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We use queueing theory to develop a general framework for analyzing search processes with stochastic
resetting, under the additional assumption that following absorption by a target, the particle (searcher) delivers a
packet of resources to the target and the search process restarts at the reset point xr . This leads to a sequence of
search-and-capture events, whereby resources accumulate in the target under the combined effects of resource
supply and degradation. Combining the theory of G/M/∞ queues with a renewal method for analyzing resetting
processes, we derive general expressions for the mean and variance of the number of resource packets within the
target at steady state. These expressions apply to both exponential and nonexponential resetting protocols and
take into account delays arising from various factors such as finite return times, refractory periods, and delays
due to the loading or unloading of resources. In the case of exponential resetting, we show how the resource
statistics can be expressed in terms of the MFPTs Tr (xr ) and Tr+γ (xr ), where r is the resetting rate and γ is the
degradation rate. This allows us to derive various general results concerning the dependence of the mean and
variance on the parameters r, γ . Our results are illustrated using several specific examples. Finally, we show how
fluctuations can be reduced either by allowing the delivery of multiple packets that degrade independently or by
having multiple independent searchers.
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I. INTRODUCTION

A topic of considerable current interest concerns search
processes with stochastic resetting (see the review in Ref. [1]).
One major motivating example is a diffusing particle search-
ing for a hidden target in an unbounded domain. The
introduction of stochastic resetting, whereby the position of
the searcher is reset to a fixed location xr ∈ Rd at a rate r,
renders the mean first passage time (MFPT) finite. Moreover,
there exists an optimal resetting rate at which the MFPT
is minimized [2–4]. Similar behavior has been observed in
a variety of other stochastic search processes with reset-
ting, including nondiffusive processes such as Levy flights
[5] and velocity jump processes [6–8], drift-diffusion pro-
cesses [9], and resetting in a potential landscape [10,11]
or in bounded domains [12,13]. Other recent extensions
include the incorporation of delays such as finite return
times and refractory periods [14–19], and the introduction
of nonexponential resetting protocols [20–22]. Several au-
thors have focused on extracting universal features of search
processes with resetting, deriving general expressions for
MFPTs and other statistical quantities that include the ef-
fects of delays, nonexponential resetting rates, and multiple
targets [23–29].

A common assumption of these and related studies is that
once the searcher has found the target, it is absorbed and the
search process ends. However, there are a number of exam-
ples in cell biology where the arrival of a particle results in
the delivery of some resource to the target, after which the
particle escapes and returns to its initial position. The particle
may then be resupplied with cargo and initiate a new search
process. Two examples are as follows: (i) the motor-driven

intracellular transport of vesicles to synaptic targets in the
axons and dendrites of neurons [30–32] and (ii) the trans-
port of morphogen at the tips of growing actin-rich filaments
(cytonemes) to target cells during embryonic development in
vertebrates [33–36]. In the first example the particle (searcher)
represents a molecular motor complex moving along a poly-
merized filament such as a microtubule within the axon or
dendrite of a neuron, while resetting corresponds to the re-
moval and return of the complex to the cell body. In the
second example, the particle represents the tip of a growing
cytoneme, while resetting takes into account the fact that a
cytoneme can switch to a shrinkage phase and rapidly retract
back to the source cell, see Fig. 1. In both of these applica-
tions, the restart of the search process following reset has a
finite duration with two components: a finite return time and a
refractory period. The return time could depend on the speed
of retrograde motor transport or the rate of cytoneme retrac-
tion, while the refractory period could depend on the time to
reload a motor complex with vesicles at the cell body or the
time for a new cytoneme to nucleate from the source cell.
Previously we have used velocity jump processes to model
both motor-driven [37–39] and cytoneme-based [19,40] trans-
port. In the latter case we showed how queueing theory can
be used to analyze the accumulation of morphogen in a
one-dimensional (1D) array of target cells following multiple
rounds of search-and-capture, analogously to studies of gene
transcription [41].

In this paper we use queueing theory to develop a gen-
eral framework for analyzing search processes with stochastic
resetting, under the additional assumption that following ab-
sorption by a target, the particle delivers a packet of resources
to the target, after which it returns to the reset position xr . This
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FIG. 1. Multiple search-and-capture events for cytoneme-based morphogen transport. Alternating periods of growth, shrinkage, nucleation,
and target capture generate a sequence of morphogen bursts in a given target cell. This results in the accumulation of morphogen within the
cell, which is balanced by degradation.

leads to a sequence of search-and-capture events, whereby re-
sources accumulate in the target. We also assume that the build
up of resources within the target is counterbalanced by degra-
dation, so that there is a steady-state number of packets in
the long-time limit. Queuing theory concerns the mathemati-
cal analysis of waiting lines formed by customers randomly
arriving at some service station, and staying in the system
until they receive service from a group of servers [42,43]. A
sequence of search-and-capture events can be mapped onto a
queuing process as follows: Individual resource packets are
analogous to customers, the delivery of a packet corresponds
to a customer arriving at the service station, and the degrada-
tion of a resource packet is the analog of a customer exiting the
system after being serviced. Finally, assuming that the packets
are degraded independently of each other, the effective num-
ber of servers in the corresponding queuing model is infinite,
that is, the presence of other customers does not affect the ser-
vice time of an individual customer. It follows that the relevant
queuing model is the G/M/∞ system [42,43]. Here the sym-
bol G denotes a general customer interarrival time distribution
F (t ), the symbol M stands for a Markovian or exponential
service-time distribution �(t ) = 1 − e−γ t , and “∞” denotes
infinite servers. In terms of a search process with stochastic
resetting, we identify F (t ) with the cumulative first passage
time (FPT) distribution. That is, F (t ) = ∫ t

0 fr (xr, t ′)dt ′, where
fr (xr, t ) is the FPT density for the particle to find the target
starting from xr . The latter can itself be expressed in terms
of the FPT without resetting, f0(xr, t ),using renewal theory.
Similarly, we identify −�′(t ) with the waiting time density
for degradation at a rate γ .

The main goal of this paper is to derive general expressions
for the mean and variance of the number of resource packets
within the target at steady-state in the case of a search process
with resetting. We begin by considering multiple search-and-
capture events for a search process in some domain U ⊆ Rd

with a single target U0 ⊂ U (Sec. II). The search process is
taken to evolve according to a master equation without re-
setting. We formulate the accumulation of resources in terms
of a G/M/∞ queue [42,43] and derive an iterative integral
equation for the binomial moments of the number N (t ) of
packets in the target at time t . The integral equation is solved

using Laplace transforms, which is then used to obtain explicit
expressions for the mean and variance of N (t ) in the steady
state; these depend on the Laplace transform f̃0(x0, s) of the
FPT density for a single search-and-capture event starting
from x0. In Sec. III we consider a single search-and-capture
event with stochastic resetting. We derive a general expres-
sion for the corresponding FPT density in Laplace space,
f̃r (xr, s), using a renewal method that has been developed by
a number of authors, see for example Refs. [24–26,28,29].
The renewal method exploits the fact that once the particle
has returned to xr it has lost all memory of previous search
phases. It follows that one can condition on whether or not
the particle resets at least once, even though a reset event
occurs at random times. Note that a similar approach has
also been applied to other types of FPT problems, includ-
ing the narrow escape from a domain with stochastically
gated boundaries [38,44] and cytoneme-based morphogen
transport [19,40].

