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• Extended theory of wandering bumps to stochastic neural fields on spheres.
• Homogeneous networks are equivariant under the action of SO(3).
• Wandering is characterized by Brownian motion on the sphere for homogeneous networks.
• Weakly biased inputs suppress the effects of noise by localizing bumps.
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a b s t r a c t

We use a combination of group theoretic and perturbation methods to analyze the stochastic
wandering of bump solutions in a neural field model on the sphere S2. We first construct an explicit
bump solution in the absence of external inputs and noise, by taking the synaptic weight distribution to
be the sum of first-order spherical harmonics. The corresponding neural field equation is equivariant
under the action of the special orthogonal group SO(3), which implies that the bump is marginally
stable with respect to rotations of the sphere. We then carry out an amplitude–phase decomposition
of the solution in the presence of a weakly biased external input and weak noise, and use this to derive
a pair of stochastic differential equations for the wandering of the bump, expressed in terms of angular
coordinates on the sphere. The stochastic dynamics is a non-trivial generalization of the corresponding
phase dynamics describing the wandering of a bump on a ring network with SO(2) symmetry, since
SO(3) is non-abelian and S2 is a curved manifold.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

There is a growing interest in studying neural field equations
on compact manifolds such as the circle (or ring) S1 and the
sphere S2. One of the first applications of a neural field model
on the ring, also known as a ring attractor network, was to
model the formation of population orientation tuning curves in
a hypercolumn of primary visual cortex V1 [1–4]. This exploited
a characteristic feature of a ring attractor network, namely, that
it supports the spontaneous formation of a stationary pulse or
bump, which can be established using Fourier series expansions.
In the absence of external inputs, the bump is marginally stable
with respect to uniform translations around the ring, reflecting
the fact that the neural field equations are equivariant with
respect to the action of the special orthogonal group SO(2). This
means that the location of the peak of the bump is arbitrary. How-
ever, a weakly biased external stimulus can lock the bump to the
stimulus. From the perspective of orientation tuning, recurrent
excitatory connections amplify weakly biased feedforward inputs
from the thalamus in a way that is sculpted by lateral inhibitory
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connections, such that the tuning width and other aspects of
cortical responses are primarily determined by intracortical con-
nections rather than thalamic inputs. The output activity is said
to amplify the input bias and provides a network-based en-
coding of the stimulus, which can be processed by upstream
networks. Since the bump persists if the stimulus is removed,
marginally stable neural fields on a ring have also been proposed
as one mechanism for implementing a form of spatial working
memory [5–11].

A natural extension of a ring attractor network on S1 is a
spherical attractor network on S2. Carrying out an expansion in
spherical harmonics, it can be established that the latter also
supports stationary bump solutions, and that these can also lock
to weakly biased external stimuli [12,13]. In the absence of inputs,
the bumps are marginally stable with respect to rotations of the
sphere, reflecting equivariance of the neural field equation with
respect to the action of the special orthogonal group SO(3). One
major application of spherical attractor networks is to modeling
the joint orientation and spatial frequency tuning of neurons in a
V1 hypercolumn [12,13]. The original motivation for such a model
was the observation from several optical imaging studies that
both orientation and spatial frequency preferences are distributed
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almost continuously across cortex, with iso-orientation and iso-
frequency contours being approximately orthogonal, so that they
generate a local curvilinear coordinate system [14,15]. Although
the existence of spatial frequency preference maps in V1 is still
controversial, a more recent two-photon imaging study appears
to be consistent with earlier studies [16]. Further evidence for
spherical network structures in cortex has been provided by
multielectrode data analysis of cortical activity patterns based
on computational homology [17]. On a larger spatial scale, the
Nunez model for the generation of electroencephalogram (EEG)
signals [18] has recently been formulated as a neural field model
on a sphere with space-dependent delays [19].

Another important consequence of an attractor neural field
model operating in a marginally stable regime is that a stationary
bump solution is not robust to the effects of external noise, which
can illicit a stochastic wandering of the bump [7,9,20–22]. One
way to investigate the stochastic wandering of bumps in neural
fields is to use perturbation theory. The latter was originally
applied to the analysis of traveling waves in one-dimensional
neural fields [23,24], and was subsequently extended to the case
of wandering bumps in single-layer and multi-layer neural fields
on a ring [9,22,25–27]. The basic idea is to treat longitudinal and
transverse fluctuations of a bump (or traveling wave) separately
in the presence of noise, in order to take account of marginal sta-
bility. This is implemented by decomposing the stochastic neural
field into a deterministic bump profile, whose spatial location or
phase has a slowly diffusing component, and a small error term.
(There is always a non-zero probability of large deviations from
the bump solution, but these are assumed to be negligible up to
some exponentially long time.) Perturbation theory can then be
used to derive an explicit stochastic differential equation (SDE)
for the diffusive-like wandering of the bump in the weak noise
regime. (A more rigorous mathematical treatment that provides
bounds on the size of transverse fluctuations has also been de-
veloped [28,29].) The wandering of bumps in a ring attractor
network has also been used to model neural variability in the in
vivo statistical responses of direction selective area-middle tem-
poral (MT) neurons to moving gratings and plaid patterns [30].
Ponce-Alvarez et al. [30] examined the baseline levels and the
evoked directional and contrast tuning of the variance of individ-
ual neurons and the noise correlations between pairs of neurons
with similar direction preferences. They found experimentally
that both the trial-by-trial variability and the noise correlations
among MT neurons were suppressed by an external stimulus
and exhibited bimodal directional tuning. Moreover, these results
could be reproduced in a stochastic ring model, provided that the
latter operated close to or beyond the bifurcation point for the
existence of spontaneous bump solutions. A more recent analyt-
ical study based on perturbation methods has provided further
insights into the underlying mechanisms of neural variability in
ring attractor networks [31].

In this paper we extend the theory of wandering bumps to
stochastic neural fields on the sphere. There are two features
of spherical attractor networks that make such an extension
non-trivial. First, in contrast to SO(2), the Lie group SO(3) is non-
abelian and its associated Lie algebra is non-commutative. Second
the sphere S2 is a curved manifold whereas the circle S1 is flat.
Using a combination of group theory, harmonic analysis, and
perturbation methods, we show how the wandering of a bump
on the sphere can be characterized in terms of solutions to a pair
of coupled stochastic differential equations for local coordinates
on the sphere. The paper is organized as follows. In Section 2
we introduce the deterministic neural field model on a sphere,
discuss the consequences of SO(3) symmetry, and construct ex-
plicit stationary bump solutions using spherical harmonics. In
Section 3 we turn to a stochastic version of the model and use

perturbation theory to derive stochastic phase equations for the
wandering of the bump on the sphere. In Section 4, we analyze
these equations. First, we use the theory of stochastic processes
on manifolds to show that in the absence of external inputs, the
resulting phase dynamics reduces to Brownian motion on the
sphere, once the curvature of S2 is taken into account. Second,
we prove that, in the absence of noise, a stationary bump can lock
to a weakly-biased external input. Finally, we carry out a linear
noise approximation about the stimulus-locked state to show that
the localized wandering of the bump can be characterized by a
pair of independent Ornstein–Uhlenbeck processes. In Appendix
we summarize some basic results of Lie groups and Lie algebras,
focusing on SO(3). For a much more detailed introduction to Lie
groups see Ref. [32], for example.

2. Neural field equation on a sphere

Let u(θ, φ, t) denote the activity of a local population of cells
on the unit sphere in R3 parametrized by the pair of angles θ ∈

[0, π] and φ ∈ [0, 2π ). The neural field equation for u is taken to
be
∂u(θ, φ, t)

∂t
= −u(θ, φ, t) + h(θ, φ)

+

∫
S2

J(θ, φ|θ ′, φ′)f [u(θ ′, φ′, t)]D(θ ′, φ′) (2.1)

where D(θ, φ) = sin θdθdφ. Here J represents the distribution of
synaptic weights from the local population at (θ ′, φ′) to the local
population at (θ, φ), h(θ, φ) is an external input, and f (u) is the
smooth nonlinear firing rate function

f (u) =
f0

1 + e−η(u−κ) (2.2)

for constant gain η and threshold κ . Eq. (2.1) is the natural
extension of the ring model to the sphere. Within the context of
orientation and spatial frequency tuning in a cortical hypercol-
umn, see Fig. 1(a), φ/2 ∈ [0, π ) would represent the orientation
preference and p ∈ [pmin, pmax] the spatial frequency preference of
a local patch or column of cells, with p determined by θ according
to the formula [12,13]

θ ≡ Q(p) = π
log(p/pmin)

log(pmax/pmin)
(2.3)

Typically, the bandwidth of a hypercolumn is between three and
four octaves, that is, pmax ≈ 2npmin with n = 4. Note that, with the
exception of Section 2.3, all of the analysis and results presented
in the paper are independent of this particular interpretation of
a neural field model on a sphere.

2.1. SO(3) symmetry

Suppose that the weight distribution J is taken to be invariant
with respect to coordinate rotations of the sphere, that is, the
symmetry group SO(3). That is, setting z = (θ, φ), we require that
for any γ ∈ SO(3),

γ · J(z|z ′) = J(γ−1z|γ−1z ′) = J(z|z ′).

(Various properties of SO(3) including its action on functions on
the sphere are described in Appendix.) Consider the correspond-
ing action of γ ∈ SO(3) on Eq. (2.1) for zero input h = 0, written
in the more compact form

∂u(z, t)
∂t

= −u(z, t) +

∫
S2

J(z|z ′)f [u(z ′, t)]D(z ′) (2.4)
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Fig. 1. Spherical network topology. Cells are labeled by the pair of angular coordinates (θ, φ) on the surface of a unit sphere, with 0 ≤ θ < π and 0 ≤ φ ≤ 2π .
(a) The angular coordinates could represent a pair of stimulus feature preferences such as spatial frequency p with θ = π log(p/pmin)/log(pmax/pmin) and orientation
φ/2. (b) The angular separation α of two cell populations labeled (θ, φ) and (θ ′, φ′) along a geodesic. The SO(3) invariant weight distribution (2.7) is of the form
J0 + J̄ cosα.

