
Journal of Physics A: Mathematical and Theoretical

PAPER

Two-dimensional droplet ripening in a concentration gradient
To cite this article: Paul C Bressloff 2020 J. Phys. A: Math. Theor. 53 365002

 

View the article online for updates and enhancements.

This content was downloaded from IP address 128.110.184.55 on 23/08/2020 at 20:09

https://doi.org/10.1088/1751-8121/aba39a
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsvhgYIdcmj413QuYhdnqbuwHaWwTj2lLmK33tVj5r4HnfZpF-lIEpHia3qNdsV_UdmIJ0Um8TTX20mrzTWHym_SHphGoUDgNGlUata5gzjizrlvQ8Pe3MODLyUgkEe1bzXOONwI68ZRWuWCHI0XjtlZwbFctbpM0iPE0smSH2KXwTiMch_bGpdYH8nhoLW8eVG8gz6HidXqwLHnn8p9LNBQQAKYWK7H2dDgt3gqusXUqnb8kOdl&sig=Cg0ArKJSzHti4ckhGUAV&adurl=http://iopscience.org/books


Journal of Physics A: Mathematical and Theoretical

J. Phys. A: Math. Theor. 53 (2020) 365002 (16pp) https://doi.org/10.1088/1751-8121/aba39a

Two-dimensional droplet ripening in a
concentration gradient

Paul C Bressloff

Department of Mathematics, University of Utah, Salt Lake City, Utah 84112, United
States of America

E-mail: bressloff@math.utah.edu

Received 1 April 2020, revised 25 June 2020
Accepted for publication 7 July 2020
Published 14 August 2020

Abstract
The discovery of various membraneless subcellular structures (biological con-
densates) in the cytoplasm and nucleus of cells has generated considerable inter-
est in the effects of non-equilibrium chemical reactions on liquid–liquid phase
separation and droplet ripening. Examples include the suppression of droplet
ripening due to ATP-driven protein phosphorylation and the spatial segregation
of droplets due to regulation by protein concentration gradients. Most studies
of biological phase separation have focused on 3D droplet formation, for which
mean field methods can be applied. However, mean field theory breaks down
in the case of 2D systems, since the concentration around a droplet varies as
ln R rather than R−1, where R is the distance from the center of a droplet. In this
paper we use the asymptotic theory of diffusion in domains with small holes or
exclusions (strongly localized perturbations) to study the segregation of circular
droplets in gradient systems. We proceed by partitioning the region outside the
droplets into a set of inner regions around each droplet together with an outer
region where mean-field interactions occur. Asymptotically matching the inner
and outer solutions, we derive dynamical equations for the position-dependent
growth and drift of droplets. We thus show how a gradient of regulatory pro-
teins leads to the segregation of droplets to one end of the domain, as previously
found for 3D droplets.

Keywords: phase separation, Ostwald ripening, biological condensates, asymp-
totic analysis, protein concentration gradient

(Some figures may appear in colour only in the online journal)

1. Introduction

In classical liquid–liquid phase separation a homogeneous solution separates into two coexist-
ing liquid phases with different densities, a high density phase φb and a low density phase φa.
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If the original solution is thermodynamically unstable, then the kinetics of phase separation
involves rapid demixing due to the absence of a nucleation barrier (spinodal decomposition).
Early stages of phase separation involve the formation of microscopic solute-rich domains
dispersed throughout the liquid, which subsequently grow and coalesce to form macroscopic
clusters or droplets. Eventually the total volume of droplets stabilizes, and the late stage of
phase separation is characterized by a coarsening process known as Ostwald ripening [19].
This is a diffusion-driven process whereby droplets larger (smaller) than a critical radius Rc

grow (shrink), with Rc itself an increasing function of time, so that ultimately only a single
droplet remains. The diffusive exchange of material from a small droplet to a large droplet
is due to the fact that interfacial tension increases the local concentration in a neighborhood
of a droplet according to the Gibbs–Thompson law; such an increase is inversely propor-
tional to the droplet radius according to φ(R) = φa(1 + �c/R) with �c the capillary length.
The first quantitative formulation of Ostwald ripening was developed by Lifshitz and Sly-
ozov [18] and Wagner [22], and is commonly referred to as classical LSW theory. A crucial
assumption of LSW theory is that the interaction between droplets can be expressed solely
through a common mean field, which determines the so-called supersaturation of the system.
This mean field approximation exploits the fact that the concentration around a droplet varies
as 1/r, where r is the distance from the center of the droplet. However, mean field theory breaks
down in the case of circular droplets in two-dimensional (2D) systems such as thin films, since
the concentration around a droplet varies as ln r rather than r−1. Thus, more care must be taken
in imposing far-field conditions [1, 15].

There is now significant renewed interest in liquid–liquid phase separation and Ostwald
ripening due to the discovery of membraneless subcellular structures (biological condensates)
such as P granules in the cytoplasm and nucleoli in the nucleus of cells [2–5, 11, 12, 14, 17, 28].
These structures consist of enhanced concentrations of various proteins and RNA in a localized
domain, without a physical membrane separating it from the surrounding medium. Proteins are
highly mobile within a biological condensate and are continually exchanged with the cytosol.
Although liquid–liquid phase separation is emerging as the key organizing principle underlying
the formation of biological condensates, the classical theory has been modified in order to take
into account the fact that biological phase separation can be regulated by active processes such
as non-equilibrium chemical reactions. Examples include the suppression of Ostwald ripening
due to ATP-driven protein phosphorylation [27, 29] and the spatial segregation of droplets due
to regulation by protein concentration gradients [25, 26].