In Sec. IV we combine the analysis presented in Secs. II
and Sec. III to analyze multiple search-and-capture events in
the presence of resetting. We focus on the case of exponential
resetting without delays and show how the resource statistics
can be expressed in terms of the MFPTs Tr (xr ) and Tr+γ (xr ),
where r is the resetting rate and γ is the degradation rate.
This allows us to derive various general results concerning
the dependence of the mean N and variance Var[N] on the
parameters r, γ . The theory is then illustrated in Sec. V by
considering several examples of search processes, including
diffusion on the half-line and finite interval, a 1D velocity
jump process, and diffusive search for a spherical target. Out-
side the slow resetting regime, we find that the Fano factor
Var[N]/N lies in a neighborhood of unity so that the mean
and variance are comparable (Poisson-like noise). In such
cases, the corresponding coefficient of variance (CV) varies
as 1/

√
N and is thus much more sensitive to parameter vari-

ations. Finally, in Sec. VI we generalize the analysis of the
binomial moments to allow for the simultaneous delivery of
multiple packets that degrade independently. This leads to a
reduction in the CV. We also show that a more effective way to
reduce fluctuations is to have multiple searchers transporting
a single packet.
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II. MULTIPLE SEARCH-AND-CAPTURE EVENTS
AND QUEUING THEORY

Consider a particle (searcher) subject to stochastic motion
in U ⊆ Rd . Suppose that there exists some target U0 ⊂ Rd

whose boundary ∂U0 is absorbing and xr /∈ U0. The proba-
bility density p(x, t |x0) for the particle to be at position x at
time t , having started at x0, is taken to evolve according to the
master equation

∂ p(x, t |x0)

∂t
= Lp(x, t |x0), (2.1)

where L is the infinitesimal generator of the stochastic
process. This is supplemented by the absorbing boundary
condition p(x, t |x0) = 0 for all x ∈ ∂U0 and the reflecting
boundary condition ∂n p(x, t |x0) = 0 for all x ∈ ∂U . (In the
case of unbounded domains, the latter is replaced by the far-
field condition p(x, t |x0) → 0 as |x| → ∞.) Let T (x0) denote
the FPT to be absorbed by the target, having started at x0:

T (x0) = inf{t > 0; X(t ) ∈ ∂U0, X(0) = x0}. (2.2)

The MFPT can be expressed in terms of a survival probability
according to

T0(x0) = E[T (x0)] =
∫ ∞

0
Q0(x0, t )dt, (2.3)

where

Q0(x0, t ) =
∫
U\U0

p(x, t |x0)dx. (2.4)

Now suppose that rather than being permanently absorbed
or captured by the target, the particle delivers a discrete packet
of some resource and then returns to x0, initiating another
round of search-and-capture. (The return to x0 is distinct from
resetting, which can occur at any time, see Sec. III.) We will
refer to the delivery of a single packet as a burst event. The
sequence of bursts resulting from multiple rounds of search-
and-capture leads to an accumulation of packets within the
target, which we assume is counteracted by degradation at
some rate γ . This is illustrated in Fig. 2 for a target in a
rectangular domain. We will assume that the total time for
the particle to unload its cargo, return to x0, and start a new
search process is given by the random variable τ̂ , which for
simplicity is taken to be independent of the location of the
targets. (This is reasonable if the sum of the mean loading and
unloading times is much larger than a typical return time.) Let
n � 1 label the nth burst event. If τn is the time of the nth
burst, then the interarrival times are

�n := τn − τn−1 = τ̂n + T (x0), n � 1. (2.5)

Denoting the waiting time density of the delays τ̂n by ρ (̂τ ),
the interarrival time density is given by

F (�) =
∫ �

0
dt

∫ �

0
d τ̂ δ(� − t − τ̂ ) f0(t )ρ (̂τ )

=
∫ �

0
f0(t )ρ(t − �)dt, (2.6)

where f0(t ) = −dQ0/dt is the FPT density for a single
search-and-capture event that delivers a packet to the target.

x = 0 0

x = L

x0

target

bursts

degradation

sequence of bursts
accumulation of
resources in target

(c)

(a) (b)

τ̂

searcher

FIG. 2. Multiple search-and-capture events. (a) Particle search-
ing in a rectangular domain with a single target. Each time the
particle reaches the target it delivers a discrete packet of resources
(burst event) and then returns to x0 where it is loaded with another
packet and the process repeats. (b) Sample trajectory projected onto
the x coordinate showing a sequence of burst events. The delay time τ̂

between a burst event and initiation of a new search is generated from
a waiting time density ρ (̂τ ). (The lines with arrows do not represent
actual trajectories.) (c) The burst sequence results in an accumula-
tion of resource packets within the target, which is counteracted by
degradation at some rate γ .

(For notational simplicity, we have dropped the explicit de-
pendence on the initial position x0.) Laplace transforming the
convolution equation then yields

F̃ (s) = f̃0(s)̃ρ(s). (2.7)

As highlighted in the Introduction, multiple search-and-
capture events can be mapped onto a G/M/∞ queuing
process, in which individual resource packets are analogous
to customers. Each burst event corresponds to a customer
arriving at the service station according to an interarrival
distribution F (t ), and the degradation of a resource packet at
a rate γ is the analog of a customer exiting the system after
being serviced via an exponential service-time distribution,
with �(t ) = 1 − e−γ t the probability that degradation occurs
after time t . Since the packets are degraded independently of
each other, the effective number of servers in the correspond-
ing queuing model is infinite, that is, the presence of other
customers does not affect the service time of an individual
customer. Finally, the distribution F (t ) is related to the inter-
arrival time density F (t ) of a single search-and-capture event
according to

F (t ) = ∫ t
0 F (y)dy. (2.8)

We will use classical queuing theory to determine the steady-
state statistics of resource accumulation within the target. For
further details see Refs. [42,43].
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Let N (t ) be the number of busy servers at time t . This
corresponds to the number of packets in the target that have
not yet degraded. In terms of the sequence of arrival times τn,
we can write

N (t ) =
∑

n,0�τn�t

I (t − τn, Sn), (2.9)

where

I (t − τn, Sn) =
{

1 if t − τn � Sn

0 if t − τn > Sn
. (2.10)

Here Sn is the service (degradation) time of the nth packet.
Introduce the generating function

G(z, t ) =
∞∑

l=0

zlP [N (t ) = l], (2.11)

and the binomial moments

Bm(t ) =
∞∑

l=m

l!

(l − m)!m!
P [N (t ) = l], m = 1, 2, . . . .

(2.12)
Suppose that the target is empty at time t = 0. We derive an
integral equation for the generating function G(z, t ). Condi-
tioning the first arrival time by setting τ1 = y, we have

N (t ) =
{

I (t − y, S1) + N∗(t − y) if y � t
0 if y > t

, (2.13)

where N∗(t ) has the same distribution as N (t ). Note that I (t −
y, S1) and N∗(t − y) are independent. Moreover,

P [I (t − y, S1) = j] = [1 − �(t − y)]δ j,1 + �(t − y)δ j,0,

(2.14)

so it follows that∑
j=0,1

z jP [I (t − y, S1) = j] = z + (1 − z)�(t − y). (2.15)

The total expectation theorem yields

E[zI (t−τ1,S1 )] = E[E[zI (t−τ1,S1 )|τ1 = y]] (2.16)

=
∫ ∞

0
[z + (1 − z)�(t − y)]dF (y).

Another application of the total expectation theorem gives

G(z, t ) = E[zN (t )] = E[E[zN (t )|τ1 = y]], (2.17)

=
∫ ∞

t
dF (y) +

∫ t

0
[z + (1 − z)�(t − y)]G(z, t − y)dF (y).