We have
∂u(γ−1z, t)

∂t
= −u(γ−1z, t) +

∫
S2

J(γ−1z|z ′)f [u(z ′, t)]Dz ′

= −u(γ−1z, t) +

∫
S2

J(z|γ z ′)f [u(z ′, t)]Dz ′

= −u(γ−1z, t) +

∫
S2

J(z|z ′′)f [u(γ−1z ′′, t)]Dz ′′

since D[γ−1z] = Dz and J is SO(3) invariant. If we rewrite Eq. (2.4)
as an operator equation, namely,

F[u] ≡
du
dt

− G[u] = 0, (2.5)

then it follows that γ F[u] = F[γ u]. Thus F commutes with γ ∈

SO(3) and F is said to be equivariant with respect to the symmetry
group SO(3) [33,34].

The SO(3) symmetry of the weight distribution implies that
the pattern of synaptic connections depends only on the relative
distance of cells on the sphere as determined by their angular
separation along geodesics or great circles. That is, given two
points on the sphere (θ, φ) and (θ ′, φ′) their angular separation
α is (see Fig. 1(b))

cosα = cos θ cos θ ′
+ sin θ sin θ ′ cos(φ − φ′) (2.6)

This suggests that the simplest non-trivial form for the weight
distribution

J(θ, φ|θ ′, φ′) = J0 + J
(
cos θ cos θ ′

+ sin θ sin θ ′ cos(φ − φ′)
)

(2.7)

Suppose that J > J0. Around the equator (θ, θ ′
∼ π/2), we

have J ∼ J0 + J cos(φ − φ′), which represents a Mexican hat
function since cells with similar φ-preferences excite each other,
whereas those with significantly different φ-preferences inhibit
each other. This is the standard interaction assumption of the
ring model of orientation and direction tuning [1,2]. On the other
hand, around the poles (θ, θ ′

∼ 0 or θ, θ ′
∼ π ), all synaptic

interactions are excitatory since J ∼ J0+J > 0, which is consistent
with the assumption that local interactions depend on cortical
separation. That is, although the cells around a pole can differ
greatly in their φ-preference, they are physically close together
on the sphere.1

1 For simplicity, we do not explicitly distinguish between excitatory and in-
hibitory populations. This is a common approach to the analysis of neural fields,

It is possible to construct a more general form of SO(3)-
invariant weight distribution using spherical harmonics. Any suf-
ficiently smooth function a(θ, φ) on the sphere can be expanded
in a uniformly convergent double series of spherical harmonics

a(θ, φ) =

∞∑
n=0

n∑
m=−n

anmYm
n (θ, φ) (2.8)

The functions Ym
n (θ, φ) constitute the angular part of the solu-

tions of Laplace’s equation in three dimensions, and thus form a
complete orthonormal set. The orthogonality relation is∫
S2

Ym1
n1

∗(θ, φ)Ym2
n2 (θ, φ)D(θ, φ) = δn1,n2δm1,m2 , (2.9)

where z∗ denotes complex conjugate of z. The spherical harmon-
ics are given explicitly by

Ym
n (θ, φ) = (−1)m

√
2n + 1
4π

(n − m)!
(n + m)!

Pm
n (cos θ )eimφ (2.10)

for n ≥ 0 and −n ≤ m ≤ n, where Pm
n (cos θ ) is an associ-

ated Legendre function. Note that from properties of Legendre
functions,

Y−m
n (θ, φ) = (−1)mYm

n
∗(θ, φ).

The action of SO(3) on Ym
n (θ, φ) involves (2n + 1) × (2n + 1)

unitary matrices associated with irreducible representations of
SU(2) [36]. From the unitarity of these representations, one can
construct an SO(3) invariant weight distribution of the general
form

J(θ, φ|θ ′, φ′) = 4π
∞∑
n=0

Jn
n∑

m=−n

Ym
n

∗(θ ′, φ′)Ym
n (θ, φ) (2.11)

with Jn real. For simplicity, we will neglect higher order har-
monic contributions to J by setting Jn = 0 for n ≥ 2 so
that Eq. (2.11) reduces to Eq. (2.7) on rescaling J1. However, the
results of this paper could be extended if a finite number of higher
order harmonics were included.

in which the combined effects of excitation and inhibition are incorporated
using, for example, analogs of Mexican hat functions [35]. We note, however,
that the methods and results presented in this paper could be extended to the
case of separate excitatory and inhibitory populations, as well as different classes
of interneuron.
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2.2. Stationary bumps

We first construct an explicit stationary bump solution of
the neural field equation (2.1) in the absence of external inputs
(h = 0), assuming that the synaptic weight distribution is given
by Eq. (2.7) with J0 = 0, J > 0.2 Substituting u = U(θ, φ)
into Eq. (2.1) yields the integral equation

U(θ, φ) = J
∫
S2

(
cos θ cos θ ′

+ sin θ sin θ ′ cos(φ − φ′)
)

× f (U(θ ′, φ′))D(θ ′, φ′)

= Ux sin θ cosφ + Uy sin θ sinφ + Uz cos θ, (2.12)

with

Ux = J
∫
S2

sin θ ′ cosφ′f (Ux sin θ ′ cosφ′

+ Uy sin θ ′ sinφ′
+ Uz cos θ ′)D(θ ′, φ′) (2.13a)

Uy = J
∫
S2

sin θ ′ sinφ′f (Ux sin θ ′ cosφ′

+ Uy sin θ ′ sinφ′
+ Uz cos θ ′)D(θ ′, φ′) (2.13b)

Uz = J
∫
S2

cos θ ′f (Ux sin θ ′ cosφ′

+ Uy sin θ ′ sinφ′
+ Uz cos θ ′)D(θ ′, φ′). (2.13c)

We have used the trigonometric identity

cos(φ − φ′) = cosφ cosφ′
+ sinφ sinφ′.

Introducing the function

G(U) = J
∫
S2

F (Ux sin θ ′ cosφ′
+Uy sin θ ′ sinφ′

+Uz cos θ ′)D(θ ′, φ′)

(2.14)

with U = (Ux,Uy,Uz) and F ′(u) = f (u), we obtain the more
compact equations

Ux =
∂G(U)
∂Ux

, Uy =
∂G(U)
∂Uy

, Uz =
∂G(U)
∂Uz

. (2.15)

First, consider the solution Ux = Uy = 0 and Uz = A. It follows
from Eq. (2.13c) that the amplitude A satisfies the self-consistency
condition

A = 2π J
∫ π

0
cos θ ′ sin θ ′f (A cos θ ′)dθ ′. (2.16)

Existence of a bump solution reduces to the condition that
Eq. (2.16) has at least one non-zero solution. We can now exploit
the fact that the steady-state equation (2.4) is equivariant under
the action of SO(3), which implies that if u(θ, φ) = A cos θ is a
solution then so is γ ◦ u(θ, φ) = u(γ−1(θ, φ)) for any γ ∈ SO(3).
In order to determine the action of SO(3) on the parameters (θ, φ),
it is useful to treat S2 as embedded in R3 with (x, y, z) ∈ R3 such
that

x = sin θ cosφ, y = sin θ sinφ, z = cos θ. (2.17)

This ensures x2 + y2 + z2 = 1. The representation of SO(3) acting
on the vector space R3 consists of the 3 × 3 rotation matrices
R(γ ), γ ∈ SO(3), see Appendix. We can now rewrite the bump
solution (2.12) in the form of a dot product, U(θ, φ) = U · x,
where x = (x, y, z)⊤ and U = (Ux,Uy,Uz)⊤. Equivariance can
now be expressed as follows: if U · x is a solution then so is

2 In our previous studies of deterministic bumps on the sphere we established
the existence of bumps by considering a Heaviside or piecewise linear firing rate
function [12,13].

U · R(γ )−1x. However, the dot-product is invariant with respect
to rotations so that R(γ )U · x is also a bump solution. Hence, we
have a two-parameter family of bump solutions

U(θ, φ|Θ,Φ) = A[cosΘ cos θ + sinΘ sin θ cos(φ −Φ)], (2.18)

which represents a bump with amplitude A and a peak at (Θ,Φ)
∈ S2. That is, there is a two-parameter family of bump solutions
obtained by translating the bump on the surface of the sphere.
Also note that each bump solution has an axis of symmetry whose
direction is given by the normal to the sphere at (Θ,Φ), and

γ ◦ U(θ, φ|Θ,Φ) := U(γ−1(θ, φ)|γ−1(Θ,Φ)) = U(θ, φ|Θ,Φ)

for any γ ∈ SO(3).

2.3. Linear stability analysis

Linear stability of the stationary solution can be determined
by considering weakly perturbed solutions of the form

u(θ, φ, t) = U(θ, φ|Θ,Φ) + ψ(θ, φ)eλt

for |ψ(θ, φ)| ≪ 1. Substituting this expression into Eq. (2.4),
Taylor expanding to first order in ψ , and imposing the station-
ary condition (2.12) yields the infinite-dimensional eigenvalue
problem

λψ(θ, φ) = LΘ,Φψ(θ, φ) (2.19)

:= −ψ(θ, φ) +

∫
S2

J(θ, φ|θ ′, φ′)f ′(U(θ ′, φ′
|Θ,Φ))

× ψ(θ ′, φ′)D(θ ′, φ′).

Under the action of γ ∈ SO(3) we see that

γ ◦ LΘ,Φψ(z)

= −ψ(γ−1z) +

∫
S2

J(γ−1z|z ′)f ′(U(z ′
|Θ,Φ))ψ(z ′)D(z ′)

= −ψ(γ−1z) +

∫
S2

J(z|γ z ′)f ′(U(z ′
|Θ,Φ))ψ(z ′)D(z ′)

= −ψ(γ−1z) +

∫
S2

J(z|z ′′)f ′(U(γ−1z ′′
|Θ,Φ))ψ(γ−1z ′′)D(z ′′)

= −ψ(γ−1z) +

∫
S2

J(z|z ′′)f ′(U(z ′′
|γ (Θ,Φ)))ψ(γ−1z ′′)D(z ′)

= Lγ (Θ,Φ)γ ◦ ψ(z).

