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1. Introduction

Morphogen protein gradients play a vital role 
in regulating spatial pattern formation during 
development. The classical mechanism for gradient 
formation involves the diffusion of morphogen from 
a localized source combined with degradation [1, 22]. 
However, there is growing experimental evidence 
for a direct cell-to-cell signaling mechanism in 
invertebrates such as Drosophila, involving the active 
transport of morphogen along cytonemes, which are 
thin and actin-rich cellular extensions with a diameter 
of around 100 nm and lengths that vary from 1 to 
100 µm [8, 11, 12, 16]. A number of recent modeling 
studies have investigated this form of cytoneme-based 
morphogenesis [4, 10, 21], focusing on the existence 
and stability of steady-state solutions, the nature of 
contacts between cytoneme tips and target cells, the 
accumulation time for establishing a morphogen 
gradient, and the robustness of the gradient with 

respect to perturbations of the morphogen production 
rate in the source cells. One major simplifying 
assumption of these models is that the number of 
vesicles is sufficiently large so that morphogens 
can be treated as a continuum ‘fluid’ transported 
along a cytoneme and delivered to target cells, see 
figure 1(a). However, experimental evidence shows 
that morphogen vesicles are distributed as ‘puncta’ 
along a cytoneme in invertebrates [9], see figure 1(b). 
This discrete feature introduces randomness in the 
number of morphogens within cells, but very little 
has been studied about the resulting stochastic nature 
of cytoneme-mediated cell-to-cell signaling, and its 
effects on robustness.

We have recently modeled the discrete and sto-
chastic nature of cytoneme-based morphogenesis in 
the case of a different transport mechanism that has 
been observed in some vertebrates. Imaging studies 
in Wnt transport in zebrafish [18, 19] and Shh trans-
port in chicken [17] indicate that cytonemes loaded 
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with morphogen at their tips actively and rapidly 
expand and contract. Once a cytoneme tip contacts a 
target cell, morphogen is immediately delivered to the 
cell in the form of a morphogen ‘burst’. We analyzed 
the stochastic and burst-like nature of this form of 
morphogenesis using a ‘search-and-capture model’ 
[5], analogous to microtubule-based models of the 
prometaphase during cell mitosis [7, 14]. The model 
consisted of nucleating cytonemes from a source cell 
that dynamically grow and shrink along the surface of 
a one-dimensional (1D) array of target cells until mak-
ing contact with one of the target cells and delivering 
a morphogen burst. We showed how multiple rounds 
of search-and-capture, morphogen delivery, cyto-
neme retraction, and nucleation events leads to the 
formation of a morphogen gradient. We proceeded by 
form ulating the morphogen bursting model as a queu-
ing process, analogous to the study of protein burst-
ing in gene networks. In order to analyze the expected 
times for cytoneme contact, we introduced an efficient 
method for solving first-passage-time problems in the 
presence of sticky boundaries, which exploited some 
classical concepts from probability theory, namely, 
stopping times and the strong Markov property.

In this paper we extend the mathematical frame-
work introduced in [5] in order to develop an impul-
sive signaling model of morphogen gradient forma-
tion in invertebrates, which takes into account the 
discrete and stochastic nature of vesicular transport 
along cytonemes. First, in section 2 we reformulate our 
previous bidirectional transport model [2, 4, 10] as a 
stochastic model for the transport of a single vesicle. 
Analogous to the nucleation of a new cytoneme in [5], 
we assume that if the vesicle returns to the source cell, 
then there is some waiting time before it is reinjected 
into the cytoneme. In section 3 we solve the first pas-
sage time (FPT) problem for a vesicle to be absorbed 
by a target cell, taking into account the sticky boundary 
condition at the source cell using the strong Markov 
property. In section 4 we use queuing theory to  
analyze the impulsive model of morphogen gradient 

formation in the case of multiple vesicles. However, it is 
necessary to modify the analysis of [5], since the order 
in which vesicles are absorbed by target cells is not nec-
essarily the same as the order in which they are first 
produced (nucleated) in the source cell. We calculate 
the steady-state mean and variance of the morphogen 
distribution across a 1D array of target cells. Although 
the mean distribution recovers the spatially decaying 
morphogen gradients of previous deterministic mod-
els, we show that the burst-like nature of morphogen 
transport can lead to Fano factors greater than unity 
that persist across the array of cells, resulting in signifi-
cant fluctuations at more distant target sites. Finally 
in section 5 we introduce a differential version of the 
queuing model and compare its behavior with our pre-
vious ‘fluid’ models [4, 10] using asymptotic analysis.

2. Impulsive signal transport by a single 
vesicle

Consider a single cytoneme of length L linking a 
source cell to a single target cell, see figure 2. Along 
the cytoneme, a vesicle containing morphogen is 
transported by a motor-cargo complex that actively 
moves forward and backward until it reaches the target 
cell. If the motor-cargo returns to the source cell, then 
there is some waiting time (nucleation time) before it 
is again injected into the cytoneme. Once the vesicle 
reaches the target cell, morphogen is released and 
generates an impulsive signal.

Let X(t) ∈ [0, L] be the position of the vesicle at 
time t. Take N(t) to be the current bidirectional veloc-
ity state with

N(t) =

{
+ if v(t) = v+
− if v(t) = −v−

,

where v± are the positive speed for each direction. 
Transitions between the two velocity states occur via a 
two-state Markov chain:

{−}
α+

�
α−

{+}.

Figure 1. Models of cytoneme-mediated morphogen gradient formation in invertebrates. (a) ‘Fluid’ model of morphogen 
transport in [4, 10]. This assumed that there are infinitely many vesicles. (b) Impulsive signaling model via vesicles containing finite 
morphogens.
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Let p n(x,t) be the probability density that at time t we 
have X(t) ∈ [x, x + dx) and N(t) = n where

pn(x, t)dx = P[x � X(t) < x + dx, N(t) = n].

