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ROBUSTNESS OF STOCHASTIC CHEMICAL REACTION
NETWORKS TO EXTRINSIC NOISE: THE ROLE OF DEFICIENCY∗

ETHAN LEVIEN† AND PAUL C. BRESSLOFF†

Abstract. The biochemical systems inside a living cell are able to reliably perform complex
tasks while subjected to various sources of noise. In this study we consider stochastic models of
biochemical networks evolving in the presence of dynamic random environments. These environ-
ments are themselves modeled as chemical reaction networks so that the full system can be viewed
as a multiscale chemical reaction network. The multiscale structure arises from the fact that the
environment and the internal system may operate on different timescales. While previous results in
chemical reaction network theory have established that certain dynamic behavior can be ruled out
when a topological parameter, known as the network deficiency, is zero, these results fail to capture
the behavior that can be observed in multiscale networks. We demonstrate that the deficiency of the
network has implications for how robust it is to environmental noise. We then show how our results
can be used to prove that correlations in a population of chemical reaction networks in a random
environment vanish given certain topological constraints.
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1. Introduction. The question of how biochemical systems function while sub-
jected to various sources of noise has attracted significant attention in both the the-
oretical and experimental literature [17, 31, 9]. When analyzing these systems it is
typical to consider two categories of randomness: intrinsic noise arising from stochas-
ticity within the cellular system and extrinsic noise due to external inputs, such as
changes in the environment [20, 28, 11, 4]. In many applications extrinsic and intrin-
sic processes operate on different timescales, leading to a system that has multiscale
dynamics [27, 10, 21]. For example, in models of gene expression the switching of the
gene between an active and an inactive state can be interpreted as a source of extrinsic
noise, while the fluctuations in the concentration of the gene product is treated as
intrinsic noise. (In some contexts these noise sources are both intrinsic [28]. Techni-
cally, the difference between intrinsic and extrinsic depends on the physical source of
the noise.) If the production rate when the gene is in the active state is large, the
intrinsic noise will be weak. On the other hand, the activation/deactivation rates of
the gene may be only moderate, leading to a separation of timescales [9, 31].

For systems with only intrinsic noise occurring on a single timescale, or equiva-
lently, classically scaled systems, the problem of determining conditions under which
chemical systems admits stable behavior over long periods of time has been well stud-
ied [1]. These systems are generally modeled by continuous time Markov chains with
a single scaling parameter known as the system-size [15]. Given some relatively mild
assumptions on the network structure, the random evolution is well approximated
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by a deterministic system of ODEs when the system-size becomes large [24, 25, 32].
These ODEs are known as reaction rate or kinetic equations. There has been a partic-
ular interest in classifying networks for which the behavior over long periods of time
is relatively tame [14, 30]. For the stochastic model, this means that the stationary
density is Poisson like, while for the deterministic approximation, it means that a
positive equilibrium is approached for all initial conditions [1]. A fundamental result
in the theory of chemical reaction networks (CRNs) is the deficiency zero theorem,
which rules out more exotic dynamical behavior for networks satisfying a topological
condition [2]. This theorem suggests that the class of networks with tame behavior
over long periods of time is much larger than one would expect given that such sys-
tems are highly nonlinear [30]. However, from a mathematical perspective this is not
so surprising; the relevant topological parameter is the deficiency, which is a measure
of how much information is lost by transforming the nonlinear system to a linear one
[29].

In the present study we consider the role of deficiency in the long-time behavior of
multiscale CRNs. The multiscale structure comes from partitioning the network into
an extrinsic part, which operates on a slow timescale, and an intrinsic part operating
on a relatively fast timescale. We take the abundances of species in the system to
be very large so that the intrinsic noise vanishes, allowing us to study the effects of
extrinsic noise. Our main result is that if the deficiency of the entire system, including
the population and the environment, is zero, the concentrations of species in the pop-
ulation converge almost surely to an equilibrium for suitable initial conditions. This
establishes that certain deficiency zero networks are not sensitive to external noise.
While there are many studies concerning both stochastic and deterministic models
of deficiency zero networks, there has been little work towards an understanding of
how the deficiency interacts with multiscale dynamics. Moreover, we extend our the-
ory to a population level description of CRNs, which to our knowledge has not been
discussed in the CRN theory literature.

The paper is organized as follows. In section 2 we present the necessary back-
ground material for the remainder of the paper. In section 3 we present examples
of CRNs and examine their multiscale dynamics. In section 4 we generalize the ob-
servations obtained from the examples and prove theorems concerning the long-time
behavior of deficiency zero and positive deficiency networks. In section 5 we introduce
a population level interpretation of a CRN and show how the result form section 4
can be used to study correlations of CRNs evolving in a common environment.

2. Chemical reaction networks. The mathematical framework we will use to
formulate the ideas in this paper is known as CRN theory [2, 16]. Within this theory
one distinguishes the topology of a chemical system from the dynamics. The former
tells us what types of reactions occur, meaning which chemical species react and what
happens when they do, while the latter tells us when these reactions occur, meaning
how the occurrences of these reactions are distributed in time.