Hence, if ψ(θ, φ) is an eigenfunction associated with the bump
U(θ, φ|Θ,Φ), then γ ◦ψ(θ, φ) is an eigenfunction associated with
the bump U(θ, φ|γ (Θ,Φ)). Note that the eigenvalues of LΘ,Φ are
independent of (Θ,Φ), which reflects the fact that the stability
of a bump is independent of the location of its peak. (The fact
the linear operator LΘ,Φ does not commute with the action of
SO(3) follows from the observation that a bump solution breaks
SO(3) symmetry. If we linearized about a uniform solution then
the resulting linear operator would be SO(3) equivariant.)

Eq. (2.19) can be reduced to a finite-dimensional eigenvalue
problem by substituting for J using Eq. (2.7):

(λ+ 1)ψ(θ, φ) = Bx(Θ,Φ) sin θ cosφ

+ By(Θ,Φ) sin θ sinφ + Bz(Θ,Φ) cos θ, (2.20)

where the Bj(Θ,Φ) are solutions of the self-consistency equa-
tions

Bx = J
∫
S2

sin θ ′ cosφ′f ′(U(θ ′, φ′
|Θ,Φ))ψ(θ ′, φ′)D(θ ′, φ′) (2.21a)

By = J
∫
S2

sin θ ′ sinφ′f ′(U(θ ′, φ′
|Θ,Φ))ψ(θ ′, φ′)D(θ ′, φ′) (2.21b)



142 P.C. Bressloff / Physica D 399 (2019) 138–152

Bz = J
∫
S2

cos θ ′f ′(U(θ ′, φ′
|Θ,Φ))ψ(θ ′, φ′)D(θ ′, φ′). (2.21c)

Substituting Eq. (2.20) into (2.21) then gives the matrix equation

(λ+ 1)

(
Bx
By
Bz

)
= JM(Θ,Φ)

(
Bx
By
Bz

)
, (2.22)

where

M =

⎛⎝ I[sin2 θ cos2 φ] I[sin2 θ cosφ sinφ] I[sin θ cos θ cosφ]

I[sin2 θ cosφ sinφ] I[sin2 θ sin2 φ] I[sin θ cos θ sinφ]

I[sin θ cos θ cosφ] I[sin θ cos θ sinφ] I[cos2 θ ]

⎞⎠
(2.23)

and, for any product v(θ )u(φ),

I[v(θ )u(φ)] =

∫
S2
v(θ )u(φ)f ′(U(θ, φ|Θ,Φ))D(θ, φ). (2.24)

(For notational simplicity, we have suppressed the dependence of
I on (Θ,Φ).)

Given the fact that the eigenvalues are independent of the
location of the peak of the bump, we set (Θ,Φ) = (0, 0)
in Eq. (2.22) so that I → I0 with

I0[v(θ )u(φ)] =

∫ π

0
v(θ ) sin θ f ′(A cos(θ ))dθ

∫ 2π

0
u(φ)dφ. (2.25)

It immediately follows that

I0[sin θ cos θ sinφ] = I0[sin θ cos θ cosφ] = I0[sin2 θ cosφ sinφ]

= 0,

and

I0[sin2 θ cos2 φ] = I0[sin2 θ sin2 φ] =
1
2
I0[sin2 θ ].

Integrating equation (2.16) by parts implies that

A =
π J
2

(f (A) − f (−A)) −
π JA
2

∫ π

0
(1 − 2 sin2 θ ) sin θ f ′(A cos θ )dθ

=
AJ
2
I0[sin2 θ ],

so that

I0[sin2 θ ] = 2/J.

Finally, exploiting the fact that I0 is a linear functional of v, we
have

I0[cos2 θ ] = I0[1 − sin2 θ ] = I0[1] − I[sin2 θ ] = I0[1] − 2/J.

Combining these results, Eq. (2.22) reduces to

(λ+1)

(
Bx(0.0)
By(0, 0)
Bz(0, 0)

)
=

⎛⎝1 0 0
0 1 0
0 0 JI0[1] − 2

⎞⎠(Bx(0, 0)
By(0, 0)
Bz(0, 0)

)
. (2.26)

It follows that there is a doubly-degenerate zero eigenvalue
λ1,2 = 0 with corresponding eigenvectors e1 = (1, 0, 0)⊤ and
e2 = (0, 1, 0)⊤, and a simple non-zero eigenvalue

λ3 = 2π J
∫ π

0
sin θ f ′(A cos(θ ))dθ − 3 (2.27)

= −
2π J
A

∫ π

0

d
dθ

f (A cos(θ ))dθ − 3 (2.28)

=
2π J
A

[f (A) − f (−A)] − 3. (2.29)

with corresponding eigenvector e3 = (0, 0, 1)⊤. Thus linear
stability of the bump reduces to the condition λ3 < 0. (Note that

there also exist infinitely many eigenvalues that are equal to −1,
which are associated with higher order spherical harmonics and
form the essential spectrum. However, since they lie in the left-
half complex λ-plane, they do not affect stability.) The existence
of a pair of zero eigenvalues is a consequence of the fact that
the neural field equation (2.4) is equivariant with respect to the
action of SO(3), and would hold for any weight function of the
form (2.11).

Given the eigenvectors for (Θ,Φ) = 0 we can determine the
corresponding eigenvectors at a general bump location (Θ,Φ)
using SO(3) symmetry. Applying the R3 embedding (2.17), the
eigenvalue equation (2.20) can be rewritten as

(λ+ 1)ψ̂(x|Θ,Φ) = B(Θ,Φ) · x,

with x = (x, y, z) ∈ R3 a point on the unit sphere, ψ̂(x) =

ψ(θ, φ), and B = (Bx,By,Bz)⊤ ∈ R3. There is an induced SO(3)
action on the vector B, consisting of rotations that preserve the
norm B2

x + B2
y + B2

z . That is,

(λ+ 1)ψ̂(R(γ )−1x|Θ,Φ) = B(Θ,Φ) · R(γ )−1x
= R(γ )B(Θ,Φ) · x,
= B(γ (Θ,Φ)) · x,

where R(γ ) is the 3 × 3 rotation matrix corresponding to γ ∈

SO(3). Now note that the point (0, 0) ∈ S2 can be mapped to an
arbitrary point (Θ,Φ) ∈ S2 by first rotating about the y-axis by
Θ and then rotating about the z-axis by Φ , see Fig. 2(a). The net
rotation matrix is

R(Θ,Φ) = R3(Φ)R2(Θ).

(We could use any sequence of rotations that map the north pole
to the point (Θ,Φ) on the sphere. Another simple example is
R(Θ,Φ) = R3(Φ − π/2)R1(−Θ), see Fig. 2(b).) It follows that the
unique vector B3(Θ,Φ) corresponding to the eigenvalue λ3 is

B3(Θ,Φ) = R(Θ,Φ)e3,

whereas the two-dimensional vector eigenspace for the degener-
ate zero eigenvalue is spanned by the vectors

Br (Θ,Φ) = R(Θ,Φ)er , r = 1, 2.

2.4. Marginal stability

The existence of a pair of zero eigenvalues is a consequence of
the fact that the bump solution is marginally stable with respect
to rotations of the sphere. In order to understand this more
deeply, consider the time-independent version of Eq. (2.4),

U(z) =

∫
S2

J(z|z ′)f (U(z ′))Dz ′. (2.30)

Since J is invariant with respect to the action of SO(3), we have

γ ◦ U(z) =

∫
S2

J(z|z ′)f (γ ◦ U(z ′))Dz ′.

Now suppose that γ is in a neighborhood of the identity element
so that we can write (see Appendix)

γ ◦ U(θ, φ) = U(θ, φ) +

3∑
j=1

ϕjXjU(θ, φ), (2.31)

for |ϕj| ≪ 1 and the Xj are the generators of the associated Lie
algebra,

X1 = sinφ
∂

∂θ
+

cos θ cosφ
sin θ

∂

∂φ
,

X2 = cosφ
∂

∂θ
−

cos θ sinφ
sin θ

∂

∂φ
, X3 =

∂

∂φ
. (2.32)
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Fig. 2. Schematic illustration of two different sequences of rotations that map the north pole P to an arbitrary point (Θ,Φ) on the sphere. The sphere is viewed
from above. (a) Rotation by Θ along the great circle φ = 0 followed by a rotation Φ about the z-axis. (b) Rotation by −Θ about the great circle φ = π/2 followed
by a rotation Φ − π/2 about the z-axis.

Fig. 3. Graphical solution of the bump amplitude equation (2.16) for a Heaviside
firing rate function. The function F (z) = Γ (1 − z2) is plotted for various values
of Γ . Bump solutions correspond to intercepts of F (z) with the curve y = 1/z.
As Γ = π J/κ is increased, a saddle–node bifurcation occurs, resulting in the
emergence of a pair of stationary bumps, a small amplitude unstable bump and
a large amplitude (marginally) stable bump.

Substituting into the transformed steady-state equation (2.31)
and keeping terms first order in ϕj yields

3∑
j=1

ϕjXjU(z) =

∫
S2

J(z|z ′)f ′(U(z ′))
3∑

j=1

ϕjXjU(z ′)Dz ′. (2.33)

Comparison with the eigenvalue equation (2.19) suggests that the
eigenfunctions ψj(θ, φ|Θ,Φ) = XjU(θ, φ|Θ,Φ), j = 1, 2, 3, lie in
the null space of the linear operator LΘ,Φ . At first sight, this seems
to contradict the fact that the marginally stable manifold is two-
dimensional. However, there are only two linearly independent
functions in the set {ψ1, ψ2, ψ3}. This follows from the fact that
the bump solution has an axis of symmetry. For example, if
U(θ, φ) = A cos θ , then the axis of symmetry is the z-axis and
ψ3 = X3U = 0.

