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Stochastic resetting and the mean-field dynamics of focal adhesions
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In this paper we investigate the effects of diffusion on the dynamics of a single focal adhesion at the leading
edge of a crawling cell by considering a simplified model of sliding friction. Using a mean-field approximation,
we derive an effective single-particle system that can be interpreted as an overdamped Brownian particle with
spatially dependent stochastic resetting. We then use renewal and path-integral methods from the theory of
stochastic resetting to calculate the mean sliding velocity under the combined action of diffusion, active forces,
viscous drag, and elastic forces generated by the adhesive bonds. Our analysis suggests that the inclusion of
diffusion can sharpen the response to changes in the effective stiffness of the adhesion bonds. This is consistent
with the hypothesis that force fluctuations could play a role in mechanosensing of the local microenvironment.
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I. INTRODUCTION

Tissue cell migration along a substrate such as the extra-
cellular matrix (ECM) requires adhesion forces between the
cell and substrate. Adhesion is necessary in order to balance
propulsive forces at the leading edge of the cell that are gener-
ated by actin polymerization and contractile forces at the rear
that are driven by myosin II motors [1,2]. Adhesive forces are
mediated by transmembrane receptors (integrins) [3], which
form one layer of a large multiprotein complex known as a
focal adhesion (FA), see Fig. 1(a). More specifically, integrins
are heterodimeric proteins whose extracellular domains attach
to the substrate, while their intracellular domains act as bind-
ing sites for various submembrane proteins, resulting in the
formation of the plaque. The plaque, which consists of more
than 50 different types of protein, links the integrin layer to the
actin cytoskeleton, and plays a role in intracellular signaling
and force transduction.

Experimental studies of migratory cells suggests that at
the leading edge, the FA acts like a molecular clutch [4–8].
That is, for high adhesion or drag, the retrograde flow of actin
is slow and polymerization results in a net protrusion—the
clutch is in “drive.” On the other hand, if adhesion is weak,
then retrograde flow can cancel the polymerization and the
actin network treadmills, i.e., the clutch is in “neutral.” The
dynamical interplay between retrograde flow and the assem-
bly and disassembly of focal adhesions leads to a number of
behaviors that are characteristic of physical systems involving
friction at moving interfaces [9–11]. These include biphasic
behavior in the velocity-stress relation and stick-slip motion.
The latter is a form of jerky motion, whereby a system spends
most of its time in the “stuck” state and a relatively short
time in the “slip” state. Various insights into the molecular
clutch mechanism and its role in substrate stiffness-dependent
migration have been obtained using simple stochastic models
[12–17]. Such models can capture the biphasic stick-slip force
velocity relation and establish the existence of an optimal
substrate stiffness that is sensitive to the operating parameters
of the molecular clutch.

There is growing experimental evidence that integrins or
FAs also act as biochemical mechanosensors of the local
microenvironment such as the rigidity and composition of
the ECM [18,19]. Rigidity sensors are thought to play an
important role in guiding cell migration, in particular, the
ability of cells to migrate toward areas of higher ECM rigidity
via a process known as durotaxis [20–22]. Physiological
process involving durotaxis include stem cell differentiation,
wound healing, development of the nervous system, and the
proliferation of certain cancers (see the cited references). In
order to move along a rigidity gradient, there has to be some
mechanism for constantly surveying variations in the stiffness
landscape of the ECM within the cellular microenvironment.
Recently, high-resolution traction force microscopy has been
used to characterize the nanoscale spatiotemporal dynamics
of forces exerted by FAs during durotaxis [23]. These and
other studies have revealed that mature FAs exhibit internal
fluctuations in their traction forces, suggestive of repeated
tugging on the ECM. This has led to the hypothesis that
repeated FA tugging on the ECM provides a means of reg-
ularly testing the local ECM rigidity landscape over time.
At least three different mechanisms for generating traction
force fluctuations have been proposed [21]: Fluctuations in
myosin contractility, fluctuations in the mechanics of actin
stress fibers, and fluctuations in the FA molecular clutch itself.
One important observation is that temporal variations are
local to a single FA. That is, although neighboring FAs are
mechanically coupled to each other via the actin cytoskeleton,
their force fluctuations are uncorrelated [23].

The role of FAs in cell motility is related to the more
general physical problem of understanding friction at mov-
ing interfaces (tribology). Some of the generic aspects of
molecular bonding at sliding interfaces has been investigated
in a stochastic model of single FA dynamics introduced by
Sabass and Schwarz [13]. A schematic diagram of the model
is shown in Fig. 1(b). The local stress fibers connected to
the FA are treated as a rigid slider that moves over the
substrate (retrograde flow) under the action of a constant
driving force F . The latter represents the combined effects
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FIG. 1. (a) Schematic diagram of a FA. A layer of integrin
receptors is attached to the ECM substrate and a submembrane
plaque consisting of multiple proteins mediates force transmission
and signaling between the integrin layer and actin stress fibers. Actin
polymerization and the actomyosin contractile machinery generate
forces that affect mechanosensitive proteins in the various com-
ponents of the FA. (b) Simplified model of sliding friction. The
driving force F for sliding is balanced by elastic adhesive forces and
velocity-dependent viscous forces.

of contractile forces exerted by myosin motors at the trailing
edge of the cell and actin polymerization at the leading edge.
The force F is balanced by two time-dependent forces: an
elastic force due to integrins that are stochastically bound at
the interface and a viscous friction force ξv, where v is the
sliding velocity and ξ is a friction coefficient. When a bond
is attached to the cytoskeleton it stretches at the velocity v,
but its extension x is immediately reset to zero whenever it
unbinds. The latter occurs at an x-dependent rate koff (x). The
bond subsequently rebinds at a constant binding rate kon. The
bonds are coupled due to the fact that the sliding velocity
depends on the sum of the elastic forces generated by the
closed bonds. However, using a mean-field approximation,
one can derive an effective single-bond dynamics with a
constant sliding velocity that is determined self-consistently
from the single-bond statistics [13]. The mean-field model
was shown to exhibit biphasic frictional behavior as a function
of ξ , consistent with Monte Carlo simulations.

