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Morphogen protein gradients play an essential role in the spatial regulation of patterning during embryonic
development. The most commonly accepted mechanism of protein gradient formation involves the diffusion and
degradation of morphogens from a localized source. Recently, an alternative mechanism has been proposed,
which is based on cell-to-cell transport via thin actin-rich cellular extensions known as cytonemes. Very little
is currently known about the precise nature of the contacts between cytonemes and their target cells. Important
unresolved issues include how cytoneme tips find their targets, how they are stabilized at their contact sites,
and how vesicles are transferred to a receiving cell and subsequently internalized. It has been hypothesized that
cytonemes find their targets via a random search process based on alternating periods of retraction and growth,
perhaps mediated by some chemoattractant. This is an actin-based analog of the search-and-capture model of
microtubules of the mitotic spindle searching for cytochrome binding sites (kinetochores) prior to separation
of cytochrome pairs. In this paper we develop a search-and-capture model of cytoneme-based morphogenesis,
in which nucleating cytonemes from a source cell dynamically grow and shrink along the surface of a one-
dimensional array of target cells until making contact with one of the target cells. We analyze the first-passage-
time problem for making contact and then use this to explore the formation of morphogen gradients under
the mechanism proposed for Wnt in vertebrates. That is, we assume that morphogen is localized at the tip
of a growing cytoneme, which is delivered as a “morphogen burst” to a target cell when the cytoneme makes
temporary contact with a target cell before subsequently retracting. We show how multiple rounds of search-and-
capture, morphogen delivery, cytoneme retraction, and nucleation events lead to the formation of a morphogen
gradient. We proceed by formulating the morphogen bursting model as a queuing process, analogous to the
study of translational bursting in gene networks. In order to analyze the expected times for cytoneme contact, we
introduce an efficient method for solving first-passage-time problems in the presence of sticky boundaries, which
exploits some classical concepts from probability theory, namely, stopping times and the strong Markov property.
We end the paper by demonstrating how this method simplifies previous analyses of a well-studied problem in
cell biology, namely, the search-and-capture model of microtubule-kinetochore attachment. Although the latter
is completely unrelated to cytoneme-based morphogenesis from a biological perspective, it shares many of the
same mathematical elements.

DOI: 10.1103/PhysRevE.99.052401

I. INTRODUCTION

Cytonemes are thin, dynamic, actin-rich cellular extensions
with a diameter of around 100 nm and lengths that vary
from 1 to 100 μm. There is growing experimental evidence
that cytonemes can form direct cell-to-cell contacts, thus
allowing the active transport of morphogens or their cognate
receptors to embryonic cells during development [1–10]. Re-
cent modeling studies have investigated how the number of
morphogens or receptors delivered to a cell depends on the
flux of particles along a cytoneme, the number of cytonemes
that form a stable contact with the target cell, and the duration
of each contact [11–13]. However, very little is still known
about the precise biochemical and physical nature of the
contacts between cytonemes and their target cells. Important
unresolved issues include how cytoneme tips find their tar-
gets, how they are stabilized at their contact sites, and how
vesicles are transferred to a receiving cell and subsequently
internalized. It has been hypothesized that cytonemes find
their targets via a random search process based on alternating
periods of retraction and growth, perhaps mediated by some

chemoattractant [5]. Indeed, imaging studies in Drosophila
[3] and chick embryos [4] show that cytonemes actively and
rapidly expand and contract. This is analogous to the search-
and-capture model of microtubules of the mitotic spindle
searching for cytochrome binding sites (kinetochores) prior to
separation of cytochrome pairs [14–16], although one major
difference is that cytonemes are actin based rather than tubulin
based.

Once a cytoneme contact has been established, a number
of different mechanisms have been proposed for how vesi-
cles containing morphogens (or their cognate receptors) are
delivered to the target cell. In the wing imaginal disk of
Drosophila vesicles appear to be actively transported along
the cytonemes in a bidirectional fashion, probably via myosin
motors that actively “walk” along the actin filaments of a
cytoneme [1–3]. The amount of morphogen delivered to a cell
will then depend on the flux of particles along a cytoneme
and the number of cytonemes that form a stable contact with
the target cell. Increasing experimental evidence indicates that
cytonemes also mediate morphogen transport in vertebrates
[7,10]. Examples include sonic hedgehog (SHH) cell-to-cell
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signaling in chicken limb buds [4] and Wnt signaling in
zebrafish [8,9]. The latter is thought to involve a different
morphogen transport mechanism, in which Wnt is clustered
at the membrane tip of growing signaling filopodia. When
the filopodia make contact with target cells, the morphogens
are delivered to the cells and the filopodia are pruned off
within 10 min of making contact. In this case, the amount
of morphogen delivered to a cell will depend on the rate of
filopodia growth, the concentration of morphogen at the tips,
and the frequency of contacts between source and target cells.

Dynamic instabilities in microtubules are much better un-
derstood than in cytonemes. Microtubules grow by the at-
tachment of guanosine triphosphate (GTP)-tubulin complexes
at one end. In order to maintain growth, the end of the
microtubule must consist of a “cap” of consecutive GTP-
tubulin monomers. However, each polymerized complex can
hydrolyze into guanosine diphosphate (GDP) tubulin such
that if all the monomers in the cap convert to GDP, then the
microtubule is destabilized and there is rapid shrinkage due to
detachment of the GDP-tubulin monomers. The competition
between attachment of GTP tubulin and hydrolysis from GTP
to GTD is thought to be the basic mechanism of alternat-
ing periods of growth and shrinkage [17,18]. The search-
and-capture model of cell mitosis involves the nucleation
of microtubules in random directions, which then grow and
shrink dynamically in order to search space and eventually
encounter a target kinetochore [14–16]. A number of recent
modeling studies have analyzed search and capture in terms
of a first-passage-time problem for a velocity jump process
[19–22]. One of the interesting features addressed by several
of these studies is the presence of so-called sticky boundaries
[19,20]. For example, when a growing microtubule hits the
cell membrane it can stick to the wall until it transitions
to a catastrophe state after some exponentially distributed
waiting time. One can also take into account the finite time for
nucleation of a new growing microtubule by imposing a sticky
boundary condition at the nucleation site [19]. (Very similar
mathematical models arise in the case of bacterial chemotaxis,
where sticky boundary conditions reflect the fact that bacteria
can temporarily stick to the sides of a container [23].)

One of the difficult features of a sticky boundary condition
from a mathematical perspective is that when calculating a
mean first-passage time (MFPT), for example, it is necessary
to keep track of each time the system hits the sticky boundary
before eventually exiting. As in the case of diffusion processes
[24], there are two standard and complementary approaches to
calculating the MFPT. The first is to determine the Green’s
functions of the forward differential Chapman-Kolmogorov
(CK) equation (the analog of the Fokker-Planck equation)
using Laplace transforms and to express the conditional first-
passage time (FPT) distributions in terms of these Green’s
functions. In the presence of sticky boundaries, it is necessary
to sum over all possible paths, after indexing them according
to the number of times they visit the sticky boundary [19]. The
second method is to introduce an appropriate set of splitting
probabilities and conditional MFPTs and to derive differential
equations for these various quantities using the backward CK
equation [20]. Although the latter direct method neatly avoids
the need to sum over paths in the case of sticky boundaries, the
analysis is still quite involved, particularly when extended to

more complicated first-passage-time problems, such as those
that arise in the search-and-capture model of cell mitosis.

In this paper we develop a search-and-capture model of
cytoneme-mediated morphogen gradient formation, in which
nucleating cytonemes from a source cell dynamically grow
and shrink along the surface of a one-dimensional array of tar-
get cells until making contact with one of the target cells. We
analyze the first-passage-time problem for making contact and
then use this to explore the formation of morphogen gradients
under the mechanism proposed for Wnt in vertebrates. That is,
we assume that morphogen is localized at the tip of a growing
cytoneme, which is delivered as a “morphogen burst” to a
target cell when the cytoneme makes temporary contact with a
target cell before subsequently retracting. We then show how
multiple rounds of search-and-capture, morphogen delivery,
cytoneme retraction, and nucleation events lead to the forma-
tion of a morphogen gradient. We proceed by formulating the
morphogen bursting model as a queuing process, analogous to
the study of translational bursting in gene networks [25].

Although the search-and-capture models of cytoneme-
based morphogenesis and cell mitosis are completely un-
related from a biological perspective, they share several of
the same mathematical elements. In particular, determining
the MFPT for a single cytoneme to make contact with a
target cell requires solving a first-passage-time problem in
the presence of sticky boundaries, very similar to the MFPT
for a microtubule to find a target kinetochore. In this paper
we introduce an efficient method for solving this class of
first-passage-time problems, which exploits some classical
concepts from probability theory, namely, stopping times and
the strong Markov property [26]. We have previously used this
approach within the context of diffusion in domains with ran-
domly switching boundaries [27,28]. For example, consider
a Brownian particle diffusing in a two-dimensional bounded
domain with a finite number of small O(ε) pores distributed
on the boundary of the domain. Furthermore, suppose that
the pores are stochastically gated so that they randomly and
independently switch between an open and a closed state.
This means that one has to solve a boundary value problem
in which the bulk of the boundary is reflecting, but each O(ε)
pore randomly switches between an absorbing and a reflecting
boundary. Hence, in order to determine the MFPT to escape
through an open pore, it is necessary to keep track of all
prior visits to each pore when it is in a closed state. This is
analogous to keeping track of visits to a sticky boundary.

