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DIRECT VS. SYNAPTIC COUPLING IN A MATHEMATICAL
MODEL OF CYTONEME-BASED MORPHOGEN GRADIENT

FORMATION\ast 

HYUNJOONG KIM\dagger AND PAUL C. BRESSLOFF\dagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . In developmental biology, an important problem is understanding the mechanisms
underlying the formation of morphogen concentration gradients. The most commonly hypothesized
mechanism involves the diffusion and degradation of morphogens from a localized source. Recently,
however, an alternative mechanism has been proposed, which is based on cell-to-cell contacts me-
diated by thin, actin-rich cellular extensions known as cytonemes. In this paper, we develop a one-
dimensional advection-diffusion transport model of cytoneme-based morphogenesis. In particular,
we compare two distinct types of contact between a cytoneme tip and a target cell: direct con-
tact and indirect contact mediated by a synapse. First, we calculate the steady-state concentration
profiles and show that synaptic contacts generate broader concentration profiles, thus allowing for
longer-range interactions. We then consider two alternative methods for determining how quickly the
system approaches steady-state: either calculating the accumulation time using Laplace transforms,
or analyzing the discrete spectrum of the associated evolution operator. The latter is a nontrivial
eigenvalue problem due to the nature of the boundary conditions. Finally, we extend the direct
contact model to the case of a stochastically switching boundary at the cytoneme tip, in order to
take into account the fact that cytonemes dynamically grow and shrink, resulting in more temporary
contacts with target cells.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . advection-diffusion, morphogenesis, cytoneme, boundary value problem

\bfA \bfM \bfS \bfs \bfu \bfb \bfj \bfe \bfc \bft \bfc \bfl \bfa \bfs \bfs \bfi fi\bfc \bfa \bft \bfi \bfo \bfn \bfs . 92C15, 92C3, 35K20
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1. Introduction. An important problem in developmental biology is under-
standing the mechanisms underlying the formation and maintenance of morphogen
concentration gradients [29]. Such gradients drive the discrete spatial patterning of
differentiated gene expression across a cell population. The most commonly hypothe-
sized mechanism of morphogen gradient formation involves the extracellular diffusion
of morphogens away from a localized source of protein production. When this is
combined with removal of proteins from the diffusing pool via degradation or binding
to membrane-bound receptors, one obtains steady-state concentration profiles that
decay exponentially (or algebraically) away from the source [15, 1, 27, 16, 22, 25].
Recently, however, an alternative mechanism for delivering morphogens to embryonic
cells has been proposed, based on cell-to-cell contacts that are mediated by signaling
filopodia known as cytonemes [12, 13, 14]. Cytonemes are thin, dynamic, actin-rich
cellular extensions with a diameter of around 100 nm and lengths that vary from 1 to
100 µm.

Cytonemes were first characterized in the wing imaginal disc of Drosophila [18]
and have been associated with the transport of both morphogenetic protein Decapen-
taplegic (Dpp) and Hedgehog (Hg) [19, 4, 12]. Many cytonemes in Drosophila are
found to extend from morphogen-producing cells to target cells. Morphogens are
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2324 HYUNJOONG KIM AND PAUL C. BRESSLOFF

actively transported along the cytonemes in a bidirectional fashion, probably via
myosin motors that actively ``walk"" along the actin filaments of a cytoneme. The
amount of morphogen delivered to a cell will then depend on the flux of particles
along a cytoneme and the number of cytonemes that form a stable contact with the
target cell. Cytonemes can also emanate from receptor-bearing target cells, transport-
ing their receptors to the vicinity of source cells. Increasing experimental evidence
indicates that cytonemes also mediate morphogen transport in vertebrates [11, 21].
Examples include sonic hedgehog (Shh) cell-to-cell signaling in chicken limb buds [20]
and Wnt signaling in zebrafish [23, 24]. The latter involves a different morphogen
transport mechanism, in which Wnt is clustered at the membrane tip of growing sig-
naling filopodia. When the filopodia make contact with target cells, the morphogens
are delivered to the cells and the filopodia are pruned off within 10 minutes of making
contact. In this case, the amount of morphogen delivered to a cell will depend on
the rate of filopodia growth, the concentration of morphogen at the tips, and the fre-
quency of contacts between source and target cells. It is important to note, however,
that very little is currently known about the precise biochemical and physical nature
of the contacts between signaling filopodia such as cytonemes and their target cells
[13, 10]. Important unresolved issues include how tips find their targets, how they are
stabilized at their contact sites, and how morphogens are transferred to a receiving
cell and subsequently internalized. For example, do cytonemes form a direct contact
with a receiving cell or an indirect synaptic contact? Mathematical modeling can thus
help in exploring the efficacy of various hypothesized mechanisms.

So far there has been very little modeling of cytoneme-based morphogenesis, par-
ticularly compared to diffusion-based morphogenesis. Recently, however, we intro-
duced a model of the motor-based transport of morphogens along a collection of
cytonemes of varying lengths, linking a source cell to a one-dimensional array of
target cells [9]. Each cytoneme was assumed to form a fixed, direct physical con-
tact with its corresponding target cell. This built upon a previous compartmental
model of Teimouri and Kolomeisky [25, 26]. More specifically, we considered a simple
bidirectional motor transport model, in which active particles carrying morphogens
randomly switched between anterograde and retrograde transport. We took active
particles to be injected at a rate that was proportional to the particle concentration
in the source cell, and we imposed an absorbing boundary condition at the target
end. Solving the steady-state solution of the transport equations, we calculated the
length-dependent flux through each cytoneme and thus established how the system
could support a morphogen concentration gradient that decays exponentially from
the source. The existence of an explicit transport model also allowed us to determine
the accumulation time of the morphogen gradient and its robustness to fluctuations
in the rate of morphogen production in the source cell. One major observation of
both modeling studies [25, 9] is that, although cytoneme-based gradient formation is
potentially more precise than gradients that are diffusion-based, it comes at an energy
cost.

In this paper, we further develop our mathematical modeling of cytoneme-based
morphogenesis by investigating how the morphogen gradient depends on the nature
of cell-to-cell contacts, specifically, direct vs. synaptic coupling. In the latter case,
we assume that a cytoneme delivers vesicles of morphogen to a presynaptic vesicular
pool. The vesicles are then released into the synaptic cleft via exocytosis and subse-
quently internalized by the target cell via endocytosis. This requires modifying the
boundary condition at the cytoneme tip. For simplicity, we represent transport of
morphogens along cytonemes in terms of advection-diffusion rather than bidirectional
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MATHEMATICAL MODEL OF MORPHOGEN GRADIENT FORMATION 2325

actin filament

myosin

motor
morphogen

source cell target cell
cytoneme

Fig. 2.1. Schematic diagram showing active motor-driven transport of morphogens along a
cytoneme of fixed length.

transport. (The former can be obtained as an approximation of the full bidirectional
model using a quasi-steady-state reduction [17]. It is important to note, however,
that one would not recover the standard diffusion-based model of morphogenesis in
the absence of advection, due to the nontrivial nature of the boundary conditions.)
In section 2, we explore the consequences of the modified boundary condition on the
steady-state morphogen gradient. In section 3, we use Laplace transforms to calcu-
late the analog of the accumulation time considered in diffusion-based mechanisms
[2, 3], which is important in order to check that the time to establish a morphogen
gradient is consistent with developmental stages. In section 4, we consider an alter-
native characterization of the approach to steady-state, based on the spectrum of the
associated evolution operator. This is a nontrivial boundary value problem due to
the coupling between the cytoneme and the cellular compartments, which we analyze
using winding numbers. Finally, in section 5 we further extend our direct coupling
model by taking the transfer of vesicles from the cytoneme tip to the target cell to
be stochastically gated. This is motivated by the observation that many cytonemes
are not static objects, but dynamically grow and shrink, resulting in more temporary
contacts with target cells. We analyze the stochastic model along analogous lines to
recent studies of diffusion equations in domains with randomly switching boundaries
[6, 7, 8], and show that dynamic contacts can lead to nonmonotonic concentration
profiles.