Almost all current theoretical studies of biological phase separation have focused on 3D
spherical droplets, for which mean field approximations hold. However, there are also exam-
ples of phase separation in quasi-2D domains, such as the clustering of curvature-inducing
proteins that regulate cell shape [13]. Moreover, polarized crawling cells such as keratocytes
and fibroblasts are highly flattened and often treated as 2D systems. 2D active emulsions (thin
films) are also of considerable interest within the wider physics community [26]. Recently,
we have shown how asymptotic methods can be used to study the suppression of Ostwald
ripening in a 2D solution undergoing active liquid–liquid phase separation [7]. In this paper,
we extend these methods to the case of 2D droplet ripening in a concentration gradient.
We assume that droplets are well separated with mean separation d and characteristic radius R
such that R/d = O(ε) for 0 < ε � 1. We solve the quasi-steady-state diffusion equation by par-
titioning the region outside the droplets into a set of inner regions around each droplet together
with an outer region where mean-field interactions occur. The inner and outer solutions are
matched by carrying out an asymptotic expansion in ν = −1/ln ε. Using a separation of time
scales, we then derive leading order dynamical equations for the position-dependent growth
and drift velocity of the droplets. We also show how finite-size effects can be incorporated into
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the theory by including higher-order terms in the asymptotic expansion, which depend on the
positions of the droplets and the boundary of the 2D domain.

2. Phase separation in a concentration gradient

Protein concentration gradients play an important role during asymmetric cell division of the
Caenorhabditis elegans zygote. Within the context of biological condensates, it has been found
that RNA-protein aggregates in the form of so-called P-granules are segregated to the poste-
rior side of the cell, and are located in the posterior daughter cell after division. Moreover,
the segregation and ripening of P-granule droplets is driven by the concentration gradient of
a regulatory protein known as Mex-5 [4, 16, 20]. This has motivated a theoretical study of
3D droplet ripening in a protein concentration gradient, where both the supersaturation and
low density phase concentration are taken to be position dependent [25, 26]. Here we briefly
describe the underlying model.

Let R denote the regulatory protein and P denote the solute that undergoes phase separation
in a solvent S. The basic regulatory mechanism is taken to be the binding of R to P, which
forms a complex C that cannot phase separate:

R + P
k−⇀↽−
h

C. (2.1)

This has the effect of reducing the volume fraction of solute molecules that can participate in
phase separation. Let φ denote the total volume fraction of solute, which is given by the sum
of contributions from bound (φC) and free (φP) molecules,

φ = φP + φC.

If φS and φR denote the volume fraction of solvent and free regulator, respectively, then φ+
φS + φR = 1. We will assume that φR � 1 (dilute regulator concentration) so that φ+ φS ≈ 1.
Assuming local equilibrium of the fast binding reactions, and taking the molecular volumes of
C and P to be the same, vC = vP = v, we have kφPφR/vR = hφC, where vR is the molecular
volume of R molecules and φR is the corresponding volume fraction. Hence,

φP =
φ

1 + KφR
, K =

k
hvR

.

In order to explore the consequences of this binding reaction on phase separation, consider the
classical free energy density of the ternary solution [10]:

f (φ;φR) = kBT

[
1
v
φ ln φ+

1
vS

(1 − φ) ln(1 − φ) + χ
φ

1 + KφR
(1 − φ)

]
, (2.2)

where vS is the molecular volume of solvent, and χ is the effective interaction energy. For sim-
plicity, we ignore the mixing entropy of the complex C and only consider interaction energies
between P and S. It follows that the only dependence of the free energy on the regulator volume
fraction φR is via its dependence on φP. Note that the interaction energy term can be expressed
as [25, 26]

E = kBTχeffφ(1 − φ), χeff = χ

(
1 − KφR

1 + KφR

)
. (2.3)

It follows that increasing the regulator concentration φR leads to a decrease in the effective
interaction parameter χeff .
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Figure 1. Effect of a linearly decreasing regulator concentration φR(x) on phase sepa-
ration, x ∈ [0, L]. (a) Sketch of phase transition curve χeff = χc for phase separation as
a function of φ. The variation of χeff with x traces a straight line in the phase diagram
that crosses the critical curve at position xc. (b) Coexistence curves in the (φ,φR)-plane
for total solute concentration φ and regulator concentration φR. The thin straight lines
link points within the phase separation region to the corresponding low and high density
phases φa,b on the coexistence curve. As the position x varies, there is a correspond-
ing change in φR, which places the system at different points in the phase diagram
(red curve). Droplets can only form at points that lie within the coexistence curve. The
position xc marks the boundary between droplet formation and dissolution.

The free energy density f(φ;φR) for fixed φR has a single minimum for sufficiently small
χeff but switches to two local minima φa,b as χeff crosses a critical point χc. If one now plots
the coexistence curves for φa and φb in the φ–φR plane, one finds that changing φR moves the
system to different points in the phase diagram, which is how the regulator protein can con-
trol phase separation. In particular, suppose that there exists a spatially varying concentration
gradient φR (r) that, for simplicity, varies linearly in the x-direction, φR(r) = φR(0) − bx. It
immediately follows that χeff and hence φa,b become x-dependent, as illustrated in figure 1.
One major simplification is to take vS � v so that the volume fraction φb of the high den-
sity phase is approximately independent of x. One can then focus on determining the spa-
tially varying volume fraction φ outside the droplets along the lines of Weber et al [25, 26].
These authors extend the classical mean field theory of droplet ripening by considering the
effects of a spatially varying volume fraction φa(x) and a time-dependent, spatially varying far-
field φ∞(x, t) that represents the collective effects of surrounding droplets. In classical LSW
theory, the far field φ∞ is spatially uniform during late-stage ripening, assuming that the mean
separation d between droplets satisfies d � R, where R is the mean droplet radius. Under the
further separation of length scales R � d � L, where L is the system size, one can partition the
system into local regions with a size corresponding to the intermediate length scale d. Droplets
in a local domain around a spatial position x will have coexisting equilibrium concentrations
φa(x),φb provided that the point (φ,φR(x)) is located inside the phase separation region of the
associated phase diagram, see figure 1. Finally, if the common far field concentration within
the local region is φ∞(x, t), then one can define a spatio-temporal dependent supersaturation
Δ(x, t) = φ∞(x, t) − φa(x) and use this to analyze the dynamics of droplets by modifying clas-
sical LSW theory [25, 26]. Since the quasi-steady-state local solute concentration is not radially
symmetric, one finds that the resulting non-equilibrium fluxes induce both a growth of large
droplets at the expense of small droplets and a net drift of droplets towards regions of low reg-
ulator concentration (high supersaturation). This is analogous to the segregation of P-granules
at the posterior end of C. elegans zygotes.
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3. Asymptotic analysis of Ostwald ripening in 2D