(2.18)

Differentiating Eq. (2.18) with respect to z and using

Bm(t ) = 1

m!

dmG(z, t )

dzm

∣∣∣∣
z=1

(2.19)

leads to an iterative integral equation for the binomial mo-
ments:

Bm(t ) =
∫ t

0
Bm(t − y)dF (y)

+
∫ t

0
Bm−1(t − y)[1 − �(t − y)]dF (y). (2.20)

In order to obtain the steady-state binomial moments, we
Laplace transform Eq. (2.20) after setting dF (y) = F (y)dy
and 1 − �(t − y) = e−γ (t−y):

B̃m(s) =
[ F̃ (s)

1 − F̃ (s)

]
B̃m−1(s + γ ). (2.21)

Multiplying both sides by s and taking the limit s → 0+ yields

B∗
m = lim

t→∞ Bm(t ) = lim
s→0+

sB̃m(s) = λB̃m−1(γ ), (2.22)

where

λ := lim
s→0+

sF̃ (s)

1 − F̃ (s)
= 1

T0 + 〈̂τ 〉 . (2.23)

We have used L’Hopital’s rule and Eq. (2.7) together with the
following properties:

f̃0(0) = 1 = ρ̃(0),
d f̃0

ds

∣∣∣∣
s=0

= −T0,
d ρ̃

ds

∣∣∣∣
s=0

= −τcap.

(2.24)
Here τcap is the mean time for loading and unloading a packet.
Equtions (2.21) and (2.22) completely determine the steady-
state binomial moments. In particular, since B0(t ) = 1 and
B̃0(s) = 1/s, the mean number of packets in the target is

B∗
1 ≡ N = λ

γ
= 1

γ (T0 + τcap)
. (2.25)

We can thus interpret λ as the mean rate at which a packet
is delivered to the target. This is consistent with Eq. (2.22),
since T0 + τcap is the mean time for one successful delivery of
a packet and initiation of a new round of search-and-capture.
Hence, its inverse is the mean rate of resource bursts. Note
that this result is quite general and is known as Little’s law in
the queuing theory literature [45].

The above analysis can also be used to determine the
higher-order statistics of the resource distribution. For exam-
ple,

B∗
2 ≡ 1

2
(〈N2〉 − N ) = λB̃1(γ ) = λ

2γ

F̃ (γ )

1 − F̃ (γ )
. (2.26)

Hence, the variance of the number of resource packets is

Var[N] = 2B∗
2 + B∗

1(1 − B∗
1 )

= λ

γ

[ F̃ (γ )

1 − F̃ (γ )
+ 1 − λ

γ

]
. (2.27)

It can be seen that although the mean N only depends on the
mean T0, higher-order moments involve the Laplace transform
of the FPT densities f0(t ).

III. SINGLE SEARCH-AND-CAPTURE EVENT WITH
STOCHASTIC RESETTING

Now suppose that prior to being absorbed by the target, the
particle can reset to a fixed location xr at a random sequence
of times generated by a probability density ψ (τ ), see Fig. 3. It
follows that �(τ ) = 1 − ∫ τ

0 ψ (s)ds is the probability that no
resetting has occurred up to time τ . (In the following we also
take x0 = xr .) Rather than instantaneously returning to xr , we
assume that the particle switches to a ballistic state in which it
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time t
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FIG. 3. Single search-and-capture event with resetting. Particle
searching for a target that is found after two resettings. Following
each resetting event, the particle returns to the point xr at a constant
speed V , after which it remains at xr for a refractory period before
re-entering the search phase. Also shown is the decomposition of the
FPT, T = S + N + R.

returns to xr at a constant speed V . (For simplicity, the particle
cannot be absorbed by the target when it is in the return phase.
One could also consider a more general dynamical model for
the return phase as in Refs. [18,28].) In addition, whenever
the particle returns to xr , it is subject to a refractory period
before the search begins again. The refractory period is itself a
random variable with a corresponding waiting time density φ,
which is taken to have a finite mean τref . We want to determine
the FPT density to be absorbed by the target in the presence of
resetting with delays (a single search-and-capture event with
resetting). A number of authors have studied the general FPT
problem for stochastic processes with resetting using renewal
theory, which exploits the fact that once the particle has re-
turned to xr it has lost all memory of previous search phases
[23–29]. (An analogous scenario occurs in cytoneme-based
morphogenesis [19,40].) This means that one can condition
on whether or not the particle resets at least once, even though
a reset event occurs at random times. Renewal theory can take
into account delays and nonexponential resetting, as well as
non-Markovian search processes that cannot be modeled in
terms of a master equation. Here we consider a formulation
of renewal theory [29] that is equivalent to the analysis of
Ref. [28] in the case of search processes generated by the
master equation (2.1).

Let I (t ) denote the number of resets that have occurred up
to time t . Consider the following set of FPTs, corresponding
to the decompositions shown in Fig. 3:

T = inf{t > 0; X(t ) ∈ ∂U0, I (t ) � 0},
S = inf{t > 0; X(t ) = xr, I (t ) = 1}, (3.1)

R = inf{t > 0; X(t + S + N ) ∈ ∂U0, I (t + S + N ) � 1}.

Here T is the FPT for finding the target irrespective of the
number of resettings, S is the FPT for the first resetting and
return to the reset point xr given that the particle is still free,
N is the first refractory time, and R is the FPT for finding the
target given that at least one resetting has occurred. Next we
introduce the sets 
 = {T < ∞} and � = {S < T < ∞} ⊂

. Here 
 is the set of all events for which the particle is
eventually absorbed by the target (which has measure one),
and � is the subset of events in 
 for which the particle resets
at least once. It immediately follows that 
\� = {T < S =
∞}, that is, 
\� is the set of all events for which the particle
is captured by the target without any resetting.

The Laplace transform of the FPT density with resetting is

f̃r (xr, s) = E[e−sT 1
]. (3.2)

Following along the lines of Refs. [28,29], consider the de-
composition

E[e−sT 1
] = E[e−sT 1
\�] + E[e−sT 1�]. (3.3)

The first expectation can be evaluated by noting that it is
the FPT density for capture by the target without any re-
setting, and the probability density for such an event is
−�(t )∂t Q0(xr, t )dτ , where Q0 is the survival probability
(2.4). Hence,

E[e−sT 1
\�] = −
∫ ∞

0
e−sτ�(τ )

∂Q0(xr, τ )

∂τ
dτ

= 1 −
∫ ∞

0
e−sτψ (τ )Q0(xr, τ )dτ − s

×
∫ ∞

0
e−sτ�(τ )Q0(xr, τ )dτ. (3.4)

The second expectation can be written as

E[e−sT 1�] = E[e−s[S+N+R]1�]

=
∫ ∞

0
ψ (τ1)

[∫
U\U0

e−s(τ1+|x−xr |/V ) p(x, τ1|xr )dx
]

× dτ1

[∫ ∞

0
e−sτ2φ(τ2)dτ2

]
f̃r (xr, s). (3.5)

We have used the fact that the probability that the first return
is initiated in the interval [τ1, τ1 + dτ1], given that X(τ1) =
x and the particle has not been captured by the target, is
ψ (τ1)p(x, τ1|xr )dτ1. The particle then takes an additional
time |x − xr |/V to return to xr , after which it spends a time
τ2 in the refractory state with waiting time density φ(τ2). The
remaining time to find the target has the same FPT density
as T . Combining Eqs. (3.3)–(3.5) and rearranging yields the
general result [28]

f̃r (xr, s) = 1 − ∫ ∞
0 e−sτψ (τ )Q0(xr, τ )dτ − s

∫ ∞
0 e−sτ�(τ )Q0(xr, τ )dτ

1 − φ̃ref (s)
∫ ∞

0 ψ (τ1)
[ ∫

U\U0
e−s(τ1+|x−xr |/V ) p(x, τ1|xr )dx

]
dτ1

. (3.6)