2. Single cytoneme with direct or synaptic coupling. Consider a one-
dimensional model of a single cytoneme of length L linking a source cell to a single
target cell along the lines shown in Figure 2.1. Let u(x, t) denote the density per
unit length of motor-cargo particles at position x \in [0, L] along the cytoneme and
time t. Each particle is assumed to carry a vesicle containing morphogens. In our
previous model, we partitioned the complexes into anterograde (+) and retrograde
( - ) subpopulations labeled by u+(x, t) and u - (x, t), respectively, and assumed that
particles could switch between the two motile states according to a two-state Markov
process. In order to incorporate more general boundary conditions, we will consider
a simpler advection-diffusion model of active transport in this paper. The density
u(x, t) thus evolves according to the equation

(2.1)
\partial u

\partial t
=  - v \partial u

\partial x
+D

\partial 2u

\partial x2
, x \in (0, L),

where v is the average speed of motor-cargo transport and D is a diffusion coefficient.
Equation (2.1) is supplemented by boundary conditions at the ends x = 0, L, which
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2326 HYUNJOONG KIM AND PAUL C. BRESSLOFF

presynaptic pool 

target cell 

k+

target cell k-

(a) (b)
J(x,t)

J(x,t)

Fig. 2.2. Two forms of contact between a cytoneme tip and a target cell. (a) Direct coupling.
(b) Indirect synaptic coupling.

will depend on the form of coupling between the cytoneme tip and the target cell. We
consider two distinct cases.

2.1. Direct coupling model. This case was considered in [9]. In particular,
we take

(2.2) u(0, t) = \kappa C0(t), u(L, t) = 0,

where C0(t) is the density of vesicles in the source cell and \kappa is a constant with
units of inverse length. The cytoneme tip is assumed to make direct physical contact
with the target cell (see Figure 2.2(a)) such that all vesicles reaching the tip are
immediately transferred to the target cell membrane for subsequent internalization;
this is implemented by imposing an absorbing boundary condition at x = L. The
interpretation of the boundary condition at x = 0 is less straightforward. Recall that
we are modeling the active transport of vesicles rather than the passive diffusion of
individual proteins. Thus, one should not interpret the boundary condition u(0, t) =
\kappa C0(t) as a continuity equation for particles, in which \kappa = A/V \ll 1, where A is the
cross-sectional area of the cytoneme and V is the volume of the source cell. Instead,
we expect the vesicles to be targeted to some local region around the entrance of the
cytoneme, where they are loaded onto molecular motors for transport. In our model
we assume that the density of motor-cargo complexes at the entrance is proportional
to the number of vesicles at the base of the cytoneme. The transport component of
the model couples to the number of vesicles in the source and target cells, C0,1(t),
according to

(2.3)
dC0

dt
= Q - J(0, t),

dC1

dt
= J(L, t) - kC1(t),

where Q is the particle production rate in the source cell, k is a degradation rate, and
J(x, t) is particle flux at position x at time t:

(2.4) J(x, t) = vu(x, t) - D
\partial u(x, t)

\partial x
.

(Note that morphogen concentrations can be obtained from vesicle concentrations by
multiplying the latter by the mean number of proteins per vesicle.) Equations (2.3)
are supplemented by the initial condistions C0,1(0) = 0.

We now calculate the stationary solutions C\ast 
0 , C

\ast 
1 as a function of cytoneme length.

Setting the time derivative in (2.1) to zero yields u = u(x) with

0 =  - \partial 

\partial x

\biggl( 
vu - D

\partial u

\partial x

\biggr) 
.
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MATHEMATICAL MODEL OF MORPHOGEN GRADIENT FORMATION 2327

It follows that there is a constant stationary flux J(x) = J\ast . Setting dC0/dt = 0 in
the first equation of (2.3) implies that J\ast = J(0) = Q so that

vu(x) - D
\partial u(x)

\partial x
= Q.

Imposing the left-hand boundary condition equation (2.2) then gives the solution

(2.5) u(x) = \kappa C\ast 
0e

 - \gamma x +
Q

v

\bigl( 
1 - e - \gamma x

\bigr) 
, \gamma =  - v

D
.

Finally, applying the absorbing boundary condition at x = L yields the result

(2.6) C\ast 
0 =

Q

w(L)
, C\ast 

1 =
Q

k
,

where

(2.7) w(L) :=
\kappa ve - \gamma L

e - \gamma L  - 1
.

Note that w(L) > 0, since e - \gamma L  - 1 has the same sign as v. An important quantity,
which generalizes to the multicell case, is the ratio of the target and source densities,

(2.8)
C\ast 

1

C\ast 
0

=
w(L)

k
.

The length-dependence of this ratio is determined by the function w(L), which we
identify as an effective cytoneme ``conductance,"" in the sense that larger w(L) means
that the cytoneme is more effective at transferring vesicles to the target cell.

Example plots of w(L) as a function of cytoneme length L are shown in Figure 2.3.
As in our previous bidirectional model [9], we find that w(L) is an exponentially decay-
ing function of cytoneme length with the asymptotic value limL\rightarrow \infty w(L) depending
on the sign of v. If v < 0 (\gamma > 0), then w(L) decays to zero as cytoneme length tends
to infinity, whereas if v > 0 (\gamma < 0), then limL\rightarrow \infty w(L) = \kappa v. Irrespective of the sign
of v, w(L) \rightarrow \infty as L\rightarrow 0, which means that for arbitrarily short cytonemes, vesicles
are immediately absorbed by the target cell so C0 = 0. It is important to specify how
the length-scale of the cytoneme relates to cell size. In the case of the Drosophila wing
imaginal disc, cells are cylindrical in shape with a diameter of around 1µm so that a
cytoneme of length 10µm can contact around 10 cells. One observation of the w-plots
in Figure 2.3 is that the decay of w(L) is quite sharp so that it has approximately
reached its asymptotic value over the length spanned by just a few cells.

2.2. Synaptic coupling model. Now suppose that vesicles arriving at the
presynaptic domain fill a presynaptic pool, which are then released into the synap-
tic cleft at a rate k+; see Figure 2.2(b). Let B1(t) and C1(t) be the concentrations
of vesicles in the presynaptic and postsynaptic domains, respectively. Then (2.3)
becomes

(2.9)
dC0

dt
= Q - J(0, t), dB1

dt
= J(L, t) - k+B1(t),

dC1

dt
=  - k - C1(t)+k+B1(t),

where k - is an effective degradation rate of postsynaptic vesicles, which could be due
to failure to be endocytosed. In this case, (2.1) is supplemented by the boundary
conditions

(2.10) u(0, t) = \kappa C0(t), J(L, t) = \widehat \kappa [u(L, t) - \phi B1(t)],
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Fig. 2.3. ``Conductance"" of direct coupling model (blue or lighter curves) and synaptic coupling
model (red or darker curves) for a single target cell. (a) Plots of w(L) and wsyn(L) against L
for \gamma < 0. (b) Corresponding plots for \gamma > 0. Parameters are as follows: D = 0.1\mu m2s - 1,
\kappa = 0.1\mu m - 1, \^\kappa = 0.1\mu ms - 1, k = k - = 0.8s - 1, k+ = 1s - 1, and \phi = 1. Transport speed v =  - \gamma D.

where \widehat \kappa has units of velocity. That is, the flux into the presynaptic pool is proportional
to the difference of concentrations at the pool entrance with \phi some geometric factor.
(Note that the direct coupling model can be recovered as follows. First, setting k\pm = k
and taking the limit k \rightarrow \infty implies that C1(t) = B1(t); that is, we can identify the
concentrations in the presynaptic and postsynaptic domains. Second, we take the
limits \^\kappa \rightarrow \infty and \phi \rightarrow 0 so that we recover the absorbing boundary condition at the
cytoneme tip.)

In the case of indirect synaptic coupling, we use the steady-state versions of (2.9)
and (2.10) to determine C\ast 

0 and C\ast 
1 . In particular,

C\ast 
1 =

Q

k - 
, Q = \widehat \kappa \biggl[ u(L) - \phi k - 

k+
C\ast 

1

\biggr] 
,

which, on substituting into (2.5) for x = L, yields

(2.11)
\phi k - 
k+

C\ast 
1 = \kappa C\ast 

0e
 - \gamma L +

Q

v

\bigl[ 
1 - e - \gamma L

\bigr] 
 - Q\widehat \kappa .