In this paper we extend the model from Ref. [13] by adding
a stochastic component �F = σ�W (t ) to the driving force,
where �W (t ) is a Gaussian random variable (Wiener process)
and σ is the noise strength. In terms of the application to
FA adhesions dynamics, �F could represent fluctuations in
myosin contractility or actin mechanics. The inclusion of a
noise term is consistent with the Einstein relation, which
implies that the noise strength and friction coefficient ξ are
related according to σ = ξ

√
2D with Dξ = kBT . Here D is

the diffusion coefficient of the slider, T is temperature, and kB

is the Boltzmann constant. From a mathematical perspective,
the fluctuating force can be accounted for by the addition
of second-order spatial derivative terms to the Chapman-
Kolmogorov master equation analyzed in Ref. [13]. Indeed,
this extension was briefly mentioned by the authors. However,

such terms considerably complicate the analysis. In this paper
we show how progress can be made by mapping the single-
bond dynamics onto an equivalent single-particle system with
stochastic resetting.

Stochastic resetting has generated considerable interest
within the context of optimal search processes. A canoni-
cal example is a Brownian particle whose position is reset
randomly in time at a constant rate r (Poissonian resetting)
to some fixed point Xr , which could be its initial position.
This system exhibits two of the major features observed
in more complex models: (i) convergence to a nontrivial
nonequilibrium stationary state (NESS) and (ii) the mean time
for a Brownian particle to find a hidden target is finite and
has an optimal value as a function of the resetting rate r
[24–26]. There have been numerous studies of more general
stochastic processes with both Poissonian and non-Poissonian
resetting, memory effects, and spatially extended systems, see
the recent review [27] and references therein. In the particular
case of bond dynamics, the extension of a bond represents the
position of a particle that resets to the origin at a spatially
dependent resetting rate r(x) = koff (x), after which it remains
at the origin for a refractory period of mean duration k−1

on .
If Brownian motion of the sliding cytoskeleton is included,
then the system behaves as an overdamped Brownian particle
moving in a potential well [28] and subject to spatially depen-
dent resetting [29] and a refractory period [30]. The advantage
of formulating bond dynamics in terms of a process with
stochastic resetting is that one can apply various analytical
tools, including renewal theory and path integral methods.

The structure of the paper is as follows. The basic sliding
friction model is introduced in Sec. II, which takes the form
of a stochastic hybrid system that couples the continuous
dynamics of bond stretching with the Markov chain for
binding and unbinding. We also construct the differential
Chapman-Kolmogorov (CK) equation for the evolution of
the corresponding joint probability density. In Sec. III we
consider the case of a single bond and show how the resulting
system can be reinterpreted in terms of an overdamped Brow-
nian particle with spatially dependent stochastic resetting. We
derive a general expression for the steady-state density of the
single-particle CK equation by extending the renewal theory
of Ref. [29]. We then calculate the density in the case of
constant sliding velocity v0 and a parabolic resetting function.
In Sec. IV, we show how the multibond system can be reduced
to the single-particle model of Sec. III using a mean-field
approximation along analogous lines to Ref. [13]. This yields
an equation relating v0 to the mean traction force. We thus
show how diffusion can sharpen the response to changes in
the effective stiffness of the adhesion bonds. This is consistent
with the hypothesis that force fluctuations could play a role in
mechanosensing of the local microenvironment.

II. STOCHASTIC MODEL OF SLIDING FRICTION

We begin by describing the model of sliding friction con-
sidered in Ref. [13] and illustrated in Fig. 1(b). Suppose that
the FA is of constant size so that there is a fixed maximal
number of N assembled bonds. Each bond, i = 1, . . . , N , can
be in one of two states denoted by qi(t ) ∈ {0, 1}, with the
bond closed (open) if qi(t ) = 1 [qi(t ) = 0]. The closed bonds
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FIG. 2. Illustration of how both positive and negative displace-
ments of a closed bond result in an extension of the equivalent
Hookean spring and an elastic force that opposes the driving force.

are modeled as Hookean springs with spring constant κ and
time-dependent extension that stretches at the sliding velocity
v. On the other hand, an open bond is assumed to immediately
reset to its equilibrium state of zero extension. Let xi(t ) denote
the extension of the ith bond attachment point at time t relative
to its equilibrium value. Whenever the bond is attached, its
displacement from equilibrium is given by dxi(t ) = dX (t ),
where X (t ) is the current position of the slider. The velocity v

of the latter is determined by a force-balance equation, which
takes the form [13]

v = v(x) := 1

ξ

[
F − κ

N∑
i=1

qi(t )xi(t )

]
, (2.1)

with x = (x1, . . . , xN )�. Here F is the constant driving force
and ξ is a friction coefficient. The displacements xi thus evolve
according to the system of equations

dxi

dt
= v(x) if qi(t ) = 1, xi = 0 if qi(t ) = 0, (2.2)

with i = 1, . . . , N and v(x) � 0. Finally, the stochastic
switching of the discrete state qi(t ) between the values 0,1
is determined by a constant binding rate kon and a stretch-
dependent off-rate given by the Bell-Evans formula [2,31,32]

r(x) = koff e
κx/Fb, (2.3)

where Fb is the characteristic bond rupture force.
The stochasticity of the model introduced in Ref. [13]

arises from the assembly and disassembly of the bonds ac-
cording to the switching rates kon and r(xi ). In this paper we
wish to incorporate another source of noise, namely fluctua-
tions in the force F . The latter appears as a single additive term
in the force-balance equation (2.1) such that F → F + �F .
The piecewise deterministic system (2.2) is now replaced by
the SDE

dXi(t ) = v(X)dt +
√

2DdW (t ) for qi(t ) = 1, (2.4)

where �F/ξ = √
2DdW (t ) and W (t ) is a Wiener process:

〈dW (t )〉 = 0, 〈dW (t )dW (t ′)〉 = δ(t − t ′)dt dt ′. (2.5)

This is supplemented by the reset condition Xi(t ) = 0 for
qi(t ) = 0. It can be seen that all bonds are subject to a
common stochastic drive. One major difference from the D =
0 case is that it is possible for a closed bond to be subject to
negative displacements. That is, if we reinterpret Xi(t ) as the
(stochastic) position of the ith bond attachment point at time t
relative to its equilibrium value, then although v(X) � 0, the
presence of Gaussian noise allows Xi(t ) < 0. As it stands, this
would represent a compression of the corresponding spring,
resulting in a force component that is in the same direction as
F . Suppose that compressive forces cannot occur. One way to
deal with this would be to add a reflecting boundary condition
for each bond at Xi = 0 along the lines of Ref. [13]. However,
this considerably complicates the analysis in the presence of
diffusion. A second option is illustrated in Fig. 2, which shows
how negative displacements could also result in an extension
of the Hookean spring so that the corresponding elastic force
still opposes the driving force. This requires modifying the
original model by taking

v(x) := 1

ξ

[
F − κ

N∑
i=1

qi(t )|xi(t )|
]
, (2.6)

and
r(x) = koff e

κ|x|/Fb . (2.7)

(Figure 2 also suggests that there should be some geometrical
factor that converts horizontal displacements of the slider
to extensions of the spring. To take proper account of the
geometry one would need to consider a more detailed model
of the mechanical properties of the system beyond the level
considered here. Therefore, as in Ref. [13], we ignore this
complication.) In this paper we will take xi ∈ R and v(x) to
be given by Eq. (2.6). However, if D is sufficiently small then
the probability of negative displacements is also small so that
similar results would be obtained using Eq. (2.1) for v(x). (An
analogous approximation is often carried out in system-size
expansions of chemical master equations in which molecular
concentrations are positive [33].)