2.1. Topological aspects. We begin our presentation with a purely topological
definition [16]: A CRN is a tuple (S ,C ,R). The first element S = (S1,S2, . . . ,Sm)
is a finite set of species. For specific CRNs, the elements of S are often denoted
by capital letters (e.g., S1 = A, S2 = B, S3 = C,...), or the names of chemicals
(e.g., S1 = RNA, S2 = DNA, S3 = mRNA,...). C is a set of linear combinations
of elements in S called complexes: if C ∈ C , then C =

∑m
i=1KiSi, where Ki are

positive constants. It follows that each complex can be identified with a vector in
species space given by K = (K1, . . . ,Km) ∈ Nm+ ≡ C . If Si is the ith species in S ,
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then Ki represents the number of species Si in the complex K. Finally, R is a set of
single step reactions. Each reaction can be thought of as a directed edge between two
complexes. That is, the jth reaction is of the form

m∑

i=1

KR
j,iSi −→

m∑

i=1

KP
j,iSi,

where the stoichiometry of the reaction is given by the complexes KR
j = (KR

j,1, . . . ,K
R
j,m)T

and KP
j = (KP

j,1, . . . ,K
P
j,m)T , specifying the reactants and products, respectively. To-

gether, the set of reactions defines a graph on the set of complexes. The vector
Kj = KP

j −KR
j is known as the reaction direction and describes the direction in the

state space in which the jth reaction pushes the systems. More precisely, when the
jth reaction occurs the number of Si molecules changes by Kj,i. The matrix

K =
[

K1 K2 · · · K|R|
]

is known as the the stoichiometric matrix associated with a CRN.

2.1.1. Example: Catalysis. As an illustration of the above notation, consider
the network whose reactions are given by

C + A −−⇀↽−− B + C,

D + B −−⇀↽−− A + D,

C −−⇀↽−− D.

(2.1)

The corresponding graph describes a CRN with species S = {A,B,C,D}. Notice
that for each reaction the reverse reaction, obtained by exchanging the roles of prod-
ucts and reactants, is also in the network. For this reason we say that the network
(2.1) is reversible. The set of complexes corresponding to this network is

C1 = C +A, C2 = B + C, C3 = D +B,

C4 = D +A, C5 = C, C6 = D,

and the stoichiometric matrix for the six one-step reactions is

K =




−1 1 1 −1 0 0
1 −1 −1 1 0 0
0 0 0 0 −1 1
0 0 0 0 1 −1


 .

In CRN theory it is sometimes useful to view a CRN as a graph on the space of
complexes, ignoring the species level structure [16]. In the present context, this graph
is given by

C1 −−⇀↽−− C2, C3 −−⇀↽−− C4, C5 −−⇀↽−− C6.(2.2)

If we want to study this graph algebraically, the stoichiometric matrix K becomes
less relevant. Instead, we are interested in the incidence matrix,

J =




−1 +1 0 0 0 0
+1 −1 0 0 0 0
0 0 −1 +1 0 0
0 0 +1 −1 0 0
0 0 0 0 −1 +1
0 0 0 0 +1 −1



.
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In the incidence matrix each column represents an edge and −1 and +1 are placed in
indices of vertices representing the source and destination of the edge, respectively.
In contrast to the stoichiometric matrix, which describes how reactions act on the
space of species, the incidence matrix describes how reactions act on the space of
complexes. The relationship between these objects plays a significant role in CRN
theory. In particular, many results for both deterministic and stochastic systems
require restrictions on the quantity

(2.3) δ = dim(ker(K))− dim(ker(J)),

known as the deficiency of a CRN.1 A straightforward calculation reveals the defi-
ciency of (2.1) is one. More specifically, the null space of K is spanned by the vectors




1
1
0
0
0
0



,




0
0
1
1
0
0



,




0
0
0
0
1
1



,




1
0
1
0
0
0



,

so dim(ker(K)) = 4, whereas the null space of J is spanned by the vectors




1
1
0
0
0
0



,




0
0
1
1
0
0



,




0
0
0
0
1
1



,

so dim(ker(J)) = 3.
The motivation for defining δ can be understood as follows. First, it is well

known that ker(J) is equal to the number of distinct, undirected, closed cycles in the
corresponding graph. Second, any linear combination of reaction directions can be
interpreted as a sequence of points in the state space Nm. This is the space in which
the dynamic models introduced in the next section will evolve. From this we see that
ker(K) represents the number of distinct, undirected reaction cycles in state space.
Of course each directed cycle in the reaction graph can be realized as a cycle in the
state space, but it is possible that there are cycles of reactions realized in state space
that do not appear in the reaction graph. This leads to the following interpretation
of δ: the deficiency is the number of distinct reaction cycles in Rm that cannot be
realized as distinct cycles in the graphical representation in terms of complexes [29].