As we mentioned in the introduction, classical LSW theory breaks down in the case of circular
droplets in 2D systems, since the concentration around a droplet varies as ln R rather than R−1.
It is then necessary to use some form of matched asymptotics in order to handle the far-field
behavior [7, 15]. Here we use such methods to analyze 2D droplet ripening in a regulator con-
centration gradient. In contrast to the previous analysis of 3D droplets [25, 26], the far-field φ∞
is taken to be spatially uniform and is determined self-consistently in terms of an area preserv-
ing solvability condition; such a condition is typical of late-stage ripening. This is based on the
separation of length-scales assumed in classical Ostwald ripening, whereby quasi-stationary
fluxes between droplets can be maintained by a concentration profile that is approximately flat
in the far field. (This corresponds to the outer solution of the matched asymptotic expansion.) It
should be noted that such an argument holds whether or not droplets are uniformly distributed
throughout the domain, and is not invalidated by the presence of a regulator concentration gra-
dient. For the latter only affects the low density concentration (area fraction)φa in the boundary
later around each droplet. As in classical LSW theory, we will also assume a separation of
time-scales in which the growth and drift of droplets occurs on a much slower time-scale than
diffusion. This means that we can solve the quasi-steady-state diffusion equation for the solute
concentrationφ. In section 4, we will use the resulting non-equilibrium fluxes to determine the
droplet dynamics.

Consider N droplets of radii Ri and centers xi, i = 1, . . . , N, located in a bounded 2D domain
Ω ⊂ R

2. The basic assumption of the asymptotic method is that the droplets are small and well
separated. We fix length scales by setting the mean separation d = 1 and take the capillary
length �c = ε, Ri = ερi with 0 < ε � 1 such that ρi = O(1) and |xi − xj| = O(1) for j �= i.
Note that in order to use singular perturbation theory with ε treated as an expansion parameter,
we require the size of the droplets to be much smaller than the size of the domain and the
spacing between droplets, and to be comparable to the capillary length. The last condition is a
particularly strong constraint of the analysis. For simplicity, the high density concentrationφb is
taken to be x-independent so that we can focus on the concentration in the domain exterior to the
droplets. Suppose that there is a regulator concentration gradient in the x-direction of the form
φR(x) = φR(0) − bx, where b specifies the steepness of the gradient. Due to the dependence
of the effective interaction parameter χeff on φR(x), it follows that the low density equilibrium
concentration φa(x) varies around the surface |x − xi| = ερi of the ith droplet. In particular,
introducing the polar coordinates x = xi + ερi cos θ, y = yi + ερi sin θ and setting φa,i(θ) =
φa(xi + ερi cos θ), we obtain the leading-order Taylor expansion

φa,i(θ) ≈ αi + εβiρi cos θ, (3.1)

with αi = φa(xi) and β i = φ′
a(xi).

3.1. Inner solution

First, consider the inner solution around the ith droplet,

Φi(y) = φ(xi + εy), y = ε−1(x − xi),

where we have introduced stretched coordinates and replaced the domain Ω by R
2, see

figure 2(a). It follows that

1
ρ

∂

∂ρ
ρ
∂Φi

∂ρ
+

1
ρ2

∂2Φi

∂2θ
= 0 for ρi < ρ < ∞, (3.2)
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Figure 2. Construction of inner solution. The inner solution is expressed in terms of
stretched coordinates ρi = ε−1(x − xi), where xi is the center of the ith droplet. The
rescaled radius is ρi and the region outside the droplet is taken to be R

2 rather than the
bounded domain Ω. The concentration inside the droplet is given by the constant φb,
with a discontinuity at the interface so that Φ(ρ+i , θ) = φa,i(θ).

with boundary condition

Φi(ρi, θ) = φa,i(θ)

(
1 +

1
ρi

)
. (3.3)

The general solution of Laplace’s equation in polar coordinates is of the form

Φi(ρ, θ) = A0,i + B0,i ln ρ/ρi +

∞∑
n=1

(An,iρ
n + Bn,iρ

−n)[Cn,i cos nθ + Dn,i sin nθ]. (3.4)

On imposing the boundary condition, one finds that

Φi(ρ, θ) = αi

(
1 +

1
ρi

)
+ νBi(ν) ln ρ/ρi + εβiρi

(
1 +

1
ρi

)
ρi

ρ
cos θ. (3.5)

(All coefficients An,i for n � 1 must vanish, otherwise we cannot match with the outer solution.)
We have introduced the small parameter

ν = −1/ ln ε, (3.6)

and for convenience have set B0,i = νBi(ν). The coefficients Bi(ν), i = 1, . . . , N, can be deter-
mined by matching the inner solutions with the outer solution (see below). The presence of the
small parameter ν rather than ε in the matched asymptotic expansion is a common feature of
strongly localized perturbations in 2D domains. It is well-known that ν → 0 much more slowly
than ε→ 0. Hence, if one is interested in obtaining O(ε) accuracy, then it is necessary to sum
over the logarithmic terms non-perturbatively. This can be achieved by matching the inner and
outer solutions using Green’s functions [23], which is equivalent to calculating the asymptotic
solution for all terms of O(νk) for any k.