2.5. Explicit results for a Heaviside firing rate function

The above analysis can be further simplified by taking the
infinite gain limit γ → ∞ of the sigmoid firing rate function (2.2),

which becomes a Heaviside function (for f0 = 1):

f (u) = H(u − κ) =

{
0 u < κ

1 u ≥ κ
(2.34)

Let us first consider the self-consistency condition (2.16) for the
amplitude A of a deterministic bump solution. Since U(θ ) =

A cos θ is a monotonically decreasing function of θ on [0, π], it
will cross the threshold κ at a single location θ = a ∈ (0, π ),
with

a = cos−1 κ

A
and A ≥ κ . Eq. (2.16) thus becomes

A = 2π J
∫ cos−1 κ/A

0
cos θ ′ sin θ ′dθ ′

= π J
∫ cos−1 κ/A

0
sin 2θ ′dθ ′

=
π J
2

[
1 − cos 2

(
cos−1 κ/A

)]
= π J

[
1 − cos2

(
cos−1 κ/A

)]
= π J

[
1 −

(κ
A

)2]
Setting z = κ/A, we have the equation

z−1
= Γ (1 − z2), Γ =

π J
κ
.

Using a graphical construction, it follows that for Γ > Γc for
some critical parameter Γc there exists a pair of bump solutions,
see Fig. 3. Imposing the additional condition 1 = 2Γ z3 at the
critical point shows that Γc ≈ 2.598 and zc = 1/

√
3. Stability

of the bumps is determined by the sign of the eigenvalue λ3
of Eq. (2.29). In the case of a Heaviside function, we have

λ3 =
2π J
A

[H(A − κ) − H(−A − κ)] − 3 =
2Γ κ
A

− 3. (2.35)

Denoting a solution to the equation z−1
= Γ (1 − z2) by z = z∗,

it follows that the bump is stable if (1 − z∗2) > 2/3, that is, if
z∗ < zc = 1/

√
3. It can be seen from Fig. 3 that for Γ > Γc the

larger amplitude bump is stable, whereas the smaller amplitude
bump is unstable. (For smaller gains, one typically finds that the
uniform state is unstable and there exists a single stable bump.)

2.6. Weakly biased external input

Marginal stability of the neural field equation (2.1) in the
absence of an external input (h = 0) has a number of important
consequences. First, the presence of a weakly biased external
stimulus can lock the bump to the stimulus. The output activity
is said to amplify the input bias and provides a network-based
encoding of the stimulus, which can be processed by upstream
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Fig. 4. Plot of normalized firing rate f (u)/f0 in response to a weakly biased input from, with θ̄ = π/2, φ̄ = π and h̄ ≪ 1. The firing rate function has a gain η = 5,
and a threshold κ = 0.6. The weight coefficients in Eq. (2.11) are J0 = −2, J1 = 1 and Jn = 0 for n > 1. (a) and (b) Spatial frequency and orientation tuning curves.
(c) Tuning surface in the {p, φ} plane.

networks. For the sake of illustration, consider an external input
of the form

h(θ, φ|θ̄ , φ̄) = h0+h̄
(
cos θ̄ cos θ + sin θ̄ sin θ cos(φ − φ̄)

)
. (2.36)

This represents a unimodal function on the sphere with a single
peak at (θ̄ , φ̄), which breaks the SO(3) symmetry of the homoge-
neous neural field. Here h0 is a background constant input, which
can be set to zero by an appropriate uniform shift in u and the
threshold κ . The constant h̄ measures the degree of bias. The
response of a spherical attractor network to weakly-biased inputs
has been covered extensively elsewhere in terms of orientation
and spatial frequency tuning in cortical hypercolumns [12,13]. In
Fig. 4 we show one example plot of a stationary bump solution
in response to a weakly biased input with a peak at θ̄ = π/2
and φ̄ = π . Fig. 4(a) shows a surface plot in the {p, φ}-plane
for h̄ = 0.1 with p related to θ according to Eq. (2.3). It can be
seen that the network exhibits a tuning surface that is localized
with respect to two-dimensional spatial frequency and its peak
is locked to the input at p̄ = 2 cycles/deg, φ̄ = π . In Fig. 4(b)
we plot the response as a function of spatial frequency at the
optimal orientation for various input amplitudes h̄. The height of
the spatial frequency tuning curves increases with the input am-
plitude h̄ but the width at half-height is approximately the same
(as can be checked by rescaling the tuning curves to the same
height). Since h̄ increases with the contrast of a stimulus, this
shows that the network naturally exhibits contrast–invariance.
Corresponding orientation tuning curves are shown in Fig. 4(c),
and are also found to exhibit contrast–invariance. Note that pro-
jecting the spherical tuning surface onto the {p, φ}-plane breaks
the underlying SO(3) symmetry of the sphere. Consequently, the

shape of the planar tuning surface is not invariant under shifts in
the location of the peak of the tuning surface, which is consistent
with experimental observations [13].

3. Stochastic spherical model

A second consequence of marginal stability is that a stationary
bump is not robust to the effects of external noise, which can
elicit a stochastic wandering of the bump over the surface of the
sphere. An analogous phenomenon has been studied extensively
in the case of neural fields on a line and on a ring using per-
turbation methods [9,22–24,26,27], variational principles [28,29]
and stochastic analysis [37,38]. As highlighted in the introduction,
it is necessary to treat longitudinal and transverse fluctuations
of a one-dimensional bump separately in the presence of noise.
This is achieved by decomposing the stochastic neural field into
a deterministic bump profile, whose spatial location or phase
has a slowly diffusing component, and a small error term. This
yields an explicit stochastic differential equation (SDE) for the
diffusive-like wandering of the bump in the weak noise regime.
In this section we will extend perturbation theory to analyze the
stochastic wandering of a bump in a stochastic neural field on the
sphere.

We begin by introducing a stochastic version of Eq. (2.1)
according to

du(θ, φ, t) =

[
− u(θ, φ, t)

+

∫
S2

J(θ, φ|θ ′, φ′)f (u(θ ′, φ′, t))D(θ ′, φ′) +
√
ϵh(θ, φ)

]
dt

+
√
2ϵdW (θ, φ, t), (3.1)
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where the synaptic weight distribution is given by Eq. (2.7) and
the external input h(θ, φ) = h(θ, φ|θ̄ , φ̄) is given by Eq. (2.36)
with J0 = h0 = 0. The final term on the right-hand side of Eq. (3.1)
represents external additive noise. In particular, we will takeW to
be a Q -wiener process that takes values in L2(S2) and is isotropic
in space. It follows that W can be characterized by a Karhunen–
Loeve expansion in spherical harmonics [39]. For concreteness,
we will take this to be a finite sum of the form

W (θ, φ, t) =

K∑
n=0

√
Cn

[
A0
n(t)Y

0
n (θ, φ)

+

∑
m̸=0

[Am
n (t)Y

m
n (θ, φ) + Am

n
∗(t)Ym

n
∗(θ, φ)]

]
, (3.2)

where Am
n = Wm

n + iŴm
n with Wm

n (t) and Ŵm
n (t) independent

Wiener processes,

E[dWm
n ] = E[dŴm

n ] = 0,

E[dWm
n (t)dWm′

n′ (t ′)] = δn,n′δm,m′δ(t − t ′)dt dt ′,

E[dŴm
n (t)dŴm′

n′ (t ′)] = δn,n′δm,m′δ(t − t ′)dt dt ′,

E[dWm
n (t)dŴm′

n′ (t ′)] = 0,
(3.3)

and δ(t) is the Dirac delta function. It follows that
E[dW (θ, φ, t)] = 0,

E[dW (θ, φ, t)dW (θ ′, φ′, t ′)] = C(θ, φ|θ ′, φ′)δ(t − t ′)dt dt ′,
(3.4)

where

C(θ, φ|θ ′, φ′) =

K∑
n=0

Cn

n∑
m=−n

Ym
n

∗(θ, φ)Ym
n (θ ′, φ′). (3.5)

Under the assumed form of the noise, the correlation function C
is SO(3) invariant. Finally, note that in order to use perturbation
methods, we have scaled the noise and the external stimulus
in Eq. (3.1) by the constant factor

√
ϵ with 0 < ϵ ≪ 1.

Motivated by previous studies of wandering bumps in stochas-
tic neural fields on rings, we introduce the amplitude–phase
decomposition [9,23]

u(θ, φ, t) = U(θ, φ|Θ(t),Φ(t)) +
√
ϵv(θ, φ, t), (3.6)

with U given by the bump solution (2.18). As it stands, this
decomposition is non-unique, unless an additional mathematical
constraint is imposed that can define Θ(t),Φ(t), and v(θ, φ, t)
uniquely. Within the context of formal perturbation methods, this
is achieved by imposing a solvability condition that ensures that
the error term can be identified with fast transverse fluctuations,
which converge to zero exponentially in the absence of noise.3

3.1. Perturbation analysis

Suppose that v ∈ L2(S2), that is,

∥v∥2
= ⟨v, v⟩ =

∫
S2
v(θ, φ)2D(θ, φ) < ∞.

Substituting the decomposition (3.6) into the stochastic neural
field equation (3.1)

∂ΘU(θ, φ|Θ,Φ)dΘ + ∂ΦU(θ, φ|Θ,Φ)dΦ
+O(dΘ2, dΦ2, dΘ dΦ) +

√
ϵdv(θ, φ, t)

3 Note that (Θ(t),Φ(t)) denote the stochastic coordinates of the peak of the
bump U in the decomposition (3.6), whereas (θ, φ) are the coordinates of the
random fields on the sphere. That is, (Θ(t),Φ(t)) are not a stochastic version
of deterministic variables (θ (t), φ(t)).