The above dynamical system is an example of a stochastic
hybrid system, since it couples a set of continuous vari-
able x(t ) with a Markov chain for the discrete states q =
(q1, . . . , qN ). Let ρ(x, t, q) denote the probability density that
at time t the bonds are in the configurational state q and have
displacements x. (Note that x j = 0 for all j such that q j = 0.)
As shown in Ref. [13] for D = 0, ρ(x, t, q) evolves according
to a differential CK equation. In between the closing or open-
ing of any bonds, the displacements of all the closed bonds
evolve according to a multivariate Fokker-Planck equation.
Whenever the ith bond opens, its displacement xi is imme-
diately reset to zero and, after an exponentially distributed
waiting time with rate kon, it reattaches and the bond starts
stretching again. These switching processes generate reaction
terms in the CK equation. The latter takes the form

∂ρ(x, t, q)

∂t
= −

N∑
i=1

qi
∂J (x, t, q)

∂xi
−

N∑
i=1

qir(xi )ρ(x, t, q) −
N∑

i=1

(1 − qi )konρ(x, t, q)

+
N∑

i=1

δ(xi )

{
(1 − qi )

∫ ∞

−∞
r(x′

i )ρ(x, t, q)|(xi,qi )=(x′
i ,1)dx′

i + qikonρ(x, t, q)|qi=0

}
, (2.8)
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where

J (x, t, q) = −D
N∑

j=1

q j
∂ρ(x, t, q)

∂x j
+ v(x)ρ(x, t, q). (2.9)

The first summation on the right-hand side of Eq. (2.8)
represent the advection-diffusion of closed bonds in between
switching events. Note that the diffusion matrix is Di j = D for
all i, j rather than the standard diagonal matrix Di j = Dδi, j ,
which is due to the fact that all bonds are driven by a com-
mon Brownian motion. The next two summations represent
reaction terms associated with the unbinding and binding of
bonds. Finally, the terms in the bracket {·} represent the fluxes
into the state xi = 0 due to unbinding of the ith bond in the
closed state followed by resetting, and binding of the ith bond
in the open state. Total probability is then conserved, as can
be shown by integrating both sides of Eq. (2.8) with respect to
x and summing over all configurations q:

d

dt

⎧⎨⎩∑
q

⎡⎣ N∏
j=1

∫ ∞

−∞
dx j

⎤⎦ρ(x, t, q)

⎫⎬⎭ = 0. (2.10)

Equation (2.8) reduces to the CK equation of Ref. [13]
when D = 0 [34]. The latter authors calculated the resulting
steady-state probability density using a mean-field approxi-
mation. This involved taking the large-N limit and replacing
v(x) by a space-independent mean velocity v0. The resulting
probability density then factorizes into the product of N
single-bond densities, which can be used to derive a self-
consistency condition for v0. Extending such an analysis to
take into account the effects of diffusion is nontrivial. In
this paper we show how progress can be made by mapping
the given system on to a dynamical process with stochastic
resetting [27]. Making the connection between FA bond dy-
namics and stochastic resetting means that we can combine
the mean-field approach of Ref. [13] with recent results
concerning single-particle dynamics with stochastic resetting
[29]. Therefore, the first step is to consider the case of a single
bond (N = 1).

One final remark is in order. Since the drift velocity is
taken to be a constant v0 under the mean-field approximation,
the resulting solution of the CK equation is independent of
whether we take the force-balance equation to be (2.1) or
(2.6), for example. The latter only plays a role in determining
the relationship between traction forces and the velocity v0,
see Sec. IV. However, the corresponding choice of resetting
rate r(x) does affect the probability density. In particular,
we will show how an explicit solution for the density can
be obtained when r(x) is an even, parabolic function of x.
(Mathematically speaking, the analysis reduces to calculating
the quantum propagator for a particle in a harmonic potential,
see Sec. III C.) This is consistent with the assumption that
both negative and positive displacements stretch a bond. Note,
however, that for slow diffusion the displacements will be
predominantly positive so that taking r(x) to be an even
function is not a strong constraint.

III. ANALYSIS OF A SINGLE BOND (N = 1)

Setting x1 = x, ρ(x, t, 1) = p(x, t ) and ρ(0, t, 0) = P0(t ),
Eq. (2.8) reduces to the pair of equations

∂ p(x, t )

∂t
= D

∂2 p(x, t )

∂x2
− ∂v(x)p(x, t )

∂x
− r(x)p(x, t )

+ δ(x)konP0(t ), (3.1a)

dP0(t )

dt
= −konP0(t ) +

∫ ∞

−∞
r(x′)p(x′, t )dx′. (3.1b)

Here J (x, t ) is the probability flux

J (x, t ) = −D
∂ p

∂x
+ v(x)p(x, t ), (3.2)

with v(x) determined by the force balance equation. [Later we
will set v(x) = v0.] The distributions satisfy the normalization
condition ∫ ∞

−∞
p(x, t )dx + P0(t ) = 1. (3.3)

In the fast binding limit, kon → ∞, Eq. (3.1) reduces to the
scalar equation

∂ p(x, t )

∂t
= D

∂2 p(x, t )

∂x2
− ∂v(x)p(x, t )

∂x
− r(x)p(x, t )

+ δ(x)
∫ ∞

−∞
r(x′)p(x′, t )dx′. (3.4)

A crucial observation is that Eq. (3.1) is identical in form to
the CK equation for an overdamped Brownian particle moving
in a potential landscape V (x), where v(x) = −V ′(x)/ξ , and
subject both to spatially dependent resetting and a refractory
period. That is, we can identify r(x) as a spatially dependent
resetting rate [29], x = 0 as the resetting position, and k−1

on as
the mean time spent in a refractory state following resetting
[30]. Thus P0(t ) is the probability of being in the refractory
state at time t . In the absence of a refractory period, this
type of process has recently been analyzed using a path-
integral formalism [29], see also Ref. [28]. We will extend
this approach in order to include a refractory period. Since the
analysis applies more generally than to the particular model
of bond dynamics, we consider general positive functions
r(x), v(x) and assume that the particle spends a refractory
period σ following each return to the origin, with σ gener-
ated from a waiting time density ψ (σ ). In the case of bond
dynamics,