3.2. Matching with the outer solution

The outer solution is obtained by treating each droplet as a point source/sink, see figure 3. The
resulting time-independent diffusion equation takes the form

∇2φ = 0, x ∈ Ω\{x1, . . . , xN}, ∂nφ = 0, x ∈ ∂Ω, (3.7)

6
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together with the matching condition

φ ∼ α j

(
1 +

1
ρ j

)
+ B j(ν) + νB j(ν)[ln |x − x j| − ln ρ j] (3.8)

as x → xj. The next step is to introduce the 2D Neumann Green’s function G(x, y), which is
uniquely defined by [23]

∇2G =
1
|Ω| − δ(x − y), x ∈ Ω, (3.9)

and

∂nG = 0 on ∂Ω,
∫
Ω

G(x, y)dx = 0 (3.10)

for fixed y. Note that G can be decomposed as

G(x, y) = − ln |x − y|
2π

+ R(x, y), (3.11)

where R is the regular part of the Green’s function. The latter is non-singular in the limit x → y
and incorporates the effects of the boundary conditions. It vanishes when Ω = R

2. We now
make the ansatz

φ(x) ∼ φ∞ − 2πν
N∑

i=1

Bi(ν)G(x, xi) (3.12)

for x /∈ {xj, j = 1, . . . , N} for some constant far-field φ∞. Observe that for x /∈ {xj, j =
1, . . . , N},

∇2φ(x) ∼ −2πν
N∑

i=1

Bi(ν)∇2G(x, xi) = −2πν
|Ω|

N∑
i=1

Bi(ν). (3.13)

Hence, the outer solution satisfies the steady-state diffusion equation if and only if

N∑
i=1

Bi(ν) = 0. (3.14)

As we will show in section 4, this condition ensures that the total area of the droplets is
conserved, which is a typical feature of late-stage Ostwald ripening.

In order to match the inner and outer solutions, we note that as x → xj,

φ(x) → φ∞ + νB j(ν) ln |x − x j| − 2πνB j(ν)R(x j, x j) − 2πν
∑
i �= j

Bi(ν)G(x j, xi).

Comparison with the asymptotic limit in equation (3.8) yields the self-consistency conditions

−(1 − ν ln ρ j + 2πνR(x j, x j))B j(ν) − 2πν
∑
i �= j

Bi(ν)G(x j, xi) = α j

(
1 +

1
ρ j

)
− φ∞ (3.15)
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Figure 3. Construction of the outer solution φ. Each droplet is shrunk to a single point.
The outer solution can be expressed in terms of the corresponding modified Neumann
Green’s function and then matched with the inner solution Φ around each droplet.

for j = 1, . . . , N. In particular, equation (3.15) can be rewritten as a matrix equation

N∑
i=1

(
δi, j + νM ji

)
Bi(ν) = φ∞ − α j

(
1 +

1
ρ j

)
, (3.16)

with

M jj = 2πR(x j, x j) − ln ρ j, M ji = 2πG(x j, xi), j �= i. (3.17)

We thus obtain the solution

Bi(ν) =
N∑

j=1

[I + νM]−1
i j

(
φ∞ − α j −

α j

ρ j

)
, (3.18)

which is clearly non-perturbative with respect to ν. However, for practical calculations, it is
useful to Taylor expand Bi(ν) with respect to ν. This gives

Bi(ν) = φ∞ − αi

(
1 +

1
ρi

)
+ ν

N∑
j=1

Mi j

[
φ∞ − α j

(
1 +

1
ρ j

)]
+ O(ν2). (3.19)

3.3. Calculation of the far field φ∞

It remains to determine φ∞. Early on during phase separation, the fractional area of droplets
is negligible, which suggests identifying φ∞ with the local solute concentration in the absence
of phase separation. This would imply that φ∞ is itself space-dependent in the presence of a
concentration gradient, see references [25, 26]. In this paper we assume that the area fraction of
droplets reaches a steady-state as phase separation proceeds so that Ostwald ripening preserves
the total area occupied by droplets. This is equivalent to imposing the area preserving condition
(3.14), which in turn requires that φ∞ is spatially uniform. If the latter did not hold, then
equation (3.13) would have an additional term ∇2φ∞ on the right-hand side, and one could no
longer ensure that

∑
i Bi(ν) = 0. One would then need some information about the early-stages

of droplet ripening. Equation (3.18) now implies that

φ∞ =

∑N
i, j=1 [I + νM]−1

i j α j

(
1 + 1

ρ j

)
∑N

i, j=1 [I + νM]−1
i j

. (3.20)
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Hence, to leading order in ν,

φ∞ = N−1
N∑

j=1

α j

(
1 +

1
ρ j

)
+ O(ν). (3.21)

Note that in the absence of a regulator concentration gradient, αi = φa for all i, we have

φ∞ = φa

(
1 +

1
ρharm

)
+ O(ν), (3.22)

where ρharm is the harmonic mean,

ρharm =

⎡
⎣ 1

N

N∑
j=1

1
ρ j

⎤
⎦
−1

. (3.23)

(This is a major difference between classical droplet ripening in 2D and 3D, since in the latter
case φ∞ = φa(1 + 1/ρ̄) with ρ̄ =

∑N
i=1 ρi/N.) Now substituting the leading order expression

for the coefficients Bi into equations (3.5) and (3.12) shows that the concentration away from
droplets (outer solution) is

φ(x) = φ∞ − 2πν
N∑

i=1

(
φ∞ − αi −

αi

ρi

)
G(x, xi) + O(ν2), (3.24)

whereas the inner solution near the ith droplet with |x − xi| = ερ is

Φi(ρ, θ) = αi

(
1 +

1
ρi

)
+ ν

(
φ∞ − αi −

αi

ρi

)
ln(ρ/ρi) + εβiρi

(
1+

1
ρi

)
ρi

ρ
cos θ + O(ν2).