The corresponding differential Chapman–
Kolmogorov  (CK) equation takes the form

∂p+
∂t

= −v+
∂p+
∂x

− α−p+ + α+p−, (2.1a)

∂p−
∂t

= v−
∂p−
∂x

+ α−p+ − α+p−. (2.1b)

Equations (2.1a) and (2.1b) are supplemented by the 
boundary conditions

v+p+(0, t) = r0P0(t), p−(L, t) = 0, (2.2)

where P0(t) is the probability of the vesicle being 
located at the source cell and r0 is an injection rate into 
the cytoneme. We assume that the vesicle is initially 
positioned in the source cell so that

P0(0) = 1, p±(x, 0) = 0,

for all x ∈ [0, L]. The transport component of the 
model couples to the probability of the vesicle in the 
source cell and target cells according to

dP0

dt
= v−p−(0, t)− r0P0(t),

dP1

dt
= v+p+(L, t).

 (2.3)

One can extend the single cytoneme model to mul-
tiple cytonemes of length Lk linking a source cell to KT 
multiple target cells, k = 1, · · · , KT, which for the sake 
of illustration are arranged in a 1D array, see figure 3. 
Let K(t) ∈ {1, · · · , KT} be the index of the cytoneme 
containing the motor cargo at time t. This leads us to 
specify the relative probability θk that a morphogen is 

injected into the kth cytoneme, where 
∑KT

k=1 θk = 1. 
Let pk

n(x, t) be the probability that the vesicle is along 
the kth cytoneme at position x and time t. Then the 
evolution equation for pk

±(x, t) takes the same form as 
(2.1a) and (2.1b):

∂pk
+

∂t
= −v+

∂pk
+

∂x
− α−pk

+ + α+pk
−, (2.4a)

∂pk
−

∂t
= v−

∂pk
−

∂x
+ α−pk

+ − α+pk
−, (2.4b)

with corresponding boundary conditions

v+pk
+(0, t) = r0θkP0(t), pk

−(Lk, t) = 0. (2.5)

Extending (2.3) to the case of multiple target cells 
yields

dP0

dt
= v−

KT∑
k=1

pk
−(0, t)− r0P0(t),

dPk

dt
= v+pk

+(Lk, t).

 (2.6)

Summing (2.4a) and (2.4b) and then integrating with 
respect to x over the interval [0,Lk] gives that

d

dt

∫ Lk

0

[
pk
+(x, t) + pk

−(x, t)
]

dx = −[v+pk
+(x, t)− v−pk

−(x, t)]|Lk
0 .

Summing with respect to k and imposing the boundary 
conditions (2.5) and (2.6) we have

dP0(t)

dt
+

d

dt

KT∑
k=1

[∫ Lk

0

[
pk
+(x, t) + pk

−(x, t)
]

dx + Pk(t)

]
= 0,

which guarantees conservation of the total probability 
over all events.

P0(t) +
KT∑

k=1

(∫ Lk

0

[
pk
+(x, t) + pk

−(x, t)
]

dx + Pk(t)

)
= 1.

3. First passage time problem for a single 
vesicle

We would like to determine the splitting probability ρk 
that the morphogen vesicle is eventually captured by 
the kth target, where

ρk = lim
t→∞

Pk(t),
KT∑

k=1

ρk = 1, (3.1)

together with the corresponding MFPT τk. One way 
to solve the FPT problem is to Laplace transform the 
differential equations [3, 4, 7]. However, one difficulty 

Figure 2. Stages of a single morphogen vesicle transport process generating a morphogen burst in a target cell. (i) ‘Nucleation’ 
associated with production of a new vesicle or reinjection of a returning vesicle. (ii) Bidirectional transport along the cytoneme. (iii) 
Vesicle capture by the target cell, resulting in an impulsive morphogen signal.

Phys. Biol. 16 (2019) 056005
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in applying Laplace transform methods to our FPT 
problem is that there is a sticky boundary at x  =  0, which 
takes into account the exponentially distributed waiting 
time for reinjection of the vesicle into the cytoneme. 
This means that one has to keep track of the random 
times that the vesicle returns to the origin, resulting in a 
non-trivial iterative problem [7, 14]. To avoid this issue, 
we choose an alternative approach that exploits the 
strong Markov property of the stochastic process [5]. 
Intuitively, the strong Markov property is similar to the 
Markov property except that the probability of future 
states depends upon a stopping time, which is a random 
variable determined by the history of the process from 
the beginning to the present [5, 15]. Note, in particular 
that FPTs are examples of stopping times. We proceed 
by decomposing the transport process into a nucleation 
stage and a signaling transport stage, see figure 4(a) and 
[5, 14]. We first solve the FPT problem of the transport 
stage with an absorbing boundary condition at x  =  0 
by using the corresponding backward Kolmogorov 
equation. We then split all events according to 
whether or not the vesicle returns to the source cell, 
see figure 4(b), and use the strong Markov property to 
obtain the splitting probabilities and the corresponding 
MFPTs of the whole process.

3.1. Conditional MFPT to reach x  =  L with an 
absorbing boundary at x  =  0
We first calculate the conditional MFPT that the 
morphogen vesicle reaches the right-end of a 
single cytoneme length L before ever reaching zero, 
see figure 4(a). This means imposing absorbing 
boundaries at x = 0, L,

p+(0, t) = p−(L, t) = 0,

and defining the FPT

Tm(y) = inf{t � 0; X(t) = L, N(t) = + :

X(0) = y, N(0) = m}

for 0  <  y   <  L. Note that T+ (L)  =  0. That is, the 
morphogen immediately absorbs to the target cell if it 
starts out anterograde state at x  =  L. The probability 
flux through the end x  =  L is

Jm(y, t) = v+p+(L, t|y, m, 0).

It follows that for 0  <  y   <  L, the probability Πm(y, t) 
that the morphogen exits at x  =  L after time t, having 
started in state (y, m) is

Πm(y, t) =

∫ ∞

t
Jm(y, t′)dt′. (3.2)

Figure 3. Schematic diagram of a 1D array of target cells (labeled k = 1, . . . , K ), each connected to a single source cell via a 
cytoneme of length Lk. Vesicles in the source cell are allocated to the kth cytoneme with probability θk.

