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Abstract. A common method for analyzing the effects of molecular noise in chemical reaction networks is to
approximate the underlying chemical master equation by a Fokker—Planck equation and to study the
statistics of the associated chemical Langevin equation. This so-called system-size expansion involves
performing a perturbation expansion with respect to a small dimensionless parameter € = Q~!, where
Q) characterizes the system size. For example, €2 could be the mean number of proteins produced by
a gene regulatory network. In the deterministic limit {2 — oo, the chemical reaction network evolves
according to a system of ordinary differential equations based on classical mass action kinetics. In this
paper we develop a phase reduction method for chemical reaction networks that support a stable
limit cycle in the deterministic limit. We present a variational principle for the phase reduction,
yielding an exact analytic expression for the resulting phase dynamics. We demonstrate that this
decomposition is accurate over timescales that are exponential in the system size 2. This contrasts
with the phase equation obtained under the system-size expansion, which is only accurate up to
times O(Q2). In particular, we show that for a constant C, the probability that the system leaves an
O(¢) neighborhood of the limit cycle before time T scales as T exp(—CQb(?), where b is the rate of
attraction to the limit cycle. We illustrate our analysis using the example of a chemical Brusselator.
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1. Introduction. Genetically identical cells exposed to the same environmental conditions
can show significant variation in molecular content and marked differences in phenotypic char-
acteristics. This intrinsic variability is linked to the fact that many cellular events at the
genetic level involve small numbers of molecules (low copy numbers) and has led to a large
number of studies focused on investigating the origins and consequences of intrinsic or molecu-
lar noise in gene expression (see the reviews [25, 38, 40, 44, 12, 26]). In the presence of intrinsic
noise, standard deterministic models of chemical reaction networks (CRNs), which are based
on mass action kinetics, have to be replaced by discrete stochastic models. The stochastic
dynamics of the CRN can then be formulated in terms of a chemical master equation, which
determines the evolution of the probability distribution P,(t) for n = (n4,...,nxg), where n;
is the number of each molecular species labeled ¢ = 1,..., K. In general, it is not possible
to obtain exact solutions of the master equation, even in the case of a stationary solution.
(Note, however, that recent progress has been made by generalizing the theory of determin-
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istic chemical reaction networks to stochastic models, using notions of weak reversibility and
deficiency zero [2, 4].) Therefore, one often resorts to some form of approximation scheme.
The most common approach is to carry out a Taylor expansion of the master equation with
respect to a dimensionless variable  that characterizes the size of the system [45, 14]. This
so-called system-size expansion yields a Fokker—Planck (FP) equation, whose solution deter-
mines the probability density p(x,t) for the concentrations x = n/€, which evolve according
to a chemical Langevin equation.

A general issue is to what extent the system-size expansion of a chemical master equation
accounts for the statistics of the underlying CRN. In cases where the deterministic mass
action kinetics have a unique stable fixed point, the corresponding stationary distribution
of the master equation can be well approximated by Gaussian-like fluctuations around the
fixed point. One can thus obtain good estimates for the mean and variance of molecular
concentrations using the system-size expansion [42, 14, 38]. However, such an approximation
can break down when there are multiple fixed points (metastability). Although one can still
account for the effects of fluctuations well within the basin of attraction of each metastable
fixed point, there is now a small probability that there is a noise-induced transition to the
basin of attraction of another fixed point. Since the probability of such a transition is usually
of order e~ with 7 = O(1), except close to the boundary of the basin of attraction, such a
contribution cannot be analyzed accurately using standard Fokker—Planck methods. That is,
for large €2 the transitions between different metastable states typically involve rare transitions
(large fluctuations) that lie in the tails of the associated probability distribution, where the
Gaussian approximation no longer necessarily holds. These exponentially small transitions
play a crucial role in allowing the system to approach the unique stationary state (if it exists)
in the asymptotic limit ¢ — oco. In other words, for bistable (or multistable) systems, the
limits t — oo and N — oo do not necessarily commute [24, 46]. In order to ensure accurate
estimates of transition rates, one has to use alternative approximation schemes based on large
deviation theory and perturbation methods, which are applied directly to the underlying
master equation or CK equation [12]. We also note that several recent papers bound the
probability of large deviations over fixed timescales [29, 1].

Similar issues hold for other types of attractors such as stable limit cycles. In the absence
of noise, one can represent the dynamics of a limit cycle in terms of motion around a closed
curve in state space. Each point on the limit cycle can be assigned a phase 6 € [0, 2]
such that the dynamics is given by 0 = wp, where wy = 2m/Ay and A is the period of the
oscillation. When noise is included, one tends to observe an irregular trajectory around the
limit cycle. The resulting stochastic phase of the oscillator (assuming that it can be defined)
undergoes diffusion around the limit cycle, so all phase information is eventually lost. The
effective diffusion coefficient of this process is one measure of robustness to phase decoherence
[23]. (For a general discussion of robustness in biological processes, see [27, 37, 34].) A
second effect of noise is that it can extend the parameter regime over which oscillations can
occur. That is, even though the deterministic system converges to a fixed point, the system
exhibits oscillatory behavior when noise is included. This can be established by looking at
the power spectra of the concentrations [6, 7]. As far as we are aware, almost all previous
studies of stochastic CRN oscillators are based on the system-size expansion of chemical master
equations or modifications of such approximations, which generate more accurate estimations
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of the statistics that remain uniformly accurate for long times [35]. One exception is a hybrid
computational study, which combines simulations of the discrete Markov process via Gillespie
and solutions of the approximate SDE [41].

Recently, we have developed a variational method for carrying out a phase reduction of
stochastic limit cycle oscillators evolving according to a Langevin equation, which yields an
exact analytical expression for the phase dynamics [9]. Within the variational framework, the
minimization scheme determines the phase by projecting the full stochastic solution on to the
limit cycle using Floquet vectors. Hence, in a neighborhood of the limit cycle the phase vari-
able coincides with the well-known isochronal phase. This has the advantage that the phase
dynamics decouples from transverse fluctuations to leading order. Another major feature of
the variational approach is that it allows one to obtain an exponential bound on the growth
of transverse fluctuations. This issue, which is typically ignored in studies of stochastic phase
oscillators, is important since any phase reduction scheme ultimately breaks down over suffi-
ciently long timescales, since there is a nonzero probability of leaving a bounded neighborhood
of the limit cycle, and the notion of phase no longer makes sense. The mean time to escape a
neighborhood of the limit cycle is thus a measure of robustness to transverse fluctuations. In
a subsequent paper, we extended the variational method to piecewise-deterministic Markov
processes (PDMPs) that support a limit cycle in the adiabatic or fast switching limit [10]. (A
PDMP evolves deterministically except at a sequence of random times where the deterministic
dynamics switches to a different mode according to a discrete Markov process [11, 12].)

In this paper, we further extend our variational method in order to explore the robustness
of stochastic biochemical oscillators to transverse fluctuations, which we analyze by working
directly with the underlying discrete Markov process rather than resorting to a system-size
expansion. The limitation of the latter within this context is that it is only accurate up to
times O(f)), whereas we are interested in obtaining exponential bounds on the typical time
that the system spends in a neighborhood of the limit cycle. We first derive an approximate
stochastic phase equation for the exact discrete Markov process using Kurtz’s random time
change representation [31, 32, 33, 3] and the method of isochrons. We then show how this
equation can be derived more rigorously from a variational principle, which yields an exact
implicit equation for the phase dynamics. We also use the variational principle to prove that,
with very high probability, the time to escape a neighborhood of the limit cycle scales as
exp (C’Qb), where C' is a constant, and b is the rate of attraction toward the limit cycle. The
fact that the timescale of the bound is so large demonstrates the utility of using an exact
representation of the phase.