ψ (σ ) = kone−konσ . (3.5)

A. Renewal equation

A typical method for analyzing the CK equation of a
process with stochastic resetting is to use renewal theory [27].
Here we follow the particular formulation of Ref. [29], which
we extend to take into account the refractory period. Let

(x, t ) denote the probability density that the particle starts at
the origin and ends at x at time t without undergoing any reset
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event. We can then write down the (last) renewal equation

p(x, t ) = 
(x, t )

+
∫ t

0
dτ

[∫ t−τ

0
dσψ (σ )R(t − τ − σ )

]

(x, τ ),

(3.6)

where

R(t ) =
∫ ∞

−∞
r(y)p(y, t )dy (3.7)

is the probability density of resetting at time t . The first
term on the right-hand side represents all trajectories that
reach x without resetting, while the second term sums over
trajectories that last reset at time t − τ − σ , spent a time σ in
the refractory state, exited the refractory state at time t − τ ,
and then propagated from the origin to x without any further
reset events.

Introduce the probability density that the first reset is at
time t ,

F (t ) =
∫ ∞

−∞
r(y)
(y, t )dy, (3.8)

with
∫ ∞

0 F (t )dt = 1. Multiplying both sides of Eq. (3.6) by
r(x) and integrating with respect to x gives

R(t ) =
∫ ∞

−∞
r(x)
(x, t )dx +

∫ t

0
dτ

∫ ∞

−∞
dx r(x)
(x, τ )

×
[∫ t−τ

0
dσψ (σ )R(t − τ − σ )

]
= F (t ) +

∫ t

0
dτF (τ )

[∫ t−τ

0
dσψ (σ )R(t − τ − σ )

]
.

(3.9)

Laplace transforming this equation shows that

R̃(s) = F̃ (s) + F̃ (s)ψ̃ (s)R̃(s),

which can be rearranged to give

R̃(s) = F̃ (s)

1 − ψ̃ (s)F̃ (s)
. (3.10)

Laplace transforming the renewal integral equation (3.6) and
using Eq. (3.10), we then have

p̃(x, s) = 
̃(x, s)[1 + ψ̃ (s)R̃(s)] = 
̃(x, s)

1 − ψ̃ (s)F̃ (s)
.

Hence, the Laplace transform of the probability density with
resetting can be determined completely from the Laplace
transforms of the probability density without resetting and the
waiting time density:

p̃(x, s) = 
̃(x, s)

1 − ψ̃ (s)
∫ ∞
−∞ r(y)
̃(y, s)dy

. (3.11)

This recovers the result of Ref. [29] when ψ̃ (s) = 1. Finally,
given the Laplace transform, we can obtain the steady-state

density using the final value theorem:

p∗(x) = lim
t→∞ p(x, t ) = lim

s→0
sp̃(x, s)

= lim
s→0

s
̃(x, s)

1 − ψ̃ (s)F̃ (s)
. (3.12)

Since ψ̃ (0) = 1 = F̃ (0), we need to evaluate the limit using
L’Hopital’s rule, which yields:

p∗(x) = − 
̃(x, 0)

ψ̃ ′(0) + F̃ ′(0)
= 
̃(x, 0)

σ + Tres
, (3.13)

where

σ =
∫ ∞

0
σψ (σ )dσ, Tres =

∫ ∞

0
tF (t )dt . (3.14)

Here σ is the mean refractory period and Tres is the mean
first-reset time. It is important to note that the density p∗(x) is
an example of a NESS, since the steady-state fluxes at x = 0
are nonzero due to resetting. This is a characteristic feature of
dynamical systems with stochastic resetting.

A useful check of the above calculation is to make sure
that it is consistent with conservation of total probability.
Integrating Eq. (3.11) with respect to x gives∫ ∞

−∞
p̃(x, s)dx =

∫ ∞
−∞ 
̃(x, s)dx

1 − ψ̃ (s)F̃ (s)
. (3.15)

In the absence of a refractory period, ψ̃ (s) = 1 and the
normalization condition is∫ ∞

−∞
p(x, t )dx = 1.

Hence ∫ ∞

0

̃(x, s)dx = 1 − F̃ (s)

s
.

Since the trajectories contributing to 
(x, t ) do not involve
any resetting events, this equation also holds when there is a
refractory period. Substituting into Eq. (3.15) thus yields∫ ∞

−∞
p̃(x, s)dx = 1 − F̃ (s)

s[1 − ψ̃ (s)F̃ (s)]

= 1

s
− 1 − ψ̃ (s)

s

F̃ (s)

[1 − ψ̃ (s)F̃ (s)]

= 1

s
− 1 − ψ̃ (s)

s
R̃(s) = 1

s
− R̃(s)

s + kon
.

We have used the explicit form for ψ (σ ). Finally, Laplace
transforming Eq. (3.1 b) gives

P̃0(s) = R̃(s)

s + kon
,

so that ∫ ∞

−∞
p̃(x, s)dx + P̃0(s) = 1

s
,

which is the Laplace transform of the probability conservation
condition (3.3).
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B. Calculation of �(x, t ) for constant r

The above application of renewal theory has shown that the
steady-state probability density p∗(x) of a Brownian particle
with spatially dependent resetting and refractory periods can
be expressed in terms of the Laplace transform of the prob-
ability density without any resetting, 
(x, t ). Unfortunately,
obtaining explicit expression for 
̃(x, s) is not possible except
for particular choices of v(x) and r(x) [28,29].

In the case of a constant resetting rate r(x) = r0, 
(x, t )
is simply the product of the probability e−r0t of no resetting
over a time interval t and the Neumann Green’s function of
the Fokker-Planck equation without resetting [27]. That is,


(x, t ) = e−r0t G(x, t |0, 0), (3.16)

where

∂G

∂t
= D

∂2G

∂x2
− ∂v(x)G

∂x
, (3.17)

G(x, 0|x0, 0) = δ(x − x0), and

v(0)G(0, t |x0, 0) − D
∂G(x, t |x0, 0)

∂x

∣∣∣∣
x=0

= 0. (3.18)

The Laplace transform of 
(x, t ) is thus


̃(x, s) =
∫ ∞

−∞
e−(s+r0 )t G(x, t |0, 0)dt

= G̃(x, s + r0|0, 0). (3.19)

Since
∫ ∞
−∞ G(x, t |0, 0)dx = 1, we have∫ ∞

−∞

̃(x, s)dx = 1

r0 + s
.