Figure 4. Decomposing MFPT problems using the strong Markov property. (a) MFPT with nucleation effect can be decomposed 
as the nucleation state and the transport state. (b) The unconditional MFPT (gray arrow) for a vesicle to contact the cytoneme 
tip starting at the source cell can be decomposed into two conditional MFPTs: (i) all paths directly reaching to the end after the 
nucleation (black arrow) or (ii) returning into the source cell (black arrow) and then restarting the unconditional process.

Phys. Biol. 16 (2019) 056005
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Differentiating with respect to t gives

∂Πm(y, t)

∂t
= −Jm(y, t) =

∫ ∞

0

Jm(y, t′)

∂t′
dt′.

Hence, using the backward CK equation leads to the 
pair of equations

∂Π+

∂t
= v+

∂Π+

∂y
− α−[Π+ −Π−], (3.3a)

∂Π−

∂t
= −v−

∂Π−

∂y
+ α+[Π+ −Π−]. (3.3b)

One can determine the boundary condition at 
x = 0, L by noticing that if the particle starts out in 
the retrograde state at x  =  0, it never reaches x  =  L, 
whereas if it starts out at x  =  L in the anterograde state, 
it is immediately absorbed. Thus we have Π−(0, t) = 0 
and Π+(L, t) = 1.

We can now define the splitting probability that 
the morphogen hits x  =  L before x  =  0 by introducing 
πm(y) = Πm(y, 0). Since

∂Πm(y, t)

∂t

∣∣∣∣
t=0

= −Jm(y, 0) = 0,

for y ∈ (0, L), we see that πm satisfies the steady-state 
equations

0 = v+
∂π+

∂y
− α−[π+ − π−], (3.4a)

0 = −v−
∂π−

∂y
+ α+[π+ − π−] (3.4b)

with boundary conditions π−(0) = 0 and π+(L) = 1. 
Summing equations (3.3a) and (3.3b) we have

0 =
d

dy

(
v+
α−

π+(y)−
v−
α+

π−(y)

)
,

which implies

v+
α−

π+(y)−
v−
α+

π−(y) =
v+
α−

π+(0).

Solving for π−(y)

π−(y) =
v+α+

v−α−
(π+(y)− π+(0)),

and substituting into (3.3a) yields

∂π+

∂y
+ γπ+ =

α+

v−
π+(0), (3.5)

with boundary condition π+(L) = 1. This has the 
general solution

π+(y) = π+(0)e
−γy

[
1 − α+

v−γ
(1 − eγy)

]
. (3.6)

In particular,

π+(0) =
eγL

1 − α+[1 − eγL]/v−γ
. (3.7)

It also follows that the conditional probability of the 
vesicle hitting x  =  L after finite time t without reaching 
zero, is

P[t < Tm(y)|Tm(y) < ∞] =
Πm(y, t)

Πm(y, 0)
.

Thus the conditional MFPT satisfies

ωm(y) := E[Tm(y)|Tm(y) < ∞] =

∫ ∞

0

Πm(y, t)

Πm(y, 0)
dt,

by integrating by parts. Integrating (3.3a) and (3.3b) 
with respect to t then gives

−π+ = v+
∂π+ω+

∂y
− α−[π+ω+ − π−ω−], (3.8a)

−π− = −v−
∂π−ω−

∂y
+ α+[π+ω+ − π−ω−], (3.8b)

with boundary conditions π−(0)ω−(0) =  
π+(L)ω+(L) = 0.

Note that a similar analysis can be carried out 
for exit through the source end at x  =  0. We denote 
the corresponding splitting probability and con-
ditional MFPT by πm(y) and ωm(y), respectively. 
Their explicit solutions for the various splitting 
probabilities and conditional MFPTs are in [14]. In 
particular, we have the following probability con-
servation

πm(y) + πm(y) = 1. (3.9)

3.2. MFPT with nucleation and multiple targets
We now consider the full FPT problem involving 
multiple cytonemes of different lengths Lk, see figure 3. 
We will simply add a superscript to the above splitting 
probabilities and MFPTs: πk

m(y),ω
k
m(y),π

k
m(y),ω

k
m(y), 

indicating that L  =  Lk. We also now include the sticky 
boundary at x  =  0 and impose the sticky boundary 
condition (2.5), see figure 4(b). Consider the set of 
FPTs

Tk = inf{t > 0; X(t) = Lk, N(t) = +, K(t) = k},

T k = inf{t > 0; X(t) = 0, N(t) = −, K(t) = k},

T = inf{t > 0; X(t) = 0, N(t) = −}
Rk = inf{t > 0; X(T + t) = Lk, N(T + t) = +, K(T + t) = k},

for k = 1, · · · , KT, where we have suppressed that the 
morphogen vesicle is initially positioned at the source 
cell. Next we introduce the sets

Ωk = {Tk < ∞}, Γk = {T k = T < ∞}, Γ = {T < ∞}.

In other words, Ωk is the set of all events for which the 
motor cargo eventually delivers the morphogen vesicle 
to the kth target cell mediated by the kth cytoneme. It 
immediately follows that

Ωk\Γ = {Tk < T = ∞}.

Phys. Biol. 16 (2019) 056005
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That is, Ωk\Γ is the set of all events for which the 
motor cargo delivers the morphogen vesicle to the kth 
target cell without any nucleation. Moreover, since 
T = infk′ T k′, then Ωk ∩ Γk′ are mutually disjoint 
with respect to k′. Thus we have

Ωk ∩ Γ =
⋃
k′

Ωk ∩ Γk′ =
⋃
k′

{T k′ = T < Tk < ∞}.

This means that Ωk ∩ Γ is decomposed as the union 
of Ωk ∩ Γk′, which is the set of all events for which the 
motor cargo is initially injected to the k′th cytoneme 
and then eventually delivers the morphogen vesicle to 
the kth target cell.

