
Journal of Physics A: Mathematical and Theoretical

PAPER

Diffusion in an age-structured randomly switching
environment
To cite this article: Paul C Bressloff et al 2018 J. Phys. A: Math. Theor. 51 315001

 

View the article online for updates and enhancements.

Related content
Stochastic switching in biology: from
genotype to phenotype
Paul C Bressloff

-

Moment equations for a piecewise
deterministic PDE
Paul C Bressloff and Sean D Lawley

-

Residence times of a Brownian particle
with temporal heterogeneity
Paul C Bressloff and Sean D Lawley

-

This content was downloaded from IP address 128.110.184.42 on 09/07/2018 at 13:03

https://doi.org/10.1088/1751-8121/aaca7c
http://iopscience.iop.org/article/10.1088/1751-8121/aa5db4
http://iopscience.iop.org/article/10.1088/1751-8121/aa5db4
http://iopscience.iop.org/article/10.1088/1751-8113/48/10/105001
http://iopscience.iop.org/article/10.1088/1751-8113/48/10/105001
http://iopscience.iop.org/article/10.1088/1751-8121/aa692a
http://iopscience.iop.org/article/10.1088/1751-8121/aa692a
http://oas.iop.org/5c/iopscience.iop.org/21597508/Middle/IOPP/IOPs-Mid-JPA-pdf/IOPs-Mid-JPA-pdf.jpg/1?


1

Journal of Physics A: Mathematical and Theoretical

Diffusion in an age-structured randomly 
switching environment

Paul C Bressloff , Sean D Lawley and Patrick Murphy

Department of Mathematics, University of Utah, Salt Lake City, UT 84112  
United States of America

E-mail: bressloff@math.utah.edu, lawley@math.utah.edu  
and pmurphy@math.utah.edu

Received 3 March 2018, revised 17 May 2018
Accepted for publication 5 June 2018
Published 19 June 2018

Abstract
Age-structured processes are well-established in population biology, where 
birth and death rates often depend on the age of the underlying populations. 
Recently, however, different examples of age-structured processes have been 
considered in the context of cell motility or certain types of stochastically 
gated ion channels, where the state of the system is determined by a switching 
process with age-dependent transition rates. In this paper we consider the 
particular problem of diffusion on a finite interval, with randomly switching 
boundary conditions due to the presence of an age-structured stochastic gate 
at one end of the interval. When the gate is closed the particles are reflected, 
whereas when it is open the domain is in contact with a particle bath. We use a 
moments method to derive a partial differential equation for the expectations 
of the stochastic concentration, conditioned on the state of the gate. We then 
use transform methods to eliminate the residence time of the age-structured 
switching, resulting in non-Markovian equations  for the expectations, and 
determine the effective steady-state concentration gradient. Our analytical 
results are shown to match those obtained using Monte Carlo simulations.

Keywords: age-structured, diffusion, stochastic gating, random environment, 
characteristics

(Some figures may appear in colour only in the online journal)

1.  Introduction

This paper is a continuation of a sequence of recent mathematical studies of diffusion pro-
cesses in randomly switching environments [3–5, 18, 20]. The environment is taken to be a 
bounded domain with either randomly switching exterior boundary conditions or stochasti-
cally-gated internal barriers such as gap junctions. The stochastic switching is modeled by a 
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Markov chain whose transition rates are independent of the population density. The fact that 
the diffusing particles are all subject to the same fluctuating environment means that statistical 
correlations arise at the population level. That is, solving the diffusion equation for a particular 
realization of the stochastically switching boundary conditions yields a population density 
that depends on the particular realization. Hence, the density is a random field whose moments 
evolve according to a hierarchy of deterministic partial differential equations (PDEs) [3, 20]. 
This new type of model has applications to a variety of problem domains in biology and bio-
physics, including diffusion-limited reactions [6], insect physiology [8], stochastically-gated 
signaling between cells [7, 9], and volume neurotransmission [19, 21].

Probably the simplest example of the above type of process is the one-dimensional diffu-
sion equation on a bounded interval [3, 18]. Suppose that the left-hand end satisfies a Dirichlet 
boundary condition, whereas the right-hand end switches between inhomogeneous Dirichlet 
and Neumann boundary conditions. The switching is represented by a two-state Markov 
chain. One finds that the solution of the stochastic diffusion equation converges in distribution 
to a random concentration whose expectation satisfies a deterministic system of partial differ
ential equations PDEs. The solution of the latter is a linear function of x, with the underlying 
stochastic process reflected by the non-trivial dependence of the concentration gradient on 
model parameters.

In this paper we extend the one-dimensional problem to the case of age-structured switch-
ing. Age-structured processes are well known in population biology, where birth and death 
rates often depend on the age of the underlying population element [10, 15], which could be a 
cell undergoing differentiation or proliferation [23, 24, 26], or a whole organism undergoing 
reproduction [17]. Recently, however, a different example of an age-structured process has been 
considered within the context of cell motility [11–13]. The latter authors develop a stochastic 
two-state velocity jump model of cell motility, in which the switching rate depends upon the 
residence or running time the cell has spent moving in one direction. (This time is reset to 
zero each time a reversal of direction occurs.) If the switching rate is taken to be a decreasing 
function of the residence time, then one obtains a power law for the velocity switching time 
distribution. In particular, the cell undergoes a persistent random walk, whereby the longer the 
cell moves in a particular direction, the smaller the switching probability for reversing direc-
tion becomes. The resulting cell motility on mesoscopic time scales exhibits non-Markovian 
superdiffusive behavior consistent with some recent experimental studies [1, 16].

We adapt the analysis of Fedotov et  al [11–13] in order to consider an age-structured 
switching process that controls the opening and closing of a stochastic gate at the right-hand 
end of a bounded interval containing a population of diffusing particles. When the gate is 
closed the particles are reflected, whereas when it is open the domain is in contact with a 
particle bath. After formulating the model in section 2, we extend the moments method of 
[3] to derive PDEs for the expectation of the stochastic concentration, conditioned on the 
age-structured state of the gate (section 3). We then use transform methods to eliminate the 
residence time, resulting in non-Markovian equations for the expectations, which are solved 
using Fourier/Laplace transforms and the method of characteristics (section 4). Finally, in sec-
tion 5 we determine the effective steady-state concentration gradient. The logical flow of the 
calculations is outlined in figure 1.

2.  Piecewise deterministic diffusion equation with age-structured switching

Consider the following diffusion equation for the density u(x, t) of particles moving in a one-
dimensional bounded domain with position x ∈ [0, L] and time t  >  0:

P C Bressloff et alJ. Phys. A: Math. Theor. 51 (2018) 315001
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∂u
∂t

= D
∂2u
∂x2 , x ∈ [0, L], t > 0� (2.1)

supplemented by the boundary conditions

u(0, t) = 0, u(L, t) = η0 > 0 for n(t) = 0,� (2.2a)

u(0, t) = 0 χ∂xu(L, t) + (1 − χ)[u(L, t)− η1] = 0 for n(t) = 1,� (2.2b)

with χ = 0, 1. Here n(t) ∈ {0, 1} denotes the current state of a stochastic gate at the end 
x  =  L. If n(t) = 0 then the gate is open and the domain is in contact with a particle bath of 
fixed concentration η0, whereas if n(t) = 1 then the gate is closed and particles are either par-
tially exposed to the bath (χ = 0, η1 < η0) or reflected (χ = 1). In previous work [3, 18], we 

assumed that the state n(t) of the gate evolves according to a two-state Markov chain: 0
α0
�
α1

1. 