The structure of the paper is as follows. In Sec. II we intro-
duce our probabilistic method for analyzing first-passage-time
problems with sticky boundaries by considering a filament
undergoing dynamical instabilities in a bounded interval. We
calculate the MFPT to hit one end of the interval, given a
sticky or nucleating boundary at the other end. We show how
the MFPT can be straightforwardly expressed in terms of the
splitting probabilities and conditional MFPT obtained when
the sticky boundary is replaced by an absorbing boundary.
In Sec. III we introduce our search-and-capture model of a
single cytoneme nucleating from a source cell and making
contact at some point along a one-dimensional array of target
cells. We extend the analysis of Sec. II in order to determine
the MFPT for forming such a contact. In Sec. IV we use
queuing theory to analyze a bursting model of morphogen
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gradient formation. Finally, in Sec. V we show how the
probabilistic methods introduced in the paper can be used to
simplify previous analyses of the search-and-capture model of
microtubule-microtubule attachment. A basic introduction to
stopping times and the strong Markov property is presented in
Appendix A, and various formulas used in Sec. III are derived
in Appendix B.

II. FIRST-PASSAGE-TIME PROBLEM FOR
A DYNAMIC FILAMENT

Consider a filament fixed at one end (x = 0) of a bounded
domain [0, L] and let X (t ) ∈ [0, L] be the position of the
filament tip or, equivalently, the filament length. Suppose that
the filament can randomly switch between a growing state
with tip velocity v+ and a shrinking state with tip velocity
−v−, v± > 0. Let N (t ) denote the current velocity state,
with N (t ) = − if v(t ) = −v− and N (t ) = + if v(t ) = v+. In
other words, the position of the tip evolves according to the
piecewise deterministic differential equation (velocity jump
process)

dX (t )

dt
= vn, N (t ) = n. (2.1)

Equation (2.1) holds between jumps in the velocity state N (t ),
which are taken to occur via a two-state Markov chain:

{−} α+�
α−

{+}.

In the physics literature, this is known as a dichotomous noise
process [29]. Let pn(x, t ) be the probability density that at
time t we have x < X (t ) < x + dx and N (t ) = n. That is, for
a given set of initial conditions, pn(x, t ) = p(x, n, t |y, m, 0),
where

p(x, n, t | y, m, 0)dx

= P[x � X (t ) � x + dx, N (t ) = n | X (0) = y, N (0) = m]

and pn(x, 0) = δ(x − y)δn,m. The density pn evolves accord-
ing to the differential CK equation [30,31]

∂ p+
∂t

= −v+
∂ p+
∂x

+ α+ p− − α− p+, (2.2a)

∂ p−
∂t

= v−
∂ p−
∂x

− α+ p− + α− p+ (2.2b)

for x ∈ [0, L]. Equations of the form (2.2a) and (2.2b) arise
in a wide range of biological applications. First, they have
been used to model dynamic instabilities of microtubules
known as catastrophes [18,32], which is the closest to the
application considered in this paper, namely, the growth and
shrinkage of cytonemes during morphogenesis. Alternatively,
X (t ) could represent the position of a bacterium undergoing
a one-dimensional version of run and tumble [23,33,34] or
a molecular motor performing bidirectional transport along a
microtubule filament [31].

In the case of confined growth and shrinkage, it is neces-
sary to specify the boundary conditions at x = 0, L. Following
previous studies of microtubular catastrophes [19,20], we will
assume that there is a reflecting boundary at x = L, so that

v+ p+(L, t ) = v− p−(L, t ), (2.3)

v+

v-

α− α+

x = 0 x = L

r0

N

FIG. 1. Schematic representation of a sticky boundary at x = 0,
with r0 the nucleation rate for switching to a growth state.

and a sticky boundary at x = 0 (see Fig. 1). The latter takes
into account the finite time for nucleation of a new growing
filament at x = 0, which occurs at some rate r0. The sticky
boundary condition is given by

v+ p+(0, t ) = r0P0(t ), (2.4)

where P0(t ) is the probability that the filament has shrunk to
zero and is in the nucleating state at time t . The latter evolves
according to the equation

dP0

dt
= v− p−(0, t ) − r0P0(t ). (2.5)

The normalization condition for the total probability is∫ L

0
p(x, t )dx + P0(t ) = 1. (2.6)

A natural quantity of interest is the MFPT to hit the bound-
ary at x = L, say, given an initial state X (0) = y and a sticky
boundary at x = 0 [see Eq. (2.4) and Fig. 1]. One of the diffi-
cult features of a sticky boundary is that it is necessary to keep
track of each time the particle hits x = 0 before eventually
exiting at x = L, since the particle spends an exponentially
distributed time τ̃n in the state before reentering the growth
phase. One approach to calculating the MFPT is to analyze
the forward CK equations (2.2a) and (2.2b) using Laplace
transforms and to sum over all possible paths that eventually
escape at x = L [19]. However, this is a nontrivial calculation,
particularly when extended to a search-and-capture model. A
more direct approach, which avoids the need to perform a sum
over paths, is to start from the backward CK equation and to
derive differential equations for various splitting probabilities
and conditional MFPTs [20]. In this section we show that a
more efficient direct method for calculating the MFPT is to
use some classical concepts from probability theory, namely,
stopping times and the strong Markov property, which are
summarized in Appendix A. This will allow us to express the
MFPT in terms of the splitting probabilities and conditional
MFPT obtained when the sticky boundary at x = 0 is replaced
by an absorbing boundary; we consider this latter problem first
(see also [20]).

A. MFPT to hit the wall at x = L with
an absorbing boundary at x = 0

We begin by calculating the conditional MFPT that the
particle hits the wall at x = L before ever reaching zero. This
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means imposing absorbing boundaries at x = 0, L,

p+(0, t ) = p−(L, t ) = 0,

and defining

Tm(y) = inf{t � 0; X (t ) = L | 0 /∈ {X (s), 0 � s � t},
X (0) = y, N (0) = m}

for 0 < y < L, with T+(L) = 0 (immediate absorption if the
particle starts out at x = L and is in the velocity state v+). The
probability flux through the end x = L is

Jm(y, t ) = v+ p+(L, t |y, m, 0).

It follows that for 0 < y < L, the probability �m(y, t ) that
the particle exits at x = L after time t , having started in state
(y, m), is

�m(y, t ) =
∫ ∞

t
Jm(y, t ′)dt ′. (2.7)

Differentiating with respect to t gives

∂�m(y, t )

∂t
= −Jm(y, t ) =

∫ ∞

t

∂Jm(y, t ′)
∂t ′ dt ′.

Hence, using the backward CK equation leads to the pair of
equations

∂�+
∂t

= v+
∂�+
∂y

− α−[�+ − �−], (2.8a)

∂�−
∂t

= −v−
∂�−
∂y

+ α+[�+ − �−]. (2.8b)

In order to determine the boundary conditions at x = 0, L note
that if the particle starts out in the negative velocity state
at x = 0, it never reaches x = L, whereas if it starts out at
x = L in the positive velocity state it is immediately absorbed.
Hence, �−(0, t ) = 0 and �+(L, t ) = 1.

We can now define the hitting or splitting probability that
the particle hits x = L before x = 0 according to πm(y) =
�m(y, 0). Since ∂t�m(y, t )|t=0 = −Jm(y, 0) = 0 for 0 < y <

L, we see that πm satisfies the steady-state equations

0 = v+
∂π+
∂y

− α−[π+ − π−], (2.9a)

0 = −v−
∂π−
∂y

+ α+[π+ − π−], (2.9b)

with boundary conditions π−(0) = 0 and π+(L) = 1. It also
follows that the probability that the particle hits x = L af-
ter time t , conditioned on not reaching zero, is P[Tm(y) >

t | Tm(y) < ∞] = �m(y, t )/�m(y, 0). Since the conditional
MFPT satisfies

ωm(y) := E[Tm(y) | Tm(y) < ∞]

= −
∫ ∞

0
t
∂P[Tm(y) > t | Tm(y) < ∞]

∂t
dt

=
∫ ∞

0

�m(y, t )

�m(y, 0)
dt,

Integrating Eqs. (2.8) with respect to t then gives

−π+ = v+
∂π+ω+

∂y
− α−[π+ω+ − π−ω−], (2.10a)

−π− = −v−
∂π−ω−

∂y
+ α+[π+ω+ − π−ω−], (2.10b)

with boundary conditions π−(0)ω−(0) = π+(L)ω+(L) = 0.
A similar analysis can be carried out for exit through the other
end x = 0. We denote the corresponding splitting probability
and conditional MFPT for escape at x = 0 by πm(y) and
ωm(y), respectively. Note that explicit expressions for the
various splitting probabilities and conditional MFPTs can be
found in Ref. [20].

B. MFPT to hit the wall at x = L with a sticky boundary at x = 0

Now suppose that we include a sticky boundary at x = 0
and impose the sticky boundary condition (2.4) (see Fig. 1).
We introduce the set of FPTs

T = inf{t � 0; X (t ) = L},
S = inf{t � 0; X (t ) = 0},
R = inf{t � 0; X (S + t ) = L},

where we have suppressed the dependence on the initial
condition (y, m). Introducing the set 
 = {S < T }, we can
decompose the MFPT to escape at x = L according to

τ := E[T ] = E[T 1
c ] + E[T 1
]

= E[T 1
c ] + E[(S + τ̃n + R)1
]. (2.11)

Here 
c is the complementary set of 
 and 1
 is an indicator
function which ensures that expectation is only taken with
respect to events that lie in 
. Note that E[T 1
c ] is the
MFPT that the particle hits x = L before ever hitting x = 0
and E[S1
] is the MFPT that the particle hits x = 0 before
ever hitting x = L. Moreover,

E[τ̃n1
] = E[τ̃n]P(
) = r−1
0 P(
),

where r0 is the nucleation rate and P(
) is the splitting proba-
bility to hit x = 0 before x = L. Incorporating the dependence
on the initial conditions, we thus find P(
) = πm(y) and

τm(y) = πm(y)ωm(y) + πm(y)

[
ωm(y) + 1

r0

]
+ E[Rm(y)1
].