In order to deal with the nucleation effect connect-
ing multiple cytonemes, we will proceed along similar 
lines to [5] by using the strong Markov property. First, 
the splitting probability ρk of delivery into the kth tar-
get cell, starting at the source cell, can be decomposed 
as

ρk = P[Ωk] = P[Ωk\Γ] + P[Ωk ∩ Γ]

= θk · πk
+(0) + P[Ωk ∩ Γ]

= θk · πk
+(0) +

∑
k′

P[Ωk ∩ Γk′ ].
 (3.10)

Moreover,

P[Ωk ∩ Γk′ ] = P[Γk′ ] · P[Rk < ∞]

= θk′ [1 − πk′

+(0)] · P[Rk < ∞].

The strong Markov property yields that

P[Ωk ∩ Γk′ ] = ρk · θk′ [1 − πk′

+(0)], (3.11)

according to the probability conservation (3.9). 
Substituting (3.11) into (3.10) and rearranging we 
have

ρk =
θkπ

k
+(0)∑

k′ θk′π
k′
+(0)

. (3.12)

Next, we introduce the MFPT zk := E[Tk1Ωk
], 

which decomposed as

zk = E[Tk1Ωk\Γ] + E[Tk1Ωk∩Γ]

= θkπ
k
+(0) ·

[
1

r0
+ ωk

+(0)

]
+ E[(T +Rk)1Ωk∩Γ]

= θkπ
k
+(0) ·

[
1

r0
+ ωk

+(0)

]
+

∑
k′

E[T k′ |Ωk ∩ Γk′ ]P[Ωk ∩ Γk′ ]

+ E[Rk1Ωk∩Γ].

Again involving the strong Markov property gives that 
the conditional MFPT to be captured by the kth target 
cell is zk/ρk. Thus we have

zk = θkπ
k
+(0) ·

[
1

r0
+ ωk

+(0)

]
+

∑
k′

[
1

r0
+ ωk′

+(0)

]
· ρkθk′ [1 − πk′

+(0)]

+
zk

ρk
· ρk

∑
k′

θk′ [1 − πk′

+(0)].

Rearranging the above equation and using (3.12) we 
therefore find that the conditional MFPT is

τk ≡
zk

ρk
=

[
1

r0
+ ωk

+(0) +
∑

k′

ρk′
πk′

+(0)

πk′
+(0)

[
1

r0
+ ωk′

+(0)

]]
.

 
(3.13)

4. Impulsive signaling by periodically 
generated vesicles

In sections 2 and 3 we focused on the transport of a 
single vesicle along cytonemes, without specifying 
what happens after a vesicle is captured by a target cell. 
Once a vesicle is captured by a target cell, it delivers a 
certain amount of morphogen to the target cell. We 
will refer to this as a morphogen ‘burst’ so that the 
discrete nature of vesicular transport can be treated as 
an impulsive signal. The transport of multiple vesicles 
generated by the source cell thus results in multiple 
impulsive signals that ultimately form a morphogen 
gradient. For simplicity, we assume that the source 
cell produces a morphogen vesicle with constant 
frequency ν . We also take the amount of morphogen 
transported by a vesicle to be of fixed size ∆. (Note that 
Q := ν∆ is the average morphogen production rate in 
the source cell.)

Following section 3, if a vesicle is produced by the 
source cell, then the probability that a single impulsive 
signal reaches the kth target cell is ρk and the condi-
tional MFPT for the event is τk. The other KT  −  1 tar-
get cells do not receive any morphogen. Now suppose 
that the source cell generates an impulsive signal peri-
odically. Let i = 1, 2, · · · label the ordered sequence of 
vesicles produced by the source cell, and denote the 
target cell that receives the ith vesicle by ki. If Bi is the 
bursting or capture time of the ith vesicle, then

Bi =
1

ν
(i − 1) + Tki

. (4.1)

We also denote the random identity of the cell that 
captures the vesicle by K.

Consider a specific target cell k = k̄. This cell 
receives a morphogen burst of size ∆ at time Bi if 
ki = k̄, otherwise it receives nothing. Furthermore, 
suppose that morphogen delivered to the target cell 
degrades at a rate κ. We would like to determine the 
steady-state amount of morphogen within the target 
cell in the long time limit. We will proceed by reform-
ulating the multiple impulsive signaling model as a 
queuing process, see figure 5, analogous to the study 
of search-and-capture model of morphogen gradient 
formation in vertebrates [5].

Queuing theory concerns the mathematical analy-
sis of waiting lines formed by customers randomly 
arriving at some service station and staying in the sys-
tem until they receive service from a group of servers. 
Different types of queuing process are defined in terms 
of (i) the stochastic process underlying the arrival of 
customers, (ii) the distribution of the number of cus-
tomers (batches) in each arrival, (iii) the stochastic 
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process underlying the departure of customers (ser-
vice-time distribution), and (iv) the number of serv-
ers. Our impulsive signaling transport model can be 
matched into a queuing process as follows: individual 
vesicles are analogous to customers, morphogen bursts 
correspond to customers arriving in batches, and the 
degradation of morphogens is the analog of custom-
ers exiting the system after service. It follows that the 
waiting time distribution of morphogen degradation 
corresponds to the service time distribution. Since 
the morphogens are degraded independently of each 
other, the effective number of servers in the corre-
sponding queuing model is infinite.