The organization of the paper is as follows. In section 2 we define a CRN and review
the method of isochrons for analyzing deterministic biochemical oscillators. We then use the
method of isochrons to derive a stochastic phase equation under the system-size expansion.
In section 3 we show how to derive a corresponding phase equation for the exact discrete
Markov process using Kurtz’s random time change representation [31, 32, 33, 3]. The varia-
tional method for CRNs is presented in section 4 and we illustrate our theory by numerically
simulating the stochastic Brusselator. Rigorous exponential bounds on the probability of es-
cape from a neighborhood of the limit cycle are obtained in section 5. Finally, in section 6,
we summarize the paper and draw some conclusions.
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2. Biochemical oscillators and the system-size expansion.

2.1. Chemical reaction network. Consider a well-mixed compartment containing a set
of chemical species A;, j = 1,...,K. Let n; be the number of molecules of A; and set
n=(ny,...,ng). A typical single-step chemical reaction takes the form

81A1+82A2—|—~--—)7"1A1+7“2A2+~--,

where s;,7; are known as stoichiometric coefficients. When one such reaction occurs the state
n is changed according to
n; — N +1; — S;.

Introducing the vector S with S; = r; — s;, we have n — n + S. The reverse reaction
Z TjAj — Z SfAj
J J

would then have n — n—S. More complicated multistep reactions can always be decomposed
into these fundamental single-step reactions with appropriate stoichiometric coefficients.

In the case of a large number of molecules, one can describe the dynamics of a single
step chemical reaction in terms of a kinetic or rate equation involving the concentrations
xzj = n;/Q—the law of mass action. Here Q is a dimensionless quantity representing the
system size, which is usually taken to be the mean number of molecules or some volume
scale factor. In a well-mixed container there is a spatially uniform distribution of each type
of molecule, and the probability of a collision depends on the probability that each of the
reactants is in the same local region of space. Ignoring any statistical correlations, the latter
is given by the product of the individual concentrations. It then follows that the kinetic
equations take the form

=

da?i S
2.1 = I =
(2.1) y H = SiA(x

where x = (z1,...,2x) and k is a rate constant. Now suppose that there are a = 1,..., M
separate single-step reactions. Then

M
d.TZ‘ .
(2.2) prk Fi(x) = ;21 Siata(x), i=1,..., K,

where a labels a single-step reaction and S is the so-called K x M stoichiometric matrix for K
molecular species and R reactions. Thus S;, specifies the change in the number of molecules
of species 7 in a given reaction a. The functions )\, are known as transition intensities or
propensities.

Mathematically speaking, the kinetic equations hold in the thermodynamic limit 2 — co.
For finite Q, it is necessary to take into account fluctuations in the number N;(¢) of each
chemical species. Let P,(t) = P[Ni(t) = n1,...,Nk(t) = ng] with n = (n1,...,ng). Given
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the kinetic equations (2.2), the probability distribution P, (t) evolves according to the chemical
master equation

a=1 \i=

R K
(2.3) dpgft) = QZ ( L~ Sia _ 1) Aa(n/Q) Py (2).
1

Here L= is a step or ladder operator such that for any function g(n),
(2.4) L~%g(ny, ..., nis...,nk) = g(n1,...,ni — Sia, - ., 1K)

In general, it is not possible to obtain exact solutions of the master equation (2.3) even in the
case of a stationary solution. (Note, however, that progress has been made by generalizing
the theory of deterministic chemical reaction networks to stochastic models, using notions
of weak reversibility and deficiency zero [2].) Therefore, one often resorts to some form of
approximation scheme.

2.2. Biochemical oscillators and isochrons. The next step is to assume that the deter-
ministic dynamical system (2.2) supports a stable limit cycle. That is, there exists a stable
periodic solution x = x*(¢) with x*(t) = x*(t + Ap), where wy = 27/A¢ is the natural fre-
quency of the oscillator. The dynamics on the limit cycle can be described by a uniformly
rotating phase such that

do
dt
and z*(t) = ®(0(t)) with ® a 2m-periodic function and 0(t) = 6y + wot. The dynamical
equations for ® can thus be written as

(2.5) wo,

do
2. — = F(®(0)).
(26) s’ = F(®(0)
Differentiating both sides with respect to 0 gives
d (dP 1 d®

where J is the 2m-periodic Jacobian matrix

OF;
(2.8) Jin(0) = —2 :

Ay, z=0(6)

Since the dynamical system is autonomous, it follows that it is neutrally stable with respect
to perturbations along the limit cycle.

Our main concern in this paper is to characterize how intrinsic noise associated with fluc-
tuations in the number of each chemical species for finite 2 affects the phase of the oscillator.
This will require understanding how the deterministic system responds to small perturbations.
Therefore, consider the perturbed deterministic dynamical system

d.’L‘Z'

(2.9) — = Fi(x) +VeGi(x), i=1,...,K,
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where 0 < € < 1 and G;(x) is bounded. A classical method for deriving the corresponding
phase equation is based on the construction of isochrons [48, 30, 19, 13, 5]. Suppose that the
unperturbed system (2.2) is observed stroboscopically at time intervals of length Ag. This
can be represented by the Poincare mapping

x(t) = x(t + Ao) = P(x(t)),

which has all points on the limit cycle as fixed points. The isochron through a point x* on the
limit cycle is the (K — 1)-dimensional hypersurface Z, consisting of all points in the vicinity of
x* that are attracted to x* under the action of P. Thus each isochron can be uniquely labeled
by the phase of its point of intersection with the limit cycle, that is, Z = Z(0) for x* = ®(0).
This then allows us to extend the definition of phase to a neighborhood of the limit cycle
by taking all points x € Z() to have the same phase, ©(x) = 6, which then rotates at the
natural frequency wp (in the unperturbed case). Hence, for an unperturbed oscillator in the
vicinity of the limit cycle we have

=3 R,

Z 00 dz; <~ 9O
8% dt = Ox;

Extending the definition of isochrons to the perturbed system (2.9), we have to leading
order

Z@m +fG(xt))_wo+\fZ Gj(x,t).
J

As a further leading order approximation, deviations of x from the limit cycle are ignored
on the right-hand side. Hence, setting x(t) = ®(0(¢)) with ® the 27-periodic solution on the
limit cycle,

doe 00
& aa o, t
Jj=1 x
We can now obtain a closed equation for the phase by noting that ©(®(0)) = 6:
do -
(2.10) it =0 Ve R 0G,2(0).0,
‘]:
where
(2.11) Ry(0) = 99
Tk | —a(9)

is a 27-periodic function of # known as the kth component of the phase response curve (PRC).
One way to calculate the PRC R(0) is to note that it is a 27-periodic solution of the linear
equation [16, 17, 30]

(2.12) wo—p = —J(0)" - R(B),
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\, isochron

X0 limit cycle

X(0)

stochastic trajectory

Figure 1. Stochastic trajectory of chemical reaction network for finite 2, assuming that the corresponding
mass action kinetics supports a stable limit cycle. The method of isochrons determines the phase 0(t) by tracing
where the isochron through X (t) intersects the limit cycle. The response to perturbations depends on the phase
response curve R(0), which is normal to the isochron at the point of intersection with the limit cycle.

with the normalization condition
dd(0)
do

Here J(6)T is the transpose of the Jacobian matrix J(6) given by (2.8).

(2.13) R(6) =1.

2.3. System-size expansion and phase reduction. Now suppose that we include the
effects of intrinsic noise by taking €2 to be large but finite, with the corresponding deterministic
system operating in an oscillatory regime. Intuitively, one might expect that simulating the
chemical reaction network using Gillespie’s stochastic simulation algorithm [20, 21, 22], for
example, will generate a stochastic trajectory that remains in a neighborhood of the limit
cycle (up to some stopping time), as illustrated schematically in Figure 1. While it remains
within such a neighborhood, one can effectively treat the noise as a small perturbation of the
deterministic limit cycle and apply the method of isochrons.