Returning to the network (2.1), we see that the sequence of reactions

{C + A −−→ B + C,C −−→ D,D + B −−→ A + D,D −−→ C}

is a cycle, which is illustrated in Figure 2.1. On the other hand, in complex space
this cycle corresponds to {C 1 −−→ C 2,C 3 −−→ C 4}, which is not a connected cycle
in the graph (2.2). Note that {C + A −−→ B + C,D + B −−→ A + D} is also a cycle

1See [16] for alternative definitions. For all the networks considered in this paper these definitions
are equivalent.
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zA

zB

zC

K3

K
5

K1

K
6

Fig. 2.1. A cycle of reactions in the network (2.1) that is not realized in the graph (2.2). We
have projected R4 onto R3, eliminating the xD axis.

that is not realized in the graph (2.2); however, this is not an independent cycle in
R4 because it coincides with the cycle

{C + A −−→ B + C,C + B −−→ A + C},
which is realized in complex space as {C 1 −−→ C 2,C 2 −−→ C 1}.

2.1.2. Example: Two-state gene regulatory network. An important CRN
models a simple gene regulatory network shown in Figure 2.2. This consists of a gene
that can be in either an active state (represented by the presence of a C “molecule”)
or inactive state (represented by the presence of a D “molecule”). In the both states
the protein A can be produced by the gene or degraded, but in the inactive state the
production rate is assumed to be small. We will discuss exactly what the production
rate means when we introduce the dynamic models. (In this model one does not
explicitly keep track of the amount of mRNA, that is, the stages of transcription and
translation are lumped together.) From a topological perspective, the reaction scheme
is similar to (2.1) with B replaced by the empty set ∅:

C −−→ A + C,

D −−→ A + D,

C −−⇀↽−− D.

(2.4)

The corresponding graph describes a CRN with three species S = {A,C,D}. The
set of complexes is now

C1 = C +A, C2 = C, C3 = D, C4 = D +A,

such that

C1 −−→ C2, C3 −−→ C4, C2 −−⇀↽−− C3.(2.5)
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κ
C

λ1 λ2

A
γ

κ
D

A
γ

active state C

inactive state D

Fig. 2.2. Two-state gene regulatory network in which the promoter transitions between an
active state C and inactive state D at rates λ1,2. The corresponding production rates of protein A
are κC , κD, respectively, and the protein degradation rate is γ. The terms active and inactive refer
to the fact that κC > κD.

Hence, the stoichiometric matrix is

K =



−1 1 1 −1 0 0
0 0 0 0 −1 1
0 0 0 0 1 −1


 ,

and the incidence matrix is

J =




−1 +1 0 0 0 0
+1 −1 0 0 −1 1
0 0 −1 +1 1 −1
0 0 +1 −1 0 0


 .

It follows that the network has deficiency δ = 1.

2.2. Dynamic models in the classical setting. In the previous subsection
we introduced a purely topological description of a CRN. The subject of the present
section is when the reactions occur. In the classical theory there are two models
one considers—stochastic models in which reaction occur at exponentially distributed
rates and deterministic models in which reactions occur continuously. While more
difficult to study, the stochastic model, which includes the random effects of having a
finite number of molecules in the system, is more accurate. The deterministic model
is technically an approximation, neglecting the fine grained structure of the dynamics.

2.2.1. Stochastic dynamics. Let Xi(t) denote the number of molecules in the
ith species at time t so that X(t) = (X1(t), . . . , Xm(t))T describes the state of the
system. Since the only changes in X(t) are of the form X(t) + Kj , the evolution is
confined to the set

Zx0
= (span(K) + x0) ∩ Nm.

In CRN theory the sets Zx0
are known as stoichiometric subspaces. Assuming the law

of mass action, the jth reaction occurs at exponentially distributed times with state
dependent rate parameter [2]

(2.6) αj(X(t)) =
κj

Ω
∑

iK
R
j,i−1

∏

i

Xi(t)!

(Xi(t)−Kj,i)!
.

The positive number κj is known as a rate constant associated with the reaction,
while Ω is a dimensionless parameter called the system-size. The combinatorial term
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inside the product takes into account the fact the probability that r molecules of the
same species are within a reaction radius is proportional to Xi(Xi−1) . . . (Xi−r+1),
which tends to Xr

i in the large Ω limit. If Xi(t) = O(Ω) for each species, then we say

that the model is classically scaled and the factor Ω−
∑

iK
R
j,i+1 ensures

αj(X(t)) = Ωαj(X(t)/Ω) = O(Ω).

That is, for a classically scaled model all reaction rates are roughly the same order
of magnitude and grow monotonically with the system-size. This fact is crucial, as it
allows us to derive the deterministic approximation presented below.