In previous work, we mapped a search-and-cap-
ture model of cytoneme-based morphogenesis in 
vertebrates to a G/M/∞ queue [5] . Here the symbol 
G denotes a general interarrival time, the symbol M 
stands for a Markovian (or exponential) service time 
distribution E(t) = 1 − e−κt  for morphogen degra-
dation, and ∞ denotes infinite servers. However, in 
our current model there is no guarantee that a vesicle 
produced earlier arrives at a target cell before a vesi-
cle produced later. That is, the condition Bi < Bj for 
i  <  j  need not hold. Thus, one cannot define a positive 
interarrival time in our impulsive signaling transport 
model. We solve this issue by introducing an arrival 
time, instead of an interarrival time, and finding the 
iterative structure that allows us to use queuing theory. 
In order to proceed, we need to define the arrival time 
distribution F(t, k) related to the quantities in sec-
tion 3. We can write

F(t, k) = P[B < t,K = k] = P[B < t|K = k] · P[K = k]

= ρk

∫ t

0
fk(y)dy,

 (4.2)

where f k(y ) is the density for the conditional MFPT of 
a single impulsive signaling event that ends at the kth 
cell. In particular, we have

∫ ∞

0
yfk(y)dy = τk, (4.3)

with τk given by equation (3.13).
Let N(t) be the number of waiting customers at 

time t. This corresponds to the number of morphogens 
in the labeled target cell k̄ that have not yet degraded. 
In terms of the sequence of arrival times (morphogen 
bursting times) Bi and cell identities ki, one can write

N(t) =
∑

j�1,( j−1)/ν�Bj�t

χ(t − Bj)δkj ,̄k (4.4)

where

χ(t − Bj) =

∆∑
d=1

I(t − Bj, Sjd) (4.5)

for

I(t − Bj, Sjd) =




0 if t − Bj < 0

1 if 0 � t − Bj � Sjd

0 if t − Bj > Sjd

. (4.6)

Here Sjd, d = 1, . . . ,∆, is the service time of the 
dth member of a burst delivered to the cell k̄. We 
will assume that the system is empty at time t  =  0 
(N(0) = 0).

The moments of the queuing process can be deter-
mined using generating functions and Laplace trans-
forms. Since the analysis is quite involved, we leave the 
details to appendix. Here we simply write down the 
expressions for the steady-state mean and variance, 

Figure 5. Queuing theory and impulsive signaling transport. (a) Example of a single-server queue. (b) Impulsive signals. 
Periodically formed morphogen vesicles in the source cell generate a random sequence of impulsive signals within a target cell. This 
is analogous to an infinite-server queuing model.

Phys. Biol. 16 (2019) 056005



8

H Kim and P C Bressloff 

under the assumption that all moments of F(y, k̄) are 
finite. In particular,

〈N〉 = ∆

κ
lim
s→0

f̂ (s, k̄)

1 − e−s/ν
=

ν∆

κ
ρk̄

=
Q

κ
ρk̄,

 (4.7)

and

〈N2〉 − 〈N〉2 = 〈N〉
[

3 +∆

4
− ρk̄Ik̄(κ)∆

]
, (4.8)

where

Ik̄(κ) =

∫ ∞

0
e−κy′

∫ ∞

0
f̄k(y) f̄k(y + y′)dydy′. (4.9)

The corresponding Fano factor (FF) is

FFN =
〈N2〉 − 〈N〉2

〈N〉
= 1 +

[
∆− 1

4
− ρk̄Ik̄(κ)∆

]
,

 (4.10)

which is independent of the vesicle production rate ν . 
Since ρk � 1 and Ik � 1/2 (see below), it follows that 
for all k

3 −∆

4
� FFN �

∆+ 3

4
. (4.11)

Recall that the Fano factor of a Poisson process is 
FFPoiss = 1 so that FFN � FFPoiss when ∆ = 1. We 
also find that FFN is only weakly dependent on k, 
which means that relative fluctuations are particularly 
significant for distal target cells. Note that one can 
reduce the relative size of fluctuations for fixed ∆ 

and κ by increasing the production rate ν , as FFN is 
independent of ν .

We now explore in more detail how the mean 〈N〉 
and Fano factor FFN vary with distance Lk of the target 
cell from the source cell. For the moment, assume that 
the probability of allocating a vesicle to a particular 
cytoneme is uniform, θk = 1/KT . Numerical results in 
figures 6(a) and (b) show that the behavior of steady-
state mean 〈N〉 is determined by the sign of ̄v, which is 
the average transport speed

v̄ = v+
α+

α+ + α−
− v−

α−

α+ + α−
.

If the transport is dominated by the anterograde 
state (v̄ > 0), then the asymptotic value converges to 
a non-zero value so that the morphogen gradient is 
almost flat with respect to the distance of target cell. 
On the other hand, if the transport is dominated by 
the retrograde state (v̄ < 0), then the asymptotic 
value decays to zero. We thus recover the results of our 
previous work on a ‘fluid’ model [4]. Figures 6(c) and 
(d) illustrates the additional features of our stochastic 
model, namely, that the Fano factor can be greater than 
one (non-Poissonian) and is approximately constant 
along the length of the array of target cells. That is, 
relative fluctuations are particularly significant in the 
case of distal target cells and ̄v < 0.

Following along similar lines to our previous deter-
ministic model [4], we can also investigate the affects 
of non-uniform resource allocation. In particular, we 
consider three different injection distributions:

Figure 6. Steady-state mean and variance of N(t) for various transport speed values. (a) First moments of anterograde-dominant 
case (v̄ > 0) with various v+ and v− = 0.1 µm s−1. (b) First moments of retrograde-dominant case (v̄ < 0) with v+ = 0.1 µm s−1 
and various v−. (c) and (d) Corresponding plots of the Fano factor when ∆ = 10 and ν = 0.5 s−1. (e) and (f) Corresponding plots 
of the Fano factor when ∆ = 1 and ν = 5 s−1. Injection probability θk is uniformly distributed. Parameters are as follows: α± = 0.1 
s−1, r0  =  0.05 s−1, KT  =  10, κ = 0.05 s−1, Q  =  5 s−1.
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θU
k =

1

KT
, θI

k =
ek/4

NI
, θD

k =
e(KT+1−k)/4

ND
,

k = 1, 2, · · · , KT ,

which represents a uniform distribution, a monotone 
increasing distribution, and a monotone decreasing 
distribution, respectively. Here NI,D are normalization 
constants. Numerical results in figure 7 show that the 
anterograde-dominant distribution of 〈N〉 is more 
sensitive to the choice of the injection distribution. 
The numerics are obtained by using the splitting 
probability (3.12) and the MFPT (3.13) of a single 
particle and the numerical results for Ik (see below).