(3.25)

4. Droplet dynamics

On longer time-scales, the droplets can grow, drift or deform due to the normal fluxes of solute
at the interface modifying the location of the interface. The local displacement δRi(θ, t) of the
ith interface is determined by the normal velocity vi, which for a circular droplet is obtained by
matching the influx of solute molecules into a surface arc of length dsi = Ridθ with the local
change in area. Assuming that φb � φa,i, we have

φbvi(θ) dsi = Ji(Ri, θ)dsi,

where Ji(r, θ) = D∇Φi(r/ε, θ) · er. (The flux inside the droplet vanishes as the concentration
is approximately constant.) Hence,

vi(θ) =
D
φb

∇Φi(r/ε, θ) · er. (4.1)

We thus have δRi(θ, t) = vi(θ)δt. We now rescale by setting Ri = ερi and t = ε2τ , so that

δρi(θ, τ ) =
D
φb

∇Φi(ρi, θ) · eρδτ.

9
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From equation (3.5), we have

∇Φi(ρ, θ) · eρ =
νBi(ν)
ρi

− εβi

(
1 +

1
ρi

)
cos θ. (4.2)

with the coefficient Bi(ν) given by equation (3.18). Assuming that the droplet maintains an
approximately spherical shape, we can define the change in radius according to

δρi(τ ) = (2π)−1
∫ 2π

0
δρi(θ, τ )dθ.

That is,

dρi

dτ
=

D
2πφb

∫ 2π

0
∇Φi(ρi, θ) · eρdθ =

DνBi(ν)
ρiφb

. (4.3)

Multiplying both sides of equation (4.3) by ρi, summing over i and imposing the solvability
condition (3.14) implies that

1
2π

N∑
i=1

d Ai

dτ
=

Dν

φb

N∑
i=1

Bi(ν) = 0,

where Ai = πρ2
i is the (rescaled) area of the ith droplet. Hence, equation (3.14) ensures that the

total area of the droplets is conserved. If we now expand Bi(ν) according to equation (3.19),
then we obtain the leading order dynamical equation

dρi

dτ
=

νD
φbρi

[
φ∞ − αi

(
1 +

1
ρi

)]
+ O(ν2), (4.4)

which is almost identical to the expected formula for growth of a 2D droplet.
In the absence of a regulator concentration gradient, αi = φa,0 for all i and φa,0 constant,

large droplets grow at the expense of small droplets until only one remains. This is classical
Ostwald ripening in 2D. However, in the presence of a concentration gradient the local equi-
libria become αi = αi(τ ) :=φa(xi(τ )), with xi(τ ) the time-dependent x-coordinate of the ith
droplet. That is,

δxi(τ ) = (2π)−1
∫ 2π

0
δρi(θ, τ ) cos θ dθ,

which yields the drift speed

dxi

dτ
=

D
2πφb

∫ 2π

0
∇Φi(ρi, θ) · eρ cos θ dθ = − εD

2φb
βi

(
1 +

1
ρi

)
. (4.5)

Recall that βi = ∇φa(xi) · ex so sign(βi) determines whether the regulator concentration
increases or decreases with increasing x. Equation (4.5) thus implies that droplets drift down
the regulator concentration gradient. For example, if φR(x) is a decreasing function of x, then
droplets tend to move towards larger values of x. It follows that αi becomes a decreasing
function of τ as the ith droplet moves to regions of lower regulator concentration.

Further simplification can be achieved by noting that in 2D there is a separation of time-
scales between the O(ν) rate of growth and the O(ε) rate of drift. More specifically, since
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Figure 4. Droplet ripening in a regulator concentration gradient. The local equilibrium
φa is larger for upstream droplets and hence there tends to be more shrinkage to the left
compared to the right. Surviving droplets slowly drift to the right ultimately resulting in
droplet segregation at the right-hand boundary.

ε|ln ε| → 0 as ε→ 0, we see that for sufficiently small ε and a shallow concentration gradient
(small |β i|) the drift is much slower than the growth. At a given time τ , droplets upstream of the
concentration gradient have larger αi(τ ) and are thus more likely to shrink than downstream
droplets of the same size, see equation (4.4). It follows that on the O(ν) time-scale, downstream
droplets will grow at the expense of upstream droplets. So even in the absence of drift, there
will tend to be a higher concentration of growing droplets towards the right-hand boundary
shown in figure 4. On the longer O(ε) time-scale, surviving upstream droplets will drift to the
right and thus further contribute to segregation. Under the assumptions of the model, there are
thus two separate mechanisms for segregation: a spatial gradient of local equilibria at given
time τ , and a slow rightward drift of droplets. Once surviving droplets have reached one end
of the domain, they will have the same local equilibria and normal Ostwald ripening will tend to
occur, with the caveat that the droplets may no longer have O(1) separation. Finally, it should be
noted that the segregation mechanism in the case of a homogeneous far-field concentration φ∞
differs from the mechanism considered previously for 3D droplets [25, 26]. In the latter case,
segregation is driven by a spatio-temporal gradient in φ∞ and a spatial gradient in φa. Con-
sequently, one finds a right-moving dissolution boundary separating growing from shrinking
droplets.