While there are many ways to describe the dynamics of X(t), we will present a rep-
resentation based on the evolution of the probability distribution p(x, t) = P(X(t) =
x|X(0) = x0). This is given by the chemical master equation

(2.7)
d

dt
p(x, t) = Mp(x, t) p(x, 0) = 1{x=x0},

where M is the linear operator

Mf(x) =
∑

j

αj(x−Kj)f(x−Kj)− αj(x)f(x).

For a rigorous derivation of this form, including specific function space on which f(x)
is defined, see [12]. We will assume the process X(t) is ergodic, that is, we assume
there exists a probability distribution π(x) satisfying π(x) = limt→∞ p(x, t). While
the computation of π is generally a hopeless task, it has been shown that for reversible,
deficiency zero networks π(x) is given by a multivariate Poisson distribution [1].

2.2.2. Reaction rate equations. Historically, there has been a great deal of
interest in understanding the behavior of the process X(t) as Ω becomes large [12].
Among other developments, this has led to a law of large numbers for the rescaled
variables Z(t) = X(t)/Ω. This was proved by Kurtz in [24] and says that Z(t)→ z̄(t)
almost surely, where z̄(t) satisfies the reaction rate equations

(2.8)
d

dt
z̄(t) =

p∑

j=1

ᾱj(z̄(t))Kj , z̄(0) = x0/Ω.

Here the rate function ᾱj is obtained by taking the leading order term of (2.6) in Ω−1:

ᾱj(z̄(t)) = κj

m∏

i=1

z̄i(t)
KR

j,i .

It’s worth noting that this result can be derived heuristically by carrying out a system-
size expansion; see [32]. The highly nonlinear nature of (2.8) makes understanding the
behavior of these equations over long periods of time a challenging task. It turns out
that when the deficiency is zero the existence of a stable equilibria within each Zx is
guaranteed, the intuition being that the dynamics can be understand by transforming
the problem into a linear one on complex space. The precise statement of this result
is the original deficiency zero theorem [13]. The proof makes use of the fact that

(2.9) V (z) =

m∑

i=1

zi(ln(zi)− ln(ζi)− 1) + ζi
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is a Lyapunov function for (2.8) at the equilibria ζ. When the deficiency of the
underlying network is zero, V (z) is a strict Lyapunov function: ∇V (z) ≤ 0 with
equality if and only if z = ζ.

3. Examples of multiscale dynamics. The assumption that all species in the
system are roughly of equal abundance breaks down in many biochemical systems of
interest. This has motived the development of multiscale approximations where only
a fraction of the species are taken to evolve continuously [10, 8, 27]. Below we present
two examples of multiscale networks with very different behavior, while a more general
derivation of the multiscale approximation is provided in section 4.

Example 1. As our first example, we revisit network (2.1) and compare three
different dynamic models. For the stochastic model the right-hand side of the master
equation is obtained by applying the operator

Mf(x) = κ1(xA + 1)xCf







xA + 1
xB − 1
xC
xD





+ κ2(xB + 1)xCf







xA − 1
xB + 1
xC
xD







+ κ3(xA + 1)xDf







xA + 1
xB − 1
xC
xD





+ κ4(xB + 1)xDf







xA − 1
xB + 1
xC
xD







+ κ5xCf







xA
xB

xC − 1
xD + 1





+ κ6xDf







xA
xB

xC + 1
xD − 1







− (κ1xAxC + κ2xBxC + κ3xAxD + κ4xBxD + κ5xC + κ6xD)f(x).

Here κj is the reaction rate of the jth reaction with j = 1, . . . , 6. The computation of
π satisfying Mπ(x) = 0 turns out to be exceedingly complicated, and as a result, one
might turn to a deterministic approximation for insight. Taking the limit Ω→∞ we
obtain the equations

d

dt
zA = zC(κ2zB − κ1zA)− zD(κ3zA − κ4zB),

d

dt
zB = zD(κ3zA − κ4zB)− zC(κ2zB − κ1zA),

d

dt
zC = κ6zD − κ5zC ,

d

dt
zD = κ5zC − κ6zD.

These equations can readily be solved in equilibria to obtain a unique steady state
which is asymptotically stable. However, studying the reaction rate equation is prob-
lematic if the abundances vary over many orders of magnitude. For example, sup-
pose XA(t) + XB(t) = O(Ω) but there is initially only one D molecule and no C
molecules. This type of scaling is typical of systems with extrinsic noise, which in the
present context is represented by the switching between (XC(t), XD(t)) = (0, 1) and
(XC(t), XD(t)) = (1, 0). This is in contrast to the intrinsic, or demographic, noise, re-
sulting from the finite values of XA(t) and XB(t). If Ω� 1, then between occurrences
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of the 5th and 6th reactions the dynamics are well approximated by the reaction rate
equations for zA and zB . On the other hand, if we attempt to model the system using
the full set of reaction rate equations, information about the stochasticity resulting
from the binary nature of XD and XC would be lost. This motivates a multiscale
reduction in which only a fraction of the species are modeled as continuous variables.