The k-dependence of FFN is determined by the 
splitting probability ρk and the dimensionless func-
tion Ik̄(κ). It turns out that the latter is only weakly 
dependent on the target cell index k, and can be 
bounded. In order to non-dimensionalize the integral 
variables, we substitute y = τk̄ξ  and y′ = τk̄η

Ik̄(κ̂) = Ik̄(κ) =

∫ ∞

0

∫ ∞

0
e−κ̂ξg(ξ + η)g(η)dξdη,

 (4.12)

where κ̂ = κτk̄ and g(ξ) = τk̄ f̄k(τk̄y) so that
∫ ∞

0
g(ξ)dξ = 1,

∫ ∞

0
ξg(ξ)dx = 1.

Since 1 − κ̂ξ � e−κ̂ξ � 1, then one can bound

J0 − κJ1 � Ik̄(κ̂) � J0

where

J0 =

∫ ∞

0

∫ ∞

0
g(ξ + η)g(η)dξdη,

J1 =

∫ ∞

0

∫ ∞

0
ξg(ξ + η)g(η)dξdη.

After integration, we have

J0 =

∫ ∞

0
g(η)

∫ ∞

η

g(ξ)dξdη = −1

2

∫ ∞

0

d

dη

[∫ ∞

η

g(ξ)dξ

]2

dη =
1

2
.

 

(4.13)

Another change of variables and integration gives

J1 =

∫ ∞

0

∫ ∞

η

(ξ − η)g(ξ)g(η)dξdη = 2

∫ ∞

0∫ ∞

η

ξg(ξ)g(η)dξdη − 1 < 1.

 

(4.14)

Together with (4.13) and (4.14) it follows that

1

2
� Ik̄(κ̂) > max

{
1

2
− κ̂, 0

}
, (4.15)

in accordance with the positivity of Ik̄(κ̂). In 

particular, if κ̂ � 1 so that τk̄ � 1
κ, which means that 

the degradation time is much slower than the arrival 
time from the source cell to the kth target cell, then 
Ik̄(κ̂) ∼ 1/2. On the other hand, if 1 � κ̂, then 

Figure 7. Moments of steady-state distribution of N(t) for three different injection distributions: a uniform distribution θU
k , a 

monotone increasing distribution θI
k and a monotone decreasing distribution θD

k . (a) First moments of anterograde-dominant 
case (v̄ > 0) with v+ = 0.2 µm s−1 and v− = 0.1 µm s−1 for various injection distributions. (b) Corresponding first moments of 
retrograde-dominant case (v̄ < 0) with v+ = 0.1 µm s−1 and v− = 0.2 µm s−1. (c) and (d) Corresponding plots of the Fano factor 
when ∆ = 10 and ν = 0.5 s−1. Other parameters are the same as in figure 6.
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limκ̂→∞ Ik̄(κ̂) = 0. Numerical results in figure 8 
confirm the asymptotic behavior of Ik and the analytic 
result that the dimensionless function is bounded by 
the inequality (4.15). The numerics are obtained by 
carrying out a Monte Carlo integration of (4.12) and 
generating samples of the conditional distribution g 
using the Gillespie algorithm. The weak dependence 
on the index k is clearly seen.

One final observation regarding the steady-state 
distribution is that the first moment 〈N〉 in (4.7) does 
not explicitly depend on the conditional MFPT τk. For 
the search-and-capture model in [5], the mean steady-
state distribution of morphogens in a cell depends on 
the conditional MFPT because the interarrival time is 
determined by the FPTs. However, in the present case, 
the interarrival time is

Bi+1 − Bi =
1

ν
+ Tki+1

− Tki
,

which expectation is the vesicle production time 1/ν . 
Therefore, the first moment of the impulsive signaling 
transport depends on the vesicle production rate ν , 
rather than the MFPTs.

5. Differential version of impulsive 
signaling transport

In this section we relate our impulsive signaling model 
with the ‘fluid’ transport model of [4, 10]. We proceed 
by constructing a differential version of the former 
model, and then deriving the ‘fluid’ transport model 
by homogeniziation.

Consider the ith vesicle injected into a single 
cytoneme of length L. Let p n(x,t,i) be the probabil-
ity density that the vesicle is positioned at x in state 
n ∈ {+,−} at time t. This satisfies the same differ-
ential CK equations (2.1a) and (2.1b) with the bound-
ary conditions (2.2). Here P0(t,i) is the probability that 
the vesicle is located in the source cell at time t, which 
evolves according to

dP0

dt
(t, i) = δ(t − (i − 1)/ν) + v−p−(0, t, i)− r0P0(t, i),

 (5.1)

where δ(t) is the Dirac delta function. Once the vesicle 
reaches the right-hand end at x  =  L, morphogens in 

the vesicle burst into the target cell and subsequently 
degrade. Let Qd(t,i) be the probability that the dth 
morphogen is in the target cell, which satisfies

dQd(t, i)

dt
= v+p+(L, t, i)− κQd(t, i), d = 1, 2, · · · ,∆.