Let Pn(t) =
∑

m=0,1 P[n(t) = n|n(0) = m] p0
m be the probability distribution for the current 

state of the gate given that the initial state n(0) is distributed according to p0. We then have the 
master equation

dPn(t)
∂t

=
∑

m=0,1

AnmPm(t)� (2.3)

where A is the matrix generator

A =

[
−α0 α1

α0 −α1

]
.� (2.4)

The left nullspace of the matrix A is spanned by the vector ψ = (1, 1)� and the right nullspace 
is spanned by

Figure 1.  Outline of the steps in the calculation process for finding steady-state 
solutions to the first moment of equation (2.1).
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ρ ≡
(
ρ0

ρ1

)
=

1
α1 + α0

(
α1

α0

)
.� (2.5)

A simple application of the Perron–Frobenius theorem shows that the two state Markov pro-
cess is ergodic with limt→∞ Pn(t) = ρn. One can view a solution of equation  (2.1) up to 
some time t as determining the probability density u(x, t) conditioned on a single realization 
{n(s), 0 � s < t} of the stochastic gate. Thus the conditional probability density u(x, t) can 
be interpreted as determining the density of multiple particles moving in the same random 
environment. Each realization of the gate will typically generate a different solution u(x, t) 
so that u(x, t) is a random field variable. Taking expectations with respect to these different 
realizations, conditioned on the current state of the gate, we define the first moments

Vn(x, t) = E[u(x, t)1n(t)=n], n = 0, 1,� (2.6)

where 1n(t)=n denotes the indicator function on the event n(t) = n. It can be shown using the 
method outlined in section 3 that Vn evolves according to the equations [3, 18]

∂V0

∂t
= D

∂2V0

∂x2 − α0V0 + α1V1,� (2.7a)

∂V1

∂t
= D

∂2V1

∂x2 + α0V0 − α1V1,� (2.7b)

with

V0(0, t) = V1(0, t) = 0, V0(L, t) = ρ0η0, χ∂xV1(L, t) + (1 − χ)[V1(L, t)− ρ1η1] = 0.� (2.8)

If χ = 0 then the resulting steady-state solution for V = V0 + V1 is [4, 18]

V(x) =
x
L
[ρ0η0 + ρ1η1],� (2.9)

whereas for χ = 1

V(x) =
x
L

η0

1 + (ρ1/ρ0)(ξL)−1 tanh(ξL)
, ξ =

√
α0 + α1.� (2.10)

In the latter case, although one has the expected linear gradient in concentration, the depend
ence of the slope on model parameters is non-trivial. However, one recovers the classical 
result in the fast switching limit ξ → ∞:

V(x) =
x
L
η0.

In this paper, we replace the simple two-state Markov chain by an age-structured model. That 
is, we introduce an additional time variable τ, which is the residence time between successive 
switches in the state of the gate, such that τ is reset to zero each time there is a state transition. 
We further assume that the switching rates depend on τ by setting α1 = α1(τ),α0 = α0(τ). 
Let Λn(t, τ) denote the probability density that n(t) = n and the last transition was at time 
t − τ . We then have the age-structured master equation

∂Λ0(t, τ)
∂t

+
∂Λ0(t, τ)

∂τ
= −α0(τ)Λ0(t, τ),� (2.11a)

∂Λ1(t, τ)
∂t

+
∂Λ1(t, τ)

∂τ
= −α1(τ)Λ1(t, τ).� (2.11b)

P C Bressloff et alJ. Phys. A: Math. Theor. 51 (2018) 315001
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This pair of equations is supplemented by the boundary conditions

Λ0(t, 0) =
∫ t+

0
α1(τ)Λ1(t, τ)dτ , Λ1(t, 0) =

∫ t+

0
α0(τ)Λ0(t, τ)dτ ,� (2.11c)

and the initial conditions Λn(0, τ) = ρn(τ)δ(τ) with ρn(τ) given by equation  (2.5) for τ-
dependent αn(τ). Here t+ mean the limit as ε → 0 of t + ε, so that we capture the behavior 
of any singularities at τ = t+ resulting from the initial conditions. The marginal distribution 
λn(t) is then obtained by integrating with respect to τ:

λn(t) =
∫ t+

0
Λn(t, τ)dτ .� (2.12)

One possible choice for age-dependent transition rates is (see [11–13])

α1(τ) = φ
2µ

τ0 + τ
, α0(τ) = (1 − φ)

2µ
τ0 + τ

,

for 0 < φ < 1. Note that equations (2.11a)–(2.11c) are similar to the classical McKendrik-von 
Foerster equations in age-structured population dynamics [22, 25].

One question that quickly arises is what form the age-dependent rates α1(τ) and α0(τ) 
should take (we will focus on αn(τ) ≡ α(τ) for now). Define the random variable T to be 
the time until the next transition from n  =  1 to n  =  0 occurs. To investigate the relationship 
between T and α(τ), we note that by definition of conditional probability, T, and α(τ), we 
have that

P(T > τ +∆τ |T > τ) =
P(T > τ +∆τ)

P(T > τ)
= 1 − α(τ)∆τ + o(∆τ).

Upon rearranging this equation, we have that

P(T > τ +∆τ)− P(T > τ)

∆τ
= −α(τ)P(T > τ) + o(1).

Taking ∆τ → 0 then yields that the survival probability Ps(τ) := P(T > τ) satisfies the ordi-
nary differential equation (ODE)

dPs

dτ
= −α(τ)Ps.

Hence,

Ps(τ) = N exp
(
−
∫ τ

α(s)ds
)

,

where N  is such that the probability density function (pdf) of T,

p(τ) = −P′
s(τ) = Nα(τ) exp

(
−
∫ τ

α(s)ds
)

integrates to one, 
∫∞

0 p(τ) dτ = 1.
It follows that, given a survival probability distribution Ps(τ), we can construct the appro-

priate switching rate by

α(τ) = −P′
s(τ)

Ps(τ)
.� (2.13)

P C Bressloff et alJ. Phys. A: Math. Theor. 51 (2018) 315001
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As an informal example, consider the general class of transition rates given by 
α(τ) = µ(1 + τ)k. The resulting survival distribution is

Ps(τ) = N exp
( −µ

k + 1
(1 + τ)k+1

)
if k �= −1,� (2.14)

Ps(τ) = N 1
(1 + τ)µ

if k = −1.� (2.15)

Note that if k  <  −1, we do not have a finite mean. Since in that case on average it takes an 
infinite amount of time for the system to change states, we will generally assume that our 
survival distribution has a finite mean.

3.  First moment equations

We now extend our previous work on diffusion in switching environments to derive moment 
equations for the piecewise deterministic diffusion equation [3]. The first step is to spatially 
discretize the equation (2.1) using a finite-difference scheme. Introduce the lattice spacing a 
such that (N + 1)a = L for integer N, and let uj  =  u(aj) for j = 0, . . . , N + 1. We then obtain 
the piecewise deterministic ODE

dui

dt
=

N∑
j=1

∆n
ijuj + η̂nδi,N , i = 1, . . . , N, n = 0, 1,� (3.1)

with

η̂n =
η0D
a2 δn,0 +

η1D
a2 δn,1.

Away from the boundaries (i �= 1, N ), ∆n
ij  is given by the discrete Laplacian

∆n
ij =

D
a2 [δi,j+1 + δi,j−1 − 2δi,j].� (3.2a)

On the left-hand absorbing boundary we have u0  =  0, whereas on the right-hand boundary 
we have

uN+1 = η0 for n = 0, χ(uN+1 − uN−1) + (1 − χ)[uN+1 = η1] = 0 for n = 1.

These can be implemented by taking

∆n
1j =

D
a2 [δj,2 − 2δj,1],� (3.2b)

∆0
Nj =

D
a2 [δN−1,j − 2δN,j],� (3.2c)

∆1
Nj = χ

2D
a2 [δN−1,j − δN,j] + (1 − χ)

D
a2 [δN−1,j − 2δN,j].� (3.2d)

Let u(t) = (u1(t), . . . , uN(t)) and let τ(t) � 0 be the time since the last switch

τ(t) := sup{s < t : n(t) = n(t − s′) for all s′ < s}.

Introduce the probability density

P C Bressloff et alJ. Phys. A: Math. Theor. 51 (2018) 315001
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P
{

u(t) ∈ (u, u + du), n(t) = n, τ(t) ∈ (τ , τ + dτ)
}
= Pn(u, t, τ)dudτ ,� (3.3)

where we have dropped the explicit dependence on initial conditions. The probability density 
evolves according to the following differential Chapman–Kolmogorov (CK) [2] equation for 
the stochastic hybrid system (3.1):

∂Pn

∂t
+

∂Pn

∂τ
= −

N∑
i=1

∂

∂ui






N∑
j=1

∆n
ijuj + η̂nδi,N


Pn(u, t, τ)




− αn(τ)Pn(u, t, τ).