As we noted in the introduction, most studies of stochastic CRN oscillators [23, 6, 7, 35]
are based on the system-size expansion of the chemical master equation (2.3) [18, 45, 14]. This
involves setting A\, (n/Q)Py(t) — A\o(X)p(x,t) with x = n/Q and treating x as a continuous
vector.! Then

K
JIL %en(x) = h(x — S4/Q)
=1

K
= - ZSZ@ + 902 SiaSja

5,5=1

0?h(x)

-3
al'ial'j + O(Q )

'Note that N;(t), j = 1,..., K, are discrete random variables so that X;(t) = N;(t)/Q are also discrete.
However, if €2 is sufficiently large, then the trajectory consists of small jumps so that it can be approximated by
a continuous trajectory, assuming that the number of jumps in a small time interval is bounded appropriately.
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Carrying out a Taylor expansion of the master equation to second order thus yields the
multivariate Fokker—Planck (FP) equation

Op OF;(x)p( 02 D;j(x)p(x,1)
2.14 - = — _—
(2.14) ot ; Oxi 2Q ]Z_ 81‘2630] ’
where
R R
(2.15) Fi(x) = Siaha(x), Dij(x) = SiaSjara(x)
a=1 a=1

The FP equation (2.14) corresponds to the multivariate Ito stochastic differential equation
(SDE)

R
(2.16) dX; = Fy(X Z a(t),

where W, (t) are independent Wiener processes [18],

(2.17) (dWo(t)) =0, (dW,o(t)dWy(t')) = Gap0(t — t')dt dt’,
and D = BBT, that is,

(2.18) Bia = SiaV/Aa().

(Note that the SDE (2.16) can also be derived more rigorously using Kurtz’s random time
change representation [31, 32, 33, 3].)

In terms of the isochronal phase reduction method highlighted in section 2.2, suppose
that we treat the sum over Wiener processes in (2.16) as a perturbation of the deterministic
equation, by setting e = 1/Q and

R
(2.19) Gj(x)dt = Bia(X)dWa(2).

a=1
This leads to a stochastic version of the phase equation (2.10). However, one needs to be
careful in applying the phase reduction procedure to the Ito SDE. First, in order to apply
the usual rules of calculus it is necessary to convert the Ito SDE to Stratonovich form using
Ito’s lemma. This yields an O(1/Q) correction to the drift term [43, 17, 36]. Since we are

interested in the leading order contributions to the phase equation, we can ignore such a term
and simply take the phase to evolve according to the Ito SDE

(2.20) df = wodt + [ZR Z Bja(®(0()))dW,(t).

Equation (2.20) follows from substituting (2.19) into the right-hand side of (2.10) and setting
e = Q7!. The second, and more significant issue, is that even for large € there is a small
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but nonzero probability that a stochastic trajectory generated by the SDE (2.16) leaves any
neighborhood of the limit cycle, in which case the notion of phase breaks down. In previous
work, we have developed a variational principle for SDEs that provides strong exponential
bounds on the escape probability [9]. (We have also extended the variational formulation
to the case of piecewise-deterministic Markov processes [10].) One could directly apply our
analysis to the SDE (2.16). However, the latter is already an approximation of the exact
discrete Markov process. This motivates the analysis of this paper, namely, to derive an
explicit phase equation to O(1/€) and to obtain bounds on the probability of escape by
working directly with the discrete Markov process, rather than its system-size expansion. The
mathematical framework underlying our approach is the random time change representation
of chemical reaction networks, which has been developed by Kurtz [31, 32, 33, 3]. As we
explained in the introduction, a fundamental aim in systems biology is to understand the
robustness of the oscillation: that is, for a given system size, how long should one typically
expect the oscillation to persist? The system-size expansion is limited because it only aims to
reproduce the statistics of the oscillation over timescales of O(€2). However, as we show in the
following sections, one should expect the oscillation to persist for exponentially long periods
of time, a metastable timescale over which the system-size expansion breaks down. Moreover,
our variational definition of the phase will be accurate for the entire time that the system is
in a neighborhood of the limit cycle.

3. Random time change representation and phase reduction. Let the random variable

N;(t) denote the number of molecules in species i. An explicit representation of N;(t) is given
by

M
(3.1) Ni(t) = Ni(0) + ) _ SiaNa(t),

a=1
where N, (t) denotes the number of times reaction a has occurred by time ¢ and is a jump
process for which the jump rate is locally given by QA,(N(¢)/Q2). It can be proved that if
Y'(¢) is a unit rate Poisson process, that is,

tmet

P[Y () = m|Y (0) = 0] =

m! "’

then a representation of N,(t) is given by the time change representation [31, 3],

(3.2) No(t) = Y, (Q /0 t Aa(N(s) /Q)ds) .

It follows that the expected number of reactions will grow linearly with 2. Moreover, using
the law of large numbers for Poisson processes,

lim LI(QT) =T,
Q—o0 Q
one has
. Na(t) !
Jim N0 /O Aa(x(5))ds
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with x(s) = limg_,oc N(s)/€. These identities hold with probability 1 [31]. This fact can be
used to derive the deterministic equations (2.2) in the thermodynamic limit [4].

As before, we define X;(t) = N;(t)/€ to be the concentration of species i at time ¢, which
has the deterministic dynamics (2.2) in the large € limit. Let S, = {Sis}i=1,....s be the vector
representing the change in species number by reaction a, and Y,(z) = Y,(z) — z be the a'®
Poisson process minus its mean. We then find that

t M t
(3.3) X(t) :X(O)+/O F(X(s))ds+Q_1ZYa<Q/O )\a(X(s))dS)Sa.

a=1

Hence, we have represented the evolution of the concentration as the sum of a deterministic
dynamics and a stochastic noise of zero mean. (Taking the stochastic term to have zero mean
will be useful later, when we use the theory of martingales; see section 5.) It has been proved
that in the large €2 limit, the dynamics converges to the ODE [31]

(3.4) X(t) = X(0) —i—/o F(X(s))ds.

We now sketch a heuristic method for deriving a phase equation from (3.3). In section 4
we will put our derivation on a more rigorous footing using a variational approach. One way
to specify the Poisson process N, (t) is in terms of the event or jump times ¢, k =1,2,....
That is,

(3.5) Nalt) =) H(t —tf),

k>1

where H(t) is the Heaviside function, and the interevent times t{; , — t7 are generated from
an exponential distribution:

P(t%ﬂ e, 7+ A7 and tj; <7 |X(7-)) ~ AT)\a(X(T)).

Formally speaking, dH (t — t}) = d(t — t})dt, where 6(t) is the Dirac delta function, so that

WNa _ > ot —tf).

dt
k>1

Differentiating (3.3) using Y,(z) = Y,(2) — z and (3.2) thus gives

dX; el
(3.6) - =F(X)+0 > Sia (Z 5(t —t§) — Q)\a(X(t))) .
a=1 k

If we treat the sum on the right-hand side of the above equation as a perturbation of the
deterministic equation, then we can formally use the isochronal phase reduction method to
derive the following stochastic phase equation to O(1/Q):

d 1 & M .
(3.7) Zr=wot g > Ri(O) Y Sja | Yot —1) — a(@(O1)) |
=1 a=1 k
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Here 7, are the sequence of jump times for the inhomogeneous Poisson process

(3.8) Yut) =Y, <Q /Ot )\a(@(ﬁ(s)))ds).