This can be rearranged to show that

(2.12) C\ast 
0 =

Q

wsyn(L)

with

(2.13) wsyn(L) =
\kappa ve - \gamma L

v/vsyn + e - \gamma L  - 1
, vsyn =

\biggl[ 
\phi 

k+
+

1

\^\kappa 

\biggr]  - 1

.

Here vsyn is the average speed of the synaptic process. We note that

dwsyn

dL
= \gamma wsyn(L)

\biggl[ 
wsyn(L)

\kappa v
 - 1

\biggr] 
.
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0 1 2 3

...

N

cellsQ

f1

f2fN

C0

(a) (b)

Fig. 2.4. (a) Schematic diagram of a one-dimensional array of target cells (labeled n =
1, . . . , N), each connected to a single source cell (labeled n = 0) via a cytoneme of length Ln.
(b) Allocation of resources in the source cell with fnC0 particles localized to the nth cytoneme.

If v < vsyn, then wsyn(L) > \kappa v and dwsyn/dL < 0 for all L (monotonically decreasing
function wsyn). On the other hand, if v > vsyn, then wsyn(L) < \kappa v and dwsyn/dL > 0
for all L (monotonically increasing function wsyn). In other words, if the transport
speed is faster than the synaptic process speed, then the vesicles tend to accumulate
in the synapse, slowing down the approach to steady-state. Also note that wsyn(0) =
\kappa vsyn < \infty , which reflects the fact that the transfer of vesicles to the target cell is
not instantaneous, even for arbitrarily short cytonemes. Example plots of wsyn(L) are
shown in Figure 2.3. It can be seen that for the same transport parameter values, the
synaptic coupling supports a slower spatial decay of the conductance.

2.3. Multiple target cells. It is relatively straightforward to extend the single
cytoneme model to multiple cytonemes of length Ln linking a source cell to multiple
target cells, n = 1, . . . , N ; see Figure 2.4(a). Let un(x, t) be the density of transport
particles in the cytoneme contacting the nth target cell. Then the advection-diffusion
model for un on x \in (0, Ln) takes the same form:

\partial un
\partial t

=  - v \partial un
\partial x

+D
\partial 2u

\partial x2
.(2.14)

In the case of direct coupling, the corresponding boundary conditions are

(2.15) un(0, t) = \kappa fnC0(t), un(Ln, t) = 0

with
\sum 

n fn = 1. Here the coefficients fn specify the allocation of resources to the
nth cytoneme; see Figure 2.4(b). Extending (2.3) to the case of multiple target cells
yields

(2.16)
dC0

dt
= Q - 

N\sum 
m=1

Jm(0, t),
dCn

dt
= Jn(Ln, t) - kCn,

where

Jn(x, t) = vun(x, t) - D
\partial un(x, t)

\partial x
.

Solving the stationary equations shows that Jn(x) = J\ast 
n, where J

\ast 
n is the stationary

flux reaching the nth target cell and

(2.17) un(x) = \kappa fnC
\ast 
0e

 - \gamma x +
J\ast 
n

v

\bigl[ 
1 - e - \gamma x

\bigr] 
.

Imposing the right-hand boundary conditions un(Ln) = 0 for n = 1, . . . N shows that
J\ast 
n = fnC

\ast 
0w(Ln) with w(L) given by (2.7). Finally, the stationary versions of (2.16)

implies
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2330 HYUNJOONG KIM AND PAUL C. BRESSLOFF

Q =

N\sum 
n=1

J\ast 
n, C\ast 

n =
J\ast 
n

k
,

that is,

(2.18) C\ast 
0 =

Q\sum N
m=1 fmw(Lm)

, C\ast 
n =

Q

k

fnw(Ln)\sum N
m=1 fmw(Lm)

.

Equation (2.18) implies

(2.19)
C\ast 

n

C\ast 
0

=
fn
k
w(Ln),

where w(Ln) is the conductance of a single cytoneme of length Ln.
An analogous result holds for indirect synaptic coupling. That is, (2.9) and (2.10)

become
(2.20)

dC0

dt
= Q - 

N\sum 
m=1

Jm(0, t),
dBn

dt
= Jn(Ln, t) - k+Bn(t),

dCn

dt
=  - k - Cn(t)+k+Bn(t)

and

(2.21) un(0, t) = \kappa fnC0(t), Jn(Ln, t) = \widehat \kappa [un(Ln, t) - \phi Bn(t)].

These yield the steady-state equations

C\ast 
n =

J\ast 
n

k - 
, Q =

N\sum 
n=1

J\ast 
n, J\ast 

n = \widehat \kappa \biggl[ un(Ln) - 
\phi k - 
k+

C\ast 
n

\biggr] 
,

which, on substituting into (2.17) for x = L, yield

(2.22)
\phi k - 
k+

C\ast 
n = \kappa fnC

\ast 
0e

 - \gamma Ln +
J\ast 
n

v

\bigl[ 
1 - e - \gamma Ln

\bigr] 
 - J\ast 

n\widehat \kappa .
This can be rearranged to show that J\ast 

n = fnC
\ast 
0wsyn(Ln) and thus

(2.23) C\ast 
0 =

Q\sum N
m=1 fmwsyn(Lm)

, C\ast 
n =

Q

k - 

fnwsyn(Ln)\sum N
m=1 fmwsyn(Lm)

.

3. Accumulation time. One way to characterize the time-dependent approach
to steady-state is to determine the accumulation time [2, 3]. Following our previous
model [9], we introduce the function

G1(t) = 1 - C1(t)

C\ast 
1

,

which represents the fractional deviation of the concentration from the steady-state
C\ast 

1 . Assuming that C1(t) is smooth enough and C1(0) = 0, then 1  - G1(t) is the
fraction of the steady-state concentration that has accumulated by time t. The accu-
mulation time is then defined by analogy with mean first passage times:

(3.1) \tau 1 =

\int \infty 

0

t
d

dt
(1 - G1(t))dt =

\int \infty 

0

G1(t)dt.
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The accumulation time can be calculated using Laplace transforms. That is, defining

\^G1(s) =

\int \infty 

0

G1(t)e
 - stdt,

we have \tau 1 = lims\rightarrow 0
\^G(s). Integration by parts yields that lims\rightarrow 0 s \^C1(s) = C\ast 

1 . Then
we have

(3.2) \tau 1 = lim
s\rightarrow 0

1

s

\Biggl( 
1 - s \^C1(s)

C\ast 
1

\Biggr) 
=  - 1

C\ast 
1

d

ds
s \^C1(s)

\bigm| \bigm| \bigm| 
s=0

.

3.1. Direct coupling model. Taking Laplace transforms of the second equa-
tion in (2.3) gives

s \^C1(s) =
s

s+ k
\^J(L, s).

Substituting this into (3.2) and using

lim
s\rightarrow 0

s \^J(L, s) = lim
t\rightarrow \infty 

J(L, t) = Q = kC\ast 
1 ,

we obtain

(3.3) \tau 1 =
1

k
 - 1

Q

d

ds
s \^J(L, s)

\bigm| \bigm| \bigm| 
s=0

.

Now we want to find \^u(x, s). Taking Laplace transform of (2.1) yields

\partial 2x\^u(x, s) + \gamma \partial x\^u(x, s) =
s

D
\^u(x, s),

and the corresponding general solution is given by

(3.4) \^u(x, s) = e - 
1
2\gamma x [A(s) sinh(\gamma 1(s)x) +B(s) cosh(\gamma 1(s)x)] ,

where

(3.5) \gamma 1(s) =

\sqrt{} \Bigl( \gamma 
2

\Bigr) 2
+

s

D

and the coefficients A(s), B(s) are determined by the boundary conditions (2.2).
Taking the time derivative of the boundary condition at x = 0 and Laplace

transforming, we have

(3.6) s\^u(0, s) = \kappa 

\biggl[ 
Q

s
 - \^J(0, s)

\biggr] 
.