� (3.4)

Equation (3.4) is supplemented by the boundary conditions

P0(u, t, 0) =
∫ t+

0
α1(τ)P1(u, t, τ)dτ , P1(u, t, 0) =

∫ t+

0
α0(τ)P0(u, t, τ)dτ

� (3.5)
and the initial condition Pn(u, 0, τ) = ρn(0)δ(τ) f (u) with 

∫
f (u)du = 1. Integrating equa-

tion (3.4) with respect to u and setting

Λn(t, τ) =
∫

Pn(u, t, τ)du,

we recover (2.11a)–(2.11c).
Since the drift terms in the CK equation (3.4) are linear in the uj, it follows that we can 

obtain a closed set of equations for the moments of Pn. Introduce the first-order moments

Vn,k(t, τ) =
∫

Pn(u, t, τ)uk(t)dudτ .� (3.6)

Multiplying both sides of the CK equation  (3.4) by uk(t) and integrating with respect to u 
gives (after integrating by parts and using that Pn(u, t, τ) → 0 as u → ∞ by the maximum 
principle)

∂Vn,k

∂t
+

∂Vn,k

∂τ
=

N∑
j=1

∆n
kjVn,j + η̂nΛn(t, τ)δk,N − αn(τ)Vn,k(t, τ).� (3.7)

If we now retake the continuum limit a → 0, we obtain the moment equations for Vn(x, t, τ), 
namely,

∂Vn(x, t, τ)
∂t

+
∂Vn(x, t, τ)

∂τ
= D

∂2Vn(x, t, τ)
∂x2 − αn(τ)Vn(x, t, τ).� (3.8)

This is supplemented by the boundary conditions

Vn(0, t, τ) = 0, V0(L, t, τ) = η0Λ0(t, τ),� (3.9a)

χ∂xV1(L, t, τ) + (1 − χ)[V1(L, t, τ)− η1Λ1(t, τ)] = 0,� (3.9b)

with Λn evolving according to equations (2.11a) and (2.11b),

V0(x, t, 0) =
∫ t+

0
α1(τ)V1(x, t, τ)dτ , V1(x, t, 0) =

∫ t+

0
α0(τ)V0(x, t, τ)dτ ,

� (3.9c)
and with the initial conditions

P C Bressloff et alJ. Phys. A: Math. Theor. 51 (2018) 315001
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Vn(x, 0, τ) = V(0)
n (x)δ(τ)� (3.9d)

for some initial spatial distribution V(0)
n (x).

4.  Eliminating the residence time

In the previous section we derived equations for the τ-dependent first moments Vn(x, t, τ). The 
next step is to derive a non-Markovian master equation for the τ-independent moments

Mn(x, t) ≡
∫ t+

0
Vn(x, t, τ)dτ ,� (4.1a)

where we have integrated out the residence time τ. Note that we will need to be careful about 
the singularity at τ = t+ coming from the factor of δ(τ) in the initial conditions. At this point 
it is convenient to define several additional variables. First, recall that the probability the gate 
is in state n at time t is given by

λn(t) ≡
∫ t+

0
Λn(t, τ)dτ ,� (4.1b)

analogous to the definition of Mn(x,t). Now define

Nn(x, t) ≡
∫ t+

0
αn(τ)Vn(x, t, τ)dτ ,� (4.1c)

rn(t) ≡
∫ t+

0
αn(τ)Λn(t, τ)dτ .� (4.1d)

These new variables are integral terms describing the transfer of probability between M0(x,t), 
M1(x,t) and λ0(t),λ1(t) respectively. We will proceed along analogous lines to Fedotov et al 
[12]. Given the boundary conditions (2.11c), (3.9b), and (3.9c) we also have to be able to solve 
for Nn(x,t), as well as the variables λn(t) and rn(t) through a similar process, since the marginal 
distribution Λn(t, τ), the τ-dependent probability density that the system is currently in state 
n at time t, is not known.

We can find the general form of the differential equation for Mn(x,t) in a fairly straight-
forward manner. Integrating (3.8) from τ = 0 to τ = t+, interchanging differentiation with 
integration, and using the fundamental theorem of calculus yields

∂Mn(x, t)
∂t

+ Vn(x, t, t+)− Vn(x, t, 0) = D
∂2Mn(x, t)

∂x2 −
∫ t+

0
αn(τ)Vn(x, t, τ)dτ .

Using the boundary condition Vn(x, t, 0) =
∫ t+

0 α1−n(τ)V1−n(x, t, τ)dτ = N1−n(x, t), and the 

fact that Vn(x, t,σ) = 0 if σ > t , we obtain

∂Mn(x, t)
∂t

= D
∂2Mn(x, t)

∂x2 − Nn(x, t) + N1−n(x, t),� (4.1e)

with boundary conditions

Mn(0, t) = 0, M0(L, t) = η0λ0(t),� (4.1f)

χ∂xM1(L, t) + (1 − χ)[M1(L, t)− η1λ1(t)] = 0.� (4.1g)

P C Bressloff et alJ. Phys. A: Math. Theor. 51 (2018) 315001
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In section 4.2 below, we use transform methods to rederive (4.1e) and write Nn in terms of Mn.

We note that the initial condition Vn(x, 0, τ) = V(0)
n (x)δ(τ) could be replaced by a smooth 

distribution of initial residence times qn(τ), with 
∫∞

0 qn(τ)dτ = 1. In this case, we integrate 
τ over [0,∞) in order to eliminate the residence time. This simplifies the derivation of equa-
tion (4.1e), since there is no longer a singularity at τ = t, so that

∫ ∞

0

∂Vn(x, t, τ)
∂τ

dτ = −N1−n(x, t).

For concreteness, we will use the point distribution δ(τ) throughout the rest of the paper.
As in our previous studies, we are ultimately interested in the steady-state solution 

M(x) = limt→∞[M0(x, t) + M1(x, t)], under the assumption that the following limits exist:

λ∗
n = lim

t→∞
λn(t).� (4.2)

Adding the steady-state equations for M0(x) and M1(x) together yields

D
d2M(x)

dx2 = 0,� (4.3)

which indicates that M(x) is a straight line through the origin, M(x) = Ax, with A to be deter-
mined from the boundary conditions at x  =  L. In the Dirichlet–Dirichlet case (χ = 0), one 
simply has

lim
t→∞

M(x, t) =
x
L

lim
t→∞

[η0λ0(t) + η1λ1(t)] .� (4.4)

Thus, it is only necessary to calculate λn(t). The difficulty lies in the Dirichlet–Neumann 
case, where M1(L,t) is not known explicitly. This means that one has to solve equation (4.1e) 
directly, and thus deal with the fact that the integral terms Nn are currently expressed in terms 
of Vn, rather that Mn. In order to rewrite Nn in terms of Mn, and to solve the resulting equa-
tion for Mn, we will make use of transform techniques. First, however, we show how to cal-
culate λn(t).

4.1.  Calculation of λn(t)

The first step is to decompose the right-hand sides of equations (4.1b) and (4.1d) into two 
parts, one of which contains the singularity at τ = t+:

λn(t) =
∫ t−

0
Λn(t, τ)dτ +

∫ t+

t−
Λn(t, τ)dτ� (4.5)

rn(t) =
∫ t−

0
αn(τ)Λn(t, τ)dτ +

∫ t+

t−
αn(τ)Λn(t, τ)dτ .� (4.6)

Note that λn(t) is simply the probability that the system is in state n at time t. Using the method 
of characteristics (see figure 2) we can write

Λn(t, τ) = Λn(t − τ , 0)e−
∫ τ

0 αn(t′)dt′ if t > τ� (4.7a)

Λn(t, τ) = Λn(0, τ − t)e−
∫ τ
τ−t αn(t′)dt′ if t � τ .� (4.7b)
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Note that

Ψn(τ) ≡ e−
∫ τ

0 αn(t′)dt′� (4.8)

is the survival probability that the system has not switched after residing in state n for time τ. 
We also define

ψn(τ) ≡ αn(τ)e−
∫ τ

0 αn(t′)dt′ = −dΨn(τ)

dτ
,� (4.9)

the pdf for the probability that the system has exited state n before reaching residence time τ. 
We can then write