The Laplace transform of the FPT density is the moment generator of the FPT T :

T (n)
r = E[T n1
] =

(
− d

ds

)n

E[e−sT 1
]

∣∣∣∣
s=0

. (3.7)
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For example, the MFPT Tr = T (1)
r is

Tr (xr ) = 〈Q0(xr, τ )〉� − 〈τQ0(xr, τ )〉ψ
1 − 〈Q0(xr, τ )〉ψ

+ −φ̃′
ref (0)〈Q0(xr, τ )〉ψ + 〈τQ0(xr, τ )〉ψ + V −1〈F (xr, τ )〉ψ

1 − 〈Q0(xr, τ )〉ψ

= 〈Q0(xr, τ )〉� + τref〈Q0(xr, τ )〉ψ + V −1〈F (xr, τ )〉ψ
1 − 〈Q0(xr, τ )〉ψ

, (3.8)

where we have set

〈Q0(xr, τ )〉ψ =
∫ ∞

0
ψ (τ )Q0(xr, τ )dτ, (3.9)

etc., and

F (xr, t ) =
∫
U\U0

|x − xr |p(x, t |xr )dx. (3.10)

We have also used the result

−φ̃′
ref (0) = τref =

∫ ∞

0
τφ(τ )dτ. (3.11)

In the case of exponential resetting,

ψ (t ) = re−rτ , �(τ ) = e−rt , (3.12)

everything can be expressed in terms of Laplace transforms.
For example, the MFPT reduces to

Tr (xr ) = Q̃0(xr, r) + rτrefQ̃0(xr, r) + rF̃ (xr, r)/V

1 − rQ̃0(xr, r)
,

(3.13)

where F̃ (xr, r) is the Laplace transform of F (xr, τ ). Similarly,
the Laplace transform of the FPT density becomes

f̃r (xr, s) = 1 − (r + s)Q̃0(xr, r + s)

1 − rφ̃(s)
∫
U\U0

e−s|x−xr |/V p̃(x, r + s|xr )dx
.

(3.14)

IV. MULTIPLE SEARCH-AND-CAPTURE EVENTS WITH
RESETTING

We can now combine the results of Secs. II and III to
analyze the accumulation of resources in a target due to mul-
tiple rounds of search-and-capture events with resetting. This
is achieved by setting F̃ (s) = f̃r (xr, s)̃ρ(s), see Eq. (2.7). In
order to develop our intuition, we mainly focus on the case
of exponential resetting and no delays. However, the theory
developed in this paper applies to a much more general class
of search processes, which we hope to explore more fully
elsewhere.

A. Instantaneous resetting

Suppose that φ(τ ) = ρ(τ ) = δ(τ ) and take the limit V →
∞. Equations (3.13) and (3.14) then become

Tr (xr ) = Q̃0(xr, r)

1 − rQ̃0(xr, r)
, (4.1)

and

f̃r (xr, s) = 1 − (r + s)Q̃0(xr, r + s)

1 − rQ̃0(xr, r + s)
. (4.2)

In terms of the FPT density f0 without resetting, whose
Laplace transform is

f̃0(xr, s) = 1 − sQ̃0(xr, s), (4.3)

we can write

Tr (xr ) = 1 − f̃0(xr, r)

r f̃0(xr, r)
, (4.4)

and

f̃r (xr, s) = (r + s) f̃0(xr, r + s)

s + r f̃0(xr, r + s)
. (4.5)

This recovers the more general result derived in Ref. [24].
Substituting Eq. (4.5) into Eqs. (2.21) and (2.22) with

F̃ (s) = f̃r (xr, s) yields the following iterative equation for the
binomial moments:

B̃m(γ ) = r + γ

γ

f̃0(xr, r + γ )

1 − f̃0(xr, r + γ )
B̃m−1(2γ )

= 1

γ Tr+γ (xr )
B̃m−1(2γ ). (4.6)

The corresponding steady-state moments are then given by

B∗
m = B̃m−1(γ )

Tr (xr )
. (4.7)

A general result that emerges from this analysis is that the
statistics of resource accumulation in the presence of expo-
nential resetting is determined completely in terms of the
MFPT at two different resetting rates: r and r + γ , where γ is
the degradation rate. In particular, the steady-state mean and
variance of the number of packets in the target become

N = 1

γ Tr (xr )
, (4.8)

and

Var[N] = 1

γ 2Tr (xr )

[
γ + 1

Tr+γ (xr )
− 1

Tr (xr )

]
. (4.9)

(Since the expression for the mean N is an example of Little’s
law [45], it also holds in the case of nonexponential resetting
and delays due to finite return times and refractory periods.)
Moreover, the square of the coefficient of variation (CV) sat-
isfies

CV 2 = Var[N]

N
2 = Tr (xr )

Tr+γ (xr )
+ γ Tr (xr ) − 1, (4.10)

and the Fano factor (FF) is given by

FF = Var[N]

N
= 1 + 1

γ Tr+γ (xr )
− 1

γ Tr (xr )
. (4.11)
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A number of general observations can now be made.
Clearly both the mean and variance vanish in the limit γ →
∞ for fixed r, since resources delivered to the target are
immediately degraded so that there is no accumulation. In
addition, limγ→∞ Tr+γ (xr ) = ∞, that is, if the particle resets
too frequently, then it never has a chance to reach the target.
Equations (4.10) and (4.11) then imply that

lim
γ→∞CV = lim

γ→∞
√

γ Tr (xr ) = ∞, lim
γ→∞ FF = 1. (4.12)

In the limit of slow degradation, γ → 0, we find that the
mean and variance both become infinite, which is expected
as resources continue to accumulate with little degradation.
Indeed, in the absence of degradation there is no steady-state
distribution of resources. Also note that

lim
γ→0

CV = 0, lim
γ→0

FF = 1 + d

dr

(
1

Tr

)
. (4.13)

Furthermore, Eq. (4.11) implies that if γ > 0, then deviations
of FF from unity (Poisson-like noise) simply depends on the
difference in N at the resetting rates r and r + γ . In all of
the examples considered in Sec. V, this difference tends to
be relatively small so that FF remains in a neighborhood
of unity over a wide range of parameters, which means that
CV ∼ 1/

√
N . Finally, differentiating both sides of Eq. (4.10)

with respect to γ for fixed r shows that

dCV 2

dγ
= Tr

[
1 − T ′

r+γ

T 2
r+γ

]
. (4.14)

The CV will be an increasing function of γ provided that
T ′

r+γ < T 2
r+γ , which is equivalent to the condition d

dr T −1
r+γ >

−1.
Now suppose that we vary the resetting rate r for fixed

γ and xr . Equations (4.8) and (4.9) and the condition
limr→∞ Tr = ∞ imply that the mean and variance both vanish
in the large-r limit. Again, in the case of fast resetting, the
particle rarely has the chance to deliver resources and so
degradation dominates. Moreover,

lim
r→∞CV = ∞, lim

r→∞ FF = 1. (4.15)