We now exploit an important property of the velocity-jump
process, namely, it satisfies the strong Markov property, which
is defined in Appendix A. In terms of our current example, the
strong Markov property implies that even though the stopping
time S is random, the stochastic process X̂ (t ′) = X (t − S )
with times t ′ � 0 is identical to the original stochastic process
X (t ) with the initial condition X̂ (0) = X (S ). In particular, the
MFPT for X̂ to reach the boundary at x = L is simply τ+(0),
so

E[Rm(y)1
] = πm(y)τ+(0).

Hence,

τm(y) = πm(y)ωm(y) + πm(y)

[
ωm(y) + 1

r0
+ τ+(0)

]
.

(2.12)
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0  L

N

y

splitting
paths

=

+

FIG. 2. Schematic diagram illustrating how the unconditional
MFPT (gray arrow) for a particle to reach the boundary at x = L,
starting at position y, can be split into two conditional MFPTs. The
first involves all direct paths (black arrows) from y to the boundary
at L (i.e., paths that never hit x = 0), whereas the second involves
all paths that shrink to zero length without reaching the boundary at
x = L, spend some time in the state N , and then attempt to reach the
boundary at x = L, starting unconditionally from zero.

The unknown constant τ1(0) can be determined self-
consistently by setting y = 0 and m = +:

τ+(0) = π+(0)ω+(0) + π+(0)

[
ω+(0) + 1

r0
+ τ+(0)

]
.

Rearranging the equation and using π+(0) + π+(0) = 1
yields

τ+(0) = ω+(0) + π+(0)

π+(0)

[
ω+(0) + 1

r0

]
.

We thus recover Eqs. (43) and (44) of Ref. [20],
which completely determine the MFPT. Following [20],
the interpretation of Eq. (2.12) can be summarized
diagrammatically, as illustrated in Fig. 2.

III. SEARCH-AND-CAPTURE MODEL FOR A SINGLE
CYTONEME AND MULTIPLE TARGETS

Consider a one-dimensional array of K + 1 cells of size l
labeled by k = 0, 1, . . . , K (see Fig. 3). A source cell k = 0
projects a cytoneme that actively grows and shrinks until it
forms a contact with one of the target cells. We assume that
one end of the cytoneme is fixed at x = 0 (a site on the
source cell) and the position of the other end is taken to be
a stochastic variable X (t ), which can also be identified as the
length of the cytoneme. We take X (t ) to evolve according to
a slightly modified version of the two-state velocity process
considered in Sec. II. Let pn(x, t ) be the probability density
that at time t the end of the cytoneme is at X (t ) = x and in

K = k0 = k

source cell target cell

cytoneme

FIG. 3. One-dimensional search-and-capture model of a single
cytoneme with multiple targets. For simplicity, the cytoneme is
taken to dynamically grow and shrink along the surface of a one-
dimensional array of cells until it eventually forms a contact with the
kth cell. If the cytoneme shrinks to zero, then a new cytoneme starts
to grow, following a nucleation waiting time.

the discrete state N (t ) = n. The corresponding CK equation
is taken to be

∂ p+
∂t

= −v+
∂ p+
∂x

− [α− + α0]p+ + α+ p−, (3.1a)

∂ p−
∂t

= v−
∂ p−
∂x

+ α− p+ − [α+ + α0]p− (3.1b)

for 0 < x < L, where L = Kl . Here v+ and v− are the
average speeds of growth and shrinkage. In contrast to
the standard Dogterom-Leibler model, we also allow for
the possibility that the cytoneme can be captured by a target
cell anywhere in the domain [0, L] with a capture rate α0. For
the moment we treat this capture event as irreversible, that
is, the search-and-capture process is terminated. (When we
consider a multicytoneme model, we will need to keep track
of the subsequent retraction of the cytoneme.)

We will impose the same boundary conditions as Sec. II,
namely, the reflecting boundary condition (2.3) at x = L and
the sticky boundary condition (2.4) at x = 0. First, we assume
that if the cytoneme shrinks to zero, then a new growing
cytoneme is formed following an exponentially distributed
waiting time due to nucleation. Note that we could also
include a sticky boundary at x = L, in order to account for
the possibility that when the cytoneme hits the boundary, its
growth velocity v+ drops to zero and it sticks to the wall until
transitioning to a shrinkage state at some rate rL. Another
generalization would be to take the search domain to extend
beyond the array of cells (L > lK). The probability Pk (t ) that
the cytoneme is captured by the kth target at time t satisfies
the equation

dPk

dt
= α0

∫ kl

(k−1)l
p(x, t )dx, p = p+ + p−. (3.2)

Summing Eqs. (3.1a) and (3.1a) and then integrating with
respect to x over the interval [0, L] shows that

d

dt

∫ L

0
p(x, t )dx = −[v+ p+(x, t ) − v− p−(x, t )]|L0

− α0

∫ L

0
p(x, t )dx.

Given the boundary conditions (2.3) and (2.4), it follows that

d

dt

∫ L

0
p(x, t )dx +

N∑
k=0

dPk

dt
= 0,
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which ensures conservation of total probability over all events,
that is, ∫ L

0
p(x, t )dx +

N∑
k=0

Pk (t ) = 1. (3.3)

We would like to determine the splitting probability ρk that
the cytoneme is eventually captured by the kth target, where

ρk = lim
t→∞ Pk (t ),

K∑
k=1

ρk = 1. (3.4)

Another quantity of interest is the conditional mean first-
passage time τk for capture by the kth target.

A. Conditional MFPT to reach x = 0

We first consider the conditional MFPT for a cytoneme to
shrink back to the boundary at x = 0, having started in state
(y, m) at time t = 0 with m ∈ {+,−}. For the moment, assume
that there is no nucleation effect and impose an absorbing
boundary condition at x = 0, that is, p−(0, t ) = 0. We will
use the backward versions of Eqs. (3.1a) and (3.1b), which
are given by

∂q+
∂t

= v+
∂q+
∂y

− α−[q+ − q−] − α0q+, (3.5a)

∂q−
∂t

= −v−
∂q−
∂y

+ α+[q+ − q−] − α0q−, (3.5b)

where qm(y, t ) = p(x, n, t | y, m, 0) for a given final condi-
tion. We introduce the FPT

T 0
m (y) = inf{t � 0; X (t ) = 0, N (t )

= − | X (0) = y, N (0) = m}.
Note that T 0

m (y) = ∞ means the cytoneme never shrinks back
to the source cell before being captured by a target cell.

In order to calculate the conditional MFPT τ 0
m :=

E[T 0
m (y) | T 0

m (y) < ∞], we need to determine the correspond-
ing splitting probability. Since the probability flux through the
end x = 0 is J0

m(y, t ) = v− p(0,−, t | y, m, 0), it follows that
for 0 < y < L, the probability �0

m(y, t ) that the particle exits
at x = 0 after time t , having started in state (y, m), is

�0
m(y, t ) = P

[
t < T 0

m (y) < ∞] =
∫ ∞

t
J0

m(y, t ′)dt ′. (3.6)

Differentiating with respect to t gives

∂�0
m(y, t )

∂t
= −J0

m(y, t ) =
∫ ∞

t

∂J0
m(y, t ′)
∂t ′ dt ′.

Hence, using the backward CK equation leads to the pair of
equations

∂�0
+

∂t
= v+

∂�0
+

∂y
− α−[�0

+ − �0
−] − α0�

0
+, (3.7a)

∂�0
−

∂t
= −v−

∂�0
−

∂y
+ α+[�0

+ − �0
−] − α0�

0
−. (3.7b)

In order to determine the boundary conditions at x = 0, L,
note that if the cytoneme starts out in the shrinking phase

at x = 0, it is immediately absorbed, whereas if it starts out
at x = L in the growing phase it immediately transitions to
the shrinkage phase. Hence, �0

−(0, t ) = 1 and �0
+(L, t ) =

�0
−(L, t ).
We can now define the hitting or splitting probability that

the particle exits at x = 0 rather than being captured by a
target cell according to π0

m(y) = �0
m(y, 0). Since

∂�0
m(y, t )

∂t

∣∣∣∣
t=0

= −J0
m(y, 0) = 0

for 0 < y < L, we see that π0
m satisfies the steady-state equa-

tions

0 = v+
∂π0

+
∂y

− α−[π0
+ − π0

−] − α0π
0
+, (3.8a)

0 = −v−
∂π0

−
∂y

+ α+[π0
+ − π0

−] − α0π
0
−, (3.8b)

with boundary conditions π0
−(0) = 1 and π0

+(L) = π0
−(L). It

also follows that the probability that the cytoneme tip hits
x = 0 after time t , conditioned on not being captured by a tar-
get cell, is P[t < T 0

m (y) | T 0
m (y) < ∞] = �0

m(y, t )/�0
m(y, 0).

Hence, the conditional MFPT satisfies

ω0
m(y) := E

[
T 0

m (y) | T 0
m (y) < ∞]

= −
∫ ∞

0
t
∂P

[
t < T 0

m (y) | T 0
m (y) < ∞]

∂t
dt

=
∫ ∞

0

�0
m(y, t )

π0
m(y)

dt .