In the present context, we would allow XC(t) and XD(t) to evolve according to
their stochastic dynamics, while approximating the high copy species by

d

dt
Z̄A(t) = XC(t)(κ2Z̄B(t)− κ1Z̄A(t))−XD(t)(κ3Z̄A(t)− κ4Z̄B(t)),

d

dt
Z̄B(t) = XD(t)(κ3Z̄A(t)− κ4Z̄B(t))−XC(t)(κ2Z̄B(t)− κ1Z̄A(t)).

(3.1)

The derivatives in this system are well defined between discontinuities of XC(t) and
XD(t) corresponding to the firing of the 5th and 6th reactions. It can be shown that
these reactions fire at times τ1, τ2, . . . satisfying

P(τk+1 − τk > T |XC(τk) = x) = e−T (xκ5+(1−x)κ6).

The Markov process (Z̄A(t), Z̄B(t), XC(t), XD(t)) is an example of a piecewise deter-
ministic Markov process (PDMP). In Figure 3.1 we have displayed sample paths of
this PDMP. Notice how the behavior of the multiscale network contrasts with the
rather dull behavior of the deterministic dynamics, which we know converge to a sta-
ble equilibria over long periods of time. The network (2.1) shows that for multiscale
systems a type of oscillatory behavior may be observed that is driven by noise, rather
than dynamics.

Intuition about this phenomenon can also be gained by examining the equilibria
of (3.1) for fixed values of XC(t) and XD(t). Setting dZ̄A(t)/dt = 0 in (3.1) and using
the fact that Z̄B = 1− Z̄A and XD = 1−XC , we find that at equilibrium

XA ≡ ζA(XC , XD) =
κ2XC + κ4(1−XC)

(κ1 + κ2)XC + (κ3 + κ4)(1−XC)
.

Moreover, it can easily be checked that for all values of XC this equilibria is stable.
Therefore, in between jumps Z̄A will approach ζA(XC , XD). When a jump occurs,

0 2 4 6 8 10
0.4

0.5

0.6

0.7

0.8

t

Z

Z̄A(t)

Z̄B(t)

Fig. 3.1. Realization of the PDMP corresponding to (2.1) with κ1 = κ3 = κ4 = 1, κ2 = 1.5,
and κ5 = κ6 = 10.
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ζA(XC , XD) moves to ζA(XC + 1, XD − 1) or ζA(XC − 1, XD + 1) and the system
begins to approach this new equilibria. After a long period of time Z̄A(t) will become
trapped between all possible values of ζA(XC , XD). This is exactly what we observed
in Figure 3.1. One final point is that if κ2 = κ4 and κ1 = κ3, then ζA becomes
independent of XC and XD, resulting in deterministic behavior for t→∞. However,
this only occurs for nongeneric choices of the reaction rates, in contrast to the next
example.

Example 2. We now present an example of a network that appears similar in
structure to (2.1), but has dramatically different behavior in the multiscale setting.
The network of interest is

A + C −−⇀↽−− B + C,

A + D −−⇀↽−− 2 A + D,

C −−⇀↽−− D.

(3.2)

The only modification that has been made from the previous example is the replace-
ment of B with 2A in reactions 3 and 4. In terms of the complexes this means replacing
C4 in the previous example with C4 = 2A + D. The graph on complex space shown
in (2.2) is invariant with respect to this modification, and therefore ker(J) remains
unchanged. On the other hand, the stoichiometric matrix corresponding to (3.2) is

K =




−1 1 1 −1 0 0
1 −1 0 0 0 0
0 0 0 0 −1 1
0 0 0 0 1 −1


 .

This matrix has a three-dimensional nullspace, from which we can compute δ = 0.
In summary, going from (2.1) to (3.2) has the effect of changing the deficiency from
1 to 0. As a consequence we know that the latter stochastic model has a unique
Poisson like stationary density, and the corresponding deterministic version of the
model converges to a stable equilibria for suitable initial conditions. As we will see,
this has a significant impact on the multiscale dynamics.

Suppose once again that species A and B are in high copy, while C and D are in
low copy. The continuous dynamics are then given by the PDMP

d

dt
Z̄A = XC(κ2Z̄B − κ1Z̄A) +XDZ̄A(κ4Z̄A − κ3),

d

dt
Z̄B = XC(κ1Z̄A − κ2Z̄B).

The sample paths of the PDMP modeling (3.2) are displayed in Figure 3.2. In contrast
to the previous example, we see that while the continuous components of the dynamics
initially evolve stochastically, they appear to become coherent after a long period
of time. To explain this phenomenon, we look at the equilibria of the continuous
dynamics,

ζA =
κ3

κ4
ζB =

κ1κ3

κ2κ4
.