(In general, the times 7 will differ from the exact times ¢, since in the former case X is
evaluated on the limit cycle.) In terms of differentials (see [39] or section A.3 of [4] for a
definition of the stochastic integral with respect to Y),

K M
(3.9) do(t) = wot + % Z R;(0(t)) Z Sja {dY o(t) — QA (P(0(2)))dt} .
j=1 a=1

Finally, integrating (3.7) with respect to ¢, we obtain the stochastic phase equation

K M ¢
(3810)  0(t) = 0(0) + wot + ZZ / 8(5)) (AV o(5) — QAa(®(8(5)))ds)

or, equivalently
(3.11)

K M t
0(E) = 000) + it + &5 D03 Sy [ S0 RO~ 1) =2 | By(0()A(2(0(3)))ds
j=1a=1

k>1

We expect the above phase equation to be accurate up to times O(£2) due to the central
limit theorem for jump Markov processes [31]. In the subsequent sections we will define a
variational phase that is accurate over much longer timescales, and we will use this phase to
bound the probability of the system leaving the basin of attraction of the limit cycle. This in
turn requires bounds on the reaction rates A, in some neighborhood U of the limit cycle, which
could be identified with the basin of attraction. (Once the system leaves the neighborhood of
the limit cycle, one cannot sensibly define a phase dynamics in the first place. The analysis
in subsequent sections will demonstrate that the system stays in a neighborhood of the limit
cycle for exponentially long times, with very high probability.) Therefore, we assume the
following uniform bounds on the reaction rates A,

>I

(3.12) sup  sup sup {/\a (2)
1<a<M 6€[0,27] z:||z—2(0) || ,<n

Here ||-||, is a weighted norm that we define in the next section and 7 > 0 is a constant
denoting the boundary of the attracting manifold of the limit cycle. Let M7 ; be the number
of times that reaction a occurs over a time interval [u, t]; an estimate of the error in (3.11) is
O(My/Q2), where Mo, = S MG ;- In fact, for the error bounds in the coming sections,
we need to bound the number of reactions that occur over arbitrary intervals of a certain
length, i.e., we need a bound for arbitrary u € [0,¢]. To this end, for a constant integer
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(t —u)Q2, where m > 0 is such that 2m = mlog(m) + 1,

m\
( > (Y (Q/tAa( ()))ds) —Ya(Q/Ou)\a(X(s))ds) > c)
( Q/ 5))ds + QN(t — u)) Q/ Zc)

= a{Q)\(t — u)} exp ( —QA(t — u)),

using the definition of the Poisson distribution. Using the discrete version of Chebyshev’s
exponential inequality, for some s > 0 to be specified more precisely below,

]P’( o > c> < i{;{ﬁ)\(t—u)}aexp<—Q/\(t—u)+8a—sc>}

a=0

= oxp (9 - e 1)~ sc)

IN

exp (Q)\(t —w){et —1— sm}>,

using the formula for the moment generating function of the Poisson distribution in the penul-
timate line, and using the fact that ¢ > mQA(t — u) in the last line. We substitute s = log(m)
to minimize the above bound and obtain that

exp (Q/\(t —u){e®—1— sm}) = exp (Q)\(t —u){m—-1- mlog(m)}).
Now since 2m = mlog(m) + 1, it must be that m — 1 —mlog(m) = —m. We thus obtain that
exp (Q)\(t —u){e® -1} — sc> < exp (— mQA(t — u)).

In conclusion, we have proved that for the above value of m,

(3.13) P( = MOA(t — u)) < exp (— mOQA(t —u)).
Since
M
P<Mu7t > mMOA(t - u)> <D P(ME, > mOA(t — ),
a=1

it must be that
(3.14) IP’<./\/lu7t > mMQN(t — u)) < Mexp (— mQA(t —u)) < exp (— mQA(t — u)/2),

where the last inequality follows for sufficiently large (t — u)<2.
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4. Amplitude-phase decomposition. One of the limitations of carrying out a phase re-
duction using the method of isochrons is that it does not take proper account of fluctuations
transverse to the limit cycle. This is important when trying to estimate the time for a sto-
chastic trajectory to leave a neighborhood of the limit cycle. Following previous studies of
SDEs, suppose that we decompose the random time change solution (3.3) into longitudinal
(phase) and transverse (amplitude) fluctuations of the limit cycle according to

1

(4.1) X(t) =2(0(t)) + mv(t),

where X;(t) = N;(t)/Q. (One could carry out an analogous decomposition of the solution to
the SDE (2.16), obtained under the system-size expansion [23, 7, 28, 8, 9].) Here the scalar
random variable 6(t) represents the undamped random phase shift along the limit cycle, and
v(t) is a transversal perturbation (see Figure 1). As it stands, the decomposition (4.1) is
nonunique unless an additional mathematical constraint is imposed. Recently, we introduced
a variational principle for SDEs that uniquely specifies the amplitude-phase decomposition
by minimizing the weighted norm [|X(t) — ®(6(t))||, for a specific choice of p, which has
two significant features: (i) sufficiently close to the limit cycle, the phase corresponds to the
isochronal phase; (ii) one can obtain rigorous exponential bounds on the probability of escape
[9, 10]. We will apply the variational approach to the stochastic CRN model and show that
both of these results carry over; (ii) will be established in section 5. In order to specify the
weight p, we first need to introduce a little Floquet theory.

4.1. Floquet decomposition. Suppose that the ODE (2.2) supports a limit cycle x =
®(wpt). In order to determine the linear stability of the limit cycle, we set x(t) = ®(wot)+y(¢)
and Taylor expand equation (2.2) to first order in y. This yields the nonautonomous linear
ODE

(4.2) i%' = J(wot)y (1),

where the Jacobian J(wot) is a Ag-periodic function of time ¢. Determining stability thus
reduces to the problem of analyzing the asymptotic behavior of solutions to a time-periodic
linear ODE, which involves the use of Floquet theory. (The solutions are not necessarily
periodic.)

We begin by noting that there are d linearly independent solutions of (4.2). Suppose that
the corresponding vector space is spanned by a particular set of K-dimensional basis vectors
v;(t), 7 =1,..., K. These are used to construct a fundamental matrix ®(t), whose columns
are given by the solutions v;(t) so that d®(t)/dt = M(t)®(t). Since M(t + Ag) = M(t), it
follows that ®(t) = ®(¢ + Ag) is also a fundamental matrix:

d®

=M+ Ag)D(t) = M(t)D(1).

From linear independence we can write

K
D;5(t + Do) = Z D (t) B
k=1
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for some constants Ej;. The matrix E is nonsingular, since det ®(t + Ag) = det &(t)det E
and thus det E # 0. Let (u,u) be an eigenvalue pair of E: (E — uI)u = 0, and consider the
solution x(t) = ®(¢)u. Then

X(t+ Ay) = P(t+ Ag)u = P(t)Eu = O(t)pu = px(t).

The eigenvalues of E are called the Floquet multipliers or characteristic numbers of (4.2)
and are independent of the choice of ®(¢). In order to establish the latter, suppose that ®(t)
and ®*(¢) are two fundamental matrices. There then exists a nonsingular constant matrix C
for which ®*(t) = ®(¢)C. Hence,

B*(t + Ag) = B(t + Ag)C = B(1)EC = &*(t)C~'EC = &*(t)E".