4.1. Two droplets

In order to illustrate the effects of higher-order contributions to the coefficients Bi(ν) on droplet
dynamics, we consider the case of two droplets in a circular domain. Since the Bi(ν) coefficients
only appear in the growth dynamics, we ignore the effects of drift by taking the droplets to have
the same low phase concentration α1 = α2 = φa and set β j = 0. (This is a reasonable leading
order approximation for 2D droplets when there is a separation of time scales between growth
and drift as highlighted above.) The dynamics of the droplet radii can then be analyzed along
identical lines to reference [15].

Let Ω ⊂ R
2 be the unit circle centered at the origin. (Take the radius L = 1 of the circle

to determine the length-scale.) Suppose that there are two droplets j = 1, 2 in the interior of
Ω with initial radii Rj = ερj and centers at xj. For concreteness, we take x1 = (0,−1/2) and
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Figure 5. Pair of droplets. (a) Initial configuration of a pair of droplets at positions
x1 = (0,−1/2) and x2 = (0, 2/3) with droplet 2 larger than droplet 1. (b) Example
plots of the droplet radii ρi(τ ), i = 1, 2, evolving according to equation (4.3) after non-
dimensionalizing the time. Initial radii are ρ1(0) = 0.5, ρ2(0) = 1 and ε = 0.05. Solid
curves denote the solution based on the full non-perturbative expression for the coeffi-
cients Bi(ν), equation (3.18), whereas the dashed curves are based on the leading order
approximation in equation (3.19). The larger droplet grows at the expense of the smaller
droplet until the latter disappears after a finite time. On a slower time scale the droplets
will drift down a regulatory concentration gradient in the x direction.

x2 = (0, 2/3) with droplet 1 smaller than droplet 2, see figure 5(a). The Neumann Green’s
function for such a domain is well-known [15]:

G(x, x j) = − 1
2π

ln(|x − x j|) + R(x, x j)

=
1

2π

[
− ln(|x − x j|) − ln

(∣∣∣∣x|x j| −
x j

|x j|

∣∣∣∣
)
+

1
2

(|x|2 + |x j|2) − 3
4

]
. (4.6)

From equation (3.18) we see that for two droplets we have to invert the matrix

A =

(
1 + 2πR11 − ln ρ1 2πG12

2πG21 1 + 2πR22 − ln ρ2

)
, (4.7)

where Gij = G(xi, xj) and Rjj = R(xj, xj). It follows that

A−1 = Γ−1

(
1 + ν(2πR22 − ln ρ2) −2πνG12

−2πνG21 1 + ν(2πR11 − ln ρ1)

)
, (4.8)

with

Γ = (1 + ν[2πR11 − ln ρ1])(1 + ν[2πR22 − ln ρ2]) − 4π2ν2G12G21.

Introducing a dimensionless time according to the rescaling

τ → τνD
φbL2

and setting φa = 1, equation (4.4) can be rewritten as

dρi

dτ
=

Bi(ν)
ρi

, Bi(ν) =
∑
j=1,2

A−1
i j

[
1

ρharm
− 1

ρ j

]
(4.9)
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for i = 1, 2. Numerical simulation of the ODEs (4.9) establish that the larger droplet grows and
the smaller droplet shrinks, while preserving the total droplet area. A comparison of the results
based on the leading order expansion of Bi(ν) in equation (3.19) and the full non-perturbative
expression in (3.18) is illustrated in figure 5(b).

Following reference [15], one can estimate the extinction time T of the smaller droplet using
the leading order dynamics (4.4), which for a pair of droplets becomes

dρ j

dτ
=

1
ρ j

[
1

ρharm
− 1

ρ j

]
. (4.10)

Suppose that ρ1(0) < ρ2(0) as in figure 5. First note that

dρ1

dτ
� − 1

ρ2
1

,

which on integrating with respect to time gives

ρ1(τ )3 − ρ1(0)3 � −3τ.

Hence, ρ1(τ ) � 0 for all times τ � ρ1(0)3/3, which yields a lower bound on the extinction
time, namely, T � ρ1(0)3/3. Next, using the definition of the harmonic mean, we have

ρ2
1

dρ1

dτ
= ρ1

[
1

2ρ2
+

1
2ρ1

− 1
ρ1

]
=

ρ1

2

[
1
ρ2

− 1
ρ1

]
=

ρ1 − ρ2

2ρ2
� ρ1(0) − ρ2(0)

2ρ2(0)
< 0

Again integrating with respect to time shows that

ρ1(τ )3/3 − ρ1(0)3/3 � ρ1(0) − ρ2(0)
2ρ2(0)

τ.

It follows that ρ1(τ ) is negative (extinct) for times

τ � 2ρ1(0)3ρ2(0)
ρ2(0) − ρ1(0)

,

which yields an upper bound for the extinction time. In summary,

ρ1(0)3

3
� T � 2ρ1(0)3ρ2(0)

3[ρ2(0) − ρ1(0)]
. (4.11)

For the plots shown in figure 5, we have ρ1(0) = 0.5 and ρ2(0) = 1 so that the extinction time
under the leading-order approximation lies in the range 1/24 � T � 1/6.