Integrating Eqs. (3.7a) and (3.7b) with respect to t then gives

−π0
+ = v+

∂π0
+ω0

+
∂y

− α−[π0
+ω0

+ − π0
−ω0

−] − α0π
0
+ω0

+,

(3.9a)

−π0
− = −v−

∂π0
−ω0

−
∂y

+ α+[π0
+ω0

+ − π0
−ω0

−] − α0π
0
−ω0

−,

(3.9b)

with boundary conditions π0
−(0)ω0

−(0) = 0 and
π0

+(L)ω0
+(L) = π0

−(L)ω0
−(L).

B. Conditional MFPT to be captured
by a target before reaching x = 0

Next we consider the MFPT for the cytoneme tip to be
captured by the kth target cell while in the growing phase,
having started in state (y, m) at time t = 0 and m ∈ {+,−}.
It is convenient to introduce a new stochastic variable K (t ) ∈
{0, 1, . . . , K} with K (t ) = k, 1 � k � K , indicating that the
cytoneme is attached to the kth target cell at time t and K (t ) =
0 indicating that the cytoneme is not attached to any target
cell. Following a similar sequence of steps as the previous
case, we first introduce the FPT

T k
m (y) = inf{t � 0; (k − 1)l < X (t ) � kl, K (t )

= k | X (0) = y, N (0) = m}.
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The probability flux into the kth target cell is

Jk
m(y, t ) = α0

∫ kl

(k−1)l
p(x, n, t | y, m, 0)dx,

so

�k
m(y, t ) := P

[
t < T k

m (y) < ∞] =
∫ ∞

t
Jk

m(y, t ′)dt ′,

where �k
m(y, t ) is the probability that the cytoneme tip is

captured by the kth target cell after time t , having started in
state (y, m). Integrating Eqs. (3.5a) and (3.5b) over the interval
(k − 1)l < x � kl yields equations with the same structure as
(3.7a) and (3.7b):

∂�k
+

∂t
= v+

∂�k
+

∂y
− α−[�k

+ − �k
−] − α0�

k
+, (3.10a)

∂�k
−

∂t
= −v−

∂�k
−

∂y
+ α+[�k

+ − �k
−] − α0�

k
−. (3.10b)

The boundary conditions at x = 0, L can be determined using
arguments similar to the previous example. The main differ-
ence is that if the cytoneme starts out in the shrinkage phase
at x = 0, then it is never captured by a target cell. Hence,
�k

−(0, t ) = 0 and �k
+(L, t ) = �k

−(L, t ).
The splitting probability that the cytoneme tip is captured

by the kth target cell rather than exiting through x = 0 or
being captured by another target cell is given by π k

m(y) =
�k

m(y, 0). Since

∂�k
m(y, t )

∂t

∣∣∣∣
t=0

= −Jk
m(y, 0) = −α0χk (y),

where χk (y) is the indicator function χk (y) = 1 if (k − 1)l <

y � kl and zero otherwise, it follows that π k
m satisfies

−α0χk (y) = v+
∂π k

+
∂y

− α−[π k
+ − π k

−] − α0π
k
+, (3.11a)

−α0χk (y) = −v−
∂π k

−
∂y

+ α+[π k
+ − π k

−] − α0π
k
−, (3.11b)

with boundary conditions π k
−(0) = 0 and π k

+(L) = π k
−(L).

The conditional probability that the cytoneme tip hits the
kth target cell after time t is P[t < T k

m (y) | T k
m (y) < ∞] =

�k
m(y, t )/�k

m(y, 0). Hence, the conditional MFPT satisfies

ωk
m(y) := E

[
T k

m (y) | T k
m (y) < ∞] =

∫ ∞

0

�k
m(y, t )

π k
m(y)

dt .

Integrating Eqs. (3.11a) and (3.11b) with respect to t yields
equations identical in form to Eqs. (3.9a) and (3.9b),

−π k
+ = v+

∂π k
+ωk

+
∂y

− α−
[
π k

+ωk
+ − π k

−ωk
−
] − α0π

k
+ωk

+,

(3.12a)

−π k
− = −v−

∂π k
−ωk

−
∂y

+ α+
[
π k

+ωk
+ − π k

−ωk
−
] − α0π

k
−ωk

−,

(3.12b)

together with the boundary conditions π k
−(0)ωk

−(0) = 0 and
π k

+(L)ωk
+(L) = π k

−(L)ωk
−(L).

C. Conditional MFPT to be captured
by a target with nucleation at x = 0

Now suppose that we include a nucleating state at x = 0
and impose the boundary conditions (2.3) and (2.4). We also
assume that the cytoneme starts at y = 0 in the growing phase
m = 1 and is eventually captured by the kth cytoneme with k
fixed. Consider the set of FPTs

Tk = inf{t > 0; (k − 1)l < X (t ) � kl, N (t ) = 0},
T0 = inf{t > 0; X (t ) = 0, N (t ) = −},
Rk = inf{t > 0; (k − 1)l < X (T0 + t ) � kl, N (T0 + t ) = 0}
for k = 1, 2, . . . , K , where we have suppressed the explicit
dependence on the initial condition (y,+). Next we introduce
the sets


k = {Tk < ∞}, 
k = {T0 < Tk < ∞} ⊂ 
k .

That is, 
k is the set of all events for which the cytoneme is
eventually captured by the kth target cell and 
k is the subset
of events in 
k for which the cytoneme nucleates at least once.
It immediately follows that


k\
k = {Tk < T0 = ∞}.
In other words, 
k\
k is the set of all events for which
the cytoneme is captured by the kth target cell without any
nucleation.

In order to deal with the sticky boundary at x = 0, we
will proceed along lines similar to Sec. II. First, the splitting
probability ρk (y) of capture by the kth cell, starting at position
y in the growth phase, can be decomposed as

ρk (y) := P[
k] = P[
k\
k] + P[
k] = π k
+(y) + P[
k].

(3.13)

Moreover,

P[
k] = P[T0 < ∞]P[Rk < ∞] = π0
+(y)P[Rk < ∞].

We are assuming that the nucleation waiting time is finite. The
strong Markov property means that P[Rk < ∞] = ρk (0), so
Eq. (3.13) becomes

ρk (0) = π k
+(0) + π0

+(0)ρk (0).

Rearranging, we find that

ρk (0) = π k
+(0)

1 − π0+(0)
. (3.14)

Second, we introduce the MFPT zk (0) := E[Tk1
k ], which we
decompose as

zk (0) = E[Tk1
k\
k ] + E[Tk1
k ]

= π k
+(0)ωk

+(0) + E[(T0 + T̂ + Rk )1
k ]

= π k
+(0)ωk

+(0) + π0
+(0)ρk (0)

[
ω0

+(0) + 1

r0

]
+E[Rk1
k ], (3.15)

where r0 is the rate of nucleation. From the strong Markov
property, the conditional MFPT for X̂ (t ) to be captured by the
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FIG. 4. Splitting probabilities of the search-and-capture model for a single cytoneme. (a) and (b) Plots of ρk (0) against k [see Eq. (3.14)]
for various dimensionless growth and shrinkage rates v±/α0L. (c) and (d) Corresponding plots for the relative transition rates α±/α0. The
parameter values are as follows: v±/α0L = 0.2, α±/α0 = 1, and K = 40.

kth target is zk (0)/ρk (0), so

zk (0) = π k
+(0)ωk

+(0) + π0
+(0)ρk (0)

[
ω0

+(0) + 1

r0
+ zk (0)

ρk (0)

]
.

(3.16)

Rearranging the above equation and using Eq. (3.14) yields

zk (0) = ρk (0)

[[[
ωk

+(0) + π0
+(0)

1 − π0+(0)

[
ω0

+(0) + 1

r0

]]]]
. (3.17)

The corresponding conditional MFPT is then τk (0) =
zk (0)/ρk (0).

In Figs. 4 and 5 we show example plots of the splitting
probability and conditional MFPT as a function of the target
cell index k. One major observation is that both statistical
quantities are quite robust with respect to changes in the
dimensionless growth and shrinkage rates v±/α0L, and the
relative transition rates α±/α0. There is, however, a greater
sensitivity to variations in v+/α0L and α−/α0. Note that
parameters are chosen to be consistent with experimentally
measured values obtained in studies of cytoneme-mediated
transport of Wnt morphogens zebrafish [8] and SHH in chick-
ens [4]. Changes in the length of cytonemes are of the order
0.1 μm/s and contacts are made every 102–103 s. Taking a

typical cytoneme length of L ∼ 100 μm, we obtain the range
for the dimensionless quantities v±/α0L ∼ 0.1–1.

IV. MULTIPLE SEARCH-AND-CAPTURE EVENTS

In Sec. III we focused on the search and capture of a
single cytoneme by a target cell, without specifying how mor-
phogen is delivered to the cell once contact has been made.
Motivated by the transport mechanism of Wnt in vertebrates
[9], we will assume that a certain amount of morphogen
(presumably loaded in vesicles) is located at the tip of the

cytoneme, which is delivered to the target cell once contact
is established. We will refer to this as a morphogen burst.
After some fixed delay, the cytoneme then retracts to the
source cell (see Fig. 6). We wish to analyze how multiple
rounds of search-and-capture, morphogen delivery, cytoneme
retraction, and nucleation events lead to the formation of a
morphogen gradient. For simplicity, we will take the amount
of morphogen transported by each nucleated cytoneme to be
of fixed size d . (One could relax this assumption by modeling
the loading of morphogens at the tip of a nucleated cytoneme
as a stochastic process so that d is itself a random variable.)