As E and E* are related by a similarity transformation, they both have the same eigenvalues.
Typically, ®(t) is chosen to be real so that the characteristic equation for the eigenvalues p
has real coefficients. Hence, if there exists a complex multiplier u, then its complex conjugate
i is also a multiplier (complex conjugate pair). It is also common to express each Floquet
multiplier 4 in terms of a Floquet exponent p according to u = e”20. Note that p is defined up
to an additive multiple of 27i/A( so it can be uniquely specified by requiring —m < Im(pAy) <
7. In terms of the Floquet exponent, we have x(t + Ag) = e?20x(t) and thus

X(t + Ag)e PEFA) — y ()P,

Hence we can decompose the solution as x(t) = p(t)e?!, where p(t) is Ag-periodic. In order
to use this Floquet decomposition to study the asymptotic behavior of solutions, we will
assume that E has K distinct eigenvalues p; so that there exist d independent solutions
xi(t) = pi(t)efit with p;(t + Ag) = p;(t). The general solution thus takes the form

K
(4.3) y(t) = Z cipi(t)e’*
=1

for constant coefficients ¢;. Hence, the asymptotic behavior of the perturbation y(¢) will
depend on the sign of Re(p;) fori=1,..., K.

It is important to note that there always exists at least one solution with a unit multiplier
p=1(p=0), namely, x(t) = X(t)|x(t)=d(wor)- This follows from differentiating equation (2.2)
with respect to t and reflects the fact that the limit cycle is marginally stable with respect to
perturbations along the limit cycle (phase shift invariance). If we identify p;(t) = x(¢), then
we can express the unique fundamental matrix for which ®(0) = 1 according to

(4.4) I1(t) = P(wot) exp (tS)P~1(0),

where § = diag(p1,...,pKr), and P(wpt) is the 2m-periodic matrix whose columns are given
by the vectors p;(t), such that P(0)71®'() = e with e; = 1. In order to simplify the
following notation, we will assume throughout this paper that the Floquet multipliers are real
and hence P(0) is a real matrix. One could readily generalize these results to the case that S
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is complex. The limit cycle is taken to be asymptotically stable, meaning that for a constant
b>0,forall2<i< K,

(45) v; S —b.

Since F' € C?, it must be that P € C2. Furthermore P~!(f) exists for all 8, since I17(¢) exists
for all ¢.

The above Floquet decomposition motivates the following weighted inner product: For
any 6 € R, denoting the standard Euclidean dot product on R? by (-, ),

(u,v)p = <P_1 (0)u, P_l(G)v>,

and [jull, = v/(u,u)g. This weighting is useful for two reasons: it leads to a leading order
separation of the phase from the amplitude, and it facilitates the strong bounds derived below,
because the weighted amplitude always decays, no matter what the phase. The former is a
consequence of the fact that the matrix P~1() generates a coordinate transformation, in
which the phase in a neighborhood of the limit cycle coincides with the asymptotic phase
defined using isochrons (see also [8]). This is reflected by the following relationship between
the tangent vector to the limit cycle, ®’(6), and the PRC R(6) of (2.11) [9]:

(4.6) B(O)P(O)R(0) = P~(6)2'(0),

where B(0) := }|P‘1(0)<I>/(9)H2 =1 from the definition of the Floquet matrix P.

4.2. Variational principle. Let §(t) be the phase at time ¢. Since X(t) is constant between
jumps, B(t) is also taken to be constant between jumps. We can now state the variational
principle for the stochastic phase [9]: (t) for t € T is determined by requiring 5(t) = b:(6:),
where b;(6;) is a local minimum of the variational problem

(4.7) beNi(f;tf(et))HX(t) — ®®)llo, = I1IX(t) = @(be(0:)llo., tET,

where 6; is a prescribed time-dependent weight, and A (bt(ﬁt)) denotes a sufficiently small
neighborhood of b, (Qt). The variational problem is equivalent to performing an orthogonal
projection of the solution on to the limit cycle with respect to the weighted Euclidean norm
at some 6;. Write the partial derivative of (4.7) as

(45) Go(x,0,6) = < lhx — B(B)F = -2 (x — 2(0), ¥'(),.
At the minimum,
(4.9) Go(X(t), B(t),0;) = 0.

We then impose the constraint that the location of the weight must coincide with the location
of the minimum, i.e., B(t) = 6;. It follows that () satisfies the implicit equation

(4.10) G(X(1). B(1)) = Go(X(2). B(t), (1)) = 0.
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Let 7, denote the time of the kth reaction in a given realization of the stochastic CRN.
(For the moment, we don’t specify which reaction occurs.) Since X(t) is constant for ¢ €
[Tky Tk+1), B(t) is also constant over this interval. It is clear that there could be more than
one minimum of (4.7), and therefore this equation may be insufficient to determine B(7x11).
We therefore further stipulate that 5(7;41) is the local minimum of (4.8) that also minimizes
|B(Tk+1) —B(Thi1) ‘ In other words, we emphasize continuity over finding the global minimum.
This is consistent with our amplitude/phase decomposition, as well as the classical isochron
phase decomposition of stochastic oscillators. There are several reasons for this choice. We
wish to identify a linear phase equation, which requires the increments in 5(¢) to be small.
Furthermore, situations where a global minimum switches to being a local minimum, and the
corresponding jump in phase is much greater than O(Q~1), are relatively rare. Trying to
understand this highly nonlinear phenomenon would take us beyond the scope of this paper.

4.3. Linear phase approximation. As it stands, the variational principle generates an
exact, implicit equation for the stochastic phase. Here we carry out a perturbation expansion
to show that the leading order dynamics of the phase over small time intervals recovers the
explicit isochronal phase equation (3.11); we will refer to this as the linear phase approxi-
mation. The latter is a direct consequence of the fact that our variational principle defines
the weighted inner product in terms of the Floquet matrix introduced in section 4.1. Let
60X = X(7h41) — X(73). It is immediate from (3.1) that [6X| < Q7 sup;c,cp [1Sal. We
use (4.10) to estimate 65, = B(7r+1) — B(7x) to leading order. It must be that

(411) Jo (X(Tk+1)7 /B(Tk-‘rl)’ ﬁ(ﬁﬁ-l)) —Go (X(Tk)a ﬁ(Tk)> B(Tk)) =0.

This means that, to leading order,

(@12) 2 Go(X(m). B(re), )X + G0 (X (), 57, B(7)) 651 = .

Rearranging, we find that

1 )

(4.13) 88y, ~ X () Bre)) <<I> (B(Tk)),éXk>ﬁ(Tk),

where

(4.14) M(X, B) = ;ag(a);,ﬁ) = —<c1>”(5),x — <I>(ﬁ)>5 + <<1>'(5), @’(ﬁ)>ﬂ
d

1B

Recall from the definition of the Floquet matrix P below (4.4) that P(6)~'®'() = e and,
hence,

- <<I>’(ﬁ) (P3P (X - ¢<5>)>.

((0),(0))g_sr,y = |PTHORO)lg_s(r,y = 1

Now as long as || X — ®(8)|| < 1 (we determine the probability of this in section 5), M(X, 5) >

3 (say). We can then use Taylor’s theorem to infer that, since X = O(27!), the error in
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(4.13) is O(272). Note that, since by assumption 3 is a local minimum, 9t(X, 3) must be
positive, because it is the curvature at the local minimum.
If we now take note of the reaction label a, it follows by analogy with (3.3) that

(4.15)  B(t) = B(0) + é ﬁé /0 t m<qﬂ (B(s)), Sa>6(s)dYa(s) + O<Q—2 Mw).
- su@:x(QA3AXWWM)

which reduces to (3.8) on taking X (u) = ®(8(u)). We note that the above Poisson integral is,
by definition, just the summation over the set of jumps (see section 3). That is, by definition,

t; / s Yo(g) = -1 H(t_t%) / a
| s TS, a6 =0 S R (o). s.)

B(s) k>0 B(t%)

where {t¢};cz+ are the jump times of Y5(Q [ Aq(X(u))du).