The behavior when r → 0 will depend on whether the MFPT
without resetting, T0(xr ), is finite. If limr→0 Tr (xr ) = ∞, then
the mean and variance both vanish, whereas

lim
r→0

CV = ∞, lim
r→0

FF = 1 + 1

γ Tγ (xr )
. (4.16)

On the other hand, if T0(xr ) is finite, then both N and Var[N]
have finite nonzero values such that

lim
r→0

CV 2 = T0(xr )

Tγ (xr )
+ γ T0(xr ) − 1, (4.17)

and

lim
r→0

FF = 1 + 1

γ Tγ (xr )
− 1

γ T0(xr )
. (4.18)

It is well known that for a wide range of search processes
the MFPT is a unimodal function of the resetting rate r with a

unique minimum at r = ropt (xr ) [1]:

dTr (xr )

dr

∣∣∣∣
r=ropt (xr )

= 0,
d2Tr (xr )

dr2

∣∣∣∣
r=ropt (xr )

> 0. (4.19)

In the case of diffusion in unbounded domains U ⊆ Rd , this
reflects the fact that the MFPT without resetting, T0(x0), is
infinite for all initial positions x0 /∈ U0. On the other hand, for
diffusion in bounded domains and potential landscapes, one
often finds that Tr (xr ) can be either a unimodal or a mono-
tonically increasing function of r, depending on xr [9–11].
Within the context of multiple search-and-capture events with
resetting, the steady-state mean number of resources N is
inversely proportional to the MFPT Tr (xr ), see Eq. (4.8). This
implies that if there exists an optimal resetting rate ropt (xr ) for
a given xr then N has a maximum at the same resetting rate.

Given the r-dependent function Tr (xr ) for fixed xr , we
would like to derive conditions for the corresponding CV and
FF to have at least one stationary point. (In principle, there
could be more than one stationary point. However, in the
examples explored in Sec. V, there is at most one such point
and, if it exists, it corresponds to a minimum.) Differentiating
CV 2 with respect to r for fixed γ and reset position xr yields

dCV 2

dr
= γ

dTr

dr
+ 1

Tr+γ

dTr

dr
− Tr

T 2
r+γ

dTr+γ

dr
. (4.20)

The squared CV will have a stationary point at r = r∗ such
that

1

Tr

dTr

dr

∣∣∣∣
r=r∗

= �r+γ

Tr+γ

dTr+γ

dr

∣∣∣∣
r=r∗

, (4.21)

where

�r+γ = 1

(γ Tr+γ + 1)
< 1, γ > 0. (4.22)

Using partial fractions this condition can also be rewritten as

d ln Tr

dr

∣∣∣∣
r=r∗

=
[

d ln Tr+γ

dr
− d ln(γ Tr+γ + 1)

dr

]∣∣∣∣
r=r∗

.

(4.23)
The existence of a stationary point can then be determined by
plotting ln Tr as a function of r and using a tangent construc-
tion as illustrated in Fig. 4(a) in the case of a uniomdal MFPT
Tr . Also note that for large γ , we have T ′

r ≈ 0 at r = r∗ so that
r∗ ≈ ropt. Proceeding in a similar fashion, we can differentiate
the Fano factor with respect to r for fixed γ and reset position
xr :

dFF

dr
= 1

γ

dT −1
r+γ

dr
− 1

γ

dT −1
r

dr
. (4.24)

The Fano factor will have a stationary point at r = r∗ if

dT −1
r+γ

dr

∣∣∣∣∣
r=r∗

= dT −1
r

dr

∣∣∣∣
r=r∗

. (4.25)

The existence of a stationary point can then be determined by
plotting 1/Tr as a function of r and using a tangent construc-
tion as illustrated in Fig. 4(b) in the case of a unimodal MFPT
Tr . Note that the curve has to have a mixture of convex and
concave sections in order for Eq. (4.25) to be satisfied.
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resetting rate r

lnTr

ropt r* r*+ γ

(lnTr ) = Λr + γ (lnTr + γ ) 

Tr

resetting rate r

(a)

(b)

-1

(1/Tr) = (1/Tr+ γ) 

r* r*+ γ

FIG. 4. Tangent constructions for a unimodal MFPT Tr .
(a) Sketch of ln Tr as a function of r. There exists an optimal resetting
rate ropt such that d ln Tr/dr < 0 for r < ropt and d ln Tr/dr > 0 for
r > ropt. The CV has a minimum at r = r∗ such that Eq. (4.21) holds.
(b) Sketch of T −1

r as a function of r. The FF has a minimum at r = r∗

such that Eq. (4.25) holds.

B. Effects of refractory delays

It is straightforward to extend the above analysis to in-
corporate delays arising from refractory resetting and loading
or unloading of resources. Setting F̃ (s) = f̃r (xr, s)̃ρ(s), Eqs.
(3.13) and (3.14) reduce to

Tr (xr ) = Q̃0(xr, r) + rτrefQ̃0(xr, r)

1 − rQ̃0(xr, r)

= 1 + rτref

r

1 − f̃0(xr, r)

f̃0(xr, r)

= (1 + rτref )T r (xr ), (4.26)

where T r denotes the corresponding MFPT without a refrac-
tory period, and

f̃r (xr, s) = 1 − (r + s)Q̃0(xr, r + s)

1 − rφ̃(s)Q̃0(xr, r + s)

= (r + s) f̃0(xr, r + s)

r + s − rφ̃(s) + rφ̃(s) f̃0(xr, r + s)
. (4.27)

The factor in Eq. (2.21) for s = γ becomes

F̃ (γ )

1 − F̃ (γ )

= f̃r (xr, γ )̃ρ(γ )

1 − f̃r (xr, γ )̃ρ(γ )

= (r + γ ) f̃0(xr, r + γ )̃ρ(γ )

γ + r[1 − φ̃(γ )] − [(r + γ )̃ρ(γ ) − rφ̃(γ )] f̃0(xr, r + γ )

= ρ̃(γ )

1 − ρ̃(γ ) + {γ + r[1 − φ̃(γ )]}T r+γ (xr )
. (4.28)

Equations (2.25) and (2.27) then imply that the steady-state
mean and variance are given by

N = 1

γ

1

(1 + rτref )T r (xr ) + τcap
, (4.29)

and

Var[N] = N ρ̃(γ )

1 − ρ̃(γ ) + {γ + r[1 − φ̃(γ )]}T r+γ (xr )

+ N (1 − N ). (4.30)

It immediately follows from Eq. (4.29) that the introduction of
delays decreases the mean N . Moreover, outside the small-r
regime, refractory delays following a resetting event without
capture will reduce N more strongly than a delay following
a single search-and-capture event. The dependence of the CV
or FF on refractory delays is more complicated, and will be
explored further using a specific example in Sec. V.

V. EXAMPLES

We now illustrate the theory by considering several differ-
ent search processes. We use dimensionless units throughout,
with the timescale set by the resetting rate r and the length
scale specified by some transport coefficient such as the diffu-
sivity or speed of ballistic transport.