The Laplace transform of J(x, t) is

\^J(x, s) =  - D [\partial x\^u(x, s) + \gamma \^u(x, s)] ,

and using the general solution (3.4), this gives

(3.7) \^J(x, s) =  - D
\Bigl[ \gamma 
2
\^u(x, s) + e - 

1
2\gamma x\gamma 1 (A(s) cosh(\gamma 1x) +B(s) sinh(\gamma 1x))

\Bigr] 
.
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Substituting (3.4) and (3.7) at x = 0 into (3.6) yields

(3.8) sB(s) = \kappa 

\biggl[ 
Q

s
+D

\biggl( 
\gamma B(s)

2
+ \gamma 1(s)A(s)

\biggr) \biggr] 
.

Similarly, Laplace transforming the remaining boundary condition at x = L gives

(3.9) A(s) sinh [\gamma 1(s)L] +B(s) cosh [\gamma 1(s)L] = 0.

Solving (3.8) and (3.9) for A(s) and B(s), we have

(3.10) A(s) =  - \kappa Q cosh [\gamma 1(s)L]

s\scrA (L, s)
, B(s) =

\kappa Q sinh [\gamma 1(s)L]

s\scrA (L, s)
,

where
\scrA (L, s) = \kappa D\gamma 1(s) cosh [\gamma 1(s)L] +

\Bigl( 
s+

\kappa v

2

\Bigr) 
sinh [\gamma 1(s)L] .

Substituting (3.10) into (3.7) at x = L and imposing a hyperbolic-trigonometric
identity gives

s \^J(L, s)

Q
= \kappa De - 

1
2\gamma L \cdot \gamma 1(s)

\scrA (L, s)
.

Finally, substituting into (3.3) and evaluating the derivative with respect to s gives

(3.11) \tau 1 =
1

k
+

D

\kappa v2
\bigl[ 
\kappa (e\gamma L  - 1 - \gamma L) + \gamma (e\gamma L  - 1)

\bigr] 
.

The asymptotic behavior of the accumulation time depends on sign of v; see Figure
3.1(a). If v > 0 so that \gamma < 0, then

lim
L\rightarrow \infty 

\tau 1(L)

L
=

1

v
,

that is, \tau 1(L) increases linearly with respect to L. This reflects the fact that for
positive speeds v, the dynamics behaves like a particle moving with constant velocity.
On the other hand, if v < 0 so that \gamma > 0, then diffusion dominates and \tau 1(L)
increases exponentially.

3.2. Synaptic coupling model. In a similar fashion, we can evaluate the ac-
cumulation time \tau 1,syn of the synaptic coupling model. First, Laplace transforming
the last equation in (2.9), we have

s \^C1(s) =
k+

s+ k - 
s \^B1(s).

Substituting this into (3.2) and using k+B
\ast 
1 = k - C

\ast 
1 gives

(3.12) \tau 1,syn =
1

k - 
 - 1

B\ast 
1

d

ds
s \^B1(s)

\bigm| \bigm| \bigm| 
s=0

.

It remains to find \^B1(s). Taking Laplace transforms of the second equation in (2.9)
and using the right-hand boundary condition (2.10) yields

(3.13) s \^B1(s) =
\^\kappa 

s+ \^\kappa \phi + k+
s\^u(L, s).
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Fig. 3.1. Accumulation time of direct coupling model (blue or lighter curves) and synaptic
coupling model (red or darker curves) for a single target cell and various values of \gamma . (a) Plots of
the accumulation times \tau 1 and \tau 1,syn for \gamma < 0. (b) Corresponding plots for \gamma > 0. Other parameter
values as Figure 2.3.

Applying the steady-state solution \^\kappa u(L) = (\^\kappa \phi + k+)B
\ast 
1 shows that

(3.14)  - 1

B\ast 
1

d

ds
s \^B1(s)

\bigm| \bigm| \bigm| 
s=0

=
1

\^\kappa + k+
 - 1

u(L)

d

ds
s\^u(L, s)| s=0 .

Substituting (3.14) into (3.12), we have

(3.15) \tau 1,syn =
1

k - 
+

1

\^\kappa \phi + k+
 - 1

u(L)

d

ds
s\^u(L, s)| s=0 .

We now want to calculate \^u(L, s). Since the synaptic coupling model shares
the transport equation (2.1) with the direct coupling model, we can utilize the same
general solutions (3.4) and (3.7) for \^u(x, s) and \^J(x, s), respectively, but with new
coefficients Asyn(s) and Bsyn(s), which are determined by the boundary conditions
(2.10). Furthermore, since the two models have the same boundary condition at
x = 0 and the same dynamics for C0(t), it follows that Asyn(s) and Bsyn(s) are
related according to (3.8). Turning to the boundary condition at x = L, we Laplace
transform the second equation in (2.10) and use (3.13) to give

(3.16) \^J(L, s) =
\^\kappa (s+ k+)

s+ \^\kappa \phi + k+
\^u(L, s).

Using (3.4) and (3.7) at x = L, we find that

[\gamma 2(s) sinh(\gamma 1(s)L) - \gamma 1(s) cosh(\gamma 1(s)L)]Asyn(s)

= [\gamma 1(s) sinh(\gamma 1(s)L) - \gamma 2(s) cosh(\gamma 1(s)L)]Bsyn(s),(3.17)

where \gamma 1(s) is given by (3.5) and

D\gamma 2(s) =
v

2
 - \^\kappa (s+ k+)

s+ \^\kappa \phi + k+
.
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Now solving (3.8) and (3.17) for Asyn(s) and Bsyn(s) leads to

Asyn(s) =
\kappa Q

s\scrA syn
[\gamma 1 sinh(\gamma 1L) - \gamma 2 cosh(\gamma 1L)] ,(3.18a)

Bsyn(s) =
\kappa Q

s\scrA syn
[\gamma 2 sinh(\gamma 1L) - \gamma 1 cosh(\gamma 1L)] ,(3.18b)

where

\scrA syn(L, s) = \kappa D\gamma 1(s) \cdot [\gamma 2(s) cosh(\gamma 1(s)L) - \gamma 1(s) sinh(\gamma 1(s)L)]

+
\Bigl( 
s+

\kappa v

2

\Bigr) 
\cdot [\gamma 2(s) sinh(\gamma 1(s)L) - \gamma 1(s) cosh(\gamma 1(s)L)] .

Substituting (3.18) into the general solution (3.4) at x = L and imposing hyper-
trigonometric identities gives

(3.19)
s\^u(L, s)

u(L)
=  - \kappa e - 1

2\gamma L
\gamma 1(s)

\scrA syn(L, s)
\cdot Q

u(L)
.

Multiplying (3.16) by s and taking s\rightarrow 0 proves that

(3.20) Q = lim
t\rightarrow \infty 

J(L, t) = lim
s\rightarrow 0

s \^J(L, s) =
u(L)

1/\^\kappa + \phi /k+
.

Therefore, combining (3.19), (3.20), and (3.15) yields

(3.21) \tau 1,syn =
1

k - 
+

1

\^\kappa \phi + k+
+

\kappa e - 
1
2\gamma L

1/\^\kappa + \phi /k+

d

ds

\gamma 1(s)

\scrA syn(L, s)

\bigm| \bigm| \bigm| \bigm| 
s=0

.

Example plots of wsyn(L) are shown in Figure 3.1. It can be seen that the asymp-
totic behavior of the accumulation time is similar to the direct coupling model. If
v > 0, then \tau 1,syn is asymptotically linear with respect to L. On the other hand, if
v < 0, then \tau 1,syn is exponentially increasing with respect to L. In the former case,
\tau 1,syn can be a nonmonotic function of L. In general wsyn(L) > w(L) due to the extra
processing time at a synapse.

4. Spectral analysis. The existence of a finite accumulation time suggests that
the steady-state is stable. Another way to establish stability and characterize the
approach to steady-state is to determine the spectrum of the linear evolution opera-
tor. One then expects the principal nonzero eigenvalue to dominate the asymptotic
approach to steady-state. In this section, we analyze the eigenvalues of the linearized
equations for both the direct coupling and synaptic coupling models and relate the
leading order asymptotic behavior with the accumulation time.

4.1. Direct coupling model. Consider perturbations about the steady-state
(u(x), C\ast 

0 , C
\ast 
1 ),

u(x, t) = u(x) + e\lambda t\omega (x), Ci(t) = C\ast 
i + e\lambda t\psi i, i = 0, 1.