Figure 5 suggests that the leading order approximation captures the qualitative
growth/shrinkage of the droplets. However, there are significant errors in the extinction time.
This reflects the fact that even though ε is small, ε = 0.05, the actual expansion parame-
ter ν = −1/ln ε ≈ 1/3. As we have already commented in section 3.1, the presence of the
small parameter ν rather than ε is a common feature of strongly localized perturbations in 2D
domains. Therefore, in order to obtain O(ε) accuracy, it is necessary to sum over the logarithmic
terms non-perturbatively as in equation (4.9). Finally note that in the presence of a regulator
concentration gradient in the x direction, the droplets will slowly drift down the gradient. After
non-dimensionalizing time, equation (4.5) becomes

dxi

dτ
= − εβi

2ν

(
1 +

1
ρi

)
= − ε ln ε|βi|

2

(
1 +

1
ρi

)
> 0.
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We are assuming that the regulator gradient is a decreasing function of x so βi < 0. Note that
for the value ε = 0.05 used in figure 5, −εln ε ≈ 0.15 so that the rate of drift is an order of
magnitude slower than the growth/shrinkage of the droplets as given by equation (4.9). In
the analysis of 3D droplets [25, 26], it was shown how relatively fast segregation of droplets to
one end of the concentration gradient could lead to periods of transient arrest, during which the
number and size of droplets remains approximately constant. This was preceded by a narrowing
of the droplet size distribution. The separation of time-scales that occurs in the case of 2D
droplets suggests that this effect could be inhibited.

5. Discussion

In this paper we used asymptotic methods to investigate the ripening of 2D droplets in a regu-
lator concentration gradient, which cannot be analyzed using classical LSW mean field theory.
One major assumption of our asymptotic analysis, which contrasts with the previous analysis
of 3D droplets [25, 26], is that the far-field solute concentrationφ∞ is spatially uniform. Mathe-
matically speaking, this is a consequence of the solvability condition (3.14), which determines
φ∞ according to equation (3.20). From a physical perspective, we are exploiting a separation
of length-scales as in classical late-stage Ostwald ripening, whereby quasi-stationary fluxes
between droplets can be maintained by a concentration profile that is approximately flat in the
far field (the outer solution of our asymptotic analysis). Two additional assumptions of our
analysis are that the droplets are well separated and comparable in size to the capillary length
�c, so it would break down in the case of densely populated large droplets whose size differ
considerably from �c.

The main result of our asymptotic analysis was to identify a possible mechanism for segrega-
tion of 2D droplets in the presence of a regulator concentration gradient and a homogeneous far
field φ∞. Exploiting a separation of time-scales between droplet growth/shrinkage and drift,
we showed that there are two distinct mechanisms for segregation: a spatial gradient in the
local equilibria φa(x), which tends to favor the growth of downstream droplets, and a slow
rightward drift of surviving droplets. The time course of segregation thus appears to differ
from the model of 3D droplets [25, 26]. However, this reflects the fact that we are considering
segregation during late-stage Ostwald ripening, assuming that the latter can be reached. It is
a non-trivial problem to analyze the time-dependent diffusion process associated with earlier
stages of segregation in 2D. At the very least, we have established that segregation is consistent
with late-stage Ostwald ripening.

One distinctive feature of 2D compared to 3D droplets, which holds whether or not there
is a concentration gradient, is that the matched asymptotics involves an expansion in the small
parameter ν = −1/ln ε rather than ε. Hence, in order to obtain O(ε) accuracy, it is necessary
to sum all logarithmic terms non-perturbatively using Green’s functions [23]. Analogous 2D
singular perturbation problems arise in many other application areas, such as first passage
time problems for Brownian motion in a domain with small traps [8, 9, 24] and diffusion-
limited reaction rates in the case of small targets [6, 21]. These latter studies also reduce the
associated boundary value problem to an N × N linear system of equations, similar in form to
equation (3.15), where N is now the number of targets. Solving the linear equations numerically
yields a non-perturbative solution that matches well with direct simulations of the full system
for small ε. Although we did not simulate the full system in this paper, we expect similar
agreement to hold. Here we focused instead on extracting general information about the system
by carrying out a regular perturbation expansion in ν. In particular, we recovered droplet growth
dynamics similar in form to classical theory, see equation (4.4). We also showed that the critical
radius for droplet growth depends on the local supersaturation φ∞ − φa(xi), with φ∞ given by
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a weighted harmonic mean of the droplet radii; this is distinct from 3D droplets where φ∞
depends on the arithmetic mean. Including higher-order contributions to the droplet dynamics
then allowed us to take account of finite-size effects associated with the boundary of the domain
and the positions of the droplets, as determined by the associated Neumann Green’s function.
Thus, even a regular perturbation expansion in ν allows us to include the effects of droplet
interactions that are neglected in mean field approaches. As illustrated in figure 5(b) for a pair
of droplets, such interactions effect the extinction time of the small droplet. For the chosen
configuration, the extinction time was increased. It would be interesting to investigate whether
or not such a result holds in the case of multiple droplets and other geometries.

We end by making a few comments about possible biological implications of our analy-
sis. The main challenge experimentally is to find a cellular preparation that exhibits biological
condensation in a quasi-2D system. As we mentioned in the introduction, two potential candi-
dates are curvature-inducing proteins in the plasma membrane that regulate cell shape [13], and
polarized crawling cells such as keratocytes and fibroblasts that are highly flattened. One would
then need to identify an appropriate regulator protein concentration gradient. Our modeling and
analysis would predict that there is segregation of droplets along the regulator concentration
gradient, although the time course of segregation may differ from the 3D case. In particular,
our analysis suggests that there is a separation of time-scales between the growth and drift of
droplets with the former occurring at a rate of O(ν) and the latter at a rate of O(ε), where ε is
the characteristic size of a droplet relative to the domain size.