Substituting into Eq. (3.11) then yields the steady-state
density

p∗(x) = lim
s→0

sG̃(x, s + r0|0, 0)

1 − r0ψ̃ (s)
∫ ∞

0 G̃(y, s + r0|0, 0)dy

= G̃(x, r0|0, 0)

[
−r0

d

ds

ψ̃ (s)

s + r0

∣∣∣∣∣
s=0

]−1

= G̃(x, r0|0, 0)

σ + r−1
0

. (3.20)

We have used L’Hopital’s rule and

ψ̃ (0) = 1, −ψ̃ ′(0) = σ :=
∫ ∞

0
σψ (σ )dσ. (3.21)

A further simplification is to take v(x) = v0. This will turn
out to be the relevant form of the effective drift velocity under
the mean-field approximation for large N , see Sec. IV. In the
case of constant drift, we have

G(x, t |0, 0) = 1√
4πDt

e−(x−v0t )2/4Dt . (3.22)

Performing the Laplace transform and substituting into
Eq. (3.20) yields

p∗(x) = 1

σ + r−1
0

1√
4Dr0 + v2

0

exv0/2De−
√

4Dr0+v2
0 x/D. (3.23)

C. Calculation of �(x, t ) for spatially dependent resetting

The calculation of 
(x, t ) for spatially dependent re-
setting is considerably more involved. One approach is to
use an eigenfunction expansion of the propagator as briefly
summarized in the Appendix. Here we follow the analysis
of Ref. [29], which establishes that the probability density

(x, t ) can be expressed in terms of a path integral on R of
the form


(x, t ) =
∫ x(t )=x

x(0)=0
e−S[x]D[x], x > 0, (3.24)

where D[x] is the appropriate Wiener measure and S[x] is the
action

S[x] =
∫ t

0

{
[ẋ − v(x)]2

4D
+ v′(x)

2
+ r(x)

}
dt . (3.25)

For particular choices of v(x) and r(x), the path integral can be
evaluated by formally identifying it with the propagator G of
a quantum mechanical system on R that evolves in imaginary
time [29]:


(x, t ) = exp

[
1

2D

∫ x

0
v(y)dy

]
G(x,−it |0, 0), (3.26)

where

G(x,−it |x0, 0) = 〈x|e−Ĥt |x0〉. (3.27)

Here Ĥ is the Hamiltonian operator

Ĥ = −D
∂2

∂x2
+ U (x) (3.28)

of a quantum particle of mass m = 1/2D (assuming Planck’s
constant h̄ = 1) subject to the potential

U (x) = v(x)2

4D
+ v′(x)

2
+ r(x). (3.29)

We will restrict the analysis to a constant drift, v(x) = v0,
and set r(x) = r0 + �r(x) with �(0) = 0. Then


(x, t ) = e−(v2
0/4D+r0 )t exv0/2DGr (x,−it |0, 0), (3.30)

where Gr is the quantum propagator for the Hamiltonian

Ĥ = −D
∂2

∂x2
+ �r(x). (3.31)

Even for this case, there are only very few choices of �r(x)
for which an exact expression for the quantum propagator is
known [35,36]. Although these do not include an exponential
resetting rate, r(x) = r0eκx/Fb , one can determine the propaga-
tor for a parabolic resetting rate

r(x) = koff (1 + 3κ2x2/F 2
b ), (3.32)

see Ref. [29]:

Gr (x,−it |0, 0) = (α/D)1/4√
2π sinh(t

√
4Dα)

× exp

[
− x2√α/D

2 tanh(t
√

4Dα)

]
, (3.33)
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FIG. 3. Plot of steady-state density p∗(x) for different diffusivi-
ties D and v0 = κ = 1. Other parameters are at baseline values.

where α = 3r0κ
2/F 2

b . The steady-state density p∗(x) for a
given drift v0 is then given by Eq. (3.13) with σ = k−1

on :


̃(x, 0) = exv0/2D
∫ ∞

0
e−(v0

2/4D+r0 )t (α/D)1/4√
2π sinh(t

√
4Dα)

× exp

[
− x2√α/D

2 tanh(t
√

4Dα)

]
dt, (3.34)

and

Tres =
∫ ∞

0
te−(v0

2/4D+r0 )t (α/D)1/4√
2π sinh(t

√
4Dα)

×
{∫ ∞

0
r(x)exv0/2D exp

[
− x2√α/D

2 tanh(t
√

4Dα)

]
dx

}
dt .

(3.35)

These integrals are evaluated numerically. In Fig. 3 we show
sample plots of p∗(x) for fixed v0 = 1 and various diffusivities
D. Note that p∗(x) is strongly skewed towards positive values
of x for small D, that is, for D � v0 in dimensionless units.

D. Zero diffusion limit

A useful check of the above analysis is to take the limit
D → 0 and compare the resulting asymptotic behavior of
p∗(x) with the solution obtained by setting D = 0 in the
steady-state version of Eq. (3.1). The latter takes the form

0 = D
d2 p∗(x)

dx2
− v0

d p∗(x)

dx
− r(x)p∗(x)

+ δ(x)konP∗
0 , (3.36)

together with the normalization condition∫ ∞

0
p∗(x)dx + P∗

0 = 1. (3.37)

In the case D = 0, we have x � 0 and Eq. (3.36) becomes

v0
d p∗

dx
= −r(x)p∗(x), (3.38)

with the boundary condition p∗(0) = konP∗
0 /v0. The

solution is

p∗(x) = P∗
0 kon

v0
exp

[
− 1

v0

∫ x

0
r(y)dy

]
= P∗

0 kon

v0
exp

[
−koff

v0
(x + κ2x3)

]
. (3.39)

The constant P∗
0 is then determined using the normalization

condition,

P∗
0

{
1 + kon

v0

∫ ∞

0
exp

[
− 1

v0

∫ x

0
r(y)dy

]
dx

}
= 1. (3.40)

Substituting for r(x) using Eq. (3.32), we have

P∗
0

{
1 + kon

v0

∫ ∞

0
exp

[
−koff

v0
(x + κ2x3)

]
dx

}
,

which can be arranged to give

P∗
0 =

{
1 + γ kon

koff

∫ ∞

0
exp

(
[−γ (y + y3)

]
dy

}−1

,

with γ = koff/(v0κ ).
The integral term in the expression for P∗

0 can be expressed
as an infinite sum over gamma functions. That is,

I0(γ ) :=
∫ ∞

0
exp[−γ (y + y3)]dy

=
∞∑

n=0

(−γ )n

n!