λn(t) =
∫ t−

0
Λn(t − τ , 0)Ψn(τ)dτ +

∫ t+

t−
Λn(0, τ − t)

Ψn(τ)

Ψn(τ − t)
dτ

=

∫ t

0
Λn(t − τ , 0)Ψn(τ)dτ +

∫ t+

t−
ρn(0)δ(τ − t)

Ψn(τ)

Ψn(τ − t)
dτ

= Λn(t, 0) ∗Ψn(t) + ρn(0)Ψn(t)

= (r1−n ∗Ψn)(t) + ρn(0)Ψn(t),

�

(4.10)

where we have used equation (2.11c). Similarly,

rn(t) =
∫ t−

0
Λn(t − τ , 0)ψn(τ)dτ +

∫ t+

t−
αn(τ)Λn(t, τ)dτ

= (r1−n ∗ ψn)(t) + ρn(0)ψn(t).
�

(4.11)

What is convenient about these forms is that we now have either linear terms or convolu-
tions, making the Laplace transform ideal to use. Denoting L{f (t)} = f̃ (s), after applying the 
Laplace transform to both rn(t) and λn(t), we arrive at the system of equations

λ̃n(s) = r̃1−n(s)Ψ̃n(s) + ρn(0)Ψ̃n(s)� (4.12a)

r̃n(s) = r̃1−n(s)ψ̃n(s) + ρn(0)ψ̃n(s).� (4.12b)

Figure 2.  Characteristics used to determine Λn(t, τ) in terms of the initial data 
Λn(t − τ , 0) for t > τ  and Λn(0, τ − t) for τ > t.
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Solving (4.12a) for r̃1−n(s) gives

r̃1−n(s) =
λ̃n(s)− ρn(0)Ψ̃n(s)

Ψ̃n(s)
.

This implies that

r̃n(s) =
ψ̃n(s)

Ψ̃n(s)

(
λ̃n(s)− ρn(0)Ψ̃n(s)

)
+ ρn(0)ψ̃n(s) =

ψ̃n(s)

Ψ̃n(s)
λ̃n(s),

and therefore

λ̃n(s) =
ψ̃1−n(s)

Ψ̃1−n(s)
λ̃1−n(s)Ψ̃n(s) + ρn(0)Ψ̃n(s).

Rewriting this as

λ̃n(s)

Ψ̃n(s)
− ρn(0) =

ψ̃1−n(s)

Ψ̃1−n(s)
λ̃1−n(s),

we can subtract (ψ̃n(s)/Ψ̃n(s))λ̃n(s) from both sides, yielding

λ̃n(s)[1 − ψ̃n(s)]

Ψ̃n(s)
− ρn(0) =

ψ̃1−n(s)

Ψ̃1−n(s)
λ̃1−n(s)−

ψ̃n(s)

Ψ̃n(s)
λ̃n(s).

Using the fact that ψ̃n(s) = −sΨ̃n(s) + 1, we arrive at the equation

sλ̃n(s)− ρn(0) =
ψ̃1−n(s)

Ψ̃1−n(s)
λ̃1−n(s)−

ψ̃n(s)

Ψ̃n(s)
λ̃n(s) = r̃n−1(s)− r̃n(s).� (4.13)

Since L{λ̇n(t)} = sλ̃n(s)− λn(0) = sλ̃n(s)− ρn(0), we can convert back from the Laplace 
domain to the time domain to obtain the integro-differential equation

dλn(t)
dt

= −rn(t) + r1−n(t),� (4.14)

where we have rewritten the transition rates as

rn(t) =
∫ t+

0
Kn(t − τ)λn(τ)dτ� (4.15)

with the integral kernel Kn(t) defined by

Kn(t) = L−1

{
ψ̃n(s)

Ψ̃n(s)

}
.� (4.16)

In the Markovian case αn(τ) = αn constant, this formulation recovers the standard master equa-
tion for the two-state Markov chain. To see this, note that L{Ψ(t)} = L{e−αnt} = (s + αn)

−1, 
so the integral kernel is

Kn(t) = L−1

{
1 − sΨ̃n(s)

Ψ̃n(s)

}
= L−1{αn} = αnδ(t).

This means the rate functions are given by
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rn(t) =
∫ t+

0
αnδ(t − τ)λn(τ)dτ = αnλn(t),

and the resulting system of equations is

dλn(t)
dt

= −αnλn(t) + α1−nλ1−n(t), n = 0, 1.� (4.17)

Our next intermediate step is to find the steady-state behavior of λn(t) as t → ∞. For now 
we will simply assume such a limit exists, i.e. the proportion of time spent in each discrete 
state approaches a constant value. Since the right hand side of (4.14) is non-autonomous, this 
is a non-trivial task. The main tool we use is the final value theorem of Laplace transforms. 
The idea is that, assuming limt→∞ f (t) exists, we can use the identity

∫ ∞

0
e−st df (t)

dt
dt = sF(s)− f (0)� (4.18)

to equate lims→0+ sF(s)− f (0) with

lim
s→0+

∫ ∞

0
e−st df (t)

dt
dt =

∫ ∞

0

df (t)
dt

dt = lim
t→∞

f (t)− f (0).

Therefore, we have

lim
s→0+

sF(s) = lim
t→∞

f (t).� (4.19)

In Laplace space, we can write the transform of the differential equations given by (4.14) 
as a system


s + ψ̃0(s)

Ψ̃0(s)
ψ̃1(s)
Ψ̃1(s)

ψ̃0(s)
Ψ̃0(s)

s + ψ̃1(s)
Ψ̃1(s)




(
λ̃0(s)
λ̃1(s)

)
=

(
ρ0(0)
ρ1(0)

)
,� (4.20)

which we can use to solve for sλ̃n(s), obtaining

(
sλ̃0(s)
sλ̃1(s)

)
=

1

s +
∑

n=0,1
ψ̃n(s)
Ψ̃n(s)


s + ψ̃1(s)

Ψ̃1(s)
ψ̃1(s)
Ψ̃1(s)

ψ̃0(s)
Ψ̃0(s)

s + ψ̃0(s)
Ψ̃0(s)




(
ρ0(0)
ρ1(0)

)
.� (4.21)

Taking the limit s → 0+ yields the solution

lim
t→∞

(
λ0(t)
λ1(t)

)
= lim

s→0+

(
sλ̃0(s)
sλ̃1(s)

)
=

(
aλ

aλ+bλ
aλ

aλ+bλ
bλ

aλ+bλ
bλ

aλ+bλ

)(
ρ0(0)
ρ1(0)

)
=

(
aλ

aλ+bλ
bλ

aλ+bλ

)
,

� (4.22)
where we have used ρ0(0) + ρ1(0) = 1, and defined

aλ =
lims→0+ ψ̃1(s)

lims→0+ Ψ̃1(s)
=

∫∞
0 ψ1(t)dt∫∞
0 Ψ1(t)dt

=
1 −Ψ1(∞)∫∞

0 Ψ1(t)dt
=

1∫∞
0 Ψ1(t)dt

,� (4.23a)

bλ =
lims→0+ ψ̃0(s)

lims→0+ Ψ̃0(s)
=

∫∞
0 ψ0(t)dt∫∞
0 Ψ0(t)dt

=
1 −Ψ0(∞)∫∞

0 Ψ0(t)dt
=

1∫∞
0 Ψ0(t)dt

,� (4.23b)

assuming the limit of each integral exists on its own. The last equalities follow from the fact 
that the survival probability approaches 0 as t → ∞, assuming we have a reasonable holding 
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time distribution. Enforcing that ψn(τ) has a finite mean is one way of ensuring this. In the 
Markovian case, we arrive at aλ = α1, bλ = α0, which results in steady-state boundary con-
ditions αn/(α0 + α1) = ρn(0), identical to the Markovian boundary conditions one would 
normally obtain.