A. Diffusion on the half-line

For our first example, consider a particle diffusing on the
half-line with a target at x = 0. The survival probability Q0

takes the form of an error function, Q0(xr, t ) = erf(xr/2
√

Dt ),
whose Laplace transform is

Q̃0(xr, s) = 1 − e−√
s/Dxr

s
. (5.1)

Equation (4.1) then implies that [2,3]

Tr (xr ) = 1

r
(e

√
r/Dxr − 1). (5.2)

Note that in the limit r → 0, the MFPT diverges as Tr ∼ √
r,

which recovers the result that the MFPT of a Brownian par-
ticle without resetting to return to the origin is infinite. Tr

also diverges in the limit r → ∞ and has a finite and unique
minimum at an intermediate value of the resetting rate r [2,3].
Substituting Eq. (5.2) for Tr (xr ) into Eqs. (4.8) and (4.9) gives

N = r

γ

1

e
√

r/Dxr − 1
, (5.3)
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D = 2
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D = 0.5
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FIG. 5. Particle diffusing on the half-line and searching for a tar-
get at the origin. Plot of scaled steady-state mean γ N (solid curves)
and variance γ Var[N] (dashed curves) as functions of the resetting
rate r for various diffusivities D. The reset position is xr = 1. Solid
(green) dots indicate maxima of the mean curves at r = ropt. For the
variance we take γ = 0.1.

and

Var[N] = r

γ 2

1

e
√

r/Dxr − 1

×
[
γ e

√
(r+γ )/Dxr + r

e
√

(r+γ )/Dxr − 1
− r

e
√

r/Dxr − 1

]
. (5.4)

In Fig. 5 we show plots of the mean N (scaled by a
factor γ ) as a function of the resetting rate r for various
diffusivities. (Under the rescaling, the plots are independent
of the degradation rate γ .) As expected, the maximum of the
mean number of packets occurs at the optimal resetting rate
ropt for minimizing Tr (for given D and xr). The maximum
is an increasing function of D since a faster search process
means that the target receives resources at a faster mean rate.
In Fig. 6 we show corresponding plots of the FF against r
for various D and γ . Consistent with Eqs. (4.16) and (4.17),
the Fano factor has a finite value at r = 0 and asymptotes
to FF = 1 as r → ∞. Moreover, each of the curves has a
unique minimum satisfying the condition (4.25). As γ → ∞,
the FF curves approach the straight line FF = 1 as indicated
by Eq. (4.13). Indeed, for γ > 0 and sufficiently fast resetting
the FF curves tend to lie in a neighborhood of unity, indicating
Poisson-like noise. When γ → 0, the FF curve diverges at
r = 0 since dT −1

r /dr → ∞, see condition (4.13). Finally,
plots of the CV for γ = 1 and γ = 0.1 are displayed in Fig. 7.
Again consistent with Eqs. (4.16) and (4.17), the CV has the
limits CV → ∞ for r → 0 and r → ∞. Each CV curve has
a minimum at a γ -dependent resetting rate r∗(γ ) where the
condition (4.21) holds; the dependence of the minimum on γ

is indicated by the arrows in Fig. 6. It can also be seen that
increasing γ shifts the CV curves upward, which reflects the
fact that FF ≈ 1 and N decreases with increasing γ .

We can also use the example of diffusion on the half-line to
illustrate the effects of refractory periods on the accumulation
of resources at the target. For concreteness, suppose that ρ and

0.95
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resetting rate r
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FIG. 6. Particle diffusing on the half-line and searching for a
target at the origin. Plot of the Fano factor (FF) as a function of the
resetting rate r for various γ . The reset position is xr = 1 and the
diffusivity is D = 1 (thick curves) or D = 0.1 (thin curves).

φ are exponential waiting time densities so

ρ̃(s) = 1

1 + sτcap
, φ̃(s) = 1

1 + sτref
. (5.5)

Example plots of the scaled mean, the FF and CV are shown
in Figs. 8–10, respectively. As expected, the introduction of
delays reduces the mean, and the effect is stronger in the
case of τref for sufficiently large r. On the other hand, the FF
tends to be reduced by delays after capture and to be increased
by delays after resetting. We find similar results for different
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FIG. 7. Particle diffusing on the half-line and searching for a
target at the origin. Plot of the coefficient of variation (CV) as a
function of the resetting rate r for various diffusivities D. The reset
position is xr = 1 and the degradation rate is γ = 1 (thick curves) or
γ = 0.1 (thin curves). Solid (green) dots indicate minima of the CV
curves at r = r∗(γ ) and the arrows indicate their displacement under
the reduction of γ .
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FIG. 8. Particle diffusing on the half-line and searching for a
target at the origin. Plot of steady-state mean N (scaled by γ ) as
a function of the resetting rate r for various refractory periods σ .
Thick curves represent τcap = 0, τref = σ , while thin curves repre-
sent the case τcap = σ, τref = 0. The reset position is xr = 1 and the
diffusivity is D = 1.

values of γ . Since changes in FF are relatively insensitive to
delays, it follows that the effects on the CV are dominated by
the corresponding changes in N . Hence, the CV increases in
the presence of refractory delays, and again the effect is more
pronounced in the case of resetting delays when r is large.

B. Velocity jump process

Although we formulated the theory in terms of a scalar
master equation (2.1), it is straightforward to extend the anal-
ysis to a multivariate master equation. We illustrate this by
considering a symmetric velocity jump process [6], which
could describe the unbiased growth and shrinkage of mi-
crotubules [46] or cytonemes [40], the motion of molecular
motors [37], or bacterial run-and-tumble [47]. Let p±(x, t ),
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FIG. 9. Corresponding plots of FF for γ = 1.
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FIG. 10. Corresponding plots of CV for γ = 1.

x ∈ R+, be the probability density of a particle that is moving
at constant speed ±v and suppose that it reverses direction at
a rate α. In the absence of resetting the master equation takes
the form

∂ p+(x, t )

∂t
= −v

∂ p+(x, t )

∂x
− αp+(x, t ) + αp−(x, t ),

(5.6a)

∂ p−(x, t )

∂t
= v

∂ p−(x, t )

∂x
− αp−(x, t ) + αp+(x, t ),

(5.6b)

supplemented by an absorbing boundary condition at x = 0,
p+(0, t ) = 0. This is a symmetric process, since the antero-
grade and retrograde speeds are the same, as are the rates of
switching between the two velocity states. It is well known
that such a system is equivalent to the telegrapher’s equation
[48]. Now suppose that stochastic resetting is included along
the following lines: With rate r the particle resets to its initial
position xr and the velocity is chosen to be ±v with equal
probability 1/2. Since the resetting protocol preserves the
initial conditions, the renewal theory of Sec. III still holds [6].
Hence, as in the previous examples, we need to calculate the
Laplace transform of the survival probability without reset-
ting.

Let Q±
0 (x0, t ) denote the survival probability without reset-

ting for a particle having started at x = x0 with initial velocity
±v. The total survival probability is then

Q0(x0, t ) = 1
2 [Q+

0 (x0, t ) + Q−
0 (x0, t )]. (5.7)

The survival probabilities Q±
0 satisfy the backward master

equation

∂Q+
0 (x0, t )

∂t
= v

∂Q+
0 (x0, t )

∂x0
− αQ+

0 (x0, t ) + αQ−
0 (x0, t ),

(5.8a)

∂Q−
0 (x0, t )

∂t
= −v

∂Q−
0 (x0, t )

∂x0
− αQ−

0 (x0, t ) + αQ+
0 (x0, t ),

(5.8b)
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FIG. 11. Velocity jump process on the half-line with a target
at x = 0. Plot of scaled steady-state mean γ N (solid curves) and
γ Var[N] (dashed curves) as functions of the resetting rate r for
various switching rates α. The reset position is xr = 1 and the speed
is v = 1. For the variance γ = 0.1.

for x0 > 0 The initial conditions are Q±
0 (x0, 0) = 1, and there

is an absorbing boundary condition at x = 0, Q−
0 (0, t ) = 0.

Using Laplace transforms, the solution is [6]

Q̃0(x0, s) = 1

s
+ 1

2αs
[vλ(s) − (s + 2α)]e−λ(s)x0 , (5.9)

where

λ(s) =
√

s(s + 2α)

v2
. (5.10)

This can then be substituted into Eq. (4.1), and used to calcu-
late the mean and variance according to Eqs. (4.8) and (4.9).
In Figs. 11 and 12 we show plots of the scaled mean γ N ,
the scaled variance γ Var[N] and the CV as functions of the
resetting rate r for various switching rates α and xr = 1 = v.
(As in the previous example FF ∼ 1.) We observe the same
qualitative behavior as in the previous two examples. Note that
reducing the switching rate α increases the mean and reduces
the CV. Again the results are consistent with the general
analysis of Sec. IV, with α analogous to the diffusivity.

C. Diffusion on an interval

In the above two examples the MFPT without resetting is
infinite for all reset positions xr > 0, T0(xr ) = ∞. We now
consider an example where T0(xr ) is finite and Tr (xr ) may
either be a unimodal function of r or a monotonically increas-
ing function of r, depending on the reset location xr . Various
examples of this situation have been considered elsewhere
[9,11–13]. Here we will focus on the simple case of Brownian
motion in the finite interval [0, L] with a target at x = 0 and
a reflecting boundary at x = L. In the absence of resetting the
Laplace transformed survival probability Q̃0(x, s) satisfies the
equation

D
d2Q̃0

dx2
− sQ̃0 = −1, x ∈ (0, L), (5.11)
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FIG. 12. Velocity jump process on the half-line with a target at
x = 0. Plot of coefficient of variation as a function of the resetting
rate r for various switching rates α. The reset position is xr = 1,
the speed is v = 1 and the degradation rate is γ = 1 (thick curves)
or γ = 0.1 (thin curves). Solid (green) dots indicate minima of CV
curves and the arrows indicate their displacement under the reduction
of γ .

together with the boundary conditions

Q̃0(0, s) = 0, ∂xQ̃0(L, s) = 0. (5.12)

The solution takes the form

Q̃0(x, s) = 1

s

{
1 − cosh(

√
s/D[L − x])

cosh(
√

s/DL)

}
. (5.13)

Taking the limit s → 0 and using L’Hopital’s rule yields the
classical results

T0(x) = − x2

2D
+ xL

D
,

T (2)
0 (x) = 1

12D2
(x4 − 4x3L + 8xL3). (5.14)

Here T (2)
0 is the second moment of the FPT density without

resetting. Equation (4.1) then implies that [10]

Tr (xr ) = cosh(
√

r/DL) − cosh(
√

r/D[L − xr])

r cosh(
√

r/D[L − xr])
. (5.15)

Note that in the limit r → 0, Tr (xr ) → T0(xr ), whereas
Tr (xr ) → ∞ as r → ∞.

One finds that the MFPT Tr (xr ) is a unimodal function of
r for reset locations close to the target and a monotonically
increasing function of r at more distal locations, as illustrated
in Fig. 13; in the former case there exists an optimal resetting
rate that minimizes Tr . One way to investigate whether or
not the MFPT has at least one turning point is to calculate
the sign of the derivative dTr/dr at r = 0 [24–26,28]. If this
derivative is negative, then resetting reduces the MFPT in the
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FIG. 13. Plot of Tr (xr )/T0(xr ) as a function of the resetting rate r
for various reset positions xr . Other parameters are L = 1 = D. The
solid (green) dots indicate the optimal resetting rate for a given xr .
Inset: Plot of �(xr ) := τ (2)(xr ) − 2τ (xr )2 as a function of the reset
location xr . Here τ and τ (2) are the MFPT and second moment in the
absence of resetting. The sign of � determines whether or not the
corresponding MFPT with resetting is initially a decreasing function
of the resetting rate r.

small-r regime. Equation (4.1) implies that

T ′
r (xr ) = Q̃′

0(xr, 0) + Q̃0(xr, 0)2

= T0(xr )2 − T (2)
0 (xr )

2
. (5.16)

Introducing the variance σ 2
0 (xr ) = T (2)

0 (xr ) − T0(xr )2, it fol-
lows that adding a small rate of resetting reduces the MFPT
for a given xr if and only if

σ0(xr )

T0(xr )
> 1. (5.17)

In the inset of Fig. 13 we plot �(xr ) := T (2)
0 (xr ) − 2T0(xr )2

as a function of xr , with T0(xr ), T (2)
0 (xr ) defined in Eq. (5.14).

Applying the condition (5.17) implies that the sign of � de-
termines whether the corresponding MFPT Tr with resetting is
initially a decreasing function of the resetting rate r. It can be
seen that �(xr ) is negative in the case of proximal positions
(xr < xc ≈ 0.55) but switches to positive values in the case of
distal locations (xr > xc). In Fig. 14 we show example plots
of the CV as a function of the resetting rate and various restart
positions xr . We find that the CV is a unimodal function of r
for xr < xc and a monotonically increasing function of r for
xr > xc. The latter is a consequence of the fact that in this
regime the curve 1/Tr is everywhere concave, see Eq. (4.25).
Moreover, consistent with Eq. (4.17), the CV has a finite limit
as r → 0, which for the given parameters is only weakly
dependent on xr . The FF also switches from unimodal to
monotonic behavior as xr increases but the transition point is
above xc, as can be seen in Fig. 15 for x = 0.6 > xc. It can
be checked that although 1/Tr is a monotonically decreasing
function of r at xr = 0.6, it switches from a concave to a
convex function, consistent with Eq. (4.25).
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FIG. 14. Particle diffusing on the finite interval [0, L] with an
absorbing target at the origin and a reflecting boundary at x = L. Plot
of CV as a function of the resetting rate r for various reset points xr

D. Other parameters are D = L = 1 = γ .

D. Diffusive search for a spherical target

As our final example, we consider a Brownian particle
searching for a d-dimensional, spherical target in an un-
bounded domain. The FPT for a single search-and-capture
event with resetting was analyzed in Ref. [4]. In particular,
one can exploit spherical symmetry by taking the center of the
target to be at the origin so that the solution for the survival
probability and moments of the FPT density only depend
on the radial distance x = |x| of the initial position or reset
point and the radius a of the sphere. The Laplace transformed

0.8

0.9

1

1.1

1.2

5 10 15 20 25 30 35 400

FF

resetting rate r

45 50

xr = 0.4
xr = 0.5
xr = 0.7
xr = 0.8

xr = 0.6

FIG. 15. Particle diffusing on the finite interval [0, L] with an
absorbing target at the origin and a reflecting boundary at x = L. Plot
of FF as a function of the resetting rate r for various reset points xr

D. Other parameters are D = L = 1 = γ .
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Plot of FF as a function of the resetting rate r for xr = 3 and d =
1, 2, 3. The lower and upper three curves correspond to γ = 0.1 and
γ = 1.0, respectively. Other parameters are a = 1 = D.

survival probability without resetting evolves according to

d2Q̃0

dx2
+ d − 1

x

dQ̃0

dx
− sQ̃0 = −1, a < x < ∞, (5.18)

together with the boundary condition Q̃0(a, s) = 0. Following
Ref. [4], the solution takes the form

Q̃0(x, s) = 1

s

[
1 − xνKν (

√
s/Dx)

aνKν (
√

s/Da)

]
, (5.19)

where ν = 1 − d/2 and Kν is the modified Bessel function of
the second kind of order ν. Substituting Eq. (5.19) into (4.1)
leads to the following expression for the MFPT Tr [4]:

Tr (xr ) = aνKν (
√

r/Da) − xν
r Kν (

√
r/Dxr )

rxν
r Kν (

√
r/Dxr )

. (5.20)

The qualitative behavior of the mean N and variance is the
same as the first example of diffusion on the half-line. There-
fore, here we focus on how the FF and CV and FF depend on
the dimension d for different values of γ . Example plots of the
FF are shown in Fig. 16 for γ = 0.1. Again FF ≈ 1 except
when r or γ is sufficiently small. On the other hand, the CV
appears to be much more sensitive to both the dimension and
the degradation rate as illustrated in Fig. 17. This reflects a
corresponding parameter dependence for N .