Following Sec. III, if a cytoneme starts at x = 0 in the
growth phase, then the probability that a single search-
and-capture event delivers morphogen to the kth cell is
ρk (0) and the conditional MFPT for the event is τk (0) =
zk (0)/ρk (0). The other K − 1 target cells do not receive
any morphogen. Now suppose that we have multiple search-
and-capture events, under the simplifying assumptions that a
captured cytoneme delivers its cargo without any delay and
then retracts to x = 0 at fixed time τd , which is taken to be
independent of the location of the target cell. (One could relax
this assumption by taking τd to be length dependent.) Let
n = 1, . . . label the nth burst event and denote the target cell
that receives the jth burst of morphogen by kn. If Tn is the time
of the nth burst, then

Tn = τd + Tkn + Tn−1, n � 1. (4.1)

The corresponding interarrival times are

�n = τd + Tkn , n � 1.

In order to simplify the notation, we assume that the first
round of search and capture starts with a cytoneme retracting
to x = 0. Finally, given an interarrival time �, we denote the
identity of the cell that captures the cytoneme by K(�).
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FIG. 5. Conditional MFPTs of the search-and-capture model for a single cytoneme and various parameters. (a) and (b) Plots of α0τk (0)
against k [see Eq. (3.17)] for various dimensionless growth and shrinkage rates v±/α0L. Also shown are the corresponding plots for the relative
transition rates (c) α+/α0, (d) α−/α0, and (e) r0/α0. The parameter values are the same as in Fig. 4.

Consider a specific target cell k = k. The cell will receive
a sequence of morphogen bursts of size dn at times Tn with
dn = 0 if kn �= k and dn = d if kn = k. We also include the
effects of degradation, that is, each morphogen delivered to
the target cell degrades at a rate κ . We would like to determine
the steady-state amount of morphogen in the long-time limit.
We will proceed by reformulating the multiple-search-and-
capture model as a queuing process (see Fig. 7), analogous
to the study of translational bursting in gene networks [25].

Queuing theory concerns the mathematical analysis of
waiting lines formed by customers randomly arriving at some
service station and staying in the system until they receive
service from a group of servers. Different types of queuing

(i) random search

(ii) nucleate

(iii) deliver and retract

morphogen burst

time

target cell k 

FIG. 6. Stages of a single search-and-capture process culminat-
ing in delivery of a burst of morphogen to the kth target cell.
(i) Alternating periods of growth and shrinkage. (ii) Nucleation
whenever the cytoneme shrinks to zero. (iii) When a cytoneme is
captured by a target cell, it delivers a morphogen burst and then
retracts to the nucleation site.

process are defined in terms of (i) the stochastic process under-
lying the arrival of customers, (ii) the distribution of the num-
ber of customers (batches) in each arrival, (iii) the stochastic
process underlying the departure of customers (service-time
distribution), and (iv) the number of servers. The above model
of morphogen bursting can be mapped to a queuing process as
follows: Individual morphogens are analogous to customers,

(i) arriving
customers

(ii) queue

(iii) exiting
customers

server

(a)

(i) morphogen bursts

(b)

(ii) accumulation of
morphogen in cell

(iii) degradation

FIG. 7. Diagram illustrating the mapping between queuing the-
ory and morphogen bursting. (a) Example of a single-server queue.
(b) Morphogen bursting. Multiple search-and-capture events of a
cytoneme generate a sequence of morphogen bursts within a target
cell that is analogous to the arrival of customers in the queuing
model. This results in the accumulation of morphogen within the cell,
which is the analog of a queue. Degradation corresponds to exiting
of customers after being serviced by an infinite number of servers.
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morphogen bursts correspond to customers arriving in batches
X (t ), and the degradation of morphogens is the analog of
customers exiting the system after being serviced. Thus, the
waiting-time density for morphogen degradation is the analog
of the service-time distribution. Finally, since the morphogens
are degraded independently of each other, the effective num-
ber of servers in the corresponding queuing model is infinite,
that is, the presence of other customers does not affect the
service time of an individual customer.

The particular queuing model that maps to the model of
morphogen bursting is the G/M/∞ system. Here the symbol
G denotes a general interarrival time and target cell distribu-
tion F (t, k) for the cytoneme tip search-and-capture process.
(In this section t denotes a waiting time.) The symbol M
stands for a Markovian or exponential service-time distri-
bution H (t ) = 1 − e−κt for morphogen degradation and ∞
denotes infinite servers. Before proceeding we need to specify
how F (t, k) relates to the quantities calculated in Sec. III. We
can write

F (t, k) = P[� < t,K(�) = k]

= P[� < t |K(�) = k]P[K(�) = k]

= ρk (0)
∫ t

0
fk (τ )dτ, (4.2)

where fk (τ ) is the FPT density for the conditional MFPT of a
single search-and-capture event that terminates at the kth cell.
In particular, ∫ ∞

0
τ fk (τ )dτ = τk (0) + τd . (4.3)

A. Moments of the G/M/∞ queuing model

Let N (t ) be the number of busy servers at time t . This
corresponds to the number of morphogens in the labeled cell k̄
that have not yet degraded. In terms of the sequence of arrival
times Tn and cell identities kn, we can write

N (t ) =
∑

n,0�Tn�t

χ (t − Tn)δknk̄, (4.4)

where

χ (t − Tn) =
d∑

i=1

I (t − Tn, Sni ) (4.5)

for

I (t − Tn, Sni ) =
{

1 if t − Tn � Sni

0 if t − Tn > Sni.
(4.6)

Here Sni, i = 1, . . ., is the service time of the ith member of a
burst delivered to the cell k̄.

Introduce the generating function

G(z, t ) =
∞∑

l=0

zlP[N (t ) = l] (4.7)

and the binomial moments

Br (t ) =
∞∑

l=r

l!

(l − r)!r!
P[N (t ) = l], r = 1, 2, . . . . (4.8)

Suppose that the system is empty at time t = 0. We now
derive an integral equation for the generating function G(z, t ).
Conditioning the first arrival time by setting T1 = y, we have

N (t ) =
{
χ (t − y)δk1,k̄ + N∗(t − y) if y � t

0 if y > t,

where N∗(t ) has the same distribution as N (t ). Note that χ (t −
y)δk1,k̄ and N∗(t − y) are independent. Moreover,

P[I (t − y, S1i ) = j] = [1 − H (t − y)]δ j,1 + H (t − y)δ j,0,

so it follows that∑
j=0,1

z jP[I (t − y, S1i ) = j] = z + (1 − z)H (t − y).

Since I (t − y, S1i ) for i = 1, 2, . . . , d are independent and
identically distributed, the total expectation theorem yields

E[zχ (t−T1 )δk1 ,k̄ ] = E
[[[
E[zχ (t−T1 )δk1 ,k̄ | T1 = y]

]]]
= E

[
b∏

i=1

E[zδk1,k̄ I (t−y,S1i )]

]

=
∫ ∞

0
[z + (1 − z)H (t − y)]d dF (y, k̄).

Another application of the total expectation theorem gives

G(z, t ) = E[zN (t )] = E
[[[
E[zN (t ) | T1 = y]

]]]
=

K∑
k=1

∫ ∞

t
dF (y, k)

+
∫ t

0
[z + (1 − z)H (t − y)]d G(z, t − y)dF (y, k̄)

+
∑
k �=k̄

∫ t

0
G(z, t − y)dF (y, k). (4.9)

One can now obtain an iterative equation for the binomial
moments by differentiating Eq. (4.9) with respect to z and
using

Br (t ) = 1

r!

drG(z, t )

dzr

∣∣∣∣
z=1

.

Since

dr

dzr
[z + (1 − z)H (t − y)]d

∣∣∣∣
z=1

=
{

d!
(d − r)! [1 − H (t − y)]r if d � r

0 if d < r,

we obtain the integral equation

Br (t ) =
K∑

k=1

∫ t

0
Br (t − y)dF (y, k) +

r∑
l=1

(
d
l

)

×
∫ t

0
Br−l (t − y)[1 − H (t − y)]l AldF (y, k̄),
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FIG. 8. Distribution of morphogens for multiple search-and-capture events and various target cells. (a) Sample paths (solid lines) and the
steady-state mean (dashed lines) of N (t ) for k = 1 (blue top line), k = 5 (orange middle line), and k = 10 (yellow bottom line). (b) Plot
of 〈N〉 as a function of k obtained from Eq. (4.14) (solid curve), which is indistinguishable from the corresponding curve obtained using
Monte Carlo simulations. The gray shaded region indicates the standard deviation of N (t ) as a function of k. The parameter values of a single
search-and-capture event are the same as in Fig. 4. Additional parameters of the multiple search-and-capture model are as follows: d = 10,
κ/α0 = 0.001, r0/α0 = 1, and τd = 0.

where Al = 1 for l � d and Al = 0 for l > d . This can be
written in the more compact form

Br (t ) =
K∑

k=1

∫ t

0
Br (t − y)dF (y, k) +

∫ t

0
Hr (t − y)dF (y, k̄),

(4.10)

where

Hr (t ) =
r∑

l=1

(
d

l

)
AlBr−l (t )e−lκt .

In order to obtain the steady-state binomial moments, we
Laplace transform Eq. (4.10) after making the substitution
dF (y, k) = ρk (0) fk (y)dy,

B̂r (s) = B̂r (s)
K∑

k=1

ρk (0) f̂k (s) + Ĥr (s)ρk̄ (0) f̂k̄ (s),

which can be rearranged to give

B̂r (s) = Ĥr (s)ρk̄ (0) f̂k̄ (s)

1 − ∑K
k=1 ρk (0) f̂k (s)

= ρk̄ (0) f̂k̄ (s)

1 − ∑K
k=1 ρk (0) f̂k (s)

×
r∑

l=1

(
d

l

)
AlB̂r−l (s + lκ ). (4.11)

Multiplying both sides by s and taking the limit s → 0+ yields

B∗
r := lim

t→∞ Br (t ) = lim
s→0+

sB̂r (s)

= lim
s→0+

sρk̄ (0) f̂k̄ (s)

1 − ∑K
k=1 ρk (0) f̂k (s)

r∑
l=1

(
d

l

)
AlB̂r−l (lκ ).