4.2.  Calculation of Nn(x,t)

We now wish to perform a similar calculation to determine the functions Nn(x,t) appear-
ing in the PDE (4.1e) for Mn(x,t). We will proceed by applying transform methods and the 
method of characteristics to the moment equation (3.8). First, note that we can take V0, V1 and 
V = V0 + V1 to be in the same Fourier space by taking them to be odd, periodic functions on 
the domain [−L, L]. These periodic functions will be discontinuous at x = ±L . Introduce the 
sine series

Vn(x, t, τ) =
∞∑

l=1

V̂n,l(t, τ) sin(lπx/L), n = 0, 1,� (4.24)

with

V̂n,l(t, τ) =
1
L

∫ L

−L
Vn(x, t, τ) sin(lπx/L)dx.� (4.25)

Fourier transforming the moment equation (3.8) gives

∂V̂n,l

∂t
+

∂V̂n,l

∂τ
= −

[
Dk2

l + αn(τ)
]

V̂n,l +
2Dkl

L
(−1)l+1Vn(L, t, τ),� (4.26)

where kl = lπ/L. We have used the fact that the sine transform of second derivatives picks up 
a boundary term. We also have the initial conditions

V̂n,l(0, τ) = V̂(0)
n,l δ(τ),� (4.27a)

V̂0,l(t, 0) =
∫ t+

0
α1(τ)V1,l(t, τ)dτ = N1,l(t),� (4.27b)

V̂1,l(t, 0) =
∫ t+

0
α0(τ)V0,l(t, τ)dτ = N0,l(t).� (4.27c)

Here Mn,l(t) and Nn,l(t) denote the sine transforms of M(x, t) and N(x, t). For the moment, 
leave the boundary conditions for Vn(L, t, τ) unspecified.

The method of characteristics can now be used to find a solution along analogous lines to 
the analysis of Λn(t, τ), see also figure 2. For t > τ , we have

V̂n,l(t, τ) = V̂n,l(t − τ , 0)Ψn(τ)e−Dk2
l τ + Bn,l(t, τ),� (4.28)

where

Bn,l(t, τ) = Ψn(τ)e−Dk2
l τ

2Dkl

L
(−1)l+1

∫ τ

0

eDk2
l τ

′

Ψn(τ ′)
Vn(L, t − τ + τ ′, τ ′)dτ ′.

�

(4.29)
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Similarly, for t � τ  we have

V̂n,l(t, τ) = V̂n,l(0, τ − t)Ψn(τ)e−Dk2
l t + Cn,l(t, τ),� (4.30)

where

Cn,l(t, τ) = Ψn(τ)e−Dk2
l t 2klD

L
(−1)l+1

∫ t

0

eDk2
l t′

Ψn(t′)
Vn(L, t′, τ − t + t′)dt′.� (4.31)

The functions Bn,l(t, τ) and Bn,l(t, τ) are specified in terms of the boundary conditions for 
Vn(L, t, τ).

The next step is to decompose the right-hand sides of equations (4.1a) and (4.1c) into two 
parts, one of which contains the singularity at τ = t+. After Fourier transforming we have

Mn,l(t) =
∫ t−

0
V̂n,l(t, τ)dτ +

∫ t+

t−
V̂n,l(t, τ)dτ� (4.32a)

Nn,l(t) =
∫ t−

0
αn(τ)V̂n,l(t, τ)dτ +

∫ t+

t−
αn(τ)V̂n,l(t, τ)dτ .� (4.32b)

Substituting the characteristic solution into this pair of equations and using equations (4.27a)–
(4.27c), yields

Mn,l(t) = (N1−n,l ∗ Φn,l)(t) + V̂(0)
n,l Φn,l(t) + Rn,l(t),� (4.33a)

and

Nn,l(t) = (N1−n,l ∗ φn,l)(t) + V̂(0)
n,l φn,l(t) + Sn,l(t),� (4.33b)

where

Rn,l(t) =
∫ t−

0
Bn,l(t, τ)dτ +

∫ t+

t−
Cn,l(t, τ)dτ ,� (4.34a)

Sn,l(t) =
∫ t−

0
αn(τ)Bn,l(t, τ)dτ +

∫ t+

t−
αn(τ)Cn,l(t, τ)dτ ,� (4.34b)

and we have set

Φn,l(t) = Ψn(t)e−Dk2
l t, φn,l(t) = ψn(t)e−Dk2

l t.

The terms R have a complicated form, but a simple interpretation. They describe the propaga-
tion of the memory of the gate at the right boundary into the interior of the domain along char-
acteristics. Laplace transforming the above equations leads to the following algebraic system:

M̃n,l(s) = Ñ1−n,l(s)Ψ̃n(s + Dk2
l ) + V̂(0)

n,l Ψ̃n(s + Dk2
l ) + R̃n,l(s),� (4.35a)

Ñn,l(s) = Ñ1−n,l(s)ψ̃n(s + Dk2
l ) + V̂(0)

n,l ψ̃n(s + Dk2
l ) + S̃n,l(s),� (4.35b)

Finally, solving (4.35a) for Ñ1−n,l(s) gives

Ñ1−n,l(s) =
M̃n,l(s)− V(0)

n,l Ψ̃n(s + Dk2
l )− R̃n,l(s)

Ψ̃n(s + Dk2
l )

.
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Combining this with (4.35b), we have that

Ñn,l(s) =
ψ̃n(s + Dk2

l )

Ψ̃n(s + Dk2
l )

(
M̃n,l(s)− V(0)

n,l Ψ̃n(s + Dk2
l )− R̃n,l(s)

)
+ V(0)

n,l ψ̃n(s + Dk2
l )

+ S̃n,l(s)

=
ψ̃n(s + Dk2

l )

Ψ̃n(s + Dk2
l )

[
M̃n,l(s)− R̃n,l(s)

]
+ S̃n,l(s).

�

(4.36)

Equation (4.36) thus determines the Fourier–Laplace transform of Nn(x,t) in terms of the 
corresponding transform of Mn(x,t) and the boundary conditions at x  =  L.

It is also now possible to recover the PDE (4.1e). From equation (4.35a) we have

M̃n,l(s)− R̃n,l(s) =
ψ̃1−n(s + Dk2

l )

Ψ̃1−n(s + Dk2
l )

[
M̃1−n,l(s)− R̃1−n,l(s)

]
Ψ̃n(s + Dk2

l )

+ V(0)
n,l Ψ̃n(s + Dk2

l ) + S̃1−n,l(s)Ψ̃n(s + Dk2
l ).

Rewriting this as

M̃n,l(s)− R̃n,l(s)

Ψ̃n(s + Dk2
l )

− V(0)
n,l − S̃1−n,l(s) =

ψ̃1−n(s + Dk2
l )

Ψ̃1−n(s + Dk2
l )

[
M̃1−n,l(s)− R̃1−n,l(s)

]
,

we can subtract

(ψ̃n(s + Dk2
l )/Ψ̃n(s + Dk2

l ))[M̃n,l(s)− R̃n,l(s)]

from both sides, yielding

[M̃n,l(s)− R̃n,l(s)][1 − ψ̃n(s + Dk2
l )]

Ψ̃n(s + Dk2
l )

= V(0)
n,l + S̃1−n,l(s)

+
ψ̃1−n(s + Dk2

l )

Ψ̃1−n(s + Dk2
l )
[M̃1−n,l(s)− R̃1−n,l(s)]−

ψ̃n(s + Dk2
l )

Ψ̃n(s + Dk2
l )
[M̃n,l(s)− R̃n,l(s)].

Using the fact that ψ̃n(s) = −sΨ̃n(s) + 1, we arrive at the equation

s[M̃n,l(s)− R̃n,l(s)]− V̂(0)
n,l − S̃1−n,l(s) = −Dk2

l [M̃n,l(s)− R̃n,l(s)]

+
ψ̃1−n(s + Dk2

l )

Ψ̃1−n(s + Dk2
l )
[M̃1−n,l(s)− R̃1−n,l(s)]−

ψ̃n(s + Dk2
l )

Ψ̃n(s + Dk2
l )
[M̃n,l(s)− R̃n,l(s)].

Combining this with equation (4.36), we find

sM̃n,l(s)− V̂(0)
n,l = −Dk2

l M̃n,l(s) + Ñ1−n,l(s)− Ñn,l(s)

+ [Dk2
l + s]R̃n,l(s) + S̃n,l(s).