We wish to represent the above equation as a time-integral plus a martingale. (A martin-
gale is a stochastic process whose increments over small time-intervals are independent of the
past history and of mean zero [39, 4]. For example, any stochastic integral with respect to a
Wiener process is a martingale. The martingales in the following equations are often referred
to as compensated Poisson processes.) In this way, the form of the equation will resemble
that of a standard stochastic differential equation. Another important reason that we wish to
put the equation in this form is that it will allow us to use a martingale inequality to obtain
bounds on the system leaving a neighborhood of the limit cycle (see section 5). To this end,
(4.15) can be rewritten as

(4.16)

M
— § : ! 1 / s $))ds -1y, -2
B(t) - 5(0) + a:1/0 m(X(S), B(S)) < (/B( ))7 Sa>6(5)>\a (X( ))d +Q Y(t) + O<Q MO,t)?

where Y (t) is the martingale

v &l ’ 1 / a
(4.17) Y () :;/0 W<@ (5(5)),sa>6(s){dy (5) — Qe (X(s))ds}.

(Note that Y (¢) is discontinuous, unlike the stochastic integral.)

Equation (4.16) has the same basic structure as the isochronal phase equation (3.11).
Indeed, it reduces to (3.11) if we set X(s) = ®(3(s)) on the right-hand side. This follows from
the observations
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and

K
((3).82) 0 = (IPOPTO1W(6).5,) = Y 5,850,
j=1

using (4.6). In particular [9],

S (P ) S0)  Aa(X(e) =0+ O(IX(s) = B(EDIP).
2 e g\ P):8a) | Aa(X(s) =+ O )
We thus obtain the leading order phase equation

(4.18) B(t) =~ B(0) +wot + Q'Y () + O <Mo,t9‘2 +1t s 1X(s) = ®(8(s)]” >

Furthermore, this linearized phase is typically accurate over timescales of O(2), as long as

t sup || X(s) — ®(8,)]?
s€[0,t]

remains small. (We are going to bound this in the next section.) This is because, as we saw in
section 3, the total number of reactions over the time interval [0, is of order QMt, with very
high probability. For large 2, the probability law of the martingale Y (¢) may be approximated
by the stochastic integral

M ot
V)= VY [ et (¥(56) Sa/AlXG ) i)
a=1

M(X(s), B(s)) B(s)

where {W%(s)} are independent Wiener processes [31, 32]. In this way, we see that the
probability law of the phase equation (4.18) may be approximated to be the law of the SDE

1 & 1 , .
02500+ o+ 723 [ s (¥ 00) SVREEE) - ave)

Note that this agrees with the system-size expansion for the phase in (2.20), after using (4.6).

4.4. Example: The Brusselator. One benchmark model of a biochemical oscillator is the
Brusselator, which is an idealized model of an autocatalytic reaction, in which at least one of
the reactants is also a product of the reaction [15]. The model consists of two chemical species
X and Y interacting through the following reaction scheme:

4.19a) 05X,
4.19b) X3y,
4.19¢) 2X +Y 5 3X,
4.19d) x40
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These reactions describe the production and degradation of an X molecule, an X molecule
spontaneously transforming into a Y molecule, and two molecules of X reacting with a single
molecule of Y to produce three molecules of X. The corresponding mass-action kinetic equa-
tions for x1 = [X],x2 = [Y] are (after rescaling so that c=d = 1)

dz

(4.20a) ditl =k — (v 4 1)x1 + 2329 = Fi (21, 29),
dz

(4.20b) d—; = yx, — Trry = Fy(x1, 20).

The system has a fixed point at x% = x,r5 = /K, which is stable when v < k2 + 1 and
unstable when v > &% + 1. Moreover, the fixed point undergoes a Hopf bifurcation at the
critical value v = k2 + 1 for fixed k, leading to the formation of a stable limit cycle.

It is straightforward to write down the propensities and stoichiometric coefficients, and
thus construct a stochastic version of the Brusselator that keeps track of the number of
molecules n1(t) and na(t). There are two chemical species A;, j = 1,2, with A; = X and Ay =
Y, and four single step-reactions a = 1,...,4 corresponding to (4.19a)—(4.19d), respectively.
The propensities and stoichiometric coefficients are as follows:

M=k, Si1=18571=0,

Ao =yn1/Q,  Si2 = —1, S =1,

A3 =mny(ny — 1)ng/Q3, Sz =1, Sog = —1,
M=mn1/Q Siyu=—1, Sy =0.

Substituting into the master equation (2.3) for K = 2, R = 4, we have

dPp sy
dt
(421) (n1 + 1)Pn1+1,n2 — (IQQ +ynp +nq (’I’Ll — 1)’02 + nl)Pnan.

= KQPp —10y + (1 + 1) Poyy1mp—1 + (n1 — 1)(n1 = 2)(n2 + 1) Poy—1 ny41,

Given the propensities and stoichiometric coefficients, we can construct both the SDE (2.16)

under the system-size expansion and the equal time representation (3.3). For example, suppose

that the system size € is sufficiently large so that we can carry out a system-size expansion

of the master equation with x; = n;/. This yields the multivariate FP equation (2.14) and

corresponding SDE (2.16), with Fj(x) given by (4.20) and

(4.22) D— ( K+ (y+ 1)x12+ wiry  —(yx1+ xj:cg) ) .
—(yx1 + ziw2) YTl + TiT2

We simulated the stochastic Brusselator for k = ¢ = d = 1, v = 2.5, and two different
values of (), a large system size {2 = 3000 and a small system-size 2 = 30. The results are
plotted in Figures 2 and 3. It can be seen that the linear phase evolving according to (2.20)
is initially in close agreement with the exact variational phase evolving according to (4.10).
However, after one orbit of the limit cycle, there is already a significant difference between
the two. Despite this nonlinear diffusion of the phase, the system still stays in close proximity
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Figure 2. Numerical simulation of the stochastic Brusselator, with k = c=d =1, v = 2.5, and the total
number of particles = 3000. Initially, [X] and [Y] are taken to lie exactly on the limit cycle. (a) Plot of
concentration [X] as a function of time t. (b) Corresponding plot for [Y]. (c) Plot of the linear phase (light
trajectory) and the exact variational phase (dark trajectory). (We have subtracted wot off both solutions.) (d)
Phase portrait in [X] — [Y] plane. It is notable that even with such a large §2, the linear phase differs from the
variational phase.

to the deterministic limit cycle for the entire length of the simulation. This can be explained
using the analysis of section 5, where we demonstrate that with very high probability the
system stays close to the limit cycle for times of O(exp(bQC)), where b is the rate of decay
toward the limit cycle, and C' is a constant.

5. Bounding the probability of the CRN leaving a neighborhood of the limit cycle.
The probability bounds of this section are accurate in the limit that Qb > 1. (Recall that
b is the rate of decay toward the limit cycle in the deterministic dynamics.) Recalling the
definition of the matrix P in (4.4), we will assume throughout this analysis that

max -1 =
(5.1) . {HP(G)H,HP(@) H} o),
82

ZERK 1<ij k<K
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Figure 3. Numerical simulation of the stochastic Brusselator. The simulation is the same as Figure 2,
except that we use 2 = 30, instead of Q2 = 3000. The stochasticity is clearly much greater than when £ = 3000.
Furthermore the difference between the linear phase and the variational phase is more substantial after noting
the different scale for the phase.

where we are using the Euclidean norm for the matrices. It should also be noted that wy
can be arbitrarily large and the bounds would still be accurate (This is precisely what was
observed in the numerical simulation of the chemical Brusselator—the diffusion of the phase
was already substantial after one orbit of the limit cycle, but the system still stayed close to
the limit cycle.) Define the amplitude v and weighted amplitude w according to

(5.3) v(t) = X(t) = ®(8(1)), w(t) = P(B(t)) 'v(®).