Using the l’Hôspital rule with respect to s and assuming that
the moments of F (t, k) are finite yields

λk̄ := lim
s→0+

sρk̄ (0) f̂k̄ (s)

1 − ∑K
k=1 ρk (0) f̂k (s)

= ρk̄ (0)∑K
k=1 zk (0)

. (4.12)

Hence, our final result is

B∗
r = λk̄

r∑
l=1

(
d

l

)
AlB̂r−l (lκ ). (4.13)

Equations (4.11) and (4.13) completely determine the
steady-state binomial moments. In particular, since B0(t ) = 1
and B̂0(s) = 1/s, the mean number of morphogen in the target
cell k̄ is

B∗
1 ≡ 〈N〉 = λk̄d

κ
. (4.14)

Hence, we can interpret λk̄ as the mean rate at which a mor-
phogen burst is delivered to the given target cell. Similarly,

B∗
2 ≡ 1

2
(〈N2〉 − 〈N〉) = 1

λ

(
B̂1(κ )d + A2d (d − 1)

4κ

)

= d2λk̄

4κ

(
2ρk̄ (0) f̂k̄ (κ )

1 − ∑K
k=1 ρk (0) f̂k (κ )

+ A2

)
− dA2λk̄

4κ
,

(4.15)

which implies that the variance of the number of morphogens
is a quadratic function of d ,

〈N2〉 − 〈N〉2 = 2B∗
2 + B∗

1 − (B∗
1 )2

= C2d2 + C1d, (4.16)

where

C1 = (2 − A2)λk̄

2κ
, (4.17)

C2 = λk̄

2κ

(
2ρk̄ (0) f̂k̄ (κ )

1 − ∑K
k=1 ρk (0) f̂k (κ )

+ A2

)
− λ2

k̄

κ22
. (4.18)

Note that the coefficients are independent of d . The corre-
sponding coefficient of variation (CV) satisfies

CV2 = C̃2 + C̃1

d
, (4.19)

where C̃i = κ2Ci/λ
2
k̄

for i = 1, 2, and is an increasing function
of κ .
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FIG. 9. Coefficient of variation of the steady-state distribution of N (t ). (a) and (b) Plots of CV against k for various dimensionless growth
and shrinkage rates v±/α0L. Also shown are the corresponding plots for the relative transition rates (c) α+/α0, (d) α−/α0, and (e) r0/α0. The
CVs are calculated by performing Monte Carlo simulations over 50 trials. The parameters are the same as in Fig. 8.

In Figs. 8 and 9 we present some example plots of the
steady-state mean and variance of the number of morphogens
in the array of target cells. Stochastic realizations of N (t ) gen-
erate a noisy morphogen gradient. This noise is determined by
the steady-state variance. In a similar fashion to the mean, the
CV is more sensitive to changes in v+/α0L and α−/α0.

B. Multiple independent cytonemes and optimal
morphogen gradient amplification

Now suppose that the source cell has M independent nucle-
ation sites so that multiple cytonemes deliver morphogens in-
dependently. Let Nm(t ) be the number of morphogens present
in the labeled target cell at time t that were delivered by the
mth cytoneme and set

N� (t ) =
M∑

m=1

Nm(t ).

Since Nm(t ) are independent identically distributed random
variables, we have the steady-state mean

〈N�〉 = M〈N〉 = Mdλk̄

κ
(4.20)

and variance

σ 2[N�] = Mσ 2[N] = Md (C2d + C1). (4.21)

Note that the steady-state mean 〈N�〉 depends on the product
Md . Hence, for a given mean, one can reduce the variance by
decreasing d and increasing M such that Md is fixed. That is,
more frequent smaller bursts generate a morphogen gradient
with a smaller variance. This is illustrated in Fig. 10.

V. SEARCH-AND-CAPTURE MODEL OF
CHROMOSOME-MICROTUBULE ATTACHMENT

Having developed an alternative, probabilistic method for
analyzing first-passage-time problems with sticky boundaries
in Sec. II, which we applied to our model of cytoneme-
based morphogenesis in Sec. III, we now show how this
method can also be used to simplify previous studies of
search-and-capture models in cell mitosis. Although the lat-
ter are completely unrelated to models of cytoneme-based
morphogenesis, they share some mathematical features which
we highlight in this section. A crucial step in prometaphase,
which is one of the major stages of cell mitosis, is the at-
tachment of each chromosome to a microtubule of the mitotic
spindle, which is the macromolecular structure responsible for
segregating chromosomes to two daughter cells. According
to the search-and-capture model of Kirschner and Mitchison
[15], the underlying mechanism involves the nucleation of mi-

(i) more cytonemes

(ii) larger burst size

target cell k 
time-dependent morhpogen level

FIG. 10. Diagram illustrating the steady-state variance of the
morphogen level. The variance is smaller for multiple cytonemes and
a small burst size compared to a single cytoneme with a large burst
size.
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FIG. 11. Schematic diagram of the search-and-capture model
based on microtubule dynamic instabilities. (a) During prometaphase
microtubules randomly probe the cellular domain by alternating
between growth and shrinkage phases until they capture the kine-
tochores. (b) At the end of prometaphase, all the kinetochores are
attached to microtubules, one from each pole of the mitotic spindle,
and are co-aligned along the midplane. (c) Illustration of the search
cone of a nucleation site on one of the centrosomes of a cell, with the
cell treated as an ellipsoid. A target falls within the search cone at a
distance l from the site.

crotubules in random directions, which then grow and shrink
dynamically in order to search space and eventually encounter
a target kinetochore [see Figs. 11(a) and 11(b)]. The first
theoretical study of the search-and-capture model was carried
out by Holy and Leibler [35], which was then substantially
extended in more recent work by Wollman et al. [16]. The
latter authors consider microtubules nucleating from two cen-
trosomes, which could be located at the two focal points of an
ellipsoid representing the cell shape [see Fig. 11(c)]. Pairs of
chromosomes are linked together by kinetochores, which are
the fixed targets of searching microtubules, and are distributed
randomly around the equatorial plane. Each centrosome has
hundreds of nucleating sites from which newly formed micro-
tubules grow and shrink according to the Dogterom-Leibler
model. It is assumed that microtubules from each nucleating
site grow within a certain solid angle �
, which defines a
search cone for the given nucleation site. It follows that any
target falling within the search cone will subtend a solid angle
at a point on the centrosome, where a is the cross-sectional
area of the target and l is its distance from the centrosome. It
follows that a microtubule originating from the nucleation site
has a probability pc = a/l2�
 of nucleating in the correct
direction towards the target.

Wollman et al. [16] estimated the MFPT for a single
target to be captured by microtubules nucleating from a single
site under the simplifying assumption that the rescue rate
following each catastrophe is zero (α = 0). (This simpli-
fication avoided the need to deal with sticky boundaries.)
A more detailed mathematical analysis of first-passage-time
problems in the search-and-capture model has been developed
by Gopalakrishnan and Govindan [19]. They allow for micro-
tubule rescue, which means that one has to keep track of both
nucleation events and collisions of a growing microtubule
with the cell wall. This involves two separate two sticky
boundary conditions. The MFPT to capture a target was orig-
inally analyzed using forward methods [19] and subsequently
solved more simply using backward methods [20]. Here we
show how the analysis can be efficiently performed using the
same probabilistic methods as used to study the cytoneme
search-and-capture model.

Suppose that a microtubule is nucleated at a rate rn from
a centrosome in an arbitrary direction that lies in a cone
subtending a solid angle �
. As in the model of Wollman
et al. [16], if the target is located at a distance d from the
centrosome and has a cross-sectional area a, then it subtends
a solid angle �c = a/d2 with respect to the centrosome.
Hence, the probability of being nucleated in a direction that
finds the target is pc = �
c/�
. We will assume that if the
microtubule nucleates outside the target cone, which occurs
with probability 1 − pc, then it can potentially grow until it
hits a cell boundary at a distance L from the centrosome.
(For simplicity, the search cone solid angle �
 is taken
to be sufficiently small so that the relevant region of the
cell wall is approximately equidistant from the nucleation
site.) Analogous to Fig. 1, whenever the microtubule hits the
boundary at x = L, its growth velocity v+ drops to zero and
it sticks to the wall until it transitions to a shrinkage state at a
rate rb.

Following [19], we decompose the total microtubule state
space � as

� = N ∪ Ab ∪ B ∪ Ac,

where N is the nucleation state, B is the state of being attached
to the cell boundary, Ab are the active states in which the
microtubule is outside the target cone and has length X (t ) ∈
(0, L), and Ac are the active states in which the microtubule
is inside the target cone and has length X (t ) ∈ (0, l ). Let S(t )
denote the state of the microtubule at time t . If S(t ) ∈ Ab then
X (t ) evolves according to the Dogterom-Leibler model with
sticky boundary conditions at x = 0, L. On the other hand,
if S(t ) ∈ Ac then X (t ) evolves according to the Dogterom-
Leibler model with a sticky boundary condition at x = 0 and
an absorbing boundary condition at x = l . If S(t ) = N then
the microtubule transitions to a growing state, which either
belongs to Ab with probability 1 − pc or belongs to Ac with
probability pc. The time τ̃n spent in state N is exponentially
distributed with mean time r−1

n . Similarly, the time τ̃b spent
in state B is exponentially distributed with mean time r−1

b . A
schematic diagram of the search and capture model previously
analyzed in Refs. [19,20] is shown in Fig. 12.