∫ ∞

0
yne−γ y3

dy

=
∞∑

n=0

(−γ )n

n!

∫ ∞

0

(
t

γ

)n/3

e−t dt

3(γ t2)1/3
.

We have Taylor expanded e−γ y, rearranged the order of
summation and integration, and performed the change of
integration variables t = γ y3. Recalling the definition of the
gamma function,

�(z) =
∫ ∞

0
t z−1e−t , (3.41)

I0(γ ) can be rewritten as

I0(γ ) =
∞∑

n=0

(−1)n

3n!
γ (2n−1)/3�

(
n + 1

3

)
, (3.42)

such that

P0 = P∗
0 (γ ) :=

[
1 + γ kon

koff
I0(γ )

]−1

. (3.43)

In the small diffusion limit, we can carry out an asymptotic
expansion of the integral in Eq. (3.34). That is, the factor
e−v0

2/4Dt implies that the integral is dominated by contribu-
tions close to t = 0 so that we can Taylor expand the sinh and
tanh functions:
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̃(x, 0) ≈ exv0/2D
∫ ∞

0
e−(v0

2/4D+koff )t (α/D)1/4√
2π t

√
4Dα

exp

{
− x2√α/D

2[t
√

4Dα − (t
√

4Dα)3/3]

}
dt

≈ exv0/2D
∫ ∞

0
e−(v0

2/4D+koff )t 1√
4πDt

exp

{
− x2

4Dt[1 − 4Dαt2/3]

}
dt

≈ exv0/2D
∫ ∞

0
e−(v0

2/4D+koff +αx2/3)t 1√
4πDt

exp

(
− x2

4Dt

)
dt

= exv0/2D
∫ ∞

−∞
eikx

{∫ ∞

0
e−(v0

2/4D+koff +αx2/3)t e−Dk2t dt

}
dk

2π

= exv0/2D
∫ ∞

−∞

eikx

Dk2 + v0
2/4D + koff + αx2/3

dk

2π

= 1√
v0

2 + 4D(koff + αx3/3)
exp

⎡⎣v0x

2D
− v0|x|

2D

√
1 + 4D(koff + αx2/3)

v0
2

⎤⎦.

We have used contour integration to evaluate the final k
integral. Finally, Taylor expanding the square-root functions
to leading order shows that


̃(x, 0) ∼ 1

v0
e−x(koff +αx2/3)/v0

for x > 0 and


̃(x, 0) ∼ 1

v0
e−|x|v0/D

for x < 0. Hence, if x > 0, then we recover the x dependence
of p∗(x) given by Eq. (3.39) for D = 0. On the other hand, if
x < 0, then p∗(x) → 0 as D → 0. These results are consistent
with Fig. 3.

IV. MULTIPLE ADHESION BONDS AND
MEAN-FIELD THEORY

We now extend the mean-field approach of Ref. [13] in
order to reduce the CK equation (2.8) to an effective single-
particle CK equation with constant drift v0. The force-balance
equation is then used to derive a self-consistency condition
relating the mean traction force and v0.

A. Mean-field approximation (fast binding limit)

It is convenient to first consider the fast binding limit
kon → ∞. Equation (2.8) for ρ(x, t ) = ρ(x, t, q)|q=(1,...,1) can
then be written in the more compact form

∂ρ(x, t )

∂t
= −

N∑
i=1

∂J (x, t )

∂xi
−

N∑
i=1

r(xi)ρ(x, t ),

+
N∑

i=1

δ(xi )
∫ ∞

−∞
r(x′

i )ρ(x, t )|xi=x′
i
dx′

i. (4.1)

The probability flux is

J (x, t ) = −D
N∑

j=1

∂ρ(x, t )

∂xi
+ v(x)ρ(x, t ). (4.2)

Consider a particular bond labeled k and integrate both sides
of Eq. (4.1) with respect to x j for all j �= k. Defining

ρk (x, t ) =
⎡⎣ N∏

j=1

∫ ∞

−∞
dx j

⎤⎦δ(xk − x)ρ(x, t ), (4.3)

and

Jk (x, t ) =
⎡⎣ N∏

j=1

∫ ∞

−∞
dx j

⎤⎦δ(xk − x)J (x, t ), (4.4)

we find that

∂ρk (x, t )

∂t
= −∂Jk (x, t )

∂xk
− r(x)ρk (x, t )

+ δ(xk )
∫ ∞

−∞
r(x′)ρk (x′, t )dx′. (4.5)

Unfortunately, Eq. (4.5) is not a closed single-particle CK
equation, since Jk (x, t ) depends on the full probability density
ρ(x, t ). That is, substituting Eq. (4.2) into (4.4) gives

Jk (x, t ) =
⎡⎣ N∏

j=1

∫ ∞

−∞
dx j

⎤⎦δ(xk − x)

×
[
−D

∂ρ(x, t )

∂xk
+ v(x)ρ(x, t )

]
= − D

∂ρk (x, t )

∂x

+
⎡⎣ N∏

j=1

∫ ∞

−∞
dx j

⎤⎦δ(xk − x)v(x)ρ(x, t ). (4.6)

The mean-field approximation is to assume that for large N ,
the individual bonds are statistically independent so that we
can factorize the multibond density into the product of N
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single-bond densities:

ρ(x, t ) =
N∏

j=1

p(x j, t ), (4.7)

with ∫ ∞

−∞
p(x, t )dx = 1.

Substituting this approximation into Eqs. (4.3) and (4.6)
yields ρk (x, t ) = p(x, t ) and

Jk (x, t ) = J (x, t ) = −D ∂ p(x,t )
∂x + 〈v(t )〉p(x, t )

for all k = 1, . . . , N , where

〈v(t )〉 = 1

ξ

[
F − κN

∫ ∞

−∞
|x|p(x, t )dx

]
. (4.8)

Equation (4.5) is now a closed equation of the form

∂ p(x, t )

∂t
= D

∂2 p(x, t )

∂x2
− 〈v(t )〉∂ p(x, t )

∂x
− r(x)p(x, t )

+ δ(x)
∫ ∞

−∞
r(x′)ρ(x′, t )dx. (4.9)

B. Mean-field approximation (finite kon)

The above analysis can be extended to the case of a finite
binding rate. Again select a particular bond k and introduce
the marginal densities

ρk,1(x, t )
∑

q

δqk ,1

⎡⎣ N∏
j=1

∫ ∞

−∞
dx j

⎤⎦δ(xk − x)ρ(x, t, q),

(4.10a)

ρk,0(t )
∑

q

δqk ,0

⎡⎣ N∏
j=1

∫ ∞

−∞
dx j

⎤⎦ρ(x, t, q), (4.10b)

and

Jk (x, t ) =
∑

q

δqk ,1

⎡⎣ N∏
j=1

∫ ∞

−∞
dx j

⎤⎦δ(xk − x)Jk (x, t, q).

