.113282
https://doi.org/10.1529/biophysj.107.113282
https://doi.org/10.1529/biophysj.107.113282
https://doi.org/10.1016/j.ceb.2014.03.006
https://doi.org/10.1016/j.ceb.2014.03.006
https://doi.org/10.1016/j.ceb.2014.03.006
https://doi.org/10.1016/j.ceb.2014.03.006
https://doi.org/10.1098/rstb.2017.0115
https://doi.org/10.1098/rstb.2017.0115
https://doi.org/10.1098/rstb.2017.0115
https://doi.org/10.1098/rstb.2017.0115
https://doi.org/10.1146/annurev-physchem-032210-103436
https://doi.org/10.1146/annurev-physchem-032210-103436
https://doi.org/10.1146/annurev-physchem-032210-103436
https://doi.org/10.1146/annurev-physchem-032210-103436
https://doi.org/10.1137/0153039
https://doi.org/10.1137/0153039
https://doi.org/10.1137/0153039
https://doi.org/10.1137/0153039
https://doi.org/10.1137/070698373
https://doi.org/10.1137/070698373
https://doi.org/10.1137/070698373
https://doi.org/10.1137/070698373
https://doi.org/10.1137/080733280
https://doi.org/10.1137/080733280
https://doi.org/10.1137/080733280
https://doi.org/10.1137/080733280
https://doi.org/10.1137/090752511
https://doi.org/10.1137/090752511
https://doi.org/10.1137/090752511
https://doi.org/10.1137/090752511
https://doi.org/10.1137/100782620
https://doi.org/10.1137/100782620
https://doi.org/10.1137/100782620
https://doi.org/10.1137/100782620
https://doi.org/10.1137/15M1019258
https://doi.org/10.1137/15M1019258
https://doi.org/10.1137/15M1019258
https://doi.org/10.1137/15M1019258
https://doi.org/10.1007/s10955-007-9371-4
https://doi.org/10.1007/s10955-007-9371-4
https://doi.org/10.1007/s10955-007-9371-4
https://doi.org/10.1007/s10955-007-9371-4
https://doi.org/10.1103/PhysRevE.92.062117
https://doi.org/10.1103/PhysRevE.92.062117
https://doi.org/10.1103/PhysRevE.92.062117
https://doi.org/10.1103/PhysRevE.92.062117
https://doi.org/10.1088/0034-4885/76/7/074601
https://doi.org/10.1088/0034-4885/76/7/074601
https://doi.org/10.1088/0034-4885/76/7/074601
https://doi.org/10.1088/0034-4885/76/7/074601
https://doi.org/10.1137/120898395
https://doi.org/10.1137/120898395
https://doi.org/10.1137/120898395
https://doi.org/10.1137/120898395
https://doi.org/10.1016/j.mcm.2010.02.025
https://doi.org/10.1016/j.mcm.2010.02.025
https://doi.org/10.1016/j.mcm.2010.02.025
https://doi.org/10.1016/j.mcm.2010.02.025