Substituting into the direct coupling model gives

\partial 2x\omega (x) + \gamma \partial x\omega (x) =
\lambda 

D
\omega (x), 0 < x < L,(4.1a)

\partial x\omega (0) + \gamma \omega (0) =
\lambda 

D
\psi 0,(4.1b)

\partial x\omega (L) + \gamma \omega (L) =  - \lambda + k

D
\psi 1(4.1c)
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and

(4.2) \omega (0) = \kappa \psi 0, \omega (L) = 0.

The corresponding general solution of (4.1a) is

(4.3) \omega (x) = e - 
1
2\gamma x [A sinh(\gamma 1(\lambda )x) +B cosh(\gamma 1(\lambda )x)] ,

where the function \gamma 1 is given by (3.5) and A,B are coefficients. Imposing the bound-
ary conditions (4.2) determines A and B such that

(4.4) \omega (x) = \kappa \psi 0e
 - 1

2\gamma x \cdot sinh[\gamma 1(\lambda )(L - x)]

sinh(\gamma 1(\lambda )L)
.

Substituting (4.4) into (4.1b) and (4.1c) leads to the pair of equations

(4.5)
\gamma 

2
 - \gamma 1(\lambda ) coth[\gamma 1(\lambda )L] =

\lambda 

\kappa D

and

(4.6) \kappa e - 
1
2\gamma L

\gamma 1(\lambda )

sinh[\gamma 1(\lambda )L]
\psi 0 =

\lambda + k

D
\psi 1.

Equation (4.5) is a transcendental equation for the eigenalues \lambda , whereas (4.6) deter-
mines the eigenvector (\psi 0, \psi 1) corresponding to \lambda (up to scalar multiplication). Note
that the linear operator of the boundary value problem given by (4.1a)--(4.1c) is not
self-adjoint wth respect to the L2 inner product. Therefore, one cannot assume a
priori that the eigenvalues are real.

In order to simplify the analysis of (4.5), we set z = \gamma 1(\lambda )
2 = \lambda /D + (\gamma /2)2 so

that (4.5) can be rewritten as

(4.7) f(z) := \kappa 
\surd 
z coth(L

\surd 
z) + z  - \scrG = 0,

where \scrG (\gamma ) = (\gamma 2+2\kappa \gamma )/4. The stability condition Re(\lambda ) < 0 for all \lambda is equivalent to
the condition Re(z0) < (\gamma /2)2, where z0 is a root of f(z). First, consider real roots.
Since f0(z) := \kappa 

\surd 
z coth(L

\surd 
z) is a real-valued function on z \in \BbbR , real solutions

of (4.7) are obtained by the intersection points of the two graphs y = f0(z) and
y =  - z + \scrG ; see Figure 4.1. If there existed a root z0 > (\gamma /2)2, then  - \gamma 2/4+ \scrG (\gamma ) >
f0

\Bigl( 
\gamma 2

4

\Bigr) 
, that is,

\gamma sinh

\biggl( 
L| \gamma | 
2

\biggr) 
> | \gamma | cosh

\biggl( 
L| \gamma | 
2

\biggr) 
> 0.

Since there is no \gamma satisfying the inequality, it follows that all real roots satisfy the
stability condition Re(z0) < (\gamma /2)2.

It remains to explore the roots in the complex plane that are not on the real axis,
\{ z, Im(z) \not = 0\} . We will use a winding number argument, which counts the number
N0 of roots in a region inside of a contour \Gamma . First, to find N0 on the upper-half
complex plane, we construct the counterclockwise contour \Gamma + consisting of the semi-
circle \Gamma +

R = \{ z = Re - \theta , \delta < \theta < \pi  - \delta \} and the rays \Gamma \delta = \{ z = rei\delta , 0 < r < R\} ,
\Gamma \pi  - \delta = \{ z = (R  - r)ei(\pi  - \delta ), 0 < r < R\} ; see Figure 4.2(a). Applying the argument
principle to the function f(z) on the contour \Gamma + gives

(4.8) N0  - N\infty =W (f,\Gamma +),
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-3 -2 -1
z

-3

-2

-1

0

1

2

3

0  1 2 3

y

y = f0(z)

y = -z+G(4κ)

y = -z+G(−κ)

Fig. 4.1. Intersection of y = f0(z) and y =  - z + \scrG (\gamma ) on z \in \BbbR for direct coupling model.
The black solid line depicts the graph of y = fr(z), and the black dotted line shows its asymtotic
lines. The blue line depicts the graph of y =  - z + \scrG (4\kappa ), and the red line shows y =  - z + \scrG ( - \kappa ).
Intersections of the black line and colored line gives solution of f(z) = 0 on the real line. Both
colored lines have countably many solutions satisfying z < (\gamma /2)2.

Fig. 4.2. Counterclockwise contour \Gamma + and its image f(\Gamma +). (a) Counterclockwise contour \Gamma +

consisting of the semicircle \Gamma +
R = \{ z=Re - \theta , \delta < \theta < \pi  - \delta \} and the rays \Gamma \delta =\{ z=rei\delta , 0 < r < R\} ,

\Gamma \pi  - \delta = \{ z = (R  - r)ei(\pi  - \delta ), 0 < r < R\} . (b) Image of the contour f(\Gamma +). This lies on the
upper-half plane, and thus it cannot wind around the origin.

where N0(N\infty ) is the number of zeros (poles) of f inside \Gamma + and W (f,\Gamma +) is the
winding number of f(\Gamma +) around the origin counterclockwise. In the following, we
calculate N\infty and W (f,\Gamma +) and thus determine N0. For the semicircle path \Gamma R, as
R = | z| \rightarrow \infty , we have

f(z) \approx z

\biggl( 
1 + \kappa 

1\surd 
z
\cdot 1 - \scrG 

z

\biggr) 
\approx z,

and this implies that f(\Gamma R) is on the upper-half plane. For the ray \Gamma \delta , one can
calculate the imaginary part of the parameterized curve f(\Gamma \delta ):

Im [f \circ z(r)] = r sin \delta +
\kappa 
\surd 
r

| sinh(z(t))| 2
fb(2L

\surd 
r, \delta /2),

where

fb(x, y) =
1

2
[sin y \cdot sinh(x cos y) - cos y \cdot sin(x sin y)] .
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Since fb(0, y) = 0 and

dfb
dx

(x, y) =
sin(2y)

4
[cosh(x cos y) - cos(x sin y)] \geq sin(2y)

4
[cosh(x cos y) - 1] \geq 0

for y > 0, it follows that fb(x, y) \geq 0 if x, y > 0 and, hence, Im[f \circ z(r)] \geq 0. This
implies that f(\Gamma \delta ) is on the upper-half plane. By substituting r = R - r and \delta = \pi  - \delta ,
one can also prove that f(\Gamma \pi  - \delta ) is on the upper-half plane. Given that f(\Gamma +) is on
the upper-half plane, f(\Gamma +) cannot wind around the the origin (see Figure 4.2(b)),
and we have shown that W (f,\Gamma +) = 0.

Finally, note that f(z) has a removable singularity at the origin, since coth(
\surd 
zL)

varies as 1/
\surd 
z as z \rightarrow 0. This implies that N\infty = 0 for 0 < \delta \ll 1 and R > 0, and

thus N0 = N\infty +W (f,\Gamma +) = 0 on the upper-half plane. Similarly, one can prove that
N0 = 0 on the lower-half plane. Therefore, there are no roots of f in \{ z, Im(z) \not = 0\} ,
and the steady-state of the direct coupling model is unconditionally linearly stable.

4.2. Synaptic coupling model. Following along similar lines to the direct
coupling model, consider perturbations of the steady-state solution (u(x), C\ast 

0 , B
\ast 
1 , C

\ast 
1 )

of the synaptic coupling model:

u(x, t) = u(x) + e\lambda t\omega (x), Ci(t) = C\ast 
i + e\lambda t\psi i, B1(t) = B\ast 

1 + e\lambda t\sigma 1.