ORCID iDs

Paul C Bressloff https://orcid.org/0000-0002-7714-9853

References

[1] Alikakos N D, Fusco G and Karali G 2004 Ostwald ripening in two dimensions—the rigorous
derivation of the equations from the Mullins–Sekerka dynamics J. Differ. Equ. 205 1–49

[2] Banani S F, Lee H O, Hyman A A and Rosen M K 2017 Biomolecular condensates: organizers of
cellular biochemistry Nat. Rev. Mol. Cell Biol. 18 285–98

[3] Berry J, Brangwynne C P and Haataja H P 2018 Physical principles of intracellular organization via
active and passive phase transitions Rep. Prog. Phys. 81 046601

[4] Brangwynne C P et al 2009 Germline P granules are liquid droplets that localize by controlled
dissolution/condensation Science 324 1729–32

[5] Brangwynne C P, Mitchison T J and Hyman A A 2011 Active liquid-like behavior of nucleoli
determines their size and shape in Xenopus laevis oocytes Proc. Natl Acad. Sci. 108 4334–9

[6] Bressloff P C and Lawley S D 2015 Stochastically-gated diffusion-limited reactions for a small
target in a bounded domain Phys. Rev. E 92 062117

[7] Bressloff P C 2020 Active suppression of Ostwald ripening: beyond mean field theory Phys. Rev. E
101 042804

[8] Cheviakov A F and Ward M J 2011 Optimizing the principal eigenvalue of the laplacian in a sphere
with interior traps Math. Comp. Modeling 53 042118

[9] Coombs D, Straube R and Ward M 2009 Diffusion on a sphere with localized traps: mean first
passage time, eigenvalue asymptotics, and Fekete points SIAM J. Appl. Math. 70 302–32

[10] Doi D 2013 Soft Matter Physics (Oxford: Oxford University Press)
[11] Elbaum-Garfinkle S et al 2015 The disordered P granule protein LAF-1 drives phase separation into

droplets with tunable viscosity and dynamics Proc. Natl Acad. Sci. USA 112 7189–94
[12] Falahati H and Haji-Akbari A 2019 Thermodynamically driven assemblies and liquid–liquid phase

separations in biology Soft Matter 15 1135–54
[13] Gov N S 2018 Guided by curvature: shaping cells by coupling curved membrane proteins and

cytoskeletal forces Phil. Trans. R. Soc. 373 20170115

15

https://orcid.org/0000-0002-7714-9853
https://orcid.org/0000-0002-7714-9853
https://doi.org/10.1016/j.jde.2004.05.008
https://doi.org/10.1016/j.jde.2004.05.008
https://doi.org/10.1016/j.jde.2004.05.008
https://doi.org/10.1016/j.jde.2004.05.008
https://doi.org/10.1038/nrm.2017.7
https://doi.org/10.1038/nrm.2017.7
https://doi.org/10.1038/nrm.2017.7
https://doi.org/10.1038/nrm.2017.7
https://doi.org/10.1088/1361-6633/aaa61e
https://doi.org/10.1088/1361-6633/aaa61e
https://doi.org/10.1126/science.1172046
https://doi.org/10.1126/science.1172046
https://doi.org/10.1126/science.1172046
https://doi.org/10.1126/science.1172046
https://doi.org/10.1073/pnas.1017150108
https://doi.org/10.1073/pnas.1017150108
https://doi.org/10.1073/pnas.1017150108
https://doi.org/10.1073/pnas.1017150108
https://doi.org/10.1103/physreve.92.062117
https://doi.org/10.1103/physreve.92.062117
https://doi.org/10.1103/physreve.101.042804
https://doi.org/10.1103/physreve.101.042804
https://doi.org/10.1016/j.mcm.2010.02.025
https://doi.org/10.1016/j.mcm.2010.02.025
https://doi.org/10.1137/080733280
https://doi.org/10.1137/080733280
https://doi.org/10.1137/080733280
https://doi.org/10.1137/080733280
https://doi.org/10.1073/pnas.1504822112
https://doi.org/10.1073/pnas.1504822112
https://doi.org/10.1073/pnas.1504822112
https://doi.org/10.1073/pnas.1504822112
https://doi.org/10.1039/c8sm02285b
https://doi.org/10.1039/c8sm02285b
https://doi.org/10.1039/c8sm02285b
https://doi.org/10.1039/c8sm02285b
https://doi.org/10.1098/rstb.2017.0115
https://doi.org/10.1098/rstb.2017.0115


J. Phys. A: Math. Theor. 53 (2020) 365002 P C Bressloff

[14] Hyman A A, Weber C A and Julicher F 2014 Liquid-liquid phase separation in biology Annu. Rev.
Cell Dev. Biol. 30 39–58

[15] Kavanagh E 2014 Interface motion in the Ostwald ripening and chemotaxis systems Master Thesis
University of British Columbia

[16] Lee C F, Brangwynne C P, Gharakhani J, Hyman A A and Julicher F 2013 Spatial organization of
the cell cytoplasm by position-dependent phase separation Phys. Rev. Lett. 111 088101

[17] Lee C F and Wurtz J D 2019 Novel physics arising from phase transitions in biology J. Phys. D:
Appl. Phys. 52 023001

[18] Lifshitz I M and Slyozov V V 1961 The kinetics of precipitation from supersaturated solid solutions
J. Phys. Chem. Solids 19 35–50

[19] Ostwald W 1897 Z. Phys. Chem. Studien über die Bildung und Umwandlung fester Körper 22 289
[20] Saha S et al 2016 Polar positioning of phase-separated liquid compartments in cells regulated by an

mRNA competition mechanism Cell 166 1572–84
[21] Straube R, Ward M J and Falcke M 2007 Reaction rate of small diffusing molecules on a cylindrical

membrane J. Stat. Phys. 129 377–405
[22] Wagner C 1961 Theorie der Alterung von Niederschlägen durch Umlösen Z. Elektrochem. 65
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