The key fact to note is that XC does not appear in these expressions, suggesting that
the extrinsic noise has no effect on the behavior over long periods of time. In the next
section we will show that this is related to the network deficiency. It is important to
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0 2 4 6 8 10
0.2

0.4

0.6

0.8

t

Z
Z̄A(t)

Z̄B(t)

Fig. 3.2. Realizations of the PDMP corresponding to (3.2) with different initial conditions and
κ1 = κ3 = 1, κ4 = κ2 = 0.8, and κ5 = κ6 = 10. It can be seen that although the system is initially
stochastic, given enough time ZA(t) and ZB(t) tend toward a deterministic value.

remark that this behavior indicates that the stationary density of the continuous time
Markov chain model becomes singular in the thermodynamic limit, and as such, one
cannot directly use the master equation formulation to obtain rigorous results.

4. Robustness and deficiency.

4.1. The multiscale reduction. In order to present our general results, we
formalize the multiscale reduction performed on the networks (2.1) and (3.2). Sim-
ilar procedures can be found in many other studies [8, 21]. The first step is to de-
compose S by writing S = (S (1),S (2)) with S (1) = (S1, . . . ,Sm1

) and S (2) =
(Sm1+1, . . . ,Sm1+m2

) representing the high and low copy species, respectively. For
Si ∈ S (1), we assume Xi(t) = O(Ω), where Ω is again the system size. In other
words, the species in S (1) are in high copy, while those in S (2) are in low copy. The
next step is to impose some constraints on the network structure that force the initial
copy numbers to be preserved in time. This is done by observing that in a multiscale
network each reaction can be written in the form

m1∑

i=1

URj,iSi +

m1+m2∑

i=m1

V Rj,iSi −→
m1∑

i=1

UPj,iSi +

m1+m2∑

i=m1

V Pj,iSi.

We have decomposed the reaction directions according to K = (U,V) with Uj =
UP
j − UR

j and Vj = VP
j − VR

j . The form of these reactions played a particularly
important role in the examples above, namely, each reaction changed either high or
low copy species, but not both. Intuitively, it makes sense that in a multiscale system
the different scales should evolve orthogonally; otherwise there is a possibility that
a high copy species produces a low copy species, disrupting the separation of scales.
While it is possible to account for reactions that change both high and low copy
species using more sophisticated scalings [22], we will exclude such cases from our
analysis and adopt the following assumption.

Assumption 1. A multiscale CRN satisfies the following orthogonality property:
either Uj = 0 or Vj = 0 for each j = 1, . . . p.

We will also order the reactions such that Uj = 0 when j = 1, . . . , p1 and Vj = 0
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when j = p1 +1, . . . , p1 +p2 = p. In order to represent the evolution of the process, we
decompose the state variable into the high and low copy components by setting X =

(X(1),X(2)). The m2 dimensional vector X(2) is related to X by X
(2)
i (t) = Xm1+i(t).

Our objective is to approximate the process X with a process X̄ obtained in the limit
Ω→∞. It is assumed that reactions changing S (1) species are O(Ω), while reactions
changing S (2) species are O(1). Such a separation of timescales can be achieved by
rescaling the constant factor in (2.6) according to

κjΩ
−∑m1

i=1 Uj,i+1 → κjΩ
−∑m1

i=1 Uj,i

if j > p1. This ensures αj(x
(1),x(2)) = O(1) for the reactions changing low copy

species. At this point it is useful to introduce the scaled variables Zi = Xi/Ω. Since
Zi = O(1), these process are easier to work with in the large system-size limit. In
particular, the multiscale process (2.7) becomes

(4.1)
d

dt
p(z(1),x(2), t) = M1p(z

(1),x(2), t) +M2p(z
(1),x(2), t),

where

M1f(z(1),x(2)) = Ω

p1∑

j=1

αj(z
(1) −Uj/Ω,x

(2) −Vj)f(z(1) −Uj/Ω,x
(2) −Vj)

− αj(z(1),x(2))f(z(1),x(2)),

M2f(z(1),x(2)) =

p2∑

j=p1+1

αj(z
(1) −Uj/Ω,x

(2) −Vj)f(z(1) −Uj/Ω,x
(2) −Vj)

− αj(z(1),x(2))f(z(1),x(2)).

In the limit Ω→∞, it can be shown that Z(1)(t)→ Z̄(1)(t), where Z̄(1)(t) is given by
the PDMP [27]

(4.2)
d

dt
Z̄(1)(t) =

p1∑

j=1

ᾱj(Z̄
(1)(t),X(2)(t))Uj

The state-space of Z̄(1)(t) with Z̄(1)(0) = z0 is some subset of

Z̄z0
= (span(K) + z0) ∩ Rm≥0.

In contrast to (2.8), these equations now involve X̄(2)(t) which evolves according to
a Markov jump process generated by M̄2(Z(1)(t))f(x(2)) = M2f(Z(1)(t),x(2)). Note
that if S (2) = ∅, we retrieve the reaction rate equations (2.8).

4.2. Result for deficiency zero systems. We now direct our attention toward
the network deficiency and its relationship to the multiscale dynamics. Our main
result is summarized in the following theorem, which explains the behaviors observed
in section 3.