Substituting into the synaptic coupling model yields (4.1a) and (4.1b) together with

\partial x\omega (L) + \gamma \omega (L) =  - \lambda + k+
D

\sigma 1,(4.9a)

k+\sigma 1 = (\lambda + k - )\psi 1,(4.9b)

and the boundary conditions

(4.10) \omega (0) = \kappa \psi 0, \partial x\omega (L) + \gamma \omega (L) =
\^\kappa 

D
[\phi \sigma 1  - \omega (L)].

Again the general solution of (4.1a) is given by (4.3) with the coefficients A,B de-
termined by the boundary conditions. We find that A and B satisfy the pair of
equations

(4.11) \gamma 1(\lambda )A+

\biggl( 
\gamma 

2
 - \lambda 

\kappa D

\biggr) 
B = 0

and

(4.12) \scrM 1(\lambda )A+\scrM 2(\lambda )B = 0,

where

\scrM 1(\lambda ) = \gamma 3(\lambda ) sinh(\gamma 1(\lambda )L) + \gamma 1(\lambda ) cosh(\gamma 1(\lambda )L),

\scrM 2(\lambda ) = \gamma 3(\lambda ) cosh(\gamma 1(\lambda )L) + \gamma 1(\lambda ) sinh(\gamma 1(\lambda )L),

and

\gamma 3(\lambda ) =
\^\kappa 

D
\cdot \lambda + k+
\lambda + \^\kappa \phi + k+

+
\gamma 

2
.

To obtain a nontrivial solution of the linear system (4.11) and (4.12), we require its
determinant to be zero:

(4.13) \gamma 1(\lambda )\scrM 2(\lambda ) +

\biggl( 
\lambda 

\kappa D
 - \gamma 

2

\biggr) 
\scrM 1(\lambda ) = 0.
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2338 HYUNJOONG KIM AND PAUL C. BRESSLOFF

In the same fashion as we did for direct coupling model, we investigate the linear
stability of the steady-state solution by studying roots of (4.13) on the real line and
showing that there is no root on the complex plane except the real axis. First,
substituting z = \lambda /D + (\gamma /2)2 into (4.13) yields

(4.14)
\surd 
z\widetilde \scrM 2(z) +

1

\kappa 
(z  - \scrG )\widetilde \scrM 1(z) = 0,

where\widetilde \scrM 1 = \~\gamma 3(z) sinh(
\surd 
zL) +

\surd 
z cosh(

\surd 
zL), \widetilde \scrM 2 = \~\gamma 3(z) cosh(

\surd 
zL) +

\surd 
z sinh(

\surd 
zL),

and \~\gamma 3(z) = \gamma 3(D(z  - (\gamma /2)2)). Suppose that \widetilde \scrM 1 \not = 0. Then solving (4.14) is
equivalent to finding a solution of

(4.15) 0 =
\kappa 
\surd 
z\widetilde \scrM 2(z)\widetilde \scrM 1(z)

+ z  - \scrG := g0(z) + z  - \scrG .

On the other hand, if \widetilde \scrM 1 = 0, then either \widetilde \scrM 2 = 0 or z = 0. \widetilde \scrM 1 = \widetilde \scrM 2 = 0 implies
that z = 0 and \~\gamma 3(z) = 0. Therefore, solving (4.14) and (4.15) are equivalent when
z \in \BbbC \setminus \{ 0\} .

The next step is to take z \in \BbbR and determine whether or not there exists a real
root for which z0 > (\gamma /2)2. If so, then the steady-state solution of the synaptic
coupling model is unstable. Notice that g0(z) is a real-valued function on z \in \BbbR .
Hence, the points of intersection of the functions y = g0(z) and y =  - z + \scrG are the
solutions of (4.15) on the real axis; see Figure 4.3. There exists a root \{ z, z > (\gamma /2)2\} 
if and only if

(4.16)  - 
\Bigl( \gamma 
2

\Bigr) 2
+ \scrG (\gamma ) > g0

\biggl( \bigm| \bigm| \bigm| \gamma 
2

\bigm| \bigm| \bigm| 2\biggr) \Leftarrow \Rightarrow \gamma > | \gamma | \cdot 
\widetilde \scrM 2\widetilde \scrM 1

(| \gamma /2| 2).

On the other hand, for \gamma \not = 0

\widetilde \scrM 1 = \theta sinh(L| \gamma | /2) + | \gamma | 
2
[cosh(L| \gamma | /2) + sgn(\gamma ) sinh(L| \gamma | /2)] > 0

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1

z

-3

-2

-1

0

1

2

3

y

y =g0(z)
y = -z+G

Fig. 4.3. Intersection of y = g0(z) and y =  - z + \scrG (\gamma ) on z \in \BbbR for synaptic coupling model.
The black solid line depicts the graph of y = g0(z), and the dotted lines are its asymptotic lines.
The red line depicts the graph of y =  - z + \scrG (\gamma ).
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Fig. 4.4. Counting winding number of y = g0(z) + z  - \scrG with contour described in Figure
4.2(a). (a) Image of the contour with R = 100 and \delta = \pi /100. (b) Maximum and minimum of the
imaginary part of the image of contour in the upper-half complex plane as a function of R. The
image of contour is on the upper-half plane. (c) Maximum and minimum of the imaginary part of
the image of the contour reflected into the lower-half complex plane as a function of R. The image
of the contour is also in the lower-half plane.

with positive constant \theta = \gamma 3(0) - \gamma /2 and sgn(\gamma ) = \gamma /| \gamma | , that is,

| \gamma | 
\widetilde \scrM 2

\~\scrM 1

(| \gamma /2| 2) - \gamma =
| \gamma | \cdot \theta \cdot [cosh(L| \gamma | /2) - sgn(\gamma ) sinh(L| \gamma | /2)]\widetilde \scrM 1(| \gamma /2| 2)

> 0.

That is,

\gamma < | \gamma | \cdot 
\widetilde \scrM 2\widetilde \scrM 1

(| \gamma /2| 2)

for all \gamma \not = 0. This contradicts (4.16), which implies that all real roots satisfy the
required stability condition.

We now consider the remaining case \{ z, Im(z) \not = 0\} . Again it can be shown that
there exist no complex-valued roots using a winding number argument. However,
this now has to be implemented numerically. The image of the contour depicted in
Figure 4.2(a) is plotted in Figure 4.4 for g(z) = g0(z) + z  - \scrG , which clearly does not
wind around the origin.

4.3. Accumulation time and eigenvalues. Given the eigenpairs (\lambda i, \psi i), we
can decompose the solution C1(t) as

(4.17) C1(t) = C\ast 
1 +

\infty \sum 
i=1

e\lambda itEi\psi i,

where Ei are coefficients and we have ordered the eigenvalues such that 0 > \lambda 1 >
\lambda 2 \geq \lambda 3 . . .. The initial condition C1(0) = 0 implies that

\sum \infty 
i=1Ei\psi i =  - C\ast 

1 . It
follows that at large times the dominant eigenmode is \psi 1 and the corresponding
decay time is \tau \lambda 1

= 1/| \lambda 1| . The latter can be obtained numerically by solving either
(4.7) or (4.14) on the real line. In Figure 4.5 we plot the decay time \tau \lambda 1 as a function
of L for both direct and synaptic coupling, and we compare our results with the
accumulation time \tau 1 calculated in section 3. It can be seen that the decay time is
less than the accumulation time. This can be explained by noting that the eigenvalue
expansion of the accumulation time \tau 1 is given by \tau 1 =

\sum \infty 
i=1 \tau \lambda i

\~\psi i, where \tau \lambda i
= 1/| \lambda i| 
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Fig. 4.5. Accumulation time \tau 1 and decay time \tau \lambda 1
of direct coupling model for a single target

cell. The solid line depicts the accumulation time, and the dotted line represents the decay time as
a function of L. (a) If \gamma < 0 so that v > 0, then the decay time converges to a finite value. (b) If
\gamma > 0 so that v < 0, then the decay time increases and tends to infinity as L \rightarrow \infty . Other parameter
values are the same as in Figure 2.3.

and \~\psi i = Ei\psi i/
\sum 

j Ej\psi j =  - Ei\psi i/C
\ast 
1 . Hence, the accumulation time is a convex

combination of the decay times \tau \lambda i
.