As is explained in more detail in [9], the reason that we make this change of variable is that, to
leading order, the Euclidean vector norm ||w(t)|| decays uniformly in time. The main result
that we prove in this section is that there exists a constant C' > 0 such that

(5.4) P(tes[%%] |w(t)]| > g) < bT{ exp ( — Qb(QC’)}

for all sufficiently small (. (We require in particular that ¢ < b/4.) We assume throughout
this section that

(5.5) [w(O)]} <

o0 |
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As in section 4.3, suppose that 7y is the time of the kth reaction. To leading order in § 8%, 6 X},

(5.6) W(Tk+1) — W(Tk) ~ aa/B{P(/B(Tk))l (X(Tk) — (I)(ﬁ(’fk))) }(56k + P(B(Tk»*léxk,
and the error in the above approximation is O( 10X512, §B7) = 0(272).
Note that

TP (%00 - 2(3(0) ) } =~ P(5) 909 (X0 - 0(6) ) + i 5w

—1
(5.7) - P(8) ®'(B)-
This follows from the identity

wod%P(e) = J(0)P(9) — P(0)S,

which can be obtained by differentiating both sides of (4.4) with respect to ¢ and using (4.2).
Substituting (3.3) and (4.18), we thus find that for any v € [0, 7] and ¢ > u,

(5.8)
w(t) = w(u) + O (QZMW + (t —u) Hv(t)H?) + Q7MY (t) — Y(u)]
(5.9)
+/ {Sw(s) +P(B(s)) " <F(X(s)) — F(®(B(s))) — J(B(s)) {X(s) — ®(5(s)) }> }ds,

where M, ; is, as before, the total number of reactions over the time interval [u,t]. We have
used the fact that wo®'(3) = F(®(8)) and the increments in {X, 3, w} are all O(Q~!) (which

we noted in the previous section). Here Y (¢) is the martingale

v} M t ~
(5.10) (=Y [ P) Sl
a=1 0
(5.11) ; /0 { gy ' P(B(s) I (B(s)) (X<s> _ <I>(B(5)))

-1

+ wy 'Sw(s) — P(B(s)) @’(5(5))}@7(3).

By Taylor’s theorem,

(5.12)  F(X(s)) — J(3() {X(s) — ®(8(s))} — F(®(B(s))) = 0< 1X(s) — B(.)] )
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Since [[v(t)|| = O(|lw(t)| ), noting the assumption in (5.1), this means that

w(t) = w(u) + / Swi(s)ds + O(Q‘QMW + (t—u) sup \w(r)W) + Q7Y () = Y(u)).

refu,t]

Applying the change of variable w(t) — (w(t), w(t)) = |lw(t)||?, we find that

(5.13) ||w(t)||2:||w(u)|]2+2/ <W(S),Sw(5)>d5+29_1/ (w(s),dY (s))
+o< sup |yw(r)||{92Mu,t+<t—u) sup IIW(T)\Q})-

refut] refu,t]

Performing the second change of variable ||w(t)||? — ||w(t)| then yields

Iwie)] = Il + [t (s sws) as-+ [t (w(s),av (o)

(5.14) +O<(t—u) sup [|w(r)[* + sup szﬁ;l:;(t)H)

r€u,t] refu,t]
Furthermore our stability assumption on the limit cycle (see equation (4.5)) implies that
2
(w(s),Sw(s)) < —=bw(s)]".

Note that the first element of w is identically zero, as a direct consequence of its definition,
which is what leads to the strict decay in the above equation.
Hence, as long as |jw(s)|| < 2,

(615 w(o)] < fwlu) - 2 / Iwis |rds+0( - Y1) - Y(w),

i) *
refug ¥ HW( )l

where

(5.16) Y0 = 5 | e (v )
Define the stopping time
(5.17) F=inf {t:||w(t)| > ¢}

and the stopped process
V() =Y({tNT).

We now outline a set of events that, taken together, ensure that sup,<p [w(t)|| < ¢. This
means that, to bound the probability that sup,<r ||[w(t)|| > ¢, it suffices to bound each of the
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following events. These events are

(5.180) Iw(O)] < 5.
(5.18Db) sup  sup {37(75 +5)=V(t)p < g,
t€[0,T] s€[0,8b—1] 2
2
(5.18¢) sup  sup QfZMsysH < C—
s€[0,T] te[0,8b—1] 64

The timescale of O(b~!) has been chosen for a reason: it is the timescale of the decay toward
the limit cycle. To see why the above three events are sufficient to ensure that sup,<p ||[w(t)|| <
¢, let us suppose for a contradiction that (5.18a)—(5.18¢) all hold, but that ||w(t)|| = ¢ for
some t € [0,7T], and that ||w(s)|| < ¢ for all s € [0,¢) (i.e., we are taking t to be the first
time that ||w]|| attains ¢). By definition, Y(s) = Y(s) for all s € [0,#]. Let 7 = sup{u <t :
|lw(u)|| = é}, noting that 7 exists since, by assumption, ||[w(0)|| < (/8.

Suppose for a contradiction that t — 7 > 8b~!. Then, since |[w(s)|| > ¢/8 for all s € [r,1],
it follows from (5.15) that

_ 24b¢ ¢ ¢ _
w w 1 1
[ (t)HSH (t—"b )H_4bg+§+§§HW(7§—b )H

This contradicts our assumption that ||w(s)|| < ¢ for all s € [0,?), since ||w(t)|| = (. We can

thus conclude that t — 7 < 8b~!. But in this case, it is immediate that

3
Wl <lwir)l+ 5+ 5 < >,
which contradicts our assumption that ||w(t)| = ¢.

We can therefore conclude that the events in (5.18a)—(5.18¢) imply that sup,ejo 77 [[W(s) | <
¢. Given that, by stipulation, ||[w(0)|| < ¢/8, this means that

(5.19)
p( s i)l > )
s€[0,7T
2 ¢ - S ¢
<P sup sup Q Mgy >_—~|+P| sup sup V(it+s)=YHt)p > 2.
s€[0,T] t€[0,8b~1] 64 +€[0,T] s€[0,8b=1] 2

We now bound the above two probabilities, showing that they are each O(exp(—bQC’)) for
some constant C' > 0.
Let ¢; = 8i/b. Using a union of events bound,

9 [bT/8] 2
(5.20) IP’( sup sup Q72M st > ) < P( sup Q_2Mti7ti+t > >
s€[0,T] t€[0,8b~1] o 64 ; t€ltistit] 128

Furthermore, it follows from (3.14) that, since t;4+1 — t; = %,

2
IP< sup Q_2Mti,ti+t > C) < exp ( — QbC’)
te[ti,ti+1} 128
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for some constant C' > 0, as long as b2 is sufficiently large. We thus find that

2
P( sup  sup Q_QMs,sH > C) < Tbexp ( — CbQ)
s€[0,T] te[0,8b—1] 64

for large enough 2, as required.
We turn to the second inequality in (5.19). We must show that for some constant C,

(5.21) IP’< sup  sup {y t+s) )} > > < Thexp (— CbQ).
t€[0,7] s€[0,8b—1]

We first claim that
[bT'/8]

(5.22) P( sup  sup  {V(t+s)-V(t)} > C) > 1@( sup \5;(3)—37(7;)]>C>.

tE[O,T] sE[O,Sb‘l} i=0 SE[ti,tH_ﬂ 6
To see why this is true, suppose that t + s € [t;,t;11] and ¢ € [t;—1,t;]. Then
V(t+5) = V(O)| < [V(t+5) = V(t)] + |V(t:) = V(tim1)| + |P(t) = V(ti1)].