=
[
−U(θ, φ|Θ,Φ) −

√
ϵv(θ, φ, t) +

√
ϵh(θ, φ)

]
dt

+
√
2ϵdW (θ, φ, t)

+

∫
S2

J(θ, φ|θ ′, φ′)f
(
U(θ ′, φ′

|Θ,Φ) +
√
ϵv(θ ′, φ′, t)

)
×D(θ ′, φ′)dt. (3.7)

The O(dΘ2, dΦ2, dΘ dΦ) terms are a consequence of Ito’s lemma.
They turn out to be O(ϵ) and can thus be ignored to leading order
in the presence of an external input. (They will play an important
role in the absence of an input, see Section 4.) Introduce the series
expansion v = v0 +

√
ϵv1 + O(ϵ), Taylor expand the nonlinear

function f , impose the stationary solution (2.12), and drop all O(ϵ)
terms. This gives, after dropping the zero index on v0,
√
ϵdv(θ, φ, t) =

√
ϵLΘ,Φv(θ, φ, t)dt

+
√
ϵh(θ, φ)dt +

√
2ϵdW (θ, φ, t), (3.8)

−∂ΘU(θ, φ|Θ,Φ)dΘ − ∂ΦU(θ, φ|Θ,Φ)dΦ,

where LΘ,Φ is the linear operator defined in Eq. (2.19). In partic-
ular, LΘ,Φ has a 2D null space spanned by the linearly-dependent
set {XjU, j = 1, 2, 3}. For example, for L0,0 the null space is
{cosφ sin θ, sinφ sin θ}, see Section 2.3. This then implies a pair
of solvability conditions for the existence of bounded solutions of
Eq. (3.8), namely, that dv is orthogonal to all elements of the null
space of the adjoint operator L†

Θ,Φ . The corresponding adjoint
operator is

L†
Θ,Φv(θ, φ) = −v(θ, φ) (3.9)

+ f ′(U(θ, φ|Θ,Φ))
∫
S2

J(θ, φ|θ ′, φ′)v(θ ′, φ′)D(θ ′, φ′).

We have used the fact that J(θ, φ|θ ′, φ′) = J(θ ′, φ′
|θ, φ).

Let Vr (θ, φ|Θ,Φ), r = 1, 2, span the 2D adjoint null space of
L†
Θ,Φ . Now taking the inner product of both sides of Eq. (3.8) with

respect to Vr and using SO(3) symmetry then yields the following
SDE to leading order:

ΓrdΘ+ΛrdΦ =
√
ϵHr (Θ,Φ)dt +

√
2ϵdWr (t), r = 1, 2, (3.10)

where

Hr (Θ,Φ) =

∫
S2

Vr (θ, φ|Θ,Φ)h(θ, φ|θ̄ , φ̄)D(θ, φ), (3.11a)

Γr =

∫
S2

Vr (θ, φ|Θ,Φ)∂ΘU(θ, φ|Θ,Φ)D(θ, φ), (3.11b)

Λr =

∫
S2

Vr (θ, φ|Θ,Φ)∂ΦU(θ, φ|Θ,Φ)D(θ, φ), (3.11c)

Wr (t) =

∫
S2

Vr (θ, φ|Θ,Φ)W (θ, φ, t)D(θ, φ). (3.11d)

Eqs. (3.11d) imply that E[dWr (Θ,Φ, t)] = 0 and

E[dWr (t)dWs(t ′)] = Drsδ(t − t ′)dt ′dt,

with

Drs =

∫
S2

∫
S2

Vr (θ, φ|Θ,Φ)Vs(θ ′, φ′
|Θ,Φ)C(θ, φ|θ ′, φ′)D(θ, φ)

× D(θ ′, φ′). (3.12)

3.2. Evaluation of Hr ,Γr , Λr and Drs

In order to determine the functions in Eq. (3.11), we need to
obtain explicit expressions for the null vectors Vr . The latter are
solutions to the equation

V(θ, φ) = f ′(U(θ, φ|Θ,Φ))
∫
S2

J(θ, φ|θ ′, φ′)V(θ ′, φ′)D(θ ′, φ′) (3.13)



146 P.C. Bressloff / Physica D 399 (2019) 138–152

Substituting for J using Eq. (2.7) with J0 = 0, we see that

V(θ, φ) = f ′(U(θ, φ|Θ,Φ))[Vx sin θ cosφ+Vy sin θ sinφ+Vz cos θ ]

with

Vx = J
∫
S2

sin θ ′ cosφ′V(θ ′, φ′)D(θ ′, φ′) (3.14a)

Vy = J
∫
S2

sin θ ′ sinφ′V(θ ′, φ′)D(θ ′, φ′) (3.14b)

Vz = J
∫
S2

cos θ ′V(θ ′, φ′)D(θ ′, φ′). (3.14c)

Substituting the expression for V(θ, φ) into the right-hand side
of Eqs. (3.14) then leads to a matrix equation of the form (2.26)
with λ = 0:(Vx
Vy
Vz

)
= JM(Θ,Φ)

(Vx
Vy
Vz

)
, (3.15)

with the matrix M given by Eq. (2.23). Recall from Section 2.2,
that the matrix JM(Θ,Φ) − I has a two-dimensional null-space,
which we take to be spanned by the vectors vr (Θ,Φ), r = 1, 2.
We conclude that the adjoint null space of L†

Θ,Φ is spanned by

Vr (θ, φ|Θ,Φ) = f ′(U(θ, φ|Θ,Φ)) (3.16)
× [vr,x(Θ,Φ) sin θ cosφ + vr,y(Θ,Φ) sin θ sinφ
+ vr,z(Θ,Φ) cos θ ],

with v2r,x + v2r,y + v2r,z = 1. In particular,

V1(θ, φ|0, 0) = f ′(A cos θ ) sin θ cosφ,
V2(θ, φ|0, 0) = f ′(A cos θ ) sin θ sinφ,

(3.17)

and

v1(Θ,Φ) = R(Θ,Φ)e1, v2(Θ,Φ) = R(Θ,Φ)e2. (3.18)

Hence, we find explicitly that

V1(θ, φ|Θ,Φ) = f ′(U(θ, φ|Θ,Φ))[cosΘ sin θ cos(φ −Φ)
− sinΘ cos θ ]

= A−1f ′(U(θ, φ|Θ,Φ))∂ΘU(θ, φ|Θ,Φ)

= A−1∂Θ f (U(θ, φ|Θ,Φ)) (3.19a)
V2(θ, φ|Θ,Φ) = f ′(U(θ, φ|Θ,Φ)) sin θ sin(φ −Φ)

= A−1(sinΘ)−1f ′(U(θ, φ|Θ,Φ))∂ΦU(θ, φ|Θ,Φ)

= A−1(sinΘ)−1∂Φ f (U(θ, φ|Θ,Φ)). (3.19b)

Now substituting Vr into Eq. (3.11a) with h given by Eq. (2.36)
for h0 = 0, we have

Hr (Θ,Φ) = h̄
∫
S2

Vr (θ, φ|Θ,Φ)

×
(
cos θ̄ cos θ + sin θ̄ sin θ cos(φ − φ̄)

)
D(θ, φ).

(3.20)

It is useful to rewrite the integrals using the R3 embedding (2.17):

Hr (Θ,Φ) = h̄
∫
S2

f ′(U(θ, φ|Θ,Φ)) [R(Θ,Φ)er · x] [x̄ · x]D(θ, φ),

(3.21)

where R(Θ,Φ) = R3(Φ)R2(Θ),

x = (sin θ cosφ, sin θ sinφ, cos θ )⊤,

x̄ = (sin θ̄ cos φ̄, sin θ̄ sin φ̄, cos θ̄ )⊤.

Performing the change of variable x′
= R(Θ,Φ)−1x, using invari-

ance of the dot product under rotations, and γ ◦U(z|Z) = U(z|Z),
we have

Hr = h̄
∫
S2

f ′(U(θ ′, φ′
|Θ,Φ))

[
R(Θ,Φ)er · R(Θ,Φ)x′

]
× [x̄ · R(Θ,Φ)x′

]D(θ ′, φ′),

= h̄
∫
S2

f ′(U(θ ′, φ′
|0, 0))

[
er · x′

]
[R(Θ,Φ)−1x̄ · x′

]D(θ ′, φ′)

= h̄
3∑

j=1

Mrj(0, 0)Fj(Θ,Φ),

with the Fj defined according to

R(Θ,Φ)−1x̄ = (F1(Θ,Φ), F2(Θ,Φ), F3(Θ,Φ))⊤, (3.22)

such that F 2
1 +F 2

2 +F 2
3 = 1. From properties of the matrix M(0, 0),

it follows that

Hr =
h̄

J
Fr (Θ,Φ), r = 1, 2. (3.23)

Next, Eqs. (3.11b), (3.11c), (3.19) and the identity U(θ ′, φ′
|0, 0)

= A cos θ ′ imply that

Γ1 = A
∫
S2

f ′(U(θ, φ|Θ,Φ)) [R(Θ,Φ)e1 · x]

× [R(Θ,Φ)e1 · x]D(θ, φ),

= A
∫
S2

f ′(U(θ ′, φ′
|0, 0))

[
e1 · x′

] [
e1 · x′

]
D(θ ′, φ′)

= AI0[sin2 θ cos2 φ] = A/J,

Λ2 = A sinΘ
∫
S2

f ′(U(θ, φ|Θ,Φ)) [R(Θ,Φ)e2 · x]

× [R(Θ,Φ)e2 · x]D(θ, φ),

= A sinΘ
∫
S2

f ′(U(θ ′, φ′
|0, 0))

[
e2 · x′

] [
e2 · x′

]
D(θ ′, φ′)

= A sinΘI0[sin2 θ cos2 φ] = A sinΘ/J,

Γ2 = Λ1/sinΘ = A
∫
S2

f ′(U(θ, φ|Θ,Φ))

× [R(Θ,Φ)e2 · x] [R(Θ,Φ)e1 · x]D(θ, φ),

= A
∫
S2

f ′(U(θ ′, φ′
|0, 0))

[
e2 · x′

] [
e1 · x′

]
D(θ ′, φ′)

= AI0[sin2 θ sinφ cosφ] = 0.