The discrepancy between the accumulation time and decay time is particularly
significant when v > 0 (\gamma < 0). This is a consequence of the fact that limL\rightarrow \infty \tau 1 = \infty ,
whereas limL\rightarrow \infty \tau \lambda 1 < \infty . For example, consider (4.7) for the direct coupling case.
The principle eigenvalue is given by the point of intersection on the positive branch
of the function y = f0(z). If z > 0, then limL\rightarrow \infty fr(z) = \kappa 

\surd 
z. Thus, for large L, the

positive root is approximately given by the solution to

(4.18) \kappa 
\surd 
z =  - z + \scrG 

and depends on the sign of \gamma and \scrG . It follows that

(4.19) lim
L\rightarrow \infty 

\tau \lambda 1
(L) =

\left\{     
\infty , \gamma > 0,

1/\kappa (v  - \kappa D), 0 > \gamma \geq  - 2\kappa ,

4D/v2,  - 2\kappa > \gamma ;

see Figure 4.5. Finally, in the case of synaptic coupling, (4.14) has the same limiting
behavior as (4.7), so that

lim
L\rightarrow \infty 

\tau \lambda 1,syn(L) = lim
L\rightarrow \infty 

\tau \lambda 1
(L).

5. Stochastically gated direct coupling and switching boundary condi-
tions. Let us return to the original direct coupling model, but now assume that the
transfer of vesicles from the cytoneme tip to the target cell is stochastically gated.
This is motivated by the observation that many cytonemes are not static objects,
but dynamically grow and shrink, resulting in more temporary contacts with target
cells. (This isn't necessarily inconsistent with our static model because all we require
is that there is cytoneme-mediated contact between the source and target cells for
a sufficient time, comparable to the accumulation time. Moreover, there is evidence
that cytonemes can be stabilized by their targets [5]. Nevertheless, it is important to
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MATHEMATICAL MODEL OF MORPHOGEN GRADIENT FORMATION 2341

understand the possible effects of dynamic tips, particularly as details of cytoneme
contacts are still not well known.)

We incorporate a stochastic gate into our transport model by taking the right-
hand boundary condition to be of the form

(5.1) u(L, t) =  - (1 - m(t))
1

\gamma 

\partial u(L, t)

\partial x
,

where m(t) \in \{ 0, 1\} evolves according to the two-state Markov process 0
\beta 
\rightleftharpoons 
\alpha 

1 with

transition rates \alpha , \beta . The corresponding stationary probabilities of the two states are

(5.2) \rho 0 =
\alpha 

\alpha + \beta 
, \rho 1 =

\beta 

\alpha + \beta 
,

respectively. If m(t) = 0, then the gate is closed and the right-hand boundary is
reflecting. On the other hand, if m(t) = 1, then the gate is open and the right-hand
boundary is absorbing as in section 2. The stochastic boundary condition together
with (2.1) yields a stochastic hybrid system, more specifically a piecewise deterministic
PDE.

5.1. First-order moment equations. We would like to determine the effect
of switching on the mean flux through the cytoneme. This requires solving the first-
order moment equations of our piecewise deterministic PDE, which can be obtained
using the ``method of lines"" developed by Bressloff and Lawley [6, 7]. The latter
involves spatially discretizing the PDE and constructing the differential Chapman--
Kolmogorov equation for the resulting finite-dimensional stochastic hybrid system.
This can then be used to derive the desired moment equations, after retaking the
continuum limit. One additional feature of the cytoneme transport model is that the
left-hand boundary condition in (2.2) couples the PDE to the compartmental variable
C0(t), which evolves according to (2.3). Hence, it is necessary to introduce first-order
moments of this additional piecewise deterministic variable.

In light of the above, define the first-order moments of the density u(x, t) by

(5.3) Vm(x, t) = \BbbE 
\bigl[ 
u(x, t)1m(t)=m

\bigr] 
, m = 0, 1.

where 1m(t)=m = 1 if m(t) = m and is zero otherwise. Expectation is taken with
respect to different realizations of the stochastic gate over the interval [0, t). In the
same fashion, one can define the first-order moments of the vesicle concentration in
the source cell according to

(5.4) Rm(x, t) = \BbbE 
\bigl[ 
C0(t)1m(t)=m

\bigr] 
, m = 0, 1.

Following along similar lines to [6], one obtains the following coupled system of first-
order moment equations:

\partial V0
\partial t

=  - \partial 

\partial x

\biggl( 
vV0  - D

\partial V0
\partial x

\biggr) 
+ \alpha V1  - \beta V0,(5.5a)

\partial V1
\partial t

=  - \partial 

\partial x

\biggl( 
vV1  - D

\partial V1
\partial x

\biggr) 
 - \alpha V1 + \beta V0(5.5b)

and

dR0

dt
= \rho 0Q - \scrJ 0(0, t) + \alpha R1  - \beta R0,(5.6a)

dR1

dt
= \rho 1Q - \scrJ 1(0, t) - \alpha R1 + \beta R0,(5.6b)
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2342 HYUNJOONG KIM AND PAUL C. BRESSLOFF

where the first-order moments of the flux along the cytoneme are

(5.7) \scrJ m(x, t) := \BbbE 
\bigl[ 
J(x, t)1m(t)=m

\bigr] 
= vVm(x, t) - D

\partial Vm
\partial x

.

The corresponding boundary conditions are

(5.8a) Vm(0, t) = \kappa Rm(t),

(5.8b) Vm(L, t) =  - (1 - m)
1

\gamma 

\partial Vm(L, t)

\partial x
.

Once these moment equations have been solved, one can determine the unconditional
first-order moments V (x, t) = V0(x, t) + V1(x, t), \scrJ (x, t) = \scrJ 0(x, t) + \scrJ 1(x, t), and
R(t) = R0(t) +R1(t).

5.2. Stationary solution. We now calculate the effective conductance weff(L)
defined according to the ratio

(5.9) weff =
Q

R\ast 

with R\ast the stationary solution of the mean morphogen concentration in the source
cell. First, adding (5.5a) and (5.5b) and taking time derivative to zero yields

0 =  - \partial 

\partial x

\biggl( 
vV  - D

\partial V

\partial x

\biggr) 
,

which implies

(5.10) vV (x) - D
\partial V (x)

\partial x
= \scrJ \ast 

with \scrJ \ast a constant. Adding the stationary versions of (5.6a) and (5.6b) implies that
\scrJ (0) = Q and, hence, \scrJ \ast = Q. The corresponding left-hand boundary condition in
the steady-state is V (0) = \kappa R\ast so that

(5.11) V (x) = \kappa R\ast e - \gamma x +
Q

v

\bigl( 
1 - e - \gamma x

\bigr) 
.

The complexity of the switching boundary conditions is reflected by the fact that
the right-hand boundary condition for V is V (L) = V0(L), that is, we now have to
solve the steady-state version of (5.5a) for V0(x)---this will then allow us to obtain an
explicit expression for R\ast by setting x = L in (5.11). After setting V1 = V  - V0 and
rearranging, we have

(5.12) D
\partial 2V0
\partial x2

 - v
\partial V0
\partial x

 - (\alpha + \beta )V0 = \alpha V (x).

This has the general solution

(5.13) V0(x) = R\ast e - \gamma x (Ae\gamma 1x +B\gamma 2x) + \rho 0V (x),

where A,B are constants to be determined and

\gamma i =
1

2

\Bigl[ 
\gamma \pm 

\sqrt{} 
\gamma 2 + 4(\alpha + \beta )/D

\Bigr] 
, i = 1, 2.
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MATHEMATICAL MODEL OF MORPHOGEN GRADIENT FORMATION 2343

This is supplemented by the boundary conditions V0(0) = \kappa R\ast 
0 and \scrJ 0(0) = 0. Setting

R\ast 
0 = \eta R\ast for some \eta , we then have three unknown constants A,B, \eta . Hence, we need

to obtain three independent equations for these coefficients.
First, setting x = 0 in (5.13) and imposing the left-hand boundary condition

V0(0) = \kappa \eta R\ast and dividing through by R\ast gives

(5.14) A+B  - \kappa \eta =  - \kappa \rho 0.