Generalizing the analysis of Sec. III B, we define the
following set of FPTs, assuming that the microtubule starts
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FIG. 12. Schematic illustration of the search-and-capture model
analyzed in Refs. [19,20].

out in the nucleation state:

T = inf{t � 0; X (t ) = l},
Tb = inf{t � 0; X (t + τ̃n) = l | S(τ̃n) ∈ Ab},
Tc = inf{t � 0; X (t + τ̃n) = l | S(τ̃n) ∈ Ac},
Sb = inf{t � 0; X (t + τ̃n) = 0 | S(τ̃n) ∈ Ab},
Sc = inf{t � 0; X (t + τ̃n) = 0 | S(τ̃n) ∈ Ac},
TL = inf{t � 0; X (t + τ̃n) = L | S(τ̃n) ∈ Ab},
RL = inf{t � 0; X (t + τ̃b + TL ) = 0}.

(5.1)

We also introduce the splitting probabilities and conditional
MFPTs for the Dogterom-Leibler model on the interval [0, L]
with absorbing boundary conditions at both ends (see Sec. III).
That is, πL

m(y) and πL
m(y) are the splitting probabilities for

being absorbed at the ends x = L and x = 0, respectively,
given the initial length y and initial growth or shrinkage state
m = ±. The corresponding conditional MFPTs are denoted by
ωL

m(y) and ωL
m(y). (We make the length of the domain explicit.)

We immediately note that

τ := E[T ] = (1 − pc)E[τ̃n + Tb] + pcE[τ̃n + Tc]

= r−1
n + (1 − pc)E[Tb] + pcE[Tc]. (5.2)

Introducing the set


b = {TL < Sb},
we can perform the decomposition

τb := E[Tb] = E
[
Tb1
c

b

] + E[Tb1
b]

= E
[
Tb1
c

b

] + E[(TL + τ̃b + RL + T )1
b].

Using the strong Markov property, we have

τb = πL
+(0)[ωL

+(0) + τ ] + πL
+(0)

[
ωL

+(0) + 1

rb
+ τ

]

+E
[
RL1
b

] = τ + τL, (5.3)

with

τL := πL
+(0)ωL

+(0) + πL
+(0)

[
ωL

+(0) + 1

rb
+ τ̂L

]
(5.4)

and τ̂L := E[RL1
b]. In order to evaluate τ̂L, note that the
microtubule exits the state B in the shrinking phase and either
reaches the state N without returning to B, which occurs with
probability πL

−(L), or returns to B first with probability πL
−(L).

In the latter case it sticks to the boundary for a time τ̃b before
exiting again. Thus,

τ̂L := E
[
RL1
b

]
= πL

−(L)ωL
−(L) + πL

−(L)
[
ωL

−(L) + r−1
b + τ̂L

]
. (5.5)

The final step is to evaluate E[Tc]. This is similar to the
analysis of τL. Exiting the state N in the growing phase and
within the target search cone, the microtubule either reaches
the target at x = l without first returning to N , which occurs
with probability π l

1(0), or returns to N first with probability
π+ = 1l (0). In the latter case the search process restarts.
Thus,

τc := E[Tc] = π l
1(0)ωl

+(0) + π l
+(0)[ωl

+(0) + τ ]. (5.6)

Combining our various results gives the implicit equation for
the MFPT τ ,

τ = r−1
n + pc{π l

+(0)ωl
+(0) + π l

+(0)[ωl
+(0) + τ ]}

+ (1 − pc)(τL + τ ), (5.7)

with τL determined from Eqs. (5.4) and (5.5). Rearranging
Eq. (5.7) yields the final explicit result

pcπ
l
+(0)τ = r−1

n + pc[π l
+(0)ωl

+(0) + π l
+(0)ωl

+(0)]

+ (1 − pc)τL. (5.8)

This recovers Eq. (67) of Ref. [20] and expresses the MFPT
in terms of quantities that can be explicitly calculated. One
advantage of our probabilistic approach is the small number
of steps involved in deriving the formula for τ . However, it
does require identifying the appropriate set of stopping times
as given by Eqs. (5.1).

VI. DISCUSSION

In this paper we developed a search-and-capture model
of cytoneme-based morphogenesis, in which nucleating cy-
tonemes from a source cell dynamically grow and shrink
along the surface of a one-dimensional array of target cells
until making contact with one of the target cells. We calcu-
lated the splitting probabilities and the conditional MFPTs of
a single cytoneme delivering a burst of morphogen to a target
cell and then used this to determine the steady-state mean and
variance of the morphogen gradient in the case of multiple
search-and-capture events. Using the result that the steady-
state mean number of morphogens delivered to a target cell
is given by Eq. (4.20) and assuming that the queuing process
reaches steady-state faster than degradation, our model can
be mapped onto the phenomenological dynamical model of
Ref. [11]. That is, if uk (t ) is the mean morphogen level in the
kth target cell at time t , then we take

duk (t )

dt
= Md∑K

l=1 zl

ρk − κuk (t ). (6.1)

Here κ is the degradation rate of morphogen in a target
cell and the first term on the right-hand side is the effective
flux into the kth target cell. It follows that the effective
accumulation time to the steady-state mean morphogen level
is 1/κ . Recall, however, that the CV is an increasing function
of κ , suggesting that there may be some intermediate range of
degradation rates that allow robust spatial pattern formation in
a sufficiently short time.

Two more specific results emerged from our analysis.
First, the search-and-capture model is robust with respect
to changes in the dimensionless growth and shrinkage rates
v±/α0L and the relative transition rates α±/α0. Second, given
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a fixed steady-state mean morphogen distribution, one can
reduce the variance by increasing the number of cytonemes
and reducing the load of each cytoneme. This predicts that
for robust morphogen gradient formation, it is preferable for a
source cell to extend a large number of cytonemes with small
morphogen loads rather than a few cytonemes with larger
loads.

One simplifying assumption of our search-and-capture
model is that the retraction time after delivery τd is taken
to be independent of the location of a target cell. If the
retraction speed is constant, then we expect τd to be inversely
proportional to the distance between the nucleation site and
the target cell. This space-dependent time delay could modify
the steady-state mean and variance of the morphogen gradient.
A second assumption is that the amount of morphogen in
each cytoneme tip is the same (fixed burst size). However,
each time a cytoneme shrinks back to the source cell and
subsequently renucleates, it is possible that morphogen is
exchanged with the source cell so that the amount at the
tip changes. This suggests treating the burst size as another
random variable, which means that one has to solve a more
general queueing model with correlated interarrival times and
burst size distributions.

Given the complexity of the analysis, we focused on
steady-state solutions of the queuing process in this paper.
As in the case of diffusion-based models [36,37], it is also
important to consider the dynamics of gradient formation in
order to address the question of whether or not the time to
form the morphogen gradient is compatible with the time re-
quired for cell differentiation. For example, the latter process
involves receptors measuring the local value of the morphogen
concentration and translating this information into a corre-
sponding change in the activation of its signaling pathways
and gene expression. If gradient formation is relatively fast,
then cell fate is determined by the steady-state value of the
local morphogen concentration; otherwise the cell has to in-
terpret a time-varying morphogen concentration. In our previ-
ous work on cytoneme-based morphogenesis in invertebrates
[12,13], which involves a different mechanism, we calculated
the analog of the accumulation time considered in diffusion-
based mechanisms and showed that gradient formation was
sufficiently fast. In future work we hope to develop a similar
theory for the full search-and-capture model.

Finally note that, for simplicity, we developed our the-
ory of cytoneme-based morphogenesis by considering a one-
dimensional search-and-capture model. However, during em-
bryogenesis, cytonemes typically grow and shrink in a higher-
dimensional domain [9] rather than a one-dimensional ar-
ray of cells. One such example is the Wg gradient in the
Drosophila wing disk. Although we expect the search-and-
capture model to form a stable morphogen gradient in higher
dimensions, it is likely to take more time. This could be
mitigated by the presence of a chemoattractant gradient that
guides the higher-dimensional search process. Indeed, the
latter mechanism appears to play a role in the search and
capture of kinetochores by microtubules during cell mitosis,
which is a three-dimensional process. Using a combination
of mathematical analysis and computer simulations, Wollman
et al. [16] have shown that unbiased search and capture for
multiple chromosomes is not efficient enough to account

for the duration of the prometaphase. On the other hand, if
there exists a spatial gradient in some stabilizing factor that
biases microtubule dynamics toward the chromosomes, then
one obtains more realistic capture times [16]. One candidate
molecule for acting as a stabilizing factor is RanGTP [38],
which is also known to regulate actin polymerization [10].
In light of the possible role of RanGTP in cell mitosis, one
prediction of our cytoneme-based model is that there exists an
analogous chemoattractant present during embryogenesis.
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APPENDIX A: STOPPING TIMES AND THE STRONG
MARKOV PROPERTY

In this Appendix we present the basic definitions and
results from probability theory used in the paper.