Finally, from Eq. (3.12),

Drs =

∫
S2

∫
S2

f ′(U(θ, φ|Θ,Φ))f ′(U(θ ′, φ′
|Θ,Φ))

× [R(Θ,Φ)er · x]
[
R(Θ,Φ)es · x′

]
× C(θ, φ|θ ′, φ′)D(θ, φ)D(θ ′, φ′)

=

∫
S2

∫
S2

f ′(U(θ, φ|0, 0))f ′(U(θ ′, φ′
|0, 0)) [er · x]

[
es · x′

]
× C(θ, φ|θ ′, φ′)D(θ, φ)D(θ ′, φ′). (3.24)

It turns out that the diffusion matrix is actually diagonal, which
follows from the fact that the SO(3) invariant correlation function
has the Karhunen–Loeve expansion (3.2). For the sake of illustra-
tion, suppose that the correlation function is expanded in terms
of first-order spherical harmonics, that is, C1 = C and Cn = 0 for
n ̸= 1 in Eq. (3.5):

C(θ, φ|θ ′, φ) = C[cos θ cos θ ′
+ sin θ sin θ ′ cos(φ − φ′)]. (3.25)
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Eq. (3.24) then simplifies into the following sum of integrals:

Drs = C
3∑

j=1

Mrj(0, 0)Msj(0, 0),

where M is given by Eq. (2.23). That is,

D11 =
C

J
2 = D22, D12 = D21 = 0.

and the diffusion matrix is diagonal.

4. Analysis of stochastic phase equations

Combining the various results of Section 3, the SDEs (3.10)
reduce to

dΘ =

[
√
ϵ
h̄
A
F1(Θ,Φ) + O(ϵ)

]
dt +

√
2ϵDdW1(t), (4.1a)

sinΘdΦ =

[
√
ϵ
h̄
A
F2(Θ,Φ) + O(ϵ)

]
dt +

√
2ϵDdW2(t). (4.1b)

where

E[dWr (t)] = 0, E[dWr (t)dWs(t ′)] = δr,sδ(t−t ′)dt dt ′, D =
C
A2 .

We have also noted the presence of O(ϵ) contributions to the drift
terms, which have two distinct sources. First, the O(dΘ2, dΦ2,

dΘdΦ) terms in Eq. (3.7) arising from Ito’s lemma, which were
dropped in our subsequent analysis and, second, terms that cou-
ple the amplitude and phase dynamics. If h̄ > 0 then the O(ϵ)
drift terms can be ignored to a first approximation. However, as
we show below, we need to include an O(ϵ) drift term when
considering the diffusive wandering of a bump in the absence of
an external input.

4.1. Stochastic dynamics on the sphere for h̄ = 0

In the absence of an external input, Eq. (4.1) becomes

dΘ = O(ϵ)dt +
√
2ϵDdW1(t),

sinΘdΦ(t) = O(ϵ)dt +
√
2ϵDdW2(t),

(4.2)

The calculation of the O(ϵ) terms is non-trivial due to the fact that
the stochastic phase variables Θ,Φ couple to the amplitude v at
this order of the perturbation expansion. In the case of wandering
bumps on S1 or R, dropping these terms leads to pure Brownian
motion of the bump, which is consistent with the underlying
translation symmetry. On the other hand, for S2 we will show that
if the noise amplitude is O(

√
ϵ) then an O(ϵ) drift term has to be

included in theΘ dynamics in order to ensure that the wandering
of the bump is described by Brownian motion on the sphere. The
latter is necessary at the given level of approximation so that the
dynamics is consistent with SO(3) symmetry, and the O(ϵ) term
is a direct consequence of the fact that S2 is a curved manifold.

We begin by introducing some basic theory of stochastic dif-
ferential equations on manifolds. For further details see
Refs. [40–42]. We will formulate the theory for a general d-
dimensional manifold M with metric tensor G = [gij] and
then consider the particular example of the sphere. Let q =

(q1, . . . , qd)⊤ ∈ Rd denote the coordinates of a patch in a d-
dimensional manifold. (In the case of S2 we can take the patch
to be the largest open set {(θ, φ); 0 < θ < π, 0 < φ < 2π}.)
Consider the Ito SDE

dqj = Ai(q)dt + Bj(q)dWj,

where the Wj(t) are independent Wiener processes. Let p(q, t|q0)
denote the probability density under the initial condition q(0) =

q0 and normalization∫
Rd

p(q, t|q0)|G(q)|1/2dq = 1,

where dq = dq1 . . . dqd and DV (q) = |G(q)|1/2dq is a volume
element. Note that p satisfies the Chapman–Kolmogorov equation

p(q, t|q0) =

∫
Rd

p(q, τ |q′)p(q′, t − τ |q0)|G(q′)|1/2dq′.

We proceed along the lines of Ref. [42] (chapter 8) by deriving the
corresponding Fokker–Planck (FP) equation using a generalization
of the standard derivation in Rd [43].

Let q = q(t) and s = q(t − dt). Evaluating infinitesimal
moments using the SDE and Ito’s lemma shows that∫
Rd
(qi − si)p(q, t|s)|G(s)|1/2ds = Ai(q, t)dt,

and∫
Rd
(qi − si)(qj − sj)p(q, t|s)|G(s)|1/2ds = δi,jBi(q, t)2dt.

Using the Chapman–Kolmogorov equation, we have
∂p(q, t|s)

∂t
= lim

∆t→0

1
∆t

[p(q, t +∆t|s) − p(q, t|s)]

= lim
∆t→0

1
∆t

×

[∫
Rd

p(q, t|q′)p(q′,∆t|s)|G(q′)|1/2dq′
− p(q, t|s)

]
.

Let ψ(q) be an arbitrary compactly supported smooth function,
and consider the integral equation∫

Rd
ψ(s)

∂p(q, t|s)
∂t

|G(s)|1/2ds

= lim
∆t→0

1
∆t

[∫
Rd
ψ(s)|G(s)|1/2ds

×

∫
Rd

p(q, t|q′)p(q′,∆t|s)|G(q′)|1/2dq′

−

∫
Rd
ψ(s)p(q, t|s)|G(s)|1/2ds

]
.

Reversing the order of integration in the double integral on the
right-hand side gives∫

Rd
ψ(s)

∂p(q, t|s)
∂t

|G(s)|1/2ds

= lim
∆t→0

1
∆t

∫
Rd

p(q, t|q′)
[∫

Rd
p(q′,∆t|s)ψ(s)|G(s)|1/2ds − ψ(q′)

]
× |G(q′)|1/2dq′.

Expanding the function ψ(s) as a Taylor series about q′,

ψ(s) = ψ(q′)+
d∑

i=1

(si −q′

i)
∂ψ

∂q′

i
+

1
2

d∑
i,j=1

(si −q′

i)(sj −q′

j)
∂2ψ

∂q′

i∂q
′

j
+· · ·

substituting into the previous equation, and using the moment
equations yields the following result in the limit ∆t → 0:∫

Rd
ψ(s)

∂p(q, t|s)
∂t

|G(s)|1/2ds

=

∫
Rd

[
d∑

i=1

∂ψ

∂si
Ai(s, t) +

1
2

d∑
i=1

∂2ψ

∂s2i
Bi(s)2

]
p(q|s, t)|G(s)|1/2ds.

The final step is to integrate the two terms on the right-hand side
by parts. Using the fact that ψ(s) has compact support, and is
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Fig. 5. Illustration of the stochastic wandering of a bump on the sphere. Snapshots of bump profile U(θ, φ, t) at times t = 250, 500, 750, 1000 as a function of (a)
polar angle θ ∈ [0, π] for φ = 0 and (b) azimuthal angle φ ∈ [0, 2π ] for θ = π/4. The firing rate function has a gain η = 4, and a threshold κ = 0.5. Other parameter
values are J0 = 0, J = 1, h̄ = 0, ϵ = 0.1.

otherwise arbitrary, we obtain the FP equation

∂p
∂t

= −|G|
−1/2

d∑
i=1

∂

∂qi

(
|G|

1/2Aip
)
+

1
2
|G|

−1/2

×

d∑
i=1

∂2

∂q2i

(
|G|

1/2B2
i p
)
. (4.3)

In the case of the unit sphere S2, the metric tensor and volume
element are

G(θ, φ) =

(
1 0
0 sin2 θ

)
, dV = sin θdθ dφ. (4.4)

Eq. (4.3) then implies that the Fokker–Planck equation for the SDE

dΘ = A1(Θ,Φ)dt + B1(Θ,Φ)dW1(t),
dΦ = A2(Θ,Φ)dt + B2(Θ,Φ)dW2(t)

(4.5)

is
∂p
∂t

= −
1

sinΘ
∂

∂Θ
(sinΘA1(Θ,Φ)p)−

∂

∂Φ
(A2(Θ,Φ)p)

+
1

2 sinΘ
∂2

∂Θ2

(
sinΘB1(Θ,Φ)2p

)
+

1
2
∂2

∂Φ2

(
B2(Θ,Φ)2p

)
.

(4.6)

It can be seen that the FP equation (4.6) is equivalent to the stan-
dard diffusion equation written in spherical polar coordinates,

∂p
∂t

=
ϵD

sinΘ

[
∂

∂Θ
sinΘ

∂p
∂Θ

+
1

sinΘ
∂2p
∂Φ2

]
, (4.7)

provided that

A1 = ϵD cotΘ, A2 = 0, B1 =
√
2ϵD, B2 =

√
2ϵD

sinΘ
.

In other words, the SDE for Brownian motion on the sphere is
[44]

dΘ = ϵD cotΘdt +
√
2ϵDdW1, dΦ =

√
2ϵD

sinΘ
dW2, (4.8)

that is, we need to include an O(ϵ) drift term in the SDE 4.1
for dΘ . This then ensures that the steady state density for the
location of a wandering bump is uniform on the sphere, since the
solution to Eq. (4.7) satisfies limt→∞ p(Θ,Φ, t) = 1/4π .

In Figs. 5 and 6 we show example plots of a wandering
bump in a spherical attractor network. It can be seen that in
the presence of noise, the neural field can be characterized by
fast fluctuations of the bump profile together with a discernible
shift in the position of the peak, consistent with the original

decomposition (3.6). For the given example, the bump appears
symmetric about θ = π/2. Other realizations would exhibit
different behavior.