Theorem 4.1. Suppose Z̄(1)(t) evolves according to the PDMP model of a defi-
ciency zero and reversible CRN satisfying Assumption 1. Then there exists a deter-
ministic fixed point ζ of the process (4.2). Moreover, Z(1)(t)→ ζ almost surely when
Z(1)(0) is sufficiently close to ζ.
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The implication of this result is that networks satisfying the assumption of The-
orem 4.1 are robust to extrinsic noise, i.e., noise due to environmental changes or
random external inputs. This is particularly relevant when considering a population
of CRNs, as we will in section 5.

Proof. For simplicity, assume that ||VR
j ||1 = ||VP

j ||1 = 1 for j = 1, . . . p1. That
is, each reaction changing the high copy species is catalyzed by exactly one low copy
species. The argument below can easily be applied to the more general setting with
some minor modifications of the notation. A key observation is that Assumption 1
allows us to write (4.2) in the form

(4.3)
dZ̄(1)(t)

dt
=

m2∑

i=1

X
(2)
i (t)Hi(Z̄

(1)(t)),

where Hs(z) represents the dynamics associated with the linkage class catalyzed by

X
(2)
s .2 For example, in the network (3.2), the dynamics catalyzed by XC(t) are

H1(z̄A, z̄B) =

[
κ2z̄B − κ1z̄A
−κ2z̄B + κ1z̄A

]
.

Since the deficiency of the network is zero, any closed cycles of reaction vectors are
realized by reactions confined to one of these linkage classes. The continuous dynamics
of (4.2) admit a deterministic fixed point provided there exists a solution to the
equations

(4.4) Hi(ζ) = 0, i = 1, . . . ,m2.

We will establish the existence of such a fixed point first, and then discuss the stability.
Suppose that the reactions are ordered such that

Hs(z) =

ls∑

j=ls−1+1

(
κj

m1∏

i=1

z
KR

j,i

i

)
Uj .

That is, there are ls reactions corresponding to the linkage class s, which are all

catalyzed by X
(2)
s . Then

Hi = span{Uli−1+1,Uli−1+2, . . . ,Uli}

represents the reachable states in Rm1 through reactions catalyzed by the ith species,
modulo the addition of a constant vector. Each Hs(z) can be associated with a CRN
involving only the reactions in the corresponding linkage class. Since removing linkage
classes can only decrease the number of cycles that are not realized in the reaction
graph, the deficiency of the CRN associated with any linkage class of a deficiency
zero network must also be zero. It is therefore a consequence of the deficiency zero
theorem that the equations Hi(ζ) = 0 have independent solutions.3

Without loss of generality, suppose the solution to H1(ζ) = 0 is unique and de-
pends only on the components ζ1, ζ2, . . . , ζk. Within the linkages class corresponding
to H1, each of the species S1,S2, . . . ,Sk must be both produced and degraded. To see

2Each connected component of a CRN is called a linkage class.
3Recall that the deficiency zero theorem states that a reversible, deficiency zero network has an

equilibria in Z̄z0 for each z0 [14].
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this, note that if a species is unchanged by reactions within a linkage class any terms
in H1 involving that species can be factored out of the entire expression for H1(ζ),
which contradicts the assumption that the roots of these expression depend on the
first k species. Moreover, since the solution is assumed to be unique in these species,
no quantity is conserved by these reactions; otherwise there would be an extra degree
of freedom. It follows that k of the vectors in U1, . . . ,Ul1 are linearly independent,
and in particular,

H1 = span{e1, e2, . . . , ek},

where ek are basis vectors of the appropriate dimension.
Now suppose that the first two equations in (4.4) cannot be solved simultaneously.

This implies that

H2 ∩H1 = span{e1, . . . , er}

for some 1 < r ≤ k. In other words, H2 ∩ H1 is not empty or a single point. Using
this fact, a cycle of reactions that is not realized in the graph on complex space can be
constructed, contradicting the assumption that the network is deficiency zero. The
construction begins by selecting distinct points z0, z1 ∈ H2 ∩ H1. This allows one
to write z1 = z0 +

∑
j Uj , where the sum is taken over elements of {1, . . . , l1} or

{l1 + 1, . . . , l2}. That is, z1 can be reached from z0 using reactions from the linkage

class catalyzed by S
(2)
1 or S

(2)
2 . Similarly, let x0 ∈ Nm2 and x1 = x0 +

∑
j Vj be

accessible from x0 by low copy reactions. Now a cycle in Rm1 × Nm2 of the form

(z0,x0), . . . , (z1,x0), . . . , (z1,x1), . . . , (z0,x1), . . . , (z0,x0) ∈ Rm1 × Nm2

is given by taking reactions corresponding to H1 from z0 to z1, taking low copy
reactions from x0 to x1, and reactions corresponding to H2 from z1 to z0. The
reversibility of the network guarantees the existence of a path from x0 to x1 and back
again. This construction is illustrated for (2.1) in Figure 4.1, which is essentially
Figure 2.1 redrawn using the notation of this proof. In Figure 4.2 we show why the
construction of such a cycle cannot be performed for the deficiency zero network (3.2).
At this point we deduce that for a deficiency zero network, the equations H1(ζ) = 0
and H2(ζ) = 0 can be solved simultaneously. The construction of such a cycle can
also be performed if the solution to Hi(ζ) = 0 is not compatible with the solutions
to Hs(ζ) = 0 with s = 1, . . . , i− 1. It follows that (4.4) has a solution in any network
satisfying the hypothesis of the theorem.