VI. MULTIPLE PACKETS AND NOISE REDUCTION

All of the examples considered in Sec. V exhibited signifi-
cant fluctuations. One way to reduce fluctuations is to assume
that during each burst event, the particle delivers d packets
that degrade independently. In order to establish this result, it
is necessary to modify the analysis of the binomial moments
in Sec. II. The number of packets at the target at time t is now

N (t ) =
∑

n,0�Tn�t

d∑
i=1

I (t − Tn, Sni ), (6.1)
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FIG. 17. Diffusive search for a spherical target of radius a in Rd .
Plot of CV as a function of the resetting rate r for xr = 5 and d =
1, 2, 3. The lower, middle and upper three curves correspond to γ =
0.1, γ = 1.0 and γ = 10.0, respectively. Other parameters are a =
1 = D.

where Sni, i = 1, . . ., is the service time of the ith member of
the nth burst event. Since I (t − y, S1i ) for i = 1, 2, . . . , d are
independent and identically distributed, the total expectation
theorem yields

E[z
∑d

i=1 I (t−Tn,Sni )] = E

[
d∏

i=1

E[zI (t−y,S1i )]

]

=
∫ ∞

0
[z + (1 − z)�(t − y)]d dF (y). (6.2)

We have used Eq. (2.15). Another application of the total
expectation theorem gives

G(z, t ) = E[zN (t )] = E[E[zN (t )|T1 = y]]

=
∫ ∞

t
dF (y) (6.3)

+
∫ t

0
[z + (1 − z)�(t − y)]d G(z, t − y)dF (y).

Differentiating Eq. (6.3) using

dm

dzm
[z + (1 − z)�(t − y)]d

∣∣∣∣
z=1

=
{

d!
(d − m)! [1 − �(t − y)]m if d � m

0 if d < m
, (6.4)

leads to the following integral equation for the binomial mo-
ments:

Bm(t ) =
∫ t

0
Bm(t − y)dF (y) +

min{m,d}∑
l=1

(
d

l

)

×
∫ t

0
Bm−l (t − y)[1 − �(t − y)]l dF (y). (6.5)
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Since 1 − �(t − y) = e−γ (t−y), this can be written in the more
compact form

Bm(t ) =
∫ t

0
Bm(t − y)dF (y) +

∫ t

0
Hm(t − y)dF (y), (6.6)

where

Hm(t ) =
min{m,d}∑

l=1

(
d

l

)
Bm−l (t )e−lγ t . (6.7)

In order to obtain the steady-state binomial moments, we
Laplace transform Eq. (6.6) with dF (y) = F (y)dy:

B̃m(s) = B̃m(s)F̃ (s) + H̃m(s)F̃ (s), (6.8)

which can be rearranged to give

B̃m(s) = H̃m(s)F̃ (s)

1 − F̃ (s)

= F̃ (s)

1 − F̃ (s)

min{m,d}∑
l=1

(
d

l

)
B̃m−l (s + lγ ). (6.9)

Multiplying both sides by s and taking the limit s → 0+ along
identical lines to the derivation of Eq. (2.21) yields

B∗
m = lim

s→0+

sF̃ (s)

1 − F̃ (s)

min{m,d}∑
l=1

(
d

l

)
B̃m−l (lγ )

= λ

γ

min{m,d}∑
l=1

(
d

l

)
B̃m−l (lγ ). (6.10)

In particular, the mean is

B∗
1 ≡ N = dλ

γ
, (6.11)

with λ given by Eq. (2.23). As expected, N scales with the
number of packets d per delivery. Similarly, defining Hm,d = 1
if m � d and zero otherwise,

B∗
2 = λ

[
B̃1(γ )d + H2,d d (d − 1)

4γ

]
= d2λ

4γ

[
2F̃ (γ )

1 − F̃ (γ )
+ H2,d

]
− dλH2,d

4γ
. (6.12)

Hence, the variance is

var[N] = C1d + C2d2, (6.13)

where

C1 = λ

γ

(
1 − H2,d

2

)
, (6.14)

C2 = λ

2γ

[
2F̃ (γ )

1 − F̃ (γ )
+ H2,d

]
− λ2

γ 2
. (6.15)

For d � 2 the coefficients are independent of d so that the d
dependence of the corresponding coefficient of variation (CV)
can be expressed as

CV = γ

λ

√
C2 + C1

d
. (6.16)

This establishes that increasing d reduces the CV.

A more effective way to reduce fluctuations is to have
M independent, parallel searchers. Statistical independence
implies that the steady-state mean and variance become

N = Mdλ

γ
, (6.17)

and

Var[N] = Md (C2d + C1). (6.18)

The CV thus scales as

CV = γ

λ
√

Md

√
C2d + C1. (6.19)

Note that the steady-state mean N depends on the product Md .
Hence, for a given mean, one can reduce the CV by decreasing
d and increasing M such that Md is fixed. That is, a larger
number of searchers carrying a smaller number of packets
results in smaller fluctuations. (An analogous observation was
made in a study of cytoneme-based transport [40].) Finally,
note that these scaling arguments still hold if each search-and-
capture event involves stochastic resetting.

VII. DISCUSSION

Motivated by examples of search processes in cell bi-
ology, we have developed a general theoretical framework
for studying the accumulation of resources in a target due
to the sequential delivery of resources via multiple search-
and-capture events with resetting, combined with natural
degradation. We showed how this problem can be mapped
onto a G/M/∞ queue and used this to derive an integral equa-
tion for the binomial moments of the number N (t ) of packets
at time t . Laplace transforming the integral equation allowed
us to derive explicit expressions for the mean and variance of
N (t ) in steady state, which depend on the resetting rate r and
the degradation rate γ . One of our main findings is that in the
case of exponential resetting the mean and variance depend
on the MFPTs Tr (xr ) and Tr+γ (xr ). We used this observation
to derive general conditions for the CV and FF to have at least
one stationary point as functions of r and to investigate their
behavior in the asymptotic limits r → 0,∞ and γ → 0,∞.
This was illustrated by considering several specific search
processes with exponential resetting. In each case we found
that over a large parameter range the noise was Poisson-like
with FF ≈ 1.

There are a variety of possible future directions. First,
extending the analysis to a wider range of examples that
includes finite return times, nonexponential resetting and non-
Markovian search processes. A second major extension is to
consider resource allocation to multiple competing targets.
This type of problem has previously been considered within
the specific context of cytoneme-based morphogen transport
[19,40], where queuing theory was used to analyze the ac-
cumulation of morphogen in a 1D array of target cells. (One
major difference from the current paper is that the targets were
only partially absorbing.) More recently we have used renewal
theory to analyze a single search-and-capture process with
noninstantaneous resetting and multiple targets [29], which
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could be extended to analyze resource accumulation in a pop-
ulation of targets. The effect of stochastic resetting on search
processes with two or more targets has also been considered
by a number of other authors [10,25–27,49].
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