4.2. Linear noise approximation for h̄ > 0

The analysis of the full stochastic equation (4.1) is considerably
more involved. Here we simplify the problem using a linear noise
approximation. Suppose that (Θ∗,Φ∗) is a fixed point of the de-
terministic dynamics obtained when D = 0, that is, F1(Θ∗,Φ∗) =

F2(Θ∗,Φ∗) = 0. Using Eq. (3.22) and R(Θ,Φ) = R3(Φ)R2(Θ), we
have

R(Θ∗,Φ∗)−1x̄ = ±e3,

which can be rewritten as

(sin θ̄ cos φ̄, sin θ̄ sin φ̄, cos θ̄ ) =

± (sinΘ∗ cosΦ∗, sinΘ∗ sinΦ∗, cosΘ∗).

There are thus two fixed points given by

(Θ∗,Φ∗) = Z∗

s := (θ̄ , φ̄) and (Θ∗,Φ∗) = Z∗

u := (π − θ̄ , π + φ̄)

(4.9)

The first fixed point turns out to be stable, whereas the second is
unstable, consistent with the expected result that the marginally
stable bump solution can lock to a weakly biased external stimu-
lus. That is, the peaks of the bump and input coincide: (Θ∗,Φ∗) =

(θ̄ , φ̄), see also Fig. 4.
Stability of a fixed point can be determined from the eigenval-

ues of the Jacobian N, which has entries

N11 =
∂F1(Θ,Φ)
∂Θ

⏐⏐⏐⏐
Θ=Θ∗,Φ=Φ∗

, N12 =
∂F1(Θ,Φ)

∂Φ

⏐⏐⏐⏐
Θ=Θ∗,Φ=Φ∗

N21 =
∂F2(Θ,Φ)/sinΘ

∂Θ

⏐⏐⏐⏐
Θ=Θ∗,Φ=Φ∗

=
1

sinΘ∗

∂F2(Θ,Φ)
∂Θ

⏐⏐⏐⏐
Θ=Θ∗,Φ=Φ∗

,

N22 =
1

sinΘ∗

∂F2(Θ,Φ)
∂Φ

⏐⏐⏐⏐
Θ=Θ∗,Φ=Φ∗

.

We have used the fact that F2(Θ∗,Φ∗) = 0. In order to avoid
the coordinate singularities at the poles, we will assume that
0 < Θ∗ < π . (These singularities are simply an artifact of the
choice of parameterization of the sphere, and are not physical
singularities.) We will determine the first derivatives by differen-
tiating equation (3.22) with respect to Θ and Φ , after rewriting
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Fig. 6. Surface plots of U(θ, φ, t) at times t = 500, 750, 1000, respectively.
Parameter values as in Fig. 5.

it in the form

x̄ = R3(Φ)R2(Θ)(F1(Θ,Φ), F2(Θ,Φ), F3(Θ,Φ))⊤,

with

F3 = ±

√
1 − F 2

1 − F 2
2 ,

corresponding to (Θ,Φ) being in a neighborhood of the fixed
points Z∗

s and Z∗
u , respectively. First, we have

0 = R3(Φ∗)R′

2(Θ
∗)(0, 0,±1)⊤

+ R3(Φ)R2(Θ)
∂

∂Θ
(F1(Θ∗,Φ∗), F2(Θ∗,Φ∗), F3(Θ∗,Φ∗))⊤

=

( cosΘ∗ cosΦ∗

cosΘ∗ sinΦ∗

− sinΘ∗

)

+

(
∂ΘF1 cosΘ∗ cosΦ∗

− ∂ΘF2 sinΦ∗

∂ΘF1 cosΘ∗ sinΦ∗
+ ∂ΘF2 cosΦ∗

−∂ΘF1 sinΘ∗

)
.

Note that ∂ΘF3(Θ∗,Φ∗) = 0. Similarly, we have

0 = R′

3(Φ
∗)R2(Θ∗)(0, 0,±1)⊤

+ R3(Φ)R2(Θ)
∂

∂Φ
(F1(Θ∗,Φ∗), F2(Θ∗,Φ∗), F3(Θ∗,Φ∗))⊤

=

(
− sinΘ∗ sinΦ∗

sinΘ∗ cosΦ∗

0

)

+

(
∂ΦF1 cosΘ∗ cosΦ∗

− ∂ΦF2 sinΦ∗

∂ΦF1 cosΘ∗ sinΦ∗
+ ∂ΦF2 cosΦ∗

−∂ΦF1 sinΘ∗

)
.

We deduce that

N =

(
−1 0
0 −1

)
, (4.10)

for Z∗
s and

N =

(
−1 0
0 1

)
, (4.11)

for Z∗
u . It follows that Z∗

s is stable and Z∗
u is unstable.

Returning to the SDE (4.1), we linearize about the stable fixed
point and set
√
ϵY1(t) = Θ(t) −Θ∗,

√
ϵY2(t) = Φ(t) −Φ∗.

This yields the pair of SDEs

dY1 = −

√
ϵh̄
A

Y1(t)dt +
√
2DdW1(t), (4.12a)

dY2 = −

√
ϵh̄
A

Y2(t)dt

+
√
2D
(

1
sinΘ∗

−
cosΘ∗

sin2Θ∗

√
ϵY1(t)

)
dW2(t). (4.12b)

For the sake of illustration, suppose that Θ∗
= θ̄ = π/2, that

is, the input has a peak at the equator of the sphere. In this
special case, Y1(t) and Y2(t) evolve according to a pair of identical,
independent Ornstein–Uhlenbeck (OU) processes. The Fokker–
Planck (FP) equation for an OU process on R with decay rate
λ =

√
ϵh̄/A and diffusion coefficient D is [43]

∂p(y, t)
∂t

=
∂[λyp(y, t)]

∂y
+ D

∂2p(y, t)
∂y2

. (4.13)

Given an initial condition p(y, 0) = δ(y−y0), the solution to the FP
equation is a Gaussian with time-dependent mean and variance:

p(y, t) =
1√

2πD[1 − e−2λt ]/λ
exp

(
−

(y − y0e−λt )2

2D[1 − e−2λt ]/λ

)
. (4.14)

The mean and variance of the OU process are therefore given by

⟨Y (t)⟩ = y0e−λt , ⟨[Y (t) − ⟨Y (t)⟩]2⟩ =
D
λ
(1 − e−2λt ) (4.15)

In the large time limit, we obtain a stationary Gaussian process
with zero mean and time-independent variance

⟨Y (t)⟩ = 0, ⟨[Y (t) − ⟨Y (t)⟩]2⟩ =
D
λ
. (4.16)

It is important to note, however, that the linearized SDE is basi-
cally defined in the tangent plane to the sphere, Yr (t) ∈ R, and
thus neglects the fact that the dynamics occurs on the surface
of a sphere. The validity of the linear noise approximation will
then depend on how small the width of the Gaussian densities
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for Θ and Φ is compared to the inverse Gaussian curvature of
the sphere. That is, we require ϵD/λ =

√
ϵC/(h̄A) ≪ 1.

5. Discussion

In this paper we extended the theory of wandering bumps
in stochastic neural fields to the case of a spherical network
topology. This is a non-trivial extension due to the non-abelian
nature of the underlying symmetry group SO(3) and the fact that
S2 is a curved manifold. Using a combination of group theoretic
and perturbation methods we established the following main
results: (i) the wandering of a bump in the absence of an external
input is characterized by Brownian motion on the sphere; (ii) the
stochastic dynamics in response to a weakly biased external input
can be approximated by an Ornstein–Uhlenbeck process, pro-
vided that the variance is sufficiently small so that the curvature
of the sphere can be ignored.

The mathematical framework developed in this paper could be
used to explore various applications of stochastic spherical attrac-
tor networks, along analogous lines to ring attractor networks.
For example, if one interprets the neural field on a sphere as a
model of orientation and spatial frequency tuning in a cortical
hypercolumn of V1, then one natural extension would be to
consider the effects of inter-network coupling between a pair of
spherical attractor networks. The latter could represent popula-
tions of cells in two different layers of a cortical hypercolumn
linked via vertical synaptic connections, or two different cortical
hypercolumns linked by horizontal patchy connections within
the same layer. As previously shown for ring attractor networks,
weak inter-network coupling leads to additional terms in the
SDEs for wandering bumps that can reduce the effects of noise
[9,22,31]. Another extension would be to develop a more detailed
model of the laminar structure of cortex. To a first approximation,
cortical layers can be grouped into an input layer 4, superficial
layers 2/3 and deep layers 5/6 [45,46]. The various layers can
be distinguished by the source of afferents into the layer and
the targets of efferents leaving the layer, the nature and extent
of intralaminar connections, the identity of interneurons within
and between layers, and the degree of stimulus specificity of
pyramidal cells. In previous work, we explored the role of cortical
layers in the propagation of waves of orientation selectivity across
V1 [47], under the assumption that deep layers are less tuned
to orientation. This suggests also considering coupled spherical
networks that differ in their tuning properties.