In order to establish that the solution is attracting and unique within Z̄z0 , we
make use of the deficiency zero theorem. Removing the reactions indexed by p1

through p1 + p2 does not change the deficiency of the network. As a consequence,
(4.3) has a unique solution that is stable for each value of X(2). As we have shown,
this solution ζ is independent of the low copy dynamics. In order to establish that ζ
is an almost sure limit of Z(1)(t) we can utilize [7, Theorem 3.1]. This results states
that almost sure convergence will occur provided there exists a function V (z) which

is a strict Lyapunov function for (4.3) and is independent of X
(2)
i . This follows from

the fact that (2.9) only depends on the reaction rate constants implicitly through ζ.

4.3. Result for positive deficiency systems. In light of Theorem 4.1, it is
natural to ask when the PDMPs modeling networks with positive deficiency have
nondeterministic behavior in the limit t → ∞. Most of the work toward a solution
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zA

zB

zC

H1 × R

U1

U3

V
1

V
2

Fig. 4.1. A diagram of the construction in the proof of Theorem 4.1 for the network given in
(2.1). In this case H1 = H2 = {z ∈ R2 : 1T z = 0} so we can construct a cycle in state space that is
not realized in the reaction graph. Of course, this forces the deficiency to be one, and therefore the
network fails the hypothesis of the theorem.

zA

zB

zC

H 2
×
R

U
4

H1 × R

U2

V
1

V
2

Fig. 4.2. An illustration of how the construction in the proof of Theorem 4.1 cannot be per-
formed on (3.2). In this case H1 ∩H2 = {(1, 0, 0)T }.

to this problem is actually contained in the proof of Theorem 4.1. What this proof
suggests is that the vector valued functions Hs(z) can potentially have incompatible
roots when the sets Hs intersect in the correct way. This was illustrated in Figure
4.1. For positive deficiency networks, we can force two sets H1 and H2 to intersect by
creating a cycle that connects the linkage classes corresponding to these sets. This is
the mathematical motivation for the following assumption.

Assumption 2. A multiscale CRN satisfies the following properties:
(i) There are at least two linkage classes in the CRN, each involving reactions that
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change high copy species. When considered as independent CRNs, these linkage
classes are deficiency zero.

(ii) There is a cycle, corresponding to some c ∈ ker(K), that contains reactions in
both linkage classes from (i).

(iii) Both linkage classes from (i) are catalyzed by different low copy species.

From a physical perspective, Assumption 2 implies that different states of the low
copy dynamics can push the system in different directions. This behavior was seen
in the network (2.1). Indeed, it is easy to see that (2.1) satisfies Assumption 2: The
two linkage classes referred to in part (i) are

C + A −−⇀↽−− B + C

and

D + B −−⇀↽−− A + D;

the cycle of part (ii) corresponds to c = (1, 0, 1, 0, 1, 1)T and was depicted in Figure
2.1, and the linkage classes are clearly catalyzed by different species. By the same
argument we see that the gene network (2.4) also satisfies Assumption 2. We now
state our main result for positive deficiency networks.

Theorem 4.2. Suppose Z̄(1)(t) evolves according to the PDMP model of a defi-
ciency δ > 0 and reversible CRN satisfying Assumptions 1 and 2. Moreover, assume
the process X(1)(t) is recurrent. Then there is a choice of rate constants {κ1, . . . , κp}
such that Z̄(1)(t) does not have an almost sure limit as t→∞ for any Z̄(1)(0).

Proof. We once again assume ||VR
j ||1 = ||VP

j ||1 = 1 for j = 1, . . . p1 and note
that the argument below can easily be applied to the more general setting with some
minor modifications of the notation. Using the notation introduced in the proof of
Theorem 4.1, let H1 and H2 be the spans of the reaction vectors Uj corresponding
to the linkage classes of Assumption 2(i). It is a consequence of Assumption 2(ii) and
Assumption 1 that

c1U1 + · · ·+ cl1Ul1 = −(cl1+1Ul1+1 + · · ·+ cl2Ul2).

Here ci are the entries of c defined in Assumption 2(ii). This shows that

H1 ∩H2 = span{e1, . . . , er}

for some r ≥ 1. The existence of ζs satisfying Hs(ζs) = 0 for s = 1, 2 follows from
Assumption 2(i). So far we have shown there is potential for ζ1 6= ζ2 in components
r = 1, . . . , r, but it remains to prove that the rate constants can be selