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DOUBLY STOCHASTIC POISSON MODEL OF FLAGELLAR
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Abstract. We construct and analyze a stochastic model of eukaryotic flagellar length control.
Flagella are microtubule-based structures that extend to about 10 µm from the cell and are sur-
rounded by an extension of the plasma membrane. Flagellar length control is a particularly convenient
system for studying organelle size regulation since a flagellum can be treated as a one-dimensional
structure whose size is characterized by a single length variable. The length of a eukaryotic flagellum
is important for proper cell motility, and a number of human diseases appear to be correlated with
abnormal flagellar lengths. Flagellar length control is mediated by intraflagellar transport (IFT)
particles, which are large motor protein complexes within a flagellum that transport tubulin (the
basic building block of microtubules) to the tip of the flagellum. The critical length of the flagellum
is thus thought to be determined by the dynamical balance between length-dependent transport and
assembly of microtubules and length-independent disassembly at the tip. In our model we assume
that IFT particles are injected into a flagellum according to a Poisson process, with a rate that
depends on a second stochastic process associated with the binding and unbinding of IFTs to sites
at the base of the flagellum. The model is thus an example of a doubly stochastic Poisson process
(DSPP), also known as a Cox process. We use the theory of DSPPs to analyze the effects of fluc-
tuations on IFT and show how our model captures some of the features of experimental time series
data on the import of IFT particles into flagella. We also indicate how DSPPs provide a framework
for developing more complex models of IFT.
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1. Introduction. A fundamental issue in cell biology is how cells regulate the
size of their organelles [29]. There are a number of different mechanisms utilized by
cells, including molecular rulers in the case of bacteriophage tails [16], sensor-based
size control in the case of salmonella flagellar motor filaments [17], and a variety of
dynamical mechanisms where size is determined by the balance between assembly and
disassembly of some subcellular structure. Probably the best-studied model system
controlled dynamically is a eukaryotic flagellum [27, 33, 28, 37, 24, 25, 20, 31], which
is a microtubule-based structure that protrudes from the cell membrane up to about
10 µm in length. A flagellum can effectively be treated as a one-dimensional structure
whose size is characterized by a single length variable. This makes it a particularly
convenient system for studying organelle size regulation. Moreover, eukaryotic flagella
play an important role in cell motility, and various human diseases appear to be
correlated with flagellar length abnormalities.

The fundamental building block (monomer) of microtubular filaments is the pro-
tein tubulin. Experimental measurements of tubulin turnover in eukaryotic flagella
combined with various imaging studies have established that the assembly of micro-
tubules is mediated by molecular motor complexes known as intraflagellar transport
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720 PAUL C. BRESSLOFF AND BHARGAV R. KARAMCHED

IFT particle
v+

v- V

L(t)

cargo
insertion

disassembly

microtubule

Fig. 1. Schematic diagram of intraflagellar transport (IFT). Each IFT particle carries tubulin
to the tip of a flagellum at a speed v+, where it is released and attached to the microtubule (assembly),
and the IFT particle returns to the base at a speed v−. Disassembly occurs independently of IFT
transport at a speed V .

(IFT) particles or trains, which carry tubulin to the tip of the flagellum, where as-
sembly and disassembly of microtubules take place [33]. A schematic diagram of IFT
transport is shown in Figure 1. As a flagellum grows, each IFT particle has to travel
a longer distance to deliver tubulin at the tip of the flagellum, which implies that the
corresponding rate of assembly will decrease with length. On the other hand, it is
found experimentally that the rate of disassembly is length independent, suggesting
that there exists a critical length where the rates of assembly and disassembly are
balanced. More specifically, suppose that each IFT particle moves at a mean speed
v. (Experimentally, one finds that the anterograde speed to the tip is v+ ∼ 1.5 µm/s,
whereas the retrograde speed away from the tip is v− ∼ 2 µm/s due to a lighter load.)
Assuming that an IFT particle is immediately reinjected into the flagellum when it
returns to the base, and if the time spent at the tip is neglected, then the time be-
tween tubulin deliveries is 2L/v, where v is the harmonic mean. If the number N of
IFT particles is fixed, then the mean rate of change of length L is given by the simple
equation [27]

(1.1)
dL

dt
=
avN

2L
− V,

where a is the size of a single tubulin molecule and V is the speed of disassembly.
Equation (1.1) has a unique stable equilibrium given by L∗ = avN/2V . Using the
experimentally based values N = 10, v = 2 µm/s, L∗ = 10 µm, and V = 0.01 µm/s,
the effective precursor protein size is estimated to be a ≈ 10 nm. (A stochastic version
of a model for intraflagellar transport has also been developed using the theory of
continuous time random walks [3].)

However, the above model is oversimplified. In particular, there is growing ex-
perimental evidence that the flux of IFT particles into the flagellum is regulated by
the amount of accumulated IFT particles at the base of the flagellum [24, 37, 22, 25].
Moreover, recent photobleaching studies have shown that there is constant turnover
of IFT particles within flagella, presumably through the exchange of IFT particles
between the basal body and the cytoplasm [25]. An emerging picture is that IFT
particles enter the flagellum through the flagellar pore, a membrane-spanning struc-
ture at the base of the flagellum that may be homologous to a nuclear pore. (The
latter regulates the exchange of macromolecules between a cell’s cytoplasm and the
nucleus.) There is also a microtubule-organizing center known as the basal body, which
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anchors the flagellar microtubules at the plasma membrane and integrates them with
the cytoplasmic microtubules. IFT proteins dock around the basal body and assemble
into IFT particles or trains prior to entering the flagellum [9]. It appears that the
rate at which IFT particles enter the flagellum depends on the amount of docked IFT
particles in the basal body, with faster-growing flagella having more localized IFT
particles [24, 37]. This suggests that there is some length-dependent mechanism for
regulating the accumulation of IFT particles at the basal body (and possibly the load-
ing of cargo to docked IFTs [37]). Ludington et al. [25] considered several different
mathematical models of IFT regulation, based on the idea that cell signaling within
the flagellum results in a length-dependent binding rate of IFT particles within the
basal body and compared the models with experimental data on the length depen-
dence of IFT. They applied two distinct ways of quantifying IFT. First, they used
live imaging to measure the rate at which individual IFT particles were injected into
flagella using GFP-tagged kinesin motors. Second, they fixed the cells and imaged
IFT proteins that had accumulated at the basal bodies. The various deterministic
models were then fitted with experimental curves obtained by averaging with respect
to the flagellar population. Since several of the proposed models matched the exper-
imentally obtained curves, the data were not sufficient to uniquely identify the most
likely mechanism for IFT regulation. As noted by the authors, this was partly due to
the large amount of scatter in the data; see Figure 6 of [25]. Such scatter could reflect
heterogeneity in the population of flagella as well as various sources of intrinsic noise.

Further experimental evidence for stochasticity in IFT has been obtained by look-
ing at statistical features of the time series of IFT injections [24]. The sequence of
time intervals between consecutive injections exhibits transient periodicity, bursting
activity, power-law dependencies, memory effects, and nonexponential interval statis-
tics. Moreover, there are correlations between the frequency and size of injected IFT
particles, with larger sizes (more IFT proteins within a particle) tending to occur
less frequently. Based on these observations, Ludington et al. [24] suggested that
the stochastic process of IFT injection exhibits avalanche-like behavior. The length-
dependent binding of IFTs to the basal body then regulates the mean rate and size
of IFT injections. Ludington et al. [24] also developed a computational model of the
avalanche-like behavior, based on a cellular analog of a sandpile model. More specifi-
cally, they introduced a trafficking model for the passage of bound IFTs through the
flagellar pore at the distal end of the basal body. The buildup of IFTs at the opening
of the flagellum due to jamming effects then generated avalanche-like events, which
were fitted to the experimental data. There are, however, a number of limitations
of the computational model. First, the detailed mechanisms underlying the injection
of IFTs into flagellar are currently unknown. Second, the computational model is
analytically intractable. Third, the model assumes that the number of bound IFTs
that drive the process is constant for a fixed length. With regard the third point, it
is known that the number M of binding sites in the basal body is relatively small,
M ∼ 100− 1000, so one would expect thermally driven fluctuations in the number of
bound IFTs to introduce another level of stochasticity.

In this paper we follow a different approach to the stochastic modeling of IFT
length control which is analytically more tractable and takes into account fluctuations
in the number of bound IFTs. Rather than trying to develop a mechanistic model
of IFT injections into the flagellum, we use a probabilistic model in the form of a
doubly stochastic Poisson process (DSPP). DSPPs were first introduced by Cox [5] as
a generalization of an inhomogeneous Poisson process, in which the time-dependent
transition rate depends on a second, independent stochastic process. The general
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722 PAUL C. BRESSLOFF AND BHARGAV R. KARAMCHED

theory of DSPPs was subsequently developed by Grandell [13]. Example applications
include photon and electron detection [35, 32, 23], occurrences of credit events in fi-
nance [19], and neural coding [36, 34, 1, 18]. We use the theory of DSPPs to analyze
how fluctuations in the binding/unbinding of IFTs at the basal body affect the injec-
tion of IFT particles into the flagellum, as well as flagellar length control. In order
to develop the theory, we consider a much simpler model of IFT injections, namely, a
Poisson process whose rate depends on the stochastic number of bound IFTs. Unlike
a homogeneous Poisson process, the DSPP is not memoryless. We show that even
this simple model captures some of the features of the experimental data on time
series [24], such as nonexponential interevent interval statistics and time-dependent
Fano factors. Moreover, the theory of DSPPs provides a mathematical framework
for developing more complex stochastic models of IFT, following previous studies of
neural spike trains [36] and photon detection [35, 23].

The organization of the paper is as follows. In section 2 we briefly describe the
deterministic model of flagellar length control considered by Ludington et al. [25].
Our stochastic extension of this model is introduced in section 3, where we include
fluctuations in IFT particle binding/unbinding within the basal body and model the
injection of IFTs into the flagellum as a Poisson process. We then use the theory
of DSPPs to analyze how IFT fluctuations depend on the number of binding sites.
Finally, in section 4 we indicate how to construct more complex probabilistic models
of IFT particle injection, highlighting an interesting link between event statistics in
neural processes and the injection of IFTs.

2. Deterministic model. We begin by describing the deterministic model of
flagellar length control introduced in [25]; see Figure 2.

2.1. Model of IFT flux. Consider a one-dimensional flagellum of length L with
the basal body at x = 0 and the tip at x = L. Suppose that there are M binding
sites for IFT particles in the basal body and the concentration of IFTs within the

k+

k-

IFT particle basal binding site

basal body

f lagellum

Fig. 2. Schematic diagram of the basic model. IFT particles (filled circles) can undergo bind-
ing/unbinding reactions with M sites (filled rectangles) in the basal body at rates k±. The number of
bound IFTs determines the rate at which IFTs are injected into the flagellum. Once in the flagellum,
IFTs are actively transported to the tip, where they deliver their cargo and are then transported back
to the basal body along the lines shown in Figure 1. Some signaling mechanism within the flagellum
(not shown) results in the binding rate k+ being dependent on the flagellar length L, resulting in
a length-dependent IFT flux regulation. For simplicity, all IFT particles are taken to be the same
size.
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STOCHASTIC MODEL OF FLAGELLAR LENGTH CONTROL 723

cytoplasm is B. Denote the binding and unbinding rates by k+ and k−, respectively.
Assuming that M is sufficiently large, the kinetic equation for the number m(t) of
bound IFTs at time t is

(2.1)
dm

dt
= k+B[M −m(t)]− k−m(t),

which has the steady-state solution m∗ = k+B/(k+B + k−). The number of binding
sites M ranges from 10 to 1000, whereas fits with experimental data suggest that
k+B/k− ∼ 10µm [24, 25]. Now suppose that there is some signaling mechanism
within the flagellum such that the binding rate is a decreasing function of length L,
and set k+ = k+C0(L). We will give one example of such a signaling mechanism in
section 2.2; see also [25]. Under the adiabatic approximation that the growth rate of
the flagellum is much slower than the various kinetic processes, we can still treat m∗

as a constant with

(2.2) m∗ = m∗(L) ≡ k+C0(L)B

k+C0(L)B + k−
M.

The rate of injection of IFTs into the flagellum is then taken to be λ0 = ηm∗(L),
which means that the influx is a monotonically decreasing function of L.

The critical flagellar length is determined by the balance between the influx and
the length-independent rate of disassembly, along analogous lines to (1.1). That is,
suppose each injected particle remains in the flagellum at time T = 2L/v + τ before
being removed, where v is the harmonic mean of the anterograde and retrograde
speeds of each IFT particle and τ is the time spent at the tip. We will take τ = 1 s
and v = 2µm/s. It follows that the steady-state number N∗ of particles in the
flagellum is

N∗ = λ0T = η
k+C0(L)B

k+C0(L)B + k−
M (2L/v + τ) .

Hence, setting N = N∗(L) in (1.1), we deduce that the critical length is determined
by the intercept of the monotonically decreasing function N∗(L)/L with a constant
ζ = 2V/av; see Figure 3.

0 5 10 15
0

100

200

300

N
(T

) ζ

Ciliary Length (μm)

<

<

N*/L

Fig. 3. Plot showing relationship between average density of IFTs in flagellum and ciliary
length and the existence of a unique stationary flagellum length for some constant ζ.
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724 PAUL C. BRESSLOFF AND BHARGAV R. KARAMCHED

2.2. RanGTP model of IFT flux regulation. The one remaining component
of the model is the specification of the length-dependent function C0(L) of the IFT
binding rate k+. Ludington et al. [25] considered several different signaling mech-
anisms for generating this length dependence. For the sake of illustration, we will
consider one of the models that fits particularly well with photobleaching data. It is
a diffusion-based model of RanGTP concentration gradient formation. RanGTP is
a small enzyme that is known to play an important role in regulating nuclear trans-
port through the nuclear pore complex, and it is hypothesized that RanGTP plays an
analogous role in regulating IFT particle influx. In particular, a decrease in RanGTP
concentration at the basal body as cell length increases leads to a reduction in IFT
particle influx.

Suppose that RanGTP is produced at a rate σ at the tip (x = L), resulting in a
concentration gradient; see Figure 4. Assume that cytoplasmic RanGTP concentra-
tion is negligible and κ is the flow rate through the pore at x = 0. Then the RanGTP
concentration per unit volume C(x, t) evolves as

(2.3)
∂C

∂t
= D

∂2C

∂x2
− γC, x ∈ [0, L],

where γ is a degradation rate. The boundary conditions are

(2.4) D
∂C

∂x
= κC, x = 0; D

∂C

∂x
= σ, x = L.

Integrating (2.3) with respect to x and using the boundary conditions gives

dR

dt
= σ − κC(0, t)− γR,

where R(t) is the total number of RanGTP molecules per unit area:

(2.5) R(t) =

∫ L

0

C(x, t)dx.

If we assume that diffusion is fast so that the characteristic length
√
D/γ � L, then

C(x, t) is approximately uniform, and we can take C(0, t) ≈ R(t)/L. Therefore,

(2.6)
dR

dt
= σ − κR

L
− γR.

σRanGTP

k+

k-

basal body

x = 0 x = L

κ

f lagellum

Fig. 4. Schematic diagram of RanGTP concentration gradient model of IFT flux regulation. A
source of RanGTP at the tip of the flagellum sets up a concentration gradient along the flagellum
resulting in a length-dependent concentration of RanGTP in the basal body. This in turn regulates
the binding rate of IFTs to sites in the basal body.
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STOCHASTIC MODEL OF FLAGELLAR LENGTH CONTROL 725

Equation (2.6) has the steady-state solution

R =
σL

γL+ κ
,

so that the concentration at the basal pore is

(2.7) C0 = C0(L) =
σ

γL+ κ
.

Typical values of the parameters are [25]

σ ∼ 5− 20/s, κ ∼ 5− 25µm/s, γ ∼ 10− 400/s.

Unless stated otherwise, we will take γ/σ = 4 and κ/σ = 1µm.

3. Stochastic model. There at least two possible sources of stochasticity that
can be introduced into the above model; see Figure 2. First, rather than a constant
injection rate λ0 (for fixed length L), one can consider a stochastic model for the
injection times of the particles. This was the approach taken by Ludington et al. [24],
who considered a computational model to account for the avalanche-like behavior of
IFT injections. In this paper, we will use a simpler probabilistic model based on a
counting process in which we ignore variations in the size of injected particles. The
second source of noise arises from the observation that the number of IFT binding
sites in the basal body is relatively small; this will be the focus of our paper.

3.1. IFT injection as a Poisson process. We will refer to the injection of an
IFT particle into the flagellum as an event. Let N(t) be the number of events that
have occurred in the interval [0, t] such that

1. N(0) = 0;
2. N(t) ∈ {0, 1, 2, . . .} for all t ≥ 0;
3. for 0 ≤ s < t, N(t)−N(s) is the number of events in the interval (s, t].

The random process {N(t), t ∈ [0,∞)} is said to be a counting process [6]. (Well-
known examples of counting processes include the random arrival of customers at some
service station resulting in the formation of a queue and the output spike trains of neu-
rons.) A counting process can be characterized in terms of the occurrence or arrival
times Ti of the ith event. This leads to two further definitions useful in characteriz-
ing counting processes. First, let {X(t), t ∈ [0,∞)} be a continuous-time stochastic
process. We say that X(t) has independent increments if, for all 0 ≤ t1 < t2 · · · < tn,
the random variables X(tj) −X(tj−1), j = 2, . . . , n, are independent. In the case of
a counting process, this means that the numbers of arrivals in nonoverlapping time
intervals are independent. Following on from this, X(t) is said to have stationary
increments if, for all t2 > t1 ≥ 0 and all r > 0, the random variables X(t2) −X(t1)
and X(t2 + r) − X(t1 + r) have the same distributions. In particular, a counting
process has stationary increments if, for all t2 > t1 ≥ 0, N(t2)−N(t1) has the same
distribution as N(t2− t1). In other words, the distribution of the number of events in
an interval depends only on the length of the interval. Another useful quantity is the
distribution of interarrival times τn = Tn − Tn−1, where Tn is the nth arrival time,
which can be defined iteratively according to

Tn = inf{t ≥ 0|N(t+ Tn−1) = n}, T0 = 0.

Suppose that the injection rate λ0 is fixed. For simplicity, we will represent
the injection of IFT particles by a homogeneous Poisson process for which N(t) has
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726 PAUL C. BRESSLOFF AND BHARGAV R. KARAMCHED

independent, stationary increments and the number n of arrivals in the interval [0, t]
has the Poisson distribution

(3.1) Pn(t) =
(λ0t)

n

n!
e−λ0t.

It immediately follows that

〈N(t)〉 = λ0t, Var[N(t)] = λ0t.

Assuming that each IFT spends a time T in the flagellum (see section 2.1), the number
of IFTs in the flagellum at time t is N (t) = N(t) − N(t − T ). It is straightforward
to show that N (t) for t ≥ T has the same distribution as N(T ), so that the mean
and variance of the number of IFT particles within the flagellum is λ0T . In the
case of a homogeneous Poisson process, the interarrival time probability density is an
exponential, ρ(τ) = λ0e−λ0τ . It follows that the mean 〈τ〉 = 1/λ0 and the variance is
σ2
τ = 1/λ2

0.

3.2. Stochastic model of IFT docking at the basal body. The above anal-
ysis ignores temporal fluctuations in the number m(t) of bound IFT particles, and the
fact that when a particle is injected, it leaves a vacant binding site. For the moment,
let us ignore the latter effect by assuming that the number of bound sites is much
greater than one. This is a reasonable first approximation, given that experimen-
tally one finds M ∼ 100 − 1000 [25]. (Indeed, we will show in section 3.6 that this
approximation only breaks down when M ∼ 1 − 100.) The binding of IFTs is then
independent of the Poisson process (but not vice versa). Let Qm(t) denote the proba-
bility that m out of M binding sites are bound by IFTs at time t. The corresponding
master equation is

dQ(m, t)

dt
= k+B(M −m+ 1)Q(m− 1, t) + k−(m+ 1)Q(m+ 1, t)

− [k+B(M −m) + k−m]Q(m, t)(3.2)

with Q(−1, t) = Q(N +1, t) ≡ 0. This can be rewritten in the form of the birth-death
master equation

d

dt
Q(m, t) = ω+(m− 1)Q(m− 1, t) + ω−(m+ 1)Q(m+ 1, t)(3.3)

− [ω+(m) + ω−(m)]Q(m, t)

with transition rates

(3.4) ω+(m) = (M −m)k+B, ω−(m) = mk−.

A standard calculation yields the steady-state solution Qs(m) of the master equation
(3.3) [10, 4]. First, note that it satisfies J(m) = J(m+ 1) with

J(m) = ω−(m)Qs(m)− ω+(m− 1)Qs(m− 1).

Using the fact that m is a nonnegative integer, that is, Qs(m) = 0 for m < 0, it
follows that J(m) = 0 for all m. Hence, by iteration,

(3.5) Qs(m) = Qs(0)

m∏
k=1

ω+(k − 1)

ω−(k)
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with

Qs(0) =

(
1 +

M∑
m=1

m∏
k=1

ω+(k − 1)

ω−(k)

)−1

.

In the particular case of the transition rates (3.4), we have

(3.6) Qs(m) = Qs(0)

[
k+B

k−

]m
M !

m!(M −m)
.

After calculating Qs(0), we obtain the binomial distribution

(3.7) Qs(m) =
(k+B)mkM−m−
(k+B + k−)M

M !

m!(M −m)!
= (X∗)m(1−X∗)M−m M !

m!(M −m)!
,

where X∗ = m∗/M with m∗ = k+B/(k+B + k−). Using standard formulae for the
moments of the binomial distribution, we find that, in the steady state, the mean
number of bound IFTs at the basal body is 〈m〉 = MX∗ = m∗. Similarly, the
steady-state variance is

(3.8) Var[m] = MX∗(1−X∗)

with
√

Var[m]/〈m〉 ∼ 1/
√
M . Hence, in the large M limit, we can simply treat the

number of bound IFTs as a constant m. The injection of IFTs is then given by a
homogeneous Poisson process with rate λ0 = ηm∗. However, since the total number
of binding sites takes intermediate values, M ∼ 100−1000 [25], we should really treat
m(t) as a stochastic variable evolving according to the birth-death master equation
(3.2) and set λ = ηm(t). It follows that the process of IFT injection into the flagellum
is described by the DSPP; see section 3.

In order to facilitate later calculations, we will carry out a system-size expansion
of the master equation (3.2) for intermediate values of M [10, 4]. First, introduce the
rescaled variable x = m/M and corresponding transition rates MΩ±(x) = ω±(Mx).
Equation (3.2) can then be rewritten in the form

dΠ(x, t)

dt
= M [Ω+(x− 1/M)Π(x− 1/M, t) + Ω−(x+ 1/M)Π(x+ 1/M, t)

− (Ω+(x) + Ω−(x))Π(x, t)],(3.9)

where Π(x, t) = Q(Mx, t). Treating x as a continuous variable and Taylor expanding
terms on the right-hand side to second order in M−1 leads to the Fokker–Planck (FP)
equation

∂P (x, t)

∂t
= − ∂

∂x
[A(x)P (x, t)] +

1

2M

M∑
k=1

∂2

∂x2
[B(x)P (x, t)](3.10)

with

A(x) = Ω+(x)− Ω−(x) = (1− x)k+B − k−x,
B(x) = Ω+(x) + Ω−(x) = (1− x)k+B + k−x.

The solution to the FP equation (3.10) determines the probability density function
for a corresponding Itô stochastic process X(t), which evolves according to the SDE

(3.11) dX = A(X)dt+

√
B(X)

M
dW (t).
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Here W (t) denotes an independent Wiener process such that

(3.12) 〈W (t)〉 = 0, 〈W (t)W (s)〉 = min(t, s).

We now make the approximation λ(t) = ηMX(t). (Certain care must be taken,
however, since there is a nonzero probability that X(t) becomes negative. We will
assume that this does not cause problems for sufficiently large M .)

3.3. IFT injection as a DSPP. Combining the two sources of noise outlined
in sections 3.1 and 3.2, the homogeneous Poisson process becomes a DSPP. That
is, {N(t), t ≥ 0} is a counting process with positive intensity λ(X(t)) = ηMX(t),
which depends on a second independent stochastic process {X(t), t ≥ 0} with X(t)
the fraction of bound IFTs in the basal body. The latter evolves according to the
SDE (3.11). For a given realization of the continuous stochastic process up to time
t, {X(s), 0 ≤ s < t}, the conditional probability distribution Pn(t) ≡ P[N(t) =
n|{X(s), 0 ≤ s < t}] satisfies the master equation

dPn
dt

= λ(X(t))[Pn−1(t)− Pn(t)],(3.13)

which has the solution

(3.14) Pn(t) =
Λ(t)n

n!
e−Λ(t)

with

(3.15) Λ(t) =

∫ t

0

λ(X(t′))dt′.

We now observe that the function Λ(t) is itself stochastic with respect to different
realizations {X(s), 0 ≤ s < t}. Therefore, in order to determine the probability Pn(t)
that the number of events in [0, t) satisfies N(t) = n, it is necessary to average with
respect to these different realizations. That is,

Pn(t) = EX [P[N(t) = n|{X(s), 0 ≤ s < t}]

= EX

[
1

n!

(∫ t

0

λ(X(s))ds

)n
exp

(
−
∫ t

0

λ(X(s))ds

)]
,(3.16)

where EX denotes expectations with respect to the stochastic process X. Introducing
the characteristic function

(3.17) GΛ(t)(z) = EX
[
eizΛ(t)

]
,

it immediately follows that Pn(t) is related to the nth derivative of GΛ(t)(z):

Pn(t) =
(−i)n

n!
G

(n)
Λ (i).

Furthermore, we can express the characteristic function for N(t) in terms of GΛ(t):

GN(t)(z) ≡ E
[
eizN(t)

]
=
∑
n≥0

eiznPn(t) =
∑
n≥0

EX
[

1

n!

(
eizΛ(t)

)n
e−Λ(t)

]

= EX

∑
n≥0

(
1

n!

(
eizΛ(t)

)n)
e−Λ(t)

 = EX
[
eeizΛ(t)e−Λ(t)

]
= GΛ(t)(i− ieiz).
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In particular,

E[N(t)] ≡ −i
dGN(t)(z)

dz

∣∣∣∣
z=0

= −i
dGΛ(t)(i− ieiz)

dz

∣∣∣∣
z=0

= EX [Λ(t)].(3.18)

In order to determine more general statistics of the DSPP, such as the covari-
ance, we need to determine the joint characteristic function of a finite set of variables
{N(t1), . . . , N(tm)}. This can be achieved using the notion of a characteristic func-
tional [6, 2]; see the appendix. In particular, one obtains the following result for the
covariance function (see (A.3)):

RN (t1, t2) = E[N(t1)N(t2)]− E[N(t1)]E[N(t2)]

= E[Λ(t1)Λ(t2)]− E[Λ(t1)]E[Λ(t2)] + EX [Λ(t1)].(3.19)

Expressing Λ(t) in terms of the intensity then gives

(3.20) RN (t1, t2) =

∫ t1

0

∫ t2

0

Rλ(τ, τ ′)dτdτ ′ +

∫ t1

0

EX [λ(X(τ))]dτ, t1 < t2,

where
Rλ(τ, τ ′) = EX [λ(X(τ))λ(X(τ ′))]− EX [λ(X(τ))]EX [λ(X(τ ′))].

Another important quantity is the probability density ρ(τ) for the time τ between
consecutive events, also known as the interevent interval density. Assuming that X(t)
is a stationary stochastic process, one finds that (see (A.7))

ρ(τ) =
1

E[λ]

d2P0(τ)

dτ2
=

1

E[λ]
E
[(
λ(X(τ))2 − λ′(X(τ))

)
exp

(
−
∫ τ

0

λ(X(s))ds

)]
.

(3.21)

3.4. Analysis of IFT fluctuations. The above analysis shows that determin-
ing the first-order and second-order statistics of the number N(t) of injected IFT
particles requires calculating the corresponding statistics of the stochastic intensity
λ(X(t)) = ηMX(t), where X(t) is the fraction of bound binding sites in the basal
body. Thus, calculating the mean and covariance of the intensity reduces to deter-
mining these quantities for the solution of the SDE (3.11). We will assume that the
Gaussian process is stationary so that 〈X(t)〉 = X∗ with X∗ = m∗/M and

RX(t1, t2) ≡ 〈[X(t1)− 〈X(t1)〉][X(t2)− 〈X(t2)〉]〉 =
X∗(1 + Θ)

2M
e−Γ|t2−t1|,

where

Γ = k+B + k−, Θ =
k− − k+B

k− + k+B
.

Substituting these results into (3.18) and (3.20) gives

(3.22) E[N(t)] = ηM

∫ t

0

〈X(τ)〉dτ = ηMX∗t = λ0t

and

RN (t1, t2) =
η2MX∗(1 + Θ)

2

∫ t1

0

∫ t2

0

e−Γ|τ ′−τ |dτdτ ′ + E[N(t1)]

= Mη2X
∗(1 + Θ)

2
A(t1, t2) + E[N(t1)],
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where for t1 ≤ t2,

A(t1, t2) =
2t1
Γ
− 2

Γ2

[
1− e−Γt1

]
+

1

Γ2

[
1− e−Γ(t2−t1) − e−Γt1 + e−Γt2

]
.

In particular, setting t1 = t2 = t yields the variance

Var[N(t)] = Mη2X
∗(1 + Θ)

2

[
2t

Γ
− 2

Γ2

[
1− e−Γt

]]
+ E[N(t)].(3.23)

Note that for all t > 0, we have

Var[N(t)] > E[N(t)].

The latter is a basic property of DSPPs, namely, that the variance is greater than a
Poisson process with intensity given by the mean of the stochastic intensity—a feature
known as overdispersion. In particular, for sufficiently large t,

(3.24) Var[N(t)] ∼ λ1t, λ1 = λ0

(
1 + η

1 + Θ

Γ

)
.

We also note that in the limit of fast binding/unbinding, Γ→∞, the DSPP reduces
to a homogeneous Poisson process with Var[N(t)] → E[N(t)]. This reflects the fact
that the state of each binding site becomes essentially delta-correlated, so the sum
of the Poisson processes emerging from each binding site can be viewed as a marked
Poisson process where each potential transmission of an IFT particle is rejected (in-
dependently) if the binding site was vacant at that time. Hence, the non-Poisson
character comes entirely from the temporal correlations (finite Γ) of the states of the
binding sites.

The analysis of a Gaussian-driven DSPP is well known within the theory of point
processes [6]. However, our main concern is using this analysis to investigate how
fluctuations in IFT depend on the number of binding sites M and the flagellar length
L. The latter dependence is obtained by including the regulatory feedback described
in section 2, whereby the binding rate takes the form k+ = k+C0(L) with C0(L) given
by (2.7).

In Figure 5 we show histograms for the number N(T ) of IFTs injected into the
flagellum during the time interval [0, T ] for M = 200 and M = 20. We obtain

N(t)
350 400 450 500
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Fig. 5. Histogram depicting N(T ) for L = 10µm over 1000 trials. (a) M = 20 with 〈N(T )〉 ≈
43.5 and Var[N(T )] ≈ 50.6. (b) M = 200 with 〈N(T )〉 ≈ 433 and Var[N(T )] ≈ 436. Both histograms
depict overdispersion, but it is more siginifcant for small M . Other parameter values are Bk+/k− =
10, η = 1/s, κ/σ = 1µm, γ/σ = 4, τ = 1 s, and v = 2µm/s.
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Fig. 6. Deviation of Fano factor from Poisson case for different flagellar lengths. Other
parameters are as in Figure 5.

the results using a thinning algorithm; see section 3.5. One finds that both cases
exhibit overdispersion. It can also be seen that the histogram in the small M case
is considerably noisier than the histogram in the large M case, which is relatively
smooth. Our results suggest that there is an M -dependent contribution to fluctuations
in the number N(T ) of IFT particles within the flagellum and that there is a deviation
from a homogeneous Poisson process.

A useful quantity for characterizing fluctuations of a counting process is the Fano
factor (FN ), which is the ratio of the variance over the mean. It is used extensively in
the study of neural spike trains and gene networks. From (3.22) and (3.23), we have

(3.25) FN (t) :=
Var[N(t)]

E[N(t)]
= 1 +

(
λ1

λ0
− 1

)(
1− 1− e−Γt

Γt

)
.

It is clear that FN (t) is a monotonically increasing function of time with FN (0+) = 1
and FN (t)→ λ1/λ0 > 1 as t→∞. Moreover, it is independent of M but depends on
flagellar length L due to the regulatory feedback, as shown in Figure 6. Recall that
a homogeneous Poisson process has a Fano factor of one. Hence, at larger times our
model exhibits non–Poisson-like behavior with a Fano factor greater than one, which is
consistent with bursting. This is also consistent with what is observed experimentally;
see Figure S1 of [24]. One discrepancy between our model and the experimental
data is that at small times the experimentally determined Fano factor dips below
one, indicative of behavior more regular than Poisson (e.g., transient periodicity).
However, one can obtain such behavior by introducing some form of refractory effect.

A direct way to introduce a refractory period τr into the IFT model is to im-
pose the additional constraint that if an IFT particle is injected at time Tn, then
no subsequent injection events can occur in the interval [Tn, Tn + τr]. Although it is
difficult to obtain analytical results in this case, numerical simulations show that this
modification yields an interevent interval density ρ(τ) with a peak and a Fano factor
that lies below one at small times. This is illustrated in Figure 7. Roughly speaking,
refractoriness arises from the process whereby bound IFT particles traffic through the
basal body before being injected into the flagellum.

Let us now turn to the time series of events generated by the DSPP. In the case
of a Gaussian DSPP, we have

P0(t) = e−λ0t+A(t),
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Fig. 7. Effects of a refractory period τr. (a) Histogram of interevent interval density ρ(τ) as a
function of time τ . (b) Plot of Fano factor at small times. Dots represent data points and the black
curve is the mean Fano factor. We take L = 10µm, τr = 0.1 sec, and the other parameters are as
in Figure 8.

where EX [Λ(t)] = λ0t and

A(t) = Var[Λ(t)]/2 = Mη2X
∗(1 + Θ)

4

[
2t

Γ
− 2

Γ2

[
1− e−Γt

]]
.

Equation (3.21) implies that the interevent interval density is

ρ(τ) = λ0

[(
1− 1

λ0

dA(t)

dt

)2

+
1

λ2
0

d2A(t)

dt2

]
P0(t).

Plots of ρ(τ) and sample event time series for various M and L are shown in Figure
8. This establishes that ρ(τ) differs from the exponential density of a homogeneous
Poisson process, and this difference increases as M decreases and L increases. The
corresponding time series become more bursty. The increase of the non–Poisson-like
behavior with L reflects the fact that the binding rate decreases with L due to the
regulatory feedback.

3.5. Numerical methods. We simulate the DSPP using a thinning algorithm
[21] as follows. Consider a nonhomogeneous Poisson process on the time interval
[0, T ] with rate function λ(t), and assume there exists a constant λ∗ such that λ∗ ≥
λ(t) on [0, T ]. To simulate the nonhomogeneous Poisson process, first consider the
homogeneous Poisson process with rate λ∗. We now generate a sequence of times
T1, T2, . . . , Tm for m ∈ N with 0 < T1 < T2 < . . . < Tm ≤ T , with Ti, i = 1, . . . ,m
corresponding to the time of the ith injection of IFTs docked at the basal body into
the flagellum. To obtain the sequence of injection times for the nonhomogeneous
Poisson process with rate λ(t), we accept each Ti generated from the homogeneous
Poisson process with probability λ(Ti)/λ

∗. The resulting sequence of injection times
corresponds to the nonhomogeneous Poisson process with rate function λ(t). For a
rigorous proof of this, see [21]. For our particular model, we employ the thinning
algorithm by utilizing the following procedure:

• Generate a stochastic trajectory X(t) according to (3.11) on the interval
[0, T ].

• Compute λ(X(t)) = ηMX(t), and let λ∗ = max(λ(X(t))).
• Generate a sequence of times T1, T2, . . . , Tm with 0 < T1 < T2 < . . . < Tm ≤
T from an exponential distribution with parameter λ∗.
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Fig. 8. Plots of ρ(t) and the corresponding time series for assorted values of M and L. (a, b)
L = 10µm, (c, d) M = 100. Other parameter values are Bk+/k− = 10, η = 1/s, κ/σ = 1µm,
γ/σ = 4, τ = 1s, and v = 2µm/s. Dashed line shows exponential density for a homogeneous Poisson
process.

• For each Ti, i = 1, ..,m, generate a random number Ui distributed uniformly
on the interval [0, 1].

• If λ(X(Ti))/λ
∗ ≥ Ui, accept Ti as a firing time generated by the nonhomo-

geneous Poisson process with rate λ(X(t)). Otherwise, do not include Ti as
a firing time generated by the nonhomogeneous Poisson process.

3.6. Effects of very small M . Our formulation of flagellar length control as a
DSPP relies on the assumption that the number M of binding sites within the basal
body is sufficiently large so that the binding process is independent of the Poisson
process (but not vice versa). On the other hand, when M ∼ 1 − 100, we have to
consider the joint stochastic process that simultaneously keeps track of the number of
bound IFTsM(t) and the numberN(t) particles injected into the flagellum. Assuming
that the latter is still given by a Poisson process, the master equation for the joint
probability distribution Pm,n(t) = P(M(t) = m,N(t) = n|M(0) = m0, N(t) = 0) is

(3.26)

dPm,n
dt

= k+B(M −m+ 1)Pm−1,n(t) + k−(m+ 1)Pm+1,n(t)

−[k+B(M −m) + k−m]Pm,n(t) + η(m+ 1)Pm+1,n−1(t)− ηmPm,n(t).
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Fig. 9. Simulation results of discrete stochastic process with corresponding master equation
(3.26) averaged over 200 trials. (a, c) Plots of number of injected IFT particles N(T ) in interval
[0, T ] for M = 200 and M = 5, respectively. (b, d) Corresponding plots of the Fano factor F (T ).
The dots and thin (blue) curves are simulation results. Analytical curve are shown by thick (red)
curves. The dashed curve in (d) is the mean Fano factor obtained from the numerical data. Other
parameter values are Bk+/k− = 10, η = 1/s, κ/σ = 1µm, γ/σ = 4, τ = 1 s, and v = 2µm/s.

The mean number of particles injected in the interval [0, t] is

(3.27) 〈N(t)〉 =

M∑
m=0

∑
n≥0

nPm,n(t).

Unfortunately, is not possible to obtain exact analytical solutions to the full master
equation, so we will investigate the effects of very small M using computer simulations.

For numerical simulations of the full stochastic system given by (3.26), we use a
continuous-time Monte Carlo algorithm based on the Gillespie algorithm [11]. Plots
of 〈N(T )〉 and the Fano factor F (T ) versus ciliary length are shown in Figure 9. In the
intermediate M regime (Figure 9(a) and 9(b)), we find that numerical results obtained
from the chemical master equation (3.26) are in good agreement with the analytical
results from (3.22) and (3.23). Figure 9(c) and 9(d) depicts the mean and Fano factor
of injected IFTs versus ciliary length in the small M regime. It can be seen that the
numerical results deviate significantly from the analytical results, consistent with the
breakdown of the system-size expansion in this regime and the emerging dependence
of the stochastic binding process on IFT particle injections. Note in particular that
the mean number of IFT particles 〈N(T )〉 decreases for large L. Interestingly, we
find that the density ρ(τ) of interevent time intervals does not significantly change its
qualitative behavior in the small M regime; see Figure 10
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Fig. 10. Simulation results of (3.26). (a) ρ(t) for small M and L = 10µm. (b)Time series for
injection events in the small M case for L = 10µm. Other parameter values are as in Figure 8.

Fig. 11. Stochastic representation of an SNDP. (a) Standard SNDP with no feedback. (b) Self-
excited SNDP with the additional feature that the rate of the first Poisson process is also stochastic
due to the binding/unbinding of IFT particles.

4. Extensions of the stochastic model. So far we have modeled the import of
IFT particles into the flagellum as a counting process {N(t), t ≥ 0} consisting of two
components: the stochastic binding and unbinding of IFT particles at the basal body
and the stochastic release of IFT particles into the flagellum itself. For simplicity,
we have taken the latter to be a Poisson process. However, this cannot capture
the full complexity of the time series of release events observed experimentally [24],
such as nonmonotonic time-dependent Fano factors, peaks in the interevent interval
density ρ(τ), and power-law dependencies. All of these latter features are also found in
another application domain, namely, neural spike trains [36, 34]. A common modeling
strategy in these cases is to consider a shot-noise–driven DSPP, which we will denote
by SNDP, and to introduce some form of refractoriness. In this section we indicate
how such models could be adapted to IFT. One particular application of such models
would be to investigate to what extent details regarding the time series affect flagellar
length regulation, particularly given that the latter occurs on longer time scales.

A schematic diagram of a basic SNDP is shown in Figure 11(a). It consists of
two Poisson processes separated by a linear filter. The first Poisson process generates
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events at a constant rate µ0 resulting in a sequence of event times tk, k = 0, 1, . . ..
These event times are fed into the linear filter with kernel function h1(t), h1(t) =
0 for t < 0, resulting in the filtered Poisson process or shot noise

(4.1) λ(t) =
∑
k≥0

h1(t− tk).

Phenomenologically speaking, h could represent the effects of IFT particle trafficking
within the basal body. Finally, λ(t) is taken to be the stochastic rate of the second
Poisson process, resulting in an SNDP. A typical choice for h(t) is the exponential filter
h(t) = h0e−t/τh for t > 0. However, in cases where the statistics of a counting process
display power-law dependencies over a significant range of times (fractal behavior),
it is more appropriate to consider fractal shot noise for which h(t) = h0t

−α for some
α > 0 [23, 36]. Another modification of the basic SDNP is to add a feedback loop as
shown in Figure 11(b), which represents a form of self-excitation [35]. Whenever an
event occurs, this feedback modifies the rate of succeeding events by a multiplicative
factor β(t) generated by a second filter function g(t) such that

(4.2) λ(t) = β(t)λ0(t) = β(t)
∑
k≥0

h(t− tk), β(t)
∑
l≥0

g(t− Tl),

where Tl are the event times of the second Poisson process. In the case of neural spike
trains, a typical choice of the filter g is g(t) = 1− e−t/τd for t > 0 and zero otherwise.
This represents the effects of relative refractoriness, whereby when a neuron fires, its
likelihood of firing another spike in quick succession is reduced. In the case of IFT, an
analog of refractoriness could be the time new material needs to take to pass through
the basal body so that it is ready for injection into the flagellum [24].

There are additional complicating factors in applying SNDPs to IFT. First, the
rate of the first Poisson process is itself stochastic since it is driven by the random
process of IFTs binding to the basal body. Hence, the full model consists of a pair of
DSPPs connected in series; see Figure 11(b). Second, in contrast to standard neural
spike trains, for which the size of each event (firing of a single action potential) is
identical, the size of IFT injection events varies and is correlated with the frequency
of such events. This raises the mathematical issue of how to incorporate event size into
the counting process. One approach would be to treat the second Poisson process as
a marked Poisson process [7]. The latter is defined as follows: Let N(t) be a Poisson
process with event times {Tn, n > 0}. Given some space M, if a random mark
mn ∈M is attached to each event N(t) = n, then X = {(TN(t),mN(t)), t > 0} is said
to be a marked Poisson process.

The simplest model for marks is to take them to be independent and identically
distributed random variables that are independent of the event times Tn. The next
level of complexity is to assume that the marks are statistically correlated but still
independent of the event times. Yet another level of complexity is to assume that
there is a correlation between the event times and the marks. For example, suppose
that λ(t) denotes the rate of the second Poisson process and

(4.3) mn = a+ bλ(Tn) +Xn,

where a, b are constants and Xn is some additional independent random variable
(which could be zero). If b < 0, then the size of a mark will be larger when the rate
of events is smaller. If we interpret mn as the size of the nth injected IFT particle,
then this correlation would be consistent with what is observed experimentally.
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5. Discussion. In this paper we presented a model of flagellar length control
based on a DSPP in which we assumed that the injection times of IFT into a flagel-
lum from the basal body are given by an inhomogeneous Poisson process whose rate
is based on the number of IFTs bound at the basal body. The number of IFTs bound
to the basal body in turn evolves according to a stochastic birth-death process, hence
rendering the Poisson rate of injection times of IFT into the flagellum stochastic. We
used the theory of DSPPs to analyze the effects of fluctuations on IFT and showed how
our model captures some of the qualitative features of the experimental time series
data on the import of IFT particles into flagella, in particular, the nonexponential in-
terevent interval statistics and time-dependent Fano factors. We also established that
reducing the number M of available binding sites on the basal body can significantly
affect length regulation.

To what extent could the M dependence predicted by the stochastic model be
investigated experimentally? One possibility would be to pharmacologically add an
agonist that can bind to sites on the basal body without interfering with other com-
ponents of the IFT process (assuming such an agonist can be found). One would then
expect the effective number of free binding sites Meff to decrease as the concentration
of agonist increases, thus increasing the level of fluctuations.

One of the main goals of this paper was to develop the mathematical link between
the length-dependent regulation of IFT and counting processes. In particular, we
noted that many of the features of the time series of IFT injection events occur in
neural spike trains. This motivated us to model IFT dynamics within the basal body
and subsequent release of IFTs into the flagellum as a DSPP, analogous to the use of
DSPPs to model neural processing within the soma leading to the firing of an action
potential. A major challenge in future work will be to develop more sophisticated
probabilistic models of IFT that better fit the data. One approach, which is inspired
by neural modeling, is to consider the serially linked DSPPs shown schematically in
Figure 11(b). Although it should be possible to analyze such a model, another issue
is determining the most appropriate choice of the filters h and g, either by data fitting
or by using information regarding the physical structure of the basal body. Finally,
as highlighted at the end of section 4, we need to explore ways to take into account
variations in the size of events and how they correlate with the frequency of events
using, for example, the theory of marked point processes.

There are a number of other possible extensions of our work. First, we have
modeled the ballistic motion of the IFTs along the flagellum deterministically, whereas
in reality the motion is more random due to switching between different motile states
[3]. It also possible that the amount of time τ spent at the tip of the flagellum by
each IFT is a random variable. Both of these features would add further levels of
stochasticity. Another generalization would be to consider cases where the number
of particles available to bind to a basal body (in our model this is represented by
the concentration B) is finite and is divided between two or more flagella that are
competing for growth [12, 30]. Finally, it would be interesting to apply DSPP models
to other examples of intracellular transport. For example, we recently developed a
model that describes an axonal length sensing mechanism based on motor transport
[15]. In this model, injection rates of motors were taken to be deterministic rather
than dictated by a Poisson process.

Appendix A.
In this appendix we gather a few basic results in the theory of point processes

and DSPPs. See [6, 7] for more details.

D
ow

nl
oa

de
d 

03
/1

2/
18

 to
 1

55
.1

01
.9

7.
26

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

738 PAUL C. BRESSLOFF AND BHARGAV R. KARAMCHED

Correlations of a DSPP. Let {N(t), t ≥ 0} denote a DSPP. Introduce the
characteristic functional [6, 2]

ΦN [v] ≡ E

[
exp

(
i

∫ T

0

v(σ)dN(σ)

)]
(A.1)

for fixed T , where v is a real-valued function and the integral is a counting integral,∫ T

0

v(σ)dN(σ) =

N(T )∑
i=1

v(ωi),

with ωi denoting the occurrence times of the DSPP. Expectation is taken with respect
to both stochastic processes N(t), X(t). In order to evaluate the characteristic func-
tional, we first condition on a particular realization {x(t), 0 ≤ t ≤ T} of the stochastic
process X(t) over the time interval [0, T ]. We write the corresponding conditioned
characteristic functional as

ΦN [v|x] ∼ E

{
exp

(
i

M∑
k=1

v(σk)∆N(σk)

)}
.

Time has been discretized time into M intervals of size ∆σ, and expectation is taken
with respect to the inhomogeneous Poisson process with intensity λ(t) = λ(x(t)). (We
are assuming that the limit M → ∞,∆σ → 0 with M∆σ = T is well defined.) It
follows that

ΦN [v|x] ∼
M∏
k=1

[(1− λ(σk)∆σ) + λ(σk)∆σ exp (iv(σk))]

∼
M∏
k=1

exp
([

eiv(σk) − 1
]
λ(σk)∆σ

)
∼ exp

(
M∑
k=1

[
eiv(σk) − 1

]
λ(σk)∆σ

)
.

If we now retake the continuum limit, we see that

ΦN [v|x] = exp

(∫ T

0

[
eiv(σ) − 1

]
λ(σ)dσ

)
.

Finally, taking expectation with respect to the stochastic process X(t) yields

(A.2) ΦN [v] = EX

{
exp

(∫ T

0

[
eiv(σ) − 1

]
λ(σ)dσ

)}
.

Let v(σ) be the following piecewise function [2]:

v(σ) =



∑m
i=1 αi; 0 ≤ σ < t1∑m
i=2 αi; t1 ≤ σ < t2

...
...

αm; tm−1 ≤ σ < tm
0; tm ≤ σ < T,
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where 0 < t1 < t2 < · · · < tm < T . From (A.1), the corresponding characteristic
functional is

ΦN [v] = E {exp[i(α1 + · · ·+ αm)N(t1) + i(α2 + · · ·+ αm)(N(t2)−N(t1))

+ · · ·+ iαm(N(tm)−N(tm−1))]}
= E {exp[i(α1N(t1) + · · ·+ αmN(tm)]} = GN(t1),...,N(tm)(α1, . . . , αm),

where GN(t1),...,N(tm) is the joint characteristic function of (N(t1), . . . , N(tm)). On
the other hand, from (A.2) we have

ΦN [v] = EX

{
exp

[(
ei(α1+···+αm) − 1

)∫ t1

0

λ(σ)dσ + · · ·+
(
eiαm − 1

) ∫ tm

tm−1

λ(σ)dσ

]}
= EX

{
exp

[(
ei(α1+···+αm) − ei(α2+···+αm)

)
Λ(t1) + · · ·+

(
eiαm − 1

)
Λ(tm)

]}
= GΛ(t1),...,Λ(tm)

(
−iei(α1+···+αm) + iei(α2+···+αm), . . . , i− ieiαm

)
,

where GΛ(t1),...,Λ(tm) is the joint characteristic function of (Λ(t1), . . . ,Λ(tm)). For the
sake of illustration, consider the case m = 2 and the covariance function

RN (t1, t2) = E[N(t1)N(t2)]− E[N(t1)]E[N(t2)]

= −
∂2GN(t1),N(t2)(α1, α2)

∂α1∂α2

∣∣∣∣
α1=α2=0

− EX [Λ(t1)]EX [Λ(t2)]

= −
∂2GΛ(t1),Λ(t2)(−iei(α1+α2) + ieiα2 , i− ieiα2)

∂α1∂α2

∣∣∣∣∣
α1=α2=0

−EX [Λ(t1)]EX [Λ(t2)]

= EX [Λ(t1)Λ(t2)] + EX [Λ(t1)]− EX [Λ(t1)]EX [Λ(t2)]

= RΛ(t1, t2) + EX [Λ(t1)].(A.3)

Interevent interval density. Consider a counting process with stationary in-
crements. Let N(t1, t2) denote the number of events in the interval (t1, t2] so that
N(t) = N(0, t). Introduce the survivor function for the time X between consecutive
events:

(A.4) FX(x) = P[X > x] = lim
δ→0+

P[N(0, x) = 0|N(−δ, 0) > 0].

This is the probability that following an event at t = 0−, there is not another event
up to time t = x. By stationarity,

P[{N(0, x) = 0} ∪ {N(−δ, 0) > 0}] = P[N(0, x) = 0]− P[N(−δ, x) = 0]

= P[N(x) = 0]− P[N(x+ δ) = 0].

Hence,

P[N(0, x) = 0|N(−δ, 0) > 0]P[N(δ) > 0] = P[N(x) = 0]− P[N(x+ δ) = 0].

Dividing both sides by δ and taking the limit δ → 0 with

ν = lim
δ→0+

P[N(δ) > 0]
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(assuming ν exists) establishes that

(A.5) FX(x) = −1

ν

dP0(x)

dx
,

where Pn(x) = P[N(x) = k], k = 0, 1, . . .. Finally, the interevent interval density is

(A.6) ρ(τ) = − dFX(x)

dx

∣∣∣∣
x=τ

=
1

ν

d2P0(τ)

dτ2
.

In the case of a Poisson process, ν can be identified with the Poisson rate λ0, whereas
in the case of a DSPP, ν = E[λ] and P0(τ)→ P0(τ) = E[P0(τ)]:

ρ(τ) =
1

E[λ]

d2

dτ2
E
[
exp

(
−
∫ τ

0

λ(s)ds

)]
,(A.7)

where λ(t) is a stationary process.
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