From a mathematical perspective, one outstanding issue is
developing a more rigorous derivation of the stochastic phase
dynamics for wandering bumps on a sphere, in which the O(ϵ)
coupling between the amplitude and phases is explicitly taken
into account. One way to proceed would be to extend the vari-
ational approach to analyzing waves and bumps in stochastic
neural fields on flat manifolds such as R and S1 [28,29]. The
basic idea is to minimize the error term v in the decomposition
of Eq. (3.6) with respect to an appropriately defined weighted
norm in the Hilbert space L2(S2, ρ). That is, the inner product is
defined according to

⟨u, v⟩ρ =

∫
S2

u(θ, φ)v(θ, φ)ρ(θ, φ)D(θ, φ), u, v ∈ L2(S2, ρ),

where fixing ρ is the additional mathematical constraint nec-
essary to uniquely specify the amplitude–phase decomposition
(3.6), and is determined by ensuring that the error term involves
fast transverse fluctuations. One of the potential advantages of
the variational approach is that it can be used to derive rigorous
bounds on the expected time of transverse fluctuations to escape
a neighborhood of the bump solution; such a rare event leads to
a break down of the perturbation construction.
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Appendix. The special orthogonal group SO(3)

Lie groups

An important class of transformations is the group of in-
vertible linear transformations in n dimensions, which can be
represented by n×n real matrices A with det(A) ̸= 0. These form
the general linear group GL(n, R), which has n2 parameters. The
orthogonal group in n dimensions, O(n), consists of the subset of
transformations in GL(n, R) that leave the Euclidean norm

∑n
j=1 x

2
j

on Rn invariant. It follows that O(n) consists of orthogonal ma-
trices A with the property that A⊤

= A−1. For a matrix in a
neighborhood of the identity, I+ϵX , this property requires that X
be skew-symmetric: Xij = −Xji. Since skew-symmetric matrices
have n(n−1)/2 independent entries, it follows that the parameter
space of O(n) is also n(n − 1)/2-dimensional. The identity

1 = det(A⊤A) = det(A⊤)det(A)

implies that det(A) = ±1. The subset of orthogonal matrices with
det(A) = +1 constitutes a subgroup of O(n) known as the special
orthogonal group SO(n).

Note that GL(n, R) and O(n) are examples of a Lie group — a
group that is also a smooth manifold in which the group opera-
tions of multiplication and inversion are smooth maps. In more
detail, suppose that G is a continuous group whose elements A ∈

G depend on N real parameters, A = A(a) with a = (a1, . . . , aN ).
Under multiplication of two elements, we have

A(a)A(b) = A(c),

where c must be a continuous function of a and b: c = f (a, b).
Associativity of the composition law of a group,

A(a)[A(b)A(c)] = [A(a)A(b)]A(c),

means that

f [a, f (b, c)] = f [f (a, b), c].

The existence of an identity element I with I = A(0) and

A(0)A(a) = A(a)A(0) = A(a),

implies that

f (0, a) = f (a, 0) = a.

Finally, the existence of an inverse element A(a)−1 with A(a)−1
=

A(a∗) and

A(a∗)A(a) = A(a)A(a∗) = A(0),

shows that

f (a∗, a) = f (a, a∗) = 0.

A continuous group is said to be a Lie group if f is an analytic
function, that is, a function with a Taylor series expansion within
the domain defined by the parameters. We can then treat the
parameters as the coordinates of an N-dimensional differentiable
manifold known as the group manifold. In the case of O(n), all
entries of A ∈ O(n) are bounded, |Aij| ≤ 1, so that the n(n − 1)/2
group manifold is compact.
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Lie algebras

One of the most useful objects in the study of Lie groups
is the corresponding Lie algebra of infinitesimal generators. We
will discuss this within the context of a matrix group G, whose
corresponding Lie algebra is denoted by g . First, any element close
to the identity can be written as

A(ϵa) = I + ϵ

N∑
i=1

aiXi, Xi =
∂A(a)
∂ai

⏐⏐⏐⏐
a=0

,

where I is the identity element, N = n(n − 1)/2, and the
infinitesimal generators Xi form a basis set of vectors for the
Lie algebra. (One can also view elements of the Lie algebra as
vectors lying in the tangent space at the origin of the group
manifold.) The composition law of the Lie group imposes a set
of commutation relations for the matrices Xi:

[Xi, Xj] := XiXj − XjXi = ckijXk,

where the ckij are known as the structure constants of the algebra.
At a more abstract level, we can think of the commutator as a
binary operation [·, ·] : g × g → g that satisfies the following
axioms:

1. Bilinearity,

[λ1X + λ2Y , Z] = λ1[X, Z] + λ2[Y , Z], [Z, λ1X + λ2Y ]

= λ1[Z, X] + λ2[Z, Y ]

for all scalars λ1, λ2 and all elements X, Y , Z ∈ o(n).
2. [X, X] = 0
3. The Jacobi identity

[X, [Y , Z]] + [Z, [X, Y ]] + [Y , [Z, X]] = 0

for all X, Y , Z ∈ g .

The first two axioms imply anti-commutativity, that is, [X, Y ] =

−[Y , X]. (For more general Lie algebras, the bilinear operation
is known as a Lie bracket and need not be in the form of a
commutator. However, it obeys the same axioms.) It turns out
that the dimension of a Lie group and much of its structure
can be understood by considering elements in a neighborhood
of the identity element and carrying out computations in the Lie
algebra, which are typically easier than working with the group.
Intuitively speaking, any finite group transformation can be con-
structed by repeated application of infinitesimal transformations.

Representations of SO(3)

Let us now focus on the group SO(3), whose natural rep-
resentation is the matrix rotation group acting in the vector
space R3. We will denote the Cartesian coordinates of R3 by the
triplet (x, y, z). The most common ways to choose the three free
parameters of SO(3) are as follows: (i) Successive rotations about
three mutually orthogonal fixed axes; (ii) Successive rotations
about the z-axis, about the new y-axis, and then about the new
z-axis (Euler angles); (iii) The axis–angle representation, which is
defined in terms of an axis whose direction is specified by a unit
vector (two parameters) and a rotation about the given axis (one
parameter). We will follow the first parameterization here. The
matrices corresponding to rotations about the x-axis, y-axis and
z-axis are, respectively

R1(ϕ1) =

(1 0 0
0 cosϕ1 − sinϕ1
0 sinϕ1 cosϕ1

)
(A.1a)

R2(ϕy) =

( cosϕ2 0 sinϕ2
0 1 0

− sinϕ2 0 cosϕ2

)
(A.1b)

R3(ϕ3) =

(cosϕ3 − sinϕ3 0
sinϕ3 cosϕ3 0

0 0 1

)
(A.1c)

The corresponding infinitesimal generators are given by

X1 =
∂R1(ϕ)
∂ϕ

⏐⏐⏐⏐
φ=0

=

(0 0 0
0 0 −1
0 1 0

)
(A.2a)

X2 =
∂R2(ϕ)
∂ϕ

⏐⏐⏐⏐
φ=0

=

( 0 0 1
0 0 0

−1 0 0

)
(A.2b)

X3 =
∂R3(ϕ)
∂ϕ

⏐⏐⏐⏐
φ=0

=

(0 −1 0
1 0 0
0 0 0

)
(A.2c)

From standard matrix multiplication, it follows that the com-
mutators of the Lie algebra generated by X1, X2, X3 are given by

[X1, X2] = X3, [X2, X3] = X1 [X3, X1] = X2. (A.3)

An alternative representation of SO(3) can be obtained by
considering the effect of a rotation on the unit sphere S2 given
by the equation x2 + y2 + z2 = 1. If we introduce the spherical
polar coordinates

x = sin θ cosφ, y = sin θ sinφ, z = cos θ, (A.4)

then the action of any group element is to map (θ, φ) ↦→ (θ ′, φ′).
Note that the sphere S2 is a manifold rather than a vector space,
so the action of SO(3) on the sphere is distinct from the action of
SO(3) on the vector space R3. It is also important to distinguish
between the two-dimensional manifold S2 on which SO(3) acts,
and the three-dimensional manifold of the Lie group itself.

One can also consider the action of SO(3) on infinite-
dimensional vector space such as L2(R3). Let γ ∈ SO(3) and define
the induced action on functions:

γ ◦ F (x) = F (γ−1x), (A.5)

where x = (x, y, z) ∈ R3. Close to the identity element, we can
write

γ−1x = (1 −

∑
j=1,2,3

ϕjXj)x

=

( 1 ϕ3 −ϕ2
−ϕ3 1 ϕ1
ϕ2 −ϕ1 1

)
x,

which means that

γ ◦ F (x, y, x) = F (x + ϕ3y − ϕ2z, y − ϕ3x + ϕ1z, z + ϕ2x − ϕ1y).

Assuming that F is differentiable, we can Taylor expand the
right-hand side to first order in ϕi, which yields the following
expression:

γ ◦ F (x, y, x) = F (x, y, z) + ϕ1

(
z
∂F
∂y

− y
∂F
∂z

)
+ ϕ2

(
x
∂F
∂z

− z
∂F
∂x

)
+ ϕ3

(
y
∂F
∂x

− x
∂F
∂y

)

=

⎛⎝1 +

3∑
j=1

ϕjXj

⎞⎠ F (x, y, z),

where Xj are now given by the differential operators

X1 = z
∂

∂y
− y

∂

∂z
, X2 = x

∂

∂z
− z

∂

∂x
, X3 = y

∂

∂x
− x

∂

∂y
. (A.6)
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Note that the linear operators obey the same commutation rela-
tions (A.3). Finally, we can use the action of SO(3) transformations
on functions F (x, y, z) to determine the corresponding infinites-
imal operators acting on smooth functions in L2(S2), which are
defined on the surface of the unit sphere with angular coordinates
(θ, φ). It can be shown that the infinitesimal generators acting on
functions F (θ, φ) take the form of Eq. (2.32), that is,

X1 = sinφ
∂

∂θ
+

cos θ cosφ
sin θ

∂

∂φ
,

X2 = cosφ
∂

∂θ
−

cos θ sinφ
sin θ

∂

∂φ
, X3 =

∂

∂φ
.

The question then arises whether there are finite-dimensional
subspaces of L2(S2) that are invariant under SO(3), that is, they
provide finite-dimensional representations of SO(3). Suppose that
such a subspace V exists and is spanned by the basis set {fi, i =

1, . . . ,N}. The subspace is invariant if and only if

γ ◦

∑
j=1

αjfj =

N∑
i=1

βifi,

for real coefficients αj, βi. Linearity of the map implies that

bi =

N∑
j=1

Aijαj,

for some matrix A corresponding to an element of SO(3). The
vector subspace V is said to be an irreducible representation
of SO(3) if V contains no finite-dimensional subspaces invariant
under SO(3). It can be shown that every irreducible subspace is
characterized by an integer l ≥ 0 and has dimension 2l + 1.
The basic functions are given by spherical harmonics: {Ylm,m =

−l, . . . , l}.
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