Hence if each of the terms on the right is less than /6, their sum must be less than ¢/2. This
establishes (5.22).
We now bound the terms on the right-hand side of (5.22), finding that

p( s |90~ 3] > C)

[tistit1] 6

< }p( sup  (V(s) — V(ti)) > g) +]P’<s€sup (Y(t:) = V(s)) > é)

it e
SE[tl t1+1] [tutzJﬁl}

P<S€§E£+I]exp <a{5/(8) — ?(h)}) > exp {g;})

+ P(seifsm exp ( —af{d(s) - 37(7%‘)}) > exp {f})

since the exponential function is positive and increasing. Now for times greater than ¢; ~3~/ is a
martingale, due to the optional sampling theorem [39]. This means that both exp (a{y(t) —

IN

)N)(tl)}) and exp (— a{)}(t) - ?(tl)}) are submartingales for any positive constant «, since
the exponential function is convex (and we have also used Jensen’s inequality). We can thus
use Doob’s submartingale inequality [4, A.2.1] to conclude that

(5.23)

P<se§35m exp <a{3>(s) _ 52@)}) > exp <C6?‘>> <E [exp <a{)7(ti+1) _P) - g})}
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and

P(SEEEEH] exp < —ald(s) - ﬁ(ti)}> > exp <<6“>>
(5.24) <E [exp ( — a{j/(tm) — V() + g})] .

We now bound the first of the above expectations. In reaching the definition of the mar-
tingale Y(t) in (5.16) (which also appears in (5.14)) we performed a sequence of changes of
variable in (4.15), (4.17), (5.9), and (5.13). For each variable, we performed a simple Eulerian
interpolation to calculate how it changes over the time interval [t{,¢{ ;], these being succes-
sive jump times of the process N,. That is, the increment in the variable from time ¢¢ to
t},, was approximated to be the derivative of the variable (evaluated at time ¢§) multiplied
by the magnitude of the jump. Indeed in principle we could have performed the change-of-
variable {Y,(¢)}M, — |lw|| in one go, and the functions g, in the equation below could be
obtained, through the chain-rule, to just be the multiplication of the derivatives of each of the
intermediate variables. In other words, the martingale ) is of the form

M

(5.25) Vi=Ye=>_ {Q—l /: o (7, X (1)) AN (r) — /: Ja (T,X(r)))\a(r)dr}

a=1

for functions {g,}, that are uniformly bounded in the tube || X(t) — ®(t)[| g4y < ¢ Let this
uniform bound be g. Each time we performed this Eulerian interpolation, we also subtracted
a compensating time integral to ensure that the resulting variable remained a martingale.
This is why the term g, appears twice: once in the (discrete) stochastic integral and once in
the standard Lebesgue integral.

Now the increments in N, are Poisson-distributed [4], which means that when we take
the derivative of the following expectation, it suffices to use a second order Taylor expansion.
Including higher order terms in the Taylor Expansion would change the following expression
by a factor of Q~2, which is negligible for large 2. Using (5.25),

dE[eXP (aj}t - 04375)]

di
526 = i (5[ exp (a3 ~ a3 {a(Plt + )~ (1) + © e+ o) - v’}
Now

(5.27) E[exp (@ — oY) {V(t+6t) — V() }| =0

thanks to the martingale nature of ), (it is a compensated Poisson process [4]). For the other
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term, substituting the decomposition in (5.25),

lim ;E[exp (ozjit - 01575) (y(t + 0t) — 57(75))2}

ot—0
= QE[GXI’ (a3 — o) <{91 é /t e X(r))d/\/a(r)}2
~2{a % [t x(r)aNa(n) H i [ X(r) )

+{ ij‘i [ s} )]

Now the expectation of the third term in the above expansion is

lim (SltE[eXp (ad — 04573){ /t o ga(r,X(r))Aa(r)dr}2] = lim %E[O(&J)] = 0.

5t—0 5t—0 0t

Similarly, the second term is

5t—0 ot

iy 55| exp (0¥i-a3) {0 f) [ e xenao H [T w6 xe)ma]

o1 . o
= altlglo &E [O( Number of jumps in interval [t,¢ + dt]) x O(ét)}

1 2
= Jim EE[O(Qét )] =o.
The first term can be bounded using the properties of the Poisson process. For 6t < M~1Q~1,
the expectation is dominated by the probability of precisely one of the processes N, (r) jumping
precisely once over the interval [¢, + §t]. This probability is upperbounded by 6tQM ), since
the intensity of each of the processes {N,}M | is upperbounded by Q). (Note the upperbound
for the intensities in (3.12).) Indeed the probability of two jumps or more over this interval is
of order (6tQM)?, which is asymptotically negligible in the limit 6 — 0. We thus find that,
to leading order in Q71!,

M

S [t X(r))dfvmﬂ

a=1

.1 ~ = -1
Jim, 5| P (0 = ay) {Q

o1 227 - -
< lim < MO 2 AQStE [ exp (ad) — o) ]

= MQ > AE[exp (ad; — ads)].
Coming back to (5.26), we have proved that

d Lo Ma? - o
ZrE[exp (e —ad)] < 23 G°AE[exp () — ads)].
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Since the above expectation is equal to 1 when ¢ = s, an application of Gronwall’s in-
equality yields that

- - t — s)a®Ag?M
(5.28) E[exp (ayt — ays)] < exp <(8)20229>
To optimize the bound in (5.23), and noting that t — s = 8!, we thus choose
¢
a=— )
8AGZM

We are using the fact that the quadratic ¢;a? — coar (for ¢1, co > 0) has a minimum of —c3 /4c;
when o = ca/2c¢;. We thus obtain that

(5.29) ]P’(Sesup {37(8) - 5)(@-)} > g) < exp (— COBC?)

[tistit1]

for some positive constant C. The bound for (5.24) is analogous. In light of (5.22), we have
thus established (5.21).

6. Discussion and conclusion. In this paper we outlined a variational definition of the
phase of a stochastic chemical reaction oscillator. This definition is versatile and adaptable to
a number of applications. First, we demonstrated that under a linear phase approximation,
we recover the phase predicted by the system-size expansion of the underlying discrete Markov
process. Second, one can straightforwardly calculate the phase at any particular time through
directly performing the minimization in (4.7). Third, we used this definition of the phase to
estimate the time that the system stays in close proximity to the limit cycle, demonstrating
that this time is O( exp(CbQ)) or larger with probability O(exp(—CbQ)), where b is the rate
of decay to the limit cycle, and € is the system size. In other words, if b§2 > 1, then the system
stays close to the limit cycle for extremely long times (much longer than the time over which
the system-size expansion is accurate), with extremely high probability. This analysis also
provides a means of assessing the substantial diffusive shifts of the phase that can occur over
these very long periods of time. Indeed, the typical order of magnitude of the diffusive shift
Y (t) of the phase 3 (defined in (4.17)) is O(VQ2~1t). Hence over timescales of O( exp(CbQ2)),
the typical diffusive shift of the phase is O(Q_l/ 2 exp(CH$Y/ 2)) In most circumstances, one
would expect that this shift is much greater than wgy, the period of the oscillation. In other
words, over this timescale one cannot predict the phase ((t) with any accuracy at all: all
phases are of almost equal likelihood.

On another note, the probability bound in section 5 of this paper differs from the analogue
for a piecewise-deterministic Markov process in [10], because the latter does not depend on b
to leading order. This is because, in many circumstances, the most likely means by which the
PDMP system can leave a neighborhood of the limit cycle is to not switch over a significantly
long period of time. Since the rate of switching does not depend on the rate of decay toward
the limit cycle, the leading order probability bound also does not depend on the rate of decay
toward the limit cycle. By contrast, in the CRN network of this paper, if the system does not
react over a significant timescale, its distance from the limit cycle does not change.
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In general, the methods of this paper are extremely helpful for assessing the robustness of

oscillations in chemical reaction networks, which are ubiquitous in cell biology [37, 47, 11, 26].
In future work, we plan to extend these methods to chemical reaction networks that support
more complicated emergent dynamics.
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