(4.10c)
Summing the full CK equation (2.8) with respect to qi and

integrating with respect to xi for all i �= k gives the following
pair of equations:

∂ρk,1(x, t )

∂t
= −∂Jk (x, t )

∂xk
− r(x)ρk,1(x, t )

+ δ(x)konρk,0(t ),

∂ρk,0(t )

∂t
= −konρk,0(t ) +

∫ ∞

−∞
r(x′)ρk,1(x′, t )dx′.

Again, we do not have a closed single-bond equation because
ρk,1(x, t ), ρk,0(t ), and Jk (x, t ) all depend on the full probabil-
ity density. In particular, from Eq. (2.9)

Jk (x, t ) =
∑

q

δqk ,1

⎡⎣ N∏
j=1

∫ ∞

−∞
dx j

⎤⎦δ(xk − x)

×
[
−D

∂ρ(x, t, q)

∂xk
+ v(x)ρ(x, t, q)

]

= − D
∂ρk,1(x, t )

∂x

+
∑

q

δqk ,1

⎡⎣ N∏
j=1

∫ ∞

−∞
dx j

⎤⎦δ(xk − x)v(x)ρ(x, t, q).

Then mean-field approximation now becomes

ρ(x, t, q) =
N∏

j=1

[
q j p(x j, t ) + (1 − qj )P0(t )

]
, (4.11)

with ∫ ∞

−∞
p(x, t )dx + P0(t ) = 1.

Substituting into Eqs. (4.10)–(4.10c) and setting ρk,1(x.t ) =
p(x, t ) and ρk,0(t ) = P0(t ), we obtain the closed single-bond
CK equation

∂ p(x, t )

∂t
= D

∂2 p(x, t )

∂x2
− 〈v(t )〉∂ p(x, t )

∂x
− r(x)p(x, t )

+ δ(x)konP0(t ), (4.12a)

dP0(t )

dt
= −konP0(t ) +

∫ ∞

−∞
r(x′)p(x′, t )dx′. (4.12b)

C. Steady-state traction force

Although the time-dependent mean-field equation (4.12)
involves a time-dependent drift 〈v(t )〉, the steady-state equa-
tions are identical to the corresponding single-bond process
with a constant drift v0, see (3.36). Imposing the normal-
ization condition means that the time-independent version of
Eq. (4.12b) is automatically satisfied. The steady-state density
p∗(x) for fixed v0 can thus be determined using the analysis
of Sec. III. The drift v0 and external force F are then related
according to Eq. (4.8):

F = F (v0) = ξv0 + N f (v0), (4.13)

where f (v0) is the traction force

f (v0) = κ

∫ ∞

−∞
|x|p∗(x; v0)dx. (4.14)

The steady-state behavior of the model can now be in-
vestigated by fixing either the external drive F or the slider
speed v0. We choose the latter here, since it avoids having
to solve an implicit equation for v0 as a function of F . Our
main goal is to determine how the traction force f per linkage
is affected by diffusion. Dimensionless quantities are used
by setting koff = 1, v = 1, and Fb = 1. We also assume that
N is sufficiently large so that the mean-field approximation
holds. (In Ref. [13], numerical simulations of the full system
established that the mean-field approximation can break down
if N or ξ is too small, since the rupture of one bond can trigger
a rupture cascade, resulting in alternating periods of stick and
slip. Consequently, the joint probability distribution cannot
be factorized into a product of single-bond distributions. This
argument carries over when diffusion of the slider is included,
since the rupturing of a bond results in a steplike change in the
elastic force whose size depends on κ/ξ , whereas a Wiener
process is continuous. We will ignore this complication here.)
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FIG. 4. Plot of the mean traction force f as a function of the
mean velocity v0 for different values of the binding rate kon. Other
parameters are at baseline values: κ = koff = Fb = 1.

Within the specific context of FA dynamics, reference values
for various parameters are as follows [13]: koff = 1 s−1, v =
10 nm s−1, Fb = 2 pN, and κ = 1 − 100 pN nm−1. Estimates
of the diffusivity D or the friction coefficient ξ are difficult
due to the complicated medium within which the stress fibers
move, which includes multiple interactions with the actin
cytoskeleton. Therefore, we will consider a range of values
for D.

The steady-state traction force f for D = 0 can be calcu-
lated using Eqs. (3.39) and (4.14):

f = κ

∫ ∞

0
xp∗(x)dx

= κP∗
0 kon

v0

∫ ∞

0
x exp

[
− 1

v0

∫ x

0
r(x′)dx′

]
dx

= P∗
0 kon

v0κ

∫ ∞

0
y exp[−γ (y + y3)]dy.

Evaluating the integral along identical lines to I0(y), see
Sec. III D, yields

I1(γ ) :=
∫ ∞

0
y exp[−γ (y + y3)]dy

=
∞∑

n=0

(−1)n

n!
γ (2n−2)/3�

(
n + 2

3

)
, (4.15)

and

f = P∗
0 (γ )kon

v0κ
I1(γ ). (4.16)

In Fig. 4 we sketch some example curves of the mean-field
model, showing how the mean traction force f varies with the
speed v0. It can be seen from Fig. 4 that there is a maximum
in the mean traction force at intermediate velocities. This
is consistent with previous results in Ref. [13], and can be
understood within the mean-field framework by noting that
the average transmitted force of an engaged clutch increases
monotonically with speed, while the probability of the clutch
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FIG. 5. Plot of the traction force f against the spring constant κ

for different speeds v0. Other parameters are at baseline values.

being bound decreases at higher speeds. Under the mean-field
approximation, the speed at maximum traction force is inde-
pendent of the number of bonds and the friction coefficient ξ .
In Fig. 5 we show analogous plots of f as a function of the
spring constant κ , which acts as a proxy for stiffness of the
ECM.

The steady-state traction force f for D > 0 is given by

f = κ

∫ ∞

−∞
|x|p∗(x)dx = κ

σ + Tres

∫ ∞

−∞
|x|
̃(x, 0)dx.