 (5.2)

Introducing the mean number of morphogen in the 
target cell,

C1(t) :=
∞∑

i=1

∆∑
d=1

Qd(t, i),

and summing equations (5.1) and (5.2) with respect 
to i, d yields

dC0

dt
= Q(t) + v−u−(L, t)− r0C0(t), (5.3a)

dC1

dt
= v+u+(L, t)− κC1(t), (5.3b)

where

Q(t) = ∆

∞∑
i=1

δ(t − (i − 1)/ν), (5.4)

and u±(x, t) satisfies the following equations over 
(0, L)

∂u+

∂t
= −v+

∂u+

∂x
− α−u+ + α+u−, (5.5a)

∂u−

∂t
= v−

∂u−

∂x
+ α−u+ − α+u−, (5.5b)

together with the boundary conditions

v+u+(0, t) = r0C0(t), u−(L, t) = 0. (5.6)

Once can interpret Q(t) as the average time-dependent 
production rate. In particular, when κ � ν , which 
means that the production period is much shorter 
than the average degradation time, the production rate 
can homogenized as

Q(t) ≈ Q

∫ ∞

0
δ(t − t′)dt′ = Q. (5.7)

This homogenized model is exactly same asthe ‘fluid’ 
transport model in [4, 10], which means that the 
model is an asymptotic model of impulsive signaling 

Figure 8. Dimensionless function Ik(κ̂) for various k when the transport is anterograde-dominant (v̄ > 0). Parameters as figure 6. 
Similar results hold when ̄v < 0.
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model when the production rate is faster than the 
degradation model.

One can extend the above result for multiple 
cytonemes. In the same fashion, one determines the 
average number of morphogen in the kth target cell 
Ck(t) satisfying

dC0

dt
= Q(t)− r0C0(t) + v−

KT∑
k=1

uk
−(L, t), (5.8a)

dCk

dt
= v+uk

+(Lk, t)− κCk(t), (5.8b)

where uk
±(x, t) satisfies (5.5a) and (5.5b) over (0,Lk) 

with boundary conditions

v+uk
+(0, t) = r0θkC0(t), uk

−(L, t) = 0. (5.9)

One major result from the fluid model is the steady-
state concentration of morphogen in a target cell. For 
the kth target cell, the steady-state concentration takes 
the form of

C∗
k =

Q

κ

θkw(Lk)∑KT

k′=1 θk′w(Lk′)
, (5.10)

where

w(x) =
eγx

1 + α+[1 − eγx]/γv−
, γ =

α+v+ − α−v−
v+v−

.

 (5.11)

Comparing with the steady-state mean number of 
morphogen derived by the impulsive signaling model 
(4.7), they are identical if

πk
+(0) = w(Lk).

Comparing with equation (3.7) for L  =  Lk,we see 

that πk
+(0) = w(Lk). This proves that the steady-state 

solution of the fluid model and the steady-state mean 
of the impulsive signaling model are the same, which 
can be confirmed numerically as illustrated in figure 9.

6. Discussion

In this paper we developed a stochastic model of 
cytoneme-based morphogenesis, where individual 
vesicles of morphogen are bidirectionally transported 
along cytonemes linking a source cell to one or more 
target cells. We calculated the splitting probabilities 
and the conditional MFPTs of a single vesicle delivering 
a morphogen burst to a target cell, and then used 
queuing theory to determined the steady-state mean 
and variance of the morphogen gradient, assuming 
that morphogen vesicles are periodically generated by 
the source cell. We also developed a differential version 
of the queuing model and showed that the continuum 
model of cytoneme-based morphogenesis [4, 10] is 
the asymptotic mean dynamics of the queuing model 
when the degradation rate is faster than the vesicle 
production rate.

One of the major results of our stochastic model 
is that the burst-like nature of morphogen transport 
can lead to a Fano factor that is greater than unity 
(non-Poissonian), analogous to protein bursting in 

Figure 9. ‘Fluid’ model (solid and red) gives the average dynamics of the impulsive signaling model. (a) Sample paths of the 
impulsive signaling model of a single cytoneme when ν = 10κ. (b) Corresponding plot when ν = κ. (c) Corresponding plot when 
ν = 0.1κ. Parameters are the same as figure 6 with κ = 0.05 s−1 and fixed Q  =  5 s−1.
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gene networks [13]. Moreover, the Fano factor is only 
weakly-dependent on distance between the source 
and target cells, which means that relative fluctuations 
could be particularly significant in the case of target 
cells distal to the source cells. On way to mitigate the 
affects of fluctuations is to increase the production rate 
relative to the degradation rate.

One simplifying assumption of our stochastic 
model is that vesicles are periodically produced in the 
source cell at a constant rate ν  and contain the same 
amount of morphogen. However, fluctuations in the 
production rate and size of vesicles could be an addi-
tional source of stochasticity, resulting in a queuing 
model with random customer batch sizes and more 
complicated waiting time distributions. Another 
assumption is that the injection probability θk is time-
independent. However, this probability depends on 
the relative number of cytonemes connecting to each 
target cell. Recent experimental studies of gradient for-
mation of a FGF family protein, Branchless (Bnl), in 
Drosophila have shown that the number of cytonemes 
can be time-dependent [6, 20]. In Drosophila, Bnl is 
the primary signal that guides the branching morpho-
genesis of tracheal epithelial tubes in the wing imaginal 
disc. Activation of its cognate receptor Breathless (Btl) 
in tracheoblast cells induces migration and remode-
ling of the tracheoblasts to form a new tubular branch, 
the Air-Sac-Primordium (ASP). ASP cells extend Btl-
containing cytonemes to contact the basal surface of 
the wing disc source and directly receive Bnl. The latter 
regulates Btl synthesis and cytoneme production via 
a feedback loop that helps sculpt the morphogen gra-
dient. Thus the number of cytoneme contacts, which 
determines θk, is itself a dynamical variable.
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Appendix

In this appendix, we use generating functions and 
Laplace transforms to derive expressions for the 
steady-state mean and variance of the modified 
G/M/∞ queuing model. First, we define the binomial 
moments

Br(t) =
∞∑
l=r

l!

(l − r)!r!
P[N(t) = l], r = 1, 2, · · · .