� (4.37)

It is worth noting at this point that if the switching at the gate is given by an exponential dis-
tribution, which is memoryless, the dependence of the above equation on the memory terms 
R̃n,l(s) and S̃n,l(s) disappears, as the term [Dk2

l + s]R̃n,l(s) + S̃n,l(s) cancels with the R̃n,l(s) 
terms present in Ñ1−n,l(s) and Ñn,l(s). Finally, inverting the Fourier–Laplace transform recov-
ers equation (4.1e) with boundary conditions
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Mn(0, t) = 0, Mn(L, t) = Fn(t).� (4.38)

The Fourier–Laplace transform of the function Fn(t) is given

2Dkl

L
(−1)l+1F̃n(s) = [Dk2

l + s]R̃n,l(s) + S̃n,l(s).� (4.39)

In order to determine the functions R̃n,l(s) and S̃n,l(s), we need to impose the explicit 
boundary conditions at x  =  L for Bn,l(t, τ) and Cn,l(t, τ). The details of these calculations can 
be found in the appendix for both Dirchlet–Dirichlet (χ = 0) and Dirchlet–Neumann (χ = 1) 
boundary conditions. In the former case, we recover from equation (4.39) the expected result 
that Fn(t) = ηnλn(t), which is a useful self-consistency check. The Dirchlet–Neumann 
case is more involved, since F0(t) = η0λ0(t) but F1(t) is unknown. The basic steps of the 
calculation are as follows. First, we express the steady-state version of Rn,l(t) in terms of 
F∗

n := limt→∞ Fn(t). Second, we express M0,l  and Nn,l, n = 0, 1 in terms of M1,l  and F∗
n. It 

then follows that equation (A.8) can be used to determine M1,l  in terms of the coefficients F∗
n. 

Since F∗
0 = η0λ

∗
0, there is only one unknown constant F∗

1. In the case of identical transition 
rates αn(τ) = α1−n(τ) = α(τ), it is fairly straightforward to find a relatively compact form 
for the Fourier coefficients M1,l . In particular, after some algebra, we find that (see appendix),

M1,l =
2

Lkl
(−1)l+1

[
1

Ψ̃(0)

Ψ̃(Dk2
l )

1 + ψ̃(Dk2
l )

F∗
0 +

(
1 − 1

Ψ̃(0)

Ψ̃(Dk2
l )

1 + ψ̃(Dk2
l )

)
F∗

1

]

�

(4.40)

for Dirichlet–Neumann. Finally, the unknown constant F∗
1 = M1(L) can be found by enforc-

ing the Neumann boundary condition at x  =  L.
We are now in a position to determine the slope of the steady-state mean concentration 

for the Dirichlet–Neumann case. In order to calculate the spatial derivative of M1(x), it is 
convenient to be able to differentiate the Fourier series term by term. To do this, we must first 
homogenize the steady-state solution so that the values at x  =  L and x  =  −L are identical, 
then find the Fourier coefficients for the homogenized solution. This can be accomplished by 
simply subtracting the linear function xF∗

1/L from M1(x). Using linearity of Fourier series, the 
Fourier coefficients of Mh

1(x) ≡ M1(x)− xF∗
1/L are given by

Mh
1,l =

2
Lkl

(−1)l+1

[
1

Ψ̃(0)

Ψ̃(Dk2
l )

1 + ψ̃(Dk2
l )

F∗
0 − 1

Ψ̃(0)

Ψ̃(Dk2
l )

1 + ψ̃(Dk2
l )

F∗
1

]
.� (4.41)

Setting

al =
2

Lkl
(−1)l+1 1

Ψ̃(0)

Ψ̃(Dk2
l )

1 + ψ̃(Dk2
l )

,� (4.42)

we can then write

M1(x)−
x
L

F∗
1 = F∗

0

∞∑
l=1

al sin(klx)− F∗
1

∞∑
l=1

al sin(klx).� (4.43)

Taking derivatives and enforcing the Neumann boundary condition at x  =  L gives the follow-
ing expression for the unknown boundary value

M1(L) = F∗
1 =

F∗
0
∑∞

l=1(−1)lalkl∑∞
l=1(−1)lalkl − 1/L

, kl =
πl
L

.� (4.44)
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Now λ∗
0 = 1/2 since α0 = α1. Thus, setting

bl =
2Ψ̃(Dk2

l )

1 + ψ̃(Dk2
l )

=
2(1 − ψ̃(Dk2

l ))

Dk2
l (1 + ψ̃(Dk2

l ))
,� (4.45)

we have that the slope of the steady state first moment M(x) simplifies to

M′(x) =
1
L
(F∗

0 + F∗
1 ) =

η0

2L

(
1 +

∑∞
l=1 bl∑∞

l=1 bl + Ψ̃(0)

)
,

where Ψ̃(0) is the mean time between switches.

5.  Examples of rate functions

5.1.  Markovian transition rates

The first example we will look at is the Markovian case αn(τ) = αn. This has already been 
studied in [3, 18], and we will show our formulation yields the same results.

In the case of constant transition rate functions αn, it is a straightforward calculation to 
show that

Ψ̃n(Dk2) =
1

Dk2
l + αn

,
ψ̃n(Dk2)

Ψ̃n(Dk2)
= αn, λn =

α1−n

α0 + α1
.

Define ξ =
√
α0 + α1  and set D  =  1. Substituting this into equation (A.8) yields

k2
l M1,l = α0

[
2

klL
(−1)l+1 [F∗

0 + F∗
1 ]−M1,l − R0,l

]
− k2

l R0,l +
2kl

L
(−1)l+1F∗

0

− α1 [M1,l − R1,l] + k2
l R1,l −

2kl

L
(−1)l+1F∗

1 +
2kl

L
(−1)l+1F∗

1 ,
� (5.1)

where we have used

M0,l =
2

klL
(−1)l+1 [F∗

0 + F∗
1 ]−M1,l.� (5.2)

After some algebra,

(k2
l + ξ2)M1,l =

2α0

klL
(−1)l+1 [F∗

0 + F∗
1 ]

− (α0 + k2
l )R0,l + (α1 + k2

l )R1,l +
2kl

L
(−1)l+1F∗

0 .
� (5.3)

Equation (A.10) implies

Rn,l =
1

(αn + k2
l )

2kl

L
(−1)l+1F∗

n� (5.4)

so that

(k2
l + ξ2)M1,l =

2α0

klL
(−1)l+1 [F∗

0 + F∗
1 ] +

2
Lkl

(−1)l+1F∗
1 .� (5.5)

From here we can find M1,l in terms of linear and hyperbolic functions. Enforcing ∂xM1,l = 0 
at x  =  L allows us to solve for the unknown value F∗

1. This yields
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F∗
1 = λ∗

1λ
∗
0η0

1 − (ξL)−1 tanh(ξL)
λ∗

0 + λ∗
1(ξL)−1 tanh(ξL)

,� (5.6)

with λ∗
0 ,λ∗

1 defined according to equation (4.2).
Comparison with Monte Carlo simulations in figure 3(a), we can see that the numerical 

and analytical results match. For identical transition rates α1 = α0 = α, we can also plot the 
slope of M(x) as a function of α. The resulting curve approaches η/L as α grows, matching 
the result from taking a fast switching limit in (5.6), and drops exponentially to η/2L as α 
grows (see figure 3(b)). This comes from the fact that as the switching rate slows down, the 
original switching system spends longer periods of time in the state n  =  1, where u(x, t) = 0 
is an exponentially attracting steady-sate solution. The contributions to the first moment then 
mainly come from the state n  =  0 with a Dirichlet boundary condition u(L, t) = η, which is 
enforced half the time on average with identical switching rates.

5.2.  Non-Markovian transition rates

We will illustrate the non-Markovian case using a gamma distribution

ψ(τ) =
1

Γ(k)βk τ
k−1e−

x
β

�
(5.7)

for both transition rate probabilities. This distribution has the advantage that both the mean, 
given by kβ, and the variance, given by kβ2, can both be easily controlled. In this case, the 
Laplace transform of ψ(τ) is given by

ψ̃(s) =
1

(1 + βs)k .� (5.8)

Using the relation ψ̃ = 1 − sΨ̃(s), we can find the Laplace transform of Ψ(τ) as

Ψ̃(s) =
(1 + βs)k − 1

s(1 + βs)k .� (5.9)

For this distribution, the value Ψ̃(0) does not exist, but lims→0+ Ψ̃(s) does exist and is equal 
to kβ, the first moment of the distribution ψ(τ). This is true in general for distributions with a 
finite mean, and we will interpret Ψ̃(0) as lims→0+ Ψ̃(s) = 〈ψ〉 as needed.