1. Probability spaces and σ algebras

Consider a set of possible outcomes, which is denoted by
the sample space 
. An event is defined to be a subset A of

, which is some collection of single outcomes or elementary
events ω ∈ 
. In general, not all subsets of 
 can be treated
as events, so the set of events forms a subcollection F of
all subsets. Within a probabilistic setting, this subcollection
is required to be a so-called σ -algebra, with the following
properties: (i) ∅ ∈ F , (ii) if A1, A2, . . . ,∈ F then ∪∞

i=1Ai ∈
F , and (iii) if A ∈ F then 
\A ∈ F . It can be shown that
σ -algebras are closed under the operation of taking countable
intersections. A probability measure P on (
,F ) is a function
P : F → [0, 1] with (a) P(∅) = 0 and P(
) = 1 and (b) if
Ai, Aj, . . . ,∈ F with Ai ∩ Aj = ∅, i �= j, then

P
( ∪∞

i=1 Ai
) =

∞∑
i=1

P(Ai ).

The triple (
,F ,P) is called a probability space.
Given a function f on the sample space 
, we can use the

probability measure P to define the integral of this function
over a set A ∈ F according to

f (A) =
∫

A
f (ω)dP(ω).

If f (ω) = 1 for all ω ∈ 
, then f (A) = P(A). Note that for
certain choices of σ -algebra, it is necessary to consider mea-
sures other than the standard Lebesgue measure. However, we
will not consider this technicality here. A random variable is
a function X : 
 → R such that

{ω ∈ 
 : X (ω) � x} ∈ F ∀x ∈ R.

If this condition holds, then X is said to be F-measurable. If
X ∈ R then we have a continuous random variable, whereas if
X belongs to a countable set then it is said to be a discrete ran-
dom variable. The distribution function of a random variable
X is the function F : R → [0, 1] given by

F (x) = Prob(X � x) = P(X −1(−∞, x)),

where X −1(−∞, x) is the set of events ω for which X � x.
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A stochastic process involves one or more random vari-
ables evolving in time. Each random variable will have an
additional time label X → Xn, n ∈ Z+, for discrete time pro-
cesses and X → X (t ), t ∈ R+, for continuous time processes.
Roughly speaking, one can treat n (or t) as a parameter
so that for fixed n, Xn is a random variable in the above
sense.

2. Filtrations and stopping times

In the following we fix a probability space (
,F ,P)
and take T to be a subinterval of Z+ (discrete time) or
R+ (continuous time). Suppose that there exists a collection
(Ft )t∈T of σ -algebras Ft ⊆ F . The collection is said to be
a filtration if Fs ⊂ Ft for all s � t . A stochastic process
defined on (
,F ,P) and indexed by T is called adapted to
the filtration if for every t ∈ T the random variable Xt is Ft -
measurable:

{ω ∈ 
 : Xt (ω) � x} ∈ Ft ∀x ∈ R.

One can view a filtration as representing a flow of information,
in the sense that the σ -algebra Ft contains all possible events
that can happen up to time t . The canonical or natural filtration
generated by a stochastic process (Xt )t∈T is given by

Ft = σ (Xs, s � t ),

which is the minimal filtration to which X is adapted. (If the
filtration is not specified explicitly, it will be assumed to be
the canonical filtration.) Roughly speaking, as t increases, the
statistical information about a larger class of random variables
is included within the σ -algebra Ft , as one might expect from
the evolution of a stochastic process.

A random variable τ ∈ R+ is called a stopping time with
respect to the filtration (Ft )t∈T if for every t ∈ T the event
{τ � T } is Ft -measurable. If τ < ∞ almost surely, then τ

is called a finite stopping time. Heuristically speaking, τ

is a stopping time if for every t ∈ T we can completely
determine whether or not τ has occurred before time t using
the information known up to time t . A common example
is the first-passage time for a stochastic process (Xt ) in Rd

adapted to a filtration (Ft ). Let A be closed subset of Rd and
define

τA = inf{t � 0 : Xt ∈ A}.
In order to establish that τA is a stopping time, introduce the
sequence {ti}∞i=1 dense on R+, and the sets

An =
{

x | d (x, A) <
1

n

}
,

where d (x, A) is a distance function (minimum Euclidean
distance of x from the set A). The event

{τA � t} = ∩∞
n=1 ∪ti�t {Xt ∈ An}

belongs to Ft since each event {Xt ∈ An} ∈ Ft .

3. Strong Markov property

A stochastic process Xt adapted to a filtration Ft is said
to have the Markov property if the conditional probability
distribution of future states of the process (conditional on both

past and present states) depends only upon the present state,
not on the sequence of events that preceded it. That is, for all
t ′ > t we have

P[Xt ′ � x | Xs, s � t] = P[Xt ′ � x | Xt ].

The strong Markov property is similar to the Markov
property, except that the “present” is defined in terms of
a stopping time. That is, given any finite-value stopping
time τ with respect to the natural filtration of X , if the
stochastic process Y (t ) = X (t + τ ) − X (τ ) is independent
of {X (s), s < τ } and has the same distribution as Ŷ (t ) =
X (t ) − X (0) then X is said to satisfy the strong Markov
property.

APPENDIX B: EXPLICIT SOLUTIONS
OF THE CONDITIONAL MFPTS

We first find a concise expression for the conditional MF-
PTs to reach x = 0. Nondimensionalizing (3.7a) and (3.7b),

0 = v+
∂π0

+
∂y

− a−[π0
+ − π0

−] − π0
+, (B1a)

0 = −v−
∂π0

−
∂y

+ a+[π0
+ − π0

−] − π0
− (B1b)

for 0 < y < 1, where

v± = v±
α0L

, a± = α±
α0

,

and defining the operator

L =
[
v+∂y − a− − 1 a−

a+ −v−∂y − a+ − 1

]
,

it follows that

0 = Lπ0(y), (B2)

where π0(y) = [π0
+(y), π0

−(y)] with boundary conditions
π0

−(0) = 1 and π0
−(1) = π0

+(1). By solving the system of
ordinary differential equations (B2) gives

π0
+(0) = (1 − θ2)e�2 − (1 − θ1)e�1

N , (B3)

where �1 > �2 are the eigenvalues of operator L satisfying

[v+� − (1 + a−)][v−� + a+ + 1] + a+a− = 0.

Here θ1,2 = [−v+�1,2 + a− + 1]/a− and N = θ1(1 −
θ2)e�2 − θ2(1 − θ1)e�1 .

One can write (3.9a) and (3.9b) using the operator

−π0(y) = Lη0(y), (B4)

where η0 = α0[π0
+(y)ω0

+(y), π0
−(y)ω0

−(y)] with boundary
conditions η0

−(0) = 0 and η0
−(1) = η0

+(1). Since (B4) is an
inhomogeneous version of Eq. (B2), then one can find the
particular solution η0,p(y) by the variation of parameters with
η0,p(0) = 0. Then the corresponding homogeneous solution
η0,h(y) = η0(y) − η0,p(y) satisfies 0 = Lη0,h(y), with bound-
ary conditions η

0,p
− (0) = 0 and η0,h

+ (1) + η
0,p
+ (1) = η0,h

− (1) +

052401-16



SEARCH-AND-CAPTURE MODEL OF CYTONEME-MEDIATED … PHYSICAL REVIEW E 99, 052401 (2019)

η
0,p
− (1). It follows that

η0
+(0) = η0,h

+ (0) = θ2 − θ1

N [η0,p
+ (1) − η

0,p
− (1)]

= 1

N 2

(
1

v+
+ 1

v−

){
[(1 − θ1)2θ2e�1 + (1 − θ2)2θ1e�2 ]

× e�2 − e�1

�2 − �1
− (1 − θ1)(1 − θ2)(θ1 + θ2)e�1+�2

}
.

(B5)

The corresponding conditional MFPT is therefore ω0
+(0) =

η0
+(0)/α0π

0
+(0).

In order to determine an exact solution of the conditional
MFPT to be captured by the kth target cell before the nucle-
ation, we again apply the variation of parameters. Its splitting

probability satisfies

−χk (y) = Lπ k (y), 0 < y < 1, (B6)

where π k (y) = [π k
+(y), π k

−(y)] with boundary conditions
π k

−(0) = 0 and π k
+(1) = π k

−(1). Using the variation of
parameters, one can find the particular solution of (B6) and
denote it by π k,p(y). It satisfies π k,p(0) = 0. In the same
fashion for (B5), we have

π k
+(0) = π

k,p
+ = θ2 − θ1

N [π k,p
+ (1) − π

k,p
− (1)]

= 1

N

[
E
(

k − 1

K

)
− E

(
k

K

)]
, (B7)

where

E (y) = 1 − θ2

�2

(
θ1

v+
+ 1

v−

)
e�2(1−y) − 1 − θ1

�1

(
θ2

v+
+ 1

v−

)
e�1(1−y).

We determine the corresponding conditional MFPT by following the same method we used to get (B5). Then one can have
the explicit form of MFPT

ηk
+(0) = π k

+(0)

N (θ2 − θ1)

{
θ1θ2(2 − θ1 − θ2)

(
1

v+
+ 1

v−

)
e�1 − e�2

�1 − �2

−
[

(1 − θ1)θ2

(
θ2

v+
+ θ1

v−

)
e�1 + (1 − θ2)θ1

(
θ1

v+
+ θ2

v−

)
e�2

]}
+ 1

N (θ2 − θ1)

[
Ê
(

k − 1

K

)
− Ê

(
k

K

)]
, (B8)

where Ê (y) = F12(y) + F21(y) and

Fi j (y) = (1 − θi )

{
1

�i

(
θ j

v+
+ θi

v−

)(
θ j

v+
+ 1

v−

)(
1 − 1

�i
− y

)
e�i (1−y)

− θ j

� j

(
1

v+
+ 1

v−

)(
θi

v+
+ 1

v−

)[
e�i (1−y) − e� j (1−y)

�i − � j
− e�i (1−y)

�i

]}
.

Its corresponding conditional MFPT becomes ωk
+(0) = ηk

+(0)/α0π
k
+(0).
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