 (A.1)

Introducing the generating function

G(z, t) =
∞∑

l=0

zlP[N(t) = l], (A.2)

we have

Br(t) =
1

r!

drG(z, t)

dzr

∣∣∣∣
z=1

. (A.3)

Assuming that the system is empty at time t  =  0, we 
will derive an integral equation for the generating 
function G(z, t). Rearranging (4.4) we have

N(t) = χ(t − B1)δk1,k + H(t − 1/ν)N∗(t − 1/ν),
 (A.4)

where N*(t) has the same distribution as N(t). Note 
that χ(t − B1)δk1,k and H(t − 1/ν)N∗(t − 1/ν) 
are independent. Conditioning the first arrival time 
B1 = Tk1

= y  and cell identity k1  =  k, one has

g(z, t, y, k) ≡ E[zN(t)|B1 = y, k1 = k]

= E[zH(t−1/ν)N∗(t−1/ν)]E[zχ(t−y),δk,k |B1 = y, k1 = k].
 (A.5)

Moreover,

P[I(t − y, S1d) = l] = [1 − E(t − y)]δl,1 + E(t − y)δl,0,

so it follows that
∑
l=0,1

zlP[I(t − y, S1d) = l] = z + (1 − z)E(t − y),

where t  −  y   >  0. Since I(t  −  y ,S1d) for d = 1, 2, · · · ,∆ 
are independent and identically distributed, the total 
expectation theorem yields

G2(z, t) := E[zχ(t−B1)δk1 ,̄k ] = E
[
E[zχ(t−B1)δk1 ,̄k |B1 = y, k1 = k]

]

= E

[
∆∏

d=1

E[zδk,̄kI(t−y,S1d)]

]

=

∫ t

0
[z + (1 − z)E(t − y)]∆dF(y, k̄) +

∫ ∞

t
dF(y, k̄) +

∑

k �=k̄

ρk.

According to (A.5), another application of the total 
expectation theorem gives

G(z, t) = E[zN(t)] = E[g(z, t, y, k)]

= E[zH(t−1/ν)N∗(t−1ν)] · E
[
E[zχ(t−y),δk,k |B1 = y, k1 = k]

]

= G1(z, t − 1/ν)× G2(z, t),
 

(A.6)

where

G1(z, t − 1/ν) =

{
1 if t < 1/ν

G(z, t − 1/ν) if t � 1/ν.

One can now obtain an iterative equation for bino-
mial moments by differentiating equation (A.6) with 
respect to z and using equation (A.3. Since

dl

dzl
[z + (1 − z)E(t − y)]∆

∣∣∣∣
z=1

=

{
∆!

(∆−l)! [1 − E(t − y)]l if ∆ � l

0 if ∆ < l
,

we obtain the integral equation

Br(t) =

(
∆

r

)
Hr(t) + H(t − 1/ν)

r−1∑
l=0

(
∆

l

)
Br−l(t − 1/ν)Hl(t)

 (A.7)

where H0(t) = 1 and

Hl(t) =

∫ t

0
e−κl(t−y)dF(y, k̄), l = 1, 2, · · · .

In order to obtain the steady-state binomial moments, 
we Laplace transform equation (A.7) after making the 
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substitution dF(y, k̄) = ρk̄ f̄k(y)dy . In particular, for 
r  =  1, we have

B̂1(s) = e−s/ν B̂1(s) +
∆

κ+ s
f̂̄k(s).

Solving for ̂B1(s) gives

B̂1(s) =
∆

κ+ s
· f̂̄k(s)

1 − e−s/ν
.

Using the fact that limt→∞ B1(t) = lims→0 sB̂1(s) 
and using l’Hospital’s rule, we obtain the expression 
for steady-state first moment B∗

1 = 〈N〉 given in 

equation (4.7), assuming that all moments of F(y, k̄) 
are finite.

Note that if r � 2 then one cannot perform Laplace 
transforms directly to find an iterative equation for the 
steady-state binomial moments. This is due to the pres-
ence of terms involving products of time-dependent 
functions. Therefore, in order to determine the steady-
state second binomial moment, we introduce an itera-
tive expression for the moment generating function:

G(z, t) =
i−1∏
j=0

G2(z, t − j/ν), i − 1 � tν < i. (A.8)

Differentiating with respect to z we have

dG

dz
(z, t) = G(z, t)

i−1∑
j=0

1

G2

dG2

dz

∣∣∣∣
z,t−j/ν

.

Again taking derivatives with respect to z

d2G

dz2
(z, t) =

[
dG

dz

]2 1

G

∣∣∣∣∣
z,t

+

i−1∑
j=0

1

G2

d2G2

dz2
− 1

G2
2

[
dG2

dz

]2
∣∣∣∣∣

z,t−j/ν

and setting z  =  1 yields

B2(t) =
1

2
B2

1(t) +

(
∆

2

) i−1∑
j=0

H2(t − j/ν)−∆2
i−1∑
j=0

H2
1(t − j/ν).

One can write the second moment as

B2(t) =
1

2

[
B2

1(t) +

(
∆

2

)
M1(t)−∆2M2(t)

]
, (A.9)

with the iterative functions satisfying

M1(t) = H(t − 1/ν)M1(t − 1/ν) +H2(t), (A.10)

and

M2(t) = H(t − 1/ν)M2(t − 1/ν) +H2
1(t). (A.11)

After Laplace transforming equations (A.10) and 
(A.11) along similar lines to the first moment, we 
obtain the steady states

lim
t→∞

M1(t) =
ν

2κ
ρk̄, lim

t→∞
M2(t) = νĤ2

1(0). (A.12)

Performing the integration

Ĥ2
1(s) =

2

2κ+ s

∫ ∞

0

∫ ∞

y
e−κ(y′−y)−sy′dF(y′, k̄)dF(y, k̄),

setting s  =  0, and changing variables gives

Ĥ2
1(0) =

ρ2
k̄

κ
Ik̄(κ), Ik̄(κ) =

∫ ∞

0
e−κy′

∫ ∞

0
f̄k(y) f̄k(y + y′)dydy′.

This then generates the steady-state second binomial 
moment

B∗
2 =

1

2

[
B∗2

1 +

(
∆

2

)
ν

2κ
ρk̄ −

ν∆2

κ
ρ2

k̄Ik̄(κ)

]
. (A.13)

Using the fact that

〈N2〉 − 〈N〉2 = 2B∗
2 + B∗

1 − B∗2
1 ,

we thus obtain the steady-state variance (4.8).
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