Comparing the analytical steady state M(x) to Monte Carlo simulations using identical 
transition rates, we can see that they match to a high degree of accuracy, although the rate of 
convergence can be slow, see figure 4. Similar to the Markovian case, we can also see how the 
slope is predicted to change based on the the scale parameter β for fixed values of the shape 
parameter k, see figure 5. Note that as k → ∞ the slope approaches

5.3.  Sub-exponential transition rates with finite first moments

One advantage of our solution method is that it can predict what the first moment is even if the 
transition probability pdf ψ(τ) does not have finite variance. In these cases, it is not computa-
tionally feasible to calculate the mean steady-state using Monte Carlo simulations. However, 
from the analytical viewpoint developed in previous sections, as long as the mean time to 
transition to another state is finite, the calculations for M(x) still hold and we can predict what 
the mean steady-state will be.
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To illustrate this, consider a Pareto distribution given by

ψ(τ) =

{
0, 0 � τ < τ0

γτγ0 /τ
γ+1, τ � τ0

� (5.10)

with the shape parameter γ restricted to be in the interval (1, 2) so that the mean of the distri-
bution, given by γτ0/(γ − 1), is finite, but the variance is infinite. The Laplace transforms for 
both ψ(τ) and Ψ(τ) do not have closed forms, but can be expressed in terms of a generalized 
exponential integral

En(s) =
∫ ∞

1

e−sτ

τ n dτ� (5.11)

or an incomplete gamma function

Γ(a, s) =
∫ ∞

s
τ a−1e−τdτ .

�
(5.12)

The results for the slope with various scale parameters τ0 are shown in figure 6. There are 
several interesting features here. the slope seems to reach a saturating value, mimicking 
the behavior on the mean γτ0/(γ − 1) as γ approaches infinity. We also see that the curves 
approach a fast switching limit as τ0 approaches 0 for for fixed values of γ, but all the curves 
approach 0.5 as γ goes to 1. A value of γ close to 1 can be interpreted as a slow switching 
limit, as the mean time for the system to switch states will be large. M(x, t) will either be near 
identically 0 if n  =  1, or be close to ηx/L = x  if n  =  0 for long periods of time, nearly wip-
ing out any transitional behavior. Hence the average slope will approach 0.5 for our chosen 
parameter values η = 1 and L  =  1.

5.4.  Deterministic transition times

Our approach can also handle the case of deterministic switching times. In order for a switch 
out of state n ∈ {0, 1} to occur at a fixed deterministic residence time τn > 0, we take the rate 
functions to be delta functions, αn = δ(τ − τn). In this case we have Ψn(τ) = H(τn − τ), 
ψ̃n(s) = e−sτn, and Ψ̃n(s) = (1 − e−sτn)/s. For simplicity, let τ1 = τ0, so that λ∗

1 = λ∗
0 = 1/2. 

Substituting this into (4.41) gives, after some simplification

Figure 3.  (a) Analytical and Monte Carlo steady-state solutions in the case of constant 
switching rates α0 = α1 = α with α = 2. (b) Steady-state slope as a function of the 
constant switching rate α. We have set η = L = 1 for simplicity.
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Figure 4.  Comparison of the analytical and Monte Carlo steady-state solutions for 
the gamma distribution with (a) t  =  15 and (c) t  =  1500. The corresponding error 
differences are plotted as a function of x in (b) and (d), respectively. Parameters of the 
gamma distribution are k  =  2, β = 0.1, and we have set η = L = 1.

Figure 5.  Steady-state slope for the gamma distribution as a function of β for various 
shape parameters: k  =  0.005, k  =  0.05, k  =  0.5, and k  =  5.
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Mh
1,l =

2
Lkl

(−1)l+1 1 − e−Dk2
l τ0

τ0Dk2
l (1 + e−Dk2

l τ0)
[F∗

0 − F∗
1 ].� (5.13)

While using this to find an analytical expression for M(x), we can compare the theoretical 
solution to Monte Carlo simulations (see figure 7(a)).

If we now take a fast switching limit τ0 → 0, note that

lim
τ0→0

M1,l =
1
2
Ml,� (5.14)

so we have the solution

lim
τ0→0

M1(L) =
1
2
[F∗

0 + lim
τ0→0

M1(L)],� (5.15)

so limτ0→0 M1(L) = F∗
0. The solution for the first moment is then

M(x) =
η

L
x.� (5.16)

This says that in the fast switching limit, the deterministic switching results in the system effec-
tively being in an open state n  =  1, which matches the known result that at rapidly switching 
system is equivalent to a system always in an open state. We can also see this from the plot of 
the slope as a a function of τ0 shown in figure 7(b). As τ0 → 0, the slope approaches η/L = 1.

5.5.  Comparison of different switching time distributions

Finally, we compare the four different types of switching, Markovian, deterministic, gamma, 
and Pareto, by plotting the steady state slope, M′(x), against the mean switching time. As 
is illustrated in figure 8(a), the deterministic and Markovian cases produce the most similar 
results, while the Pareto case has a more rapid change for small mean switching times. The 

Figure 6.  Steady-state slope for a switching rate based on a Pareto distribution with 
shape parameter γ varying from 1–4, and the scale parameter τ0 set to 0.001, 0.01, 0.1, 
1, and 10 (from top to bottom curves). Here we have set L = η = 1.
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most pronounced variation occurs for the gamma distribution, which takes the form of a sharp 
sigmoidal-like function. Nevertheless, all four distributions share the following features: a 
fast switching limit (F∗

0 + F∗
1 )/L = 1 as the mean switching time approaches 0, and a slow 

switching limit (F∗
0 + F∗

1 )/L = 0.5 as the mean time to transition to another state approaches 
infinity. Note that in the limits k → ∞ and γ → ∞, the gamma and Pareto distributions 
respectively approach the deterministic switching curve. This is illustrated in figure 8(b) for 
the gamma distribution. In addition, the sharper dependence on the mean switching time in 
the case of the gamma distribution can be explained as follows. Since the mean and variance 
of the gamma distribution are given by kβ and kβ2 respectively, if we fix the mean and take k 
small, since β is inversely proportional to k, β must be large. The variance is dependent on β2, 
so the variance increases as k−2 when k approaches 0, leading to much greater variance in the 

Figure 7.  (a) Steady-state and Monte Carlo solution for deterministic switching 
occurring at time intervals τ0 = 0.1. (b) Steady-state slope as a function of switching 
interval τ0.

Figure 8.  (a) Theoretical steady-state slope plotted against the mean switching time 
〈ψ〉 for the four example distributions. For the gamma distribution and the Pareto 
distribution, we fix k  =  0.05 and γ = 1.1 respectively. η and L are again set to unity. (b) 
Convergence of the gamma distribution curve to the deterministic curve in the large k 
limit.
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waiting times for the gate to switch states. As the support for the gamma distribution is [0,∞), 
this leads to longer switching times being more common. This phenomenon can be counter-
acted by taking the mean switching time to be very small, leading to the sharper dependence 
seen in figure 8.

6.  Discussion

In this paper we have investigated the one-dimensional diffusion equation  with randomly 
switching boundaries. In particular, we have extended the results of [3] for the slope of the 
steady-state solution in the Neumann–Dirichlet case to situations where there is an age-based 
memory to the switching rates, introduced through the residence time variable τ. Using the 
discretization approach from [3], we derive a system of linear PDEs for the moment equations. 
However, the introduction of age structure to the system brings with it several technicali-
ties to deal with, namely a delta singularity in the initial conditions, and non-trivial integral 
boundary conditions at τ = 0. To reformulate the problem without the residence time variable 
τ, we integrate out τ to obtain a system of integro-differential equations with integral terms 
depending on the τ-dependent moments Vn. To re-express these terms as function of the τ-
independent moments Mn, we utilize transformation techniques. By sine-Fourier transforming 
the linear PDEs for Vn and using the method of characteristics on the resulting first-order 
system, we can rewrite Mn in terms of convolutions in time. Using the Laplace transform, we 
can solve the resulting algebraic system for the integral terms independent of Vn provided that 
the mean time to switch between states is finite.