Second, substituting the general solution (5.13) into the right-hand boundary condi-
tion for V0(L) (see (5.8b)), implies that

0 =  - DR\ast e - \gamma L
\bigl( 
A\gamma 1e

\gamma 1L +B\gamma 2e
\gamma 2L
\bigr) 
+ \rho 0Q,

which, after rearranging, yields

(5.15) \gamma 1e
\gamma 1LA+ \gamma 2e

\gamma 2LB =
\rho 0e

\gamma LQ

DR\ast .

Third, substituting the general solution (5.13) into the stationary version of (5.6a)
and setting x = 0 yields

0 = \rho 0Q - [ - R\ast D(A\gamma 1 +B\gamma 2) + \rho 0Q] + \alpha (1 - \eta )R\ast  - \beta \eta R\ast ,

which reduces to the equation

\gamma 1A+ \gamma 2B  - \alpha + \beta 

D
\eta =  - \alpha 

D
.

Finally, using the fact that \gamma 1\gamma 2 =  - (\alpha + \beta )/D leads to

(5.16) \gamma 1A+ \gamma 2B + \gamma 1\gamma 2\eta = \rho 0\gamma 1\gamma 2.

The three equations (5.14), (5.15), and (5.16) form a system of linear equations with
three unknowns A, B, and \eta . Using (5.14) to eliminate B in (5.15) and (5.16) gives

\bigl[ 
\gamma 1e

\gamma 1L  - \gamma 2e
\gamma 2L
\bigr] 
A+ \gamma 2e

\gamma 2L\kappa \eta =
\rho 0e

\gamma LQ

DR\ast + \gamma 2e
\gamma 2L\kappa \rho 0,(5.17a)

A\Delta \gamma + (\kappa + \gamma 1)\gamma 2\eta = (\kappa + \gamma 1)\gamma 2\rho 0,(5.17b)

where \Delta \gamma = \gamma 1  - \gamma 2. Solving (5.17a) and (5.17b) for \eta gives

(5.18) \eta =
\rho 0

\Gamma (L)

\biggl[ 
\Gamma (L) - \Delta \gamma e\gamma LQ

DR\ast 

\biggr] 
,

where

\Gamma (L) :=
\bigl[ 
\scrA 1(L)(\kappa + \gamma 1)\gamma 2  - \Delta \gamma \cdot \gamma 2e\gamma 2L\kappa 

\bigr] 
= \gamma 1\gamma 2(\kappa \scrA 0(L) +\scrA 1(L)),

and we have introduced the functions

(5.19) \scrA 0(L) = e\gamma 1L  - e\gamma 2L, \scrA 1(L) = \gamma 1e
\gamma 1L  - \gamma 2e

\gamma 2L.

Having determined \eta we can then determine the coefficients A,B.
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In order to complete the analysis we still need to calculate V0(L). For convenience,
we take V0(L) = \kappa R\ast \xi . Setting x = L in (5.13) then yields

\kappa R\ast \xi = R\ast e - \gamma L
\bigl( 
Ae\gamma 1L +Be\gamma 2L

\bigr) 
+ \rho 0\kappa R

\ast \xi ,

which reduces to the equation

\scrA 0(L)A = \kappa \rho 1e
\gamma L\xi + e\gamma 2L\kappa (\rho 0  - \eta ).

Substituting for A using (5.17b) gives

(\kappa + \gamma 1)\gamma 2(\rho 0  - \eta )

\gamma 1  - \gamma 2
\scrA 0(L) = \kappa \rho 1e

\gamma L\xi + e\gamma 2L\kappa (\rho 0  - \eta ),

which can be rearranged to yield

(5.20) \gamma 1\gamma 2(\kappa \scrA 2(L) +\scrA 0(L))(\rho 0  - \eta ) = \Delta \gamma \cdot \kappa \rho 1e\gamma L\xi ,

where

(5.21) \scrA 2(L) =
e\gamma 1L

\gamma 1
 - e\gamma 2L

\gamma 2
.

We now substitute for \eta in (5.20) using (5.18) to obtain the result

(5.22) \kappa vR\ast \xi =  - \gamma \rho 0\scrB 1Q

\rho 1\scrB 0
.

Finally, setting x = L in (5.11),

(5.23) \kappa R\ast \xi v = \kappa ve - \gamma LR\ast +Q
\bigl( 
1 - e - \gamma L

\bigr) 
,

and combining with (5.22), we find that R\ast = Q/weff(L) with

(5.24) weff(L) =
\kappa ve - \gamma L \cdot \rho 1\scrB 0(L)

(e - \gamma L  - 1)\rho 1\scrB 0(L) - \gamma \rho 0\scrB 1(L)
.

Example plots comparing the effective conductance with switching and the conduc-
tance without switching are shown in Figure 5.1(a).

Two additional results follows from the above analysis. First, the asymptotic
ratio limL\rightarrow \infty weff(L)/w(L) depends on the sign of v; see Figure 5.1(b). If v > 0,
then weff(L)/w(L) converges to one as cytoneme length tends to infinity. That is,
the switching boundary condition for a sufficiently long cytoneme gives the same
conductance as a fixed absorbing boundary condition. This reflects the fact that for
positive speeds v, the dynamics at the tip is dominated by advection. On the other
hand, if v < 0, then we have

(5.25) lim
L\rightarrow \infty 

weff(L)

w(L)
= \rho 1 \cdot 

1

\rho 1 + \rho 0\gamma /\gamma 1
,

where
\gamma 

\gamma 1
=

2

1 +
\sqrt{} 
1 + 4(\alpha + \beta )D/| v| 2

.
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Fig. 5.1. (a) Transport rates w0(L), w1(L), and ws(L) plotted as a function of cytoneme length
L for \gamma > 0 and \gamma < 0. (b) Asymptotic ratio of transport rate weff(L) to w(L) plotted as a function
of average transport velocity v. If v < 0, then the ratio converges to \rho 1 as | v| tends to infinity. On
the other hand, if v > 0, then the ratio is always one. Same parameter values as in Figure 2.3.

If (\alpha + \beta )D \ll | v| , then \gamma /\gamma 1 \approx 1. It follows that the asymptote converges to \rho 1, the
stationary probability of the absorbing boundary state. This reflects the fact that for
negative speeds, the dynamics at the the tip is dominated by diffusion. The second
observation is that weff converges to w in the fast switching limit. For fixed L, taking
\alpha , \beta \rightarrow \infty gives

(5.26) lim
\alpha ,\beta \rightarrow \infty 

weff(L)

w(L)
=

e - \gamma L  - 1

e - \gamma L  - 1 - \gamma lim\alpha ,\beta \rightarrow \infty \alpha \scrB 1(\alpha , \beta )/\beta \scrB 0(\alpha , \beta )

with

lim
\alpha ,\beta \rightarrow \infty 

\alpha \scrB 1(\alpha , \beta )

\beta \scrB 0(\alpha , \beta )
= 0.

This establishes that the ratio converges to one in the fast switching limit. That is,
the switching transport rate converges to the open-gated transport rate for fixed L
in the fast switching limit. This is consistent with previous examples of diffusion in
switching environments [6].

6. Discussion. In this paper, we analyzed a one-dimensional advection-diffusion
model of morphogen transport along cytonemes, comparing the effects of direct vs.
synaptic contacts between cytoneme tips and target cells. One important parameter
in our analysis was \gamma =  - v/D, where v is the advection speed and D the effective
diffusivity of morphogen carrying vesicles within the cytoneme. Both the sign and
magnitude of \gamma had a strong affect on the asymptotic behavior of the steady-state
morphogen concentration, as well as the approach to steady-state. One major conclu-
sion of our analysis is that synaptic contacts allow for longer-range interactions than
direct contacts. Although most of our analysis assumed that the contact between
the cytoneme tip and a target cell was static, we considered a dynamic tip in section
5, which we modeled in terms of a randomly switching boundary condition, and we
showed that this could lead to a nonmonotonically varying concentration profile. The
dynamic nature of cytonemes raises another interesting issue that we hope to explore
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in future work, namely, the process whereby cytonemes find their target cells in the
first place. It has been suggested that this could occur either via a random search
process based on retraction and growth or via some chemoattractant [13]. There
are certain similarities with microtubules of the mitotic spindle searching for kine-
tochores prior to separation of cytochrome pairs via catastrophes [28], although one
major difference is that cytonemes are actin-based.
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