Substituting for 
̃(x, 0) and Tres using Eqs. (3.34) and (3.35),
respectively, and evaluating the resulting integrals then yields
f as a function of v0. In Figs. 6 and Fig. 7 we plot the
traction force f as a function of the mean velocity v0 and
the spring constant κ , respectively, for various values of the
diffusivity D. It can be checked that in both cases the curves
converge in the limit D → 0. We see that diffusion has the
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FIG. 6. Plot of steady-state traction force f as a function of the
mean speed v0 for various diffusivities D and κ = kon = 1.
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effect of flattening the biphasic f − v0 curves. On the other
hand, diffusion sharpens the response with respect to κ by
raising f for small κ and lowering f for large κ . In terms of
the specific application to single FA dynamics, the sensitivity
of the f − κ curves to diffusion suggests that fluctuations in
the driving force could play a role in the mechanosensing of
ECM stiffness, as suggested in Ref. [21].

V. DISCUSSION

In this paper we used a mean-field approximation to reduce
a stochastic model of sliding friction to an effective single-
bond model. We then mapped the latter to an equivalent model
describing an overdamped Brownian particle with spatially
dependent stochastic resetting and a refractory period. This
allowed us to apply recent analytical methods developed for
systems with stochastic resetting, such as renewal theory and
path integrals, in order to investigate the effects of diffusion
on the mean traction force per bond as a function of the spring
constant. In particular, we found that diffusion can sharpen
the response. In terms of the application to FA dynamics, this
suggests that fluctuations in the driving force could enhance
the ability of the FA to act as a mechanosensor of ECM stiff-
ness. However, a number of strong assumptions were made
in the simplified model of sliding friction. First, the number
N of adhesion bonds was assumed to be sufficiently large so
that the mean-field approximation holds; as noted in Ref. [13],
this assumption could break down in low friction regimes
due to rupture cascades. Second, both positive and negative
displacements of a bond were modeled in terms of the linear
extension of a Hookean spring. Thus adhesive linkages were
treated as slip rather than catch bonds, and geometric factors
arising from the conversion of linear displacements of the
slider to bond extensions were ignored. Finally, the spring
constant κ of each bond was treated as a lumped parameter
that included the stiffness of the ECM. A more detailed model
would need to model the set of bound adhesive links in series
with an ECM spring along the lines of Ref. [12].

One possible extension of the current work would be
to consider other examples of collective cell adhesion. For
example, cadherin-based cell-to-cell adhesions play a primary
role in determining tissue structure. In addition to resisting
external mechanical loads, recent evidence suggests that cad-
herins also couple together the actomyosin cytoskeletons of
neighboring cells [37]. Hence, they are well placed to act as
powerful regulators of the cytoskeleton, and to activate diverse
signaling pathways in response to applied load. At the cellular
level, fluctuations in the number of engaged cadherin-based
linkages are coupled to the assembly and disassembly of the
actomyosin cytoskeleton of connected cells. This could pro-
vide a force-dependent mechanism for consolidating certain
tissue structures while supporting cellular rearrangements in
other contexts. Again the stochastic breaking of a cadherin-
based adhesion and subsequent rebinding could be modeled
in terms of stochastic resetting with a refractory period.
However, rather than modeling sliding friction, one could
now investigate when a critical number of bonds are formed
or broken by formulating the latter as a first passage time
problem.

Finally, from a more general modeling perspective, our
paper provides a concrete application of the theory of dy-
namical processes with stochastic resetting to cell biology. A
number of other recent examples include Michaelis-Menten
reaction schemes [38,39], DNA elongation and backtracking
[40], and active cellular transport [41,42]. In each of these
cases, analytical tools such as renewal theory can be used to
investigate the behavior of the system.

APPENDIX: Eigenfunction expansion of the propgator.

An alternative approach to evaluating 
(x, t ) is to con-
sider an eigenfunction expansion of the propagator. Suppose
that �r(x) acts like a confining potential [�r(x) → ∞ for
x → ±∞], so there exists a complete set of orthonormal
eigenfunctions φn(x), n = 0, 1, . . . , with[

−D
∂2

∂x2
+ �r(x)

]
φn(x) = Enφn(x) (A1)

such that ∫ ∞

−∞
φn(x)φm(x)dx = δn,m.

Then

Gr (x,−it |x0, 0) =
∑
n�0

e−Entφn(x0)φn(x). (A2)

If we now substitute the eigenfunction expansion (A2) into
Eq. (3.30) and take the Laplace transform, we obtain the series
expansion


̃(x, s) = exv0/2D
∑
n�0

φn(0)φn(x)

s + r0 + v2
0/4D + En

. (A3)

Substituting into Eq. (3.13) gives

p∗(x) = exv0/2D lim
s→0

s
∑

n�0
φn(0)φn (x)

s+r0+v2
0/4D+En

1 − ψ̃ (s)
∑

n�0
�nφn(0)

s+r0+v2
0/4D+En

,
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where

�n =
∫ ∞

0
�r(y)eyv0/2Dφn(y)dy. (A4)

Applying L’Hopital’s rule and the normalization F̃ (0) = 1
yields the result

p∗(x) =
exv0/2D

∑
n�0

φn(0)φn(x)
v2

0/4D+r0+En

1 + σ + ∑
n�0

�nφn(0)
(v2

0/4D+r0+En )2

. (A5)

Equation (A5) yields an explicit series expansion of the
steady-state density p∗(x). However, this is predicated on
knowing the eigenfunctions and eigenvalues of the Hamilto-
nian operator Ĥ . Again, there are only a few potentials for
which exact results are known. In the particular case of a

harmonic potential, �r(x) = αx2, the eigenvalues are

En =
(

n + 1

2

)√
4Dα, (A6)

and the normalized eigenfunctions are

φn(x) = 1√
2nn!

√
π

(√
α

D

)1/4

Hn[(α/D)1/4x]e−√
α/Dx2/2,

(A7)

with Hn(x) the Hermite polynomial of integer order n. How-
ever, it is simpler to use the explicit expressions given by
Eqs. (3.30) and (3.33). Although the eigenvalue problem for
the nonanalytic, symmetrized exponential potential r0eκ|x|/Fb

has also been analyzed [43], the numerical evaluation of the
eigenvalues is rather delicate and not useful for our purposes.
(The eigenfunctions are given by modified Bessel functions
Kν and the eigenvalues are determined from the equation
K

2i
√

En/D(κ/Fb)2 [2
√

r0/D(κ/Fb)2)] = 0.)
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