We carry through with the calculations in transform space to find and solve transformed 
steady-state equations. Due to the switching between Neumann and Dirichlet boundary condi-
tions, there is an unknown boundary value M1(L) that must be solved for by enforcing the no-
flux boundary condition at x  =  L. The final results from the analysis match numerical results 
from Monte Carlo simulations in all the cases that we tested.

Due to the relationship between the transition rates αn and the survival distribution Ψ(τ), 
age structured switching can be used to model phenomena where the switching is observed 
to follow a non-exponential distribution, even if the source of this age-structure is not explic-
itly known. One particularly relevant example concerns the non-exponential residence time 
intervals observed in ion channel gating dynamics, see [14] and references therein. Although 
a nonexponential distribution could be approximately fitted by a sum of exponentials, often 
the number of required terms can be large and may change with experimental conditions. This 
has motivated the development of anomalous diffusion-like models of ion-channel gating.

Finally, another natural question is whether or not our analysis can be extended to the case 
where the switching rates depend on some spatial structure or on the density u. Specific cases 
have been investigated already [12, 13], but a general approach seems at the very least to be 
extremely technical.
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Appendix

A.1.  Case χ = 0

As a self-consistency check, we show that equation (4.39) yields Fn(t) = ηnλn(t) when χ = 0. 
The explicit boundary conditions for Vn are Vn(L, t, τ) = ηnΛn(t, τ) with Λn(t, τ) having the 
characteristic solutions (4.7a) and (4.7b). Substituting these solutions into equations (4.29) 
and (4.31), respectively, gives

Bn,l(t, τ) = Ψn(τ)
2klDηn

L
(−1)l+1Λn(t − τ , 0)

1 − e−Dk2
l τ

Dk2
l

, t > τ� (A.1)

and

Cn,l(t, τ) =
2klηnD

L
(−1)l+1ρn(0)Ψn(t)

(
1 − e−Dk2

l t
)
δ(τ − t), τ ∈ [t−, t+].

� (A.2)
It follows that

∫ t−

0
Bn,l(t, τ)dτ =

2ηn

Lkl
(−1)l+1(r1−n ∗ [Ψn − Φn,l])(t),

∫ t−

0
α(τ)Bn,l(t, τ)dτ =

2ηn

Lkl
(−1)l+1(r1−n ∗ [ψn − φn,l])(t),

∫ t+

t−
Cn,l(t, τ)dτ =

2ηn

Lkl
(−1)l+1ρn(0)Ψn(t)

(
1 − e−Dk2

l t
)

,

∫ t+

t−
αn(τ)Cn,l(t, τ)dτ =

2ηn

Lkl
(−1)l+1ρn(0)ψn(t)

(
1 − e−Dk2

l t
)

.

We have used the fact that r1−n(t) = Λn(t, 0), which follows from (2.11c) and (4.1d) The 
Laplace transforms of equations (4.35a) and (4.35b) thus yield

R̃n,l(s) =
2ηn

Lkl
(−1)l+1 [̃r1−n(s) + ρn(0)] [Ψ̃n(s)− Ψ̃n(s + Dk2

l )],� (A.3)

and

S̃n,l(s) =
2ηn

Lkl
(−1)l+1 [̃r1−n(s) + ρn(0)] [ψ̃n(s)− ψ̃n(s + Dk2

l )]

= −sR̃n,l(s) + Dk2
l

2ηn

Lkl
(−1)l+1 [̃r1−n(s) + ρn(0)] Ψ̃n(s + Dk2

l ).
� (A.4)

Again we have used ψ̃n(s) = −sΨ̃n(s) + 1. Equations (4.12a), (A.3) and (A.4) imply that

[Dk2
l + s]R̃n,l(s) + S̃n,l(s) =

2Dklηn

L
(−1)l+1 [̃r1−n(s) + ρn(0)] Ψ̃n(s)

=
2Dkl

L
(−1)l+1ηnλ̃n(s).
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A.2.  Case χ = 1

In this case we do not have an explicit formula for F1(t), since we have to determine 
V1(L, t, τ) given that ∂xV1(L, t, τ) = 0. (The analysis for χ = 0 carries over for n  =  0, that is, 
F0(t) = η0λ0(t).) The steady-state version of equation (4.1e) takes the form

0 = D
d2Mn(x)
∂x2 − Nn(x) + N1−n(x),� (A.5)

with boundary conditions

Mn(0) = 0, M0(L) = η0λ
∗
0 , M1(L) = F∗

1 , ∂xM1(L) = 0,� (A.6)

assuming the following limits exist

Nn(x) = lim
t→∞

Nn(x, t), F∗
1 = lim

t→∞
F1(t).

Adding equation (A.5) for n = 0, 1, the straight line solution for M(x) = M0(x) + M1(x) is 
given by

M(x) =
x
L
[η0λ

∗
0 + F∗

1 ] .� (A.7)

In Fourier space, we have

0 = −Dk2
l M1,l +N0,l −N1,l +

2Dkl

L
(−1)l+1F∗

1 ,� (A.8)

and

Ml = M0,l +M1,l =
2

klL
(−1)l+1 [η0λ

∗
0 + F∗

1 ] .� (A.9)

Adapting the analysis of the χ = 0 case, we require

R̃n,l(s) =
2

Lkl
(−1)l+1[F̃n(s) + ∆1,l(s)δn,1]

[
1 − Ψ̃n(s + Dk2

l )

Ψ̃n(s)

]

with F0(t) = η0λ0(t) and lims→0+ s∆1,l(s) = 0. The intuition here is that the method of char-
acteristics propagates information about the value of Vn at the boundary directly, with infor-
mation about ∂xVn being included indirectly through Vn. This suggests that the form for R1,l 
should match the form for R0,l. It follows that

Rn,l =
2

Lkl
(−1)l+1 lim

s→0+
s[F̃n(s) + ∆1,l(s)δn,1]

[
1 − Ψ̃n(s + Dk2

l )

Ψ̃n(s)

]
,

=
2

Lkl
(−1)l+1

[
1 − Ψ̃n(Dk2

l )

Ψ̃n(0)

]
F∗

n .

� (A.10)

Similarly, from equation (4.39)

Dk2
l Rn,l + Sn,l = lim

s→0+
s
[
[Dk2

l + s]R̃n,l(s) + S̃n,l(s)
]

,

=
2Dkl

L
(−1)l+1F∗

n ,
� (A.11)

and
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Nn,l = lim
s→0+

s

[
ψ̃n(s + Dk2

l )

Ψ̃n(s + Dk2
l )

[
M̃n,l(s)− R̃n,l(s)

]
+ S̃n,l(s)

]

=
ψ̃n(Dk2

l )

Ψ̃n(Dk2
l )

[Mn,l − Rn,l] + Sn,l

�

(A.12)

=
ψ̃n(Dk2

l )

Ψ̃n(Dk2
l )

[Mn,l − Rn,l]− Dk2
l Rn,l +

2Dkl

L
(−1)l+1F∗

n� (A.13)

=
ψ̃n(Dk2

l )

Ψ̃n(Dk2
l )
Mn,l −

1

Ψ̃n(Dk2
l )

Rn,l +
2Dkl

L
(−1)l+1F∗

n ,� (A.14)

where the last equality follows from the relation

ψ̃n(Dk2
l )

Ψ̃n(Dk2
l )

+ Dk2
l =

1

Ψ̃n(Dk2
l )

.

We now make a number of observations. First Rn,l can be expressed in terms of F∗
n. Second, 

we can express M0,l , and Nn,l, n = 0, 1 in terms of M1,l  and F∗
n. It follows that equation (A.8) 

can be used to determine M1,l  in terms of the coefficients F∗
n. Since F∗

0 = η0λ
∗
0, there is only 

one unknown constant F∗
1. The latter can be determined by imposing the remaining boundary 

condition ∂xM1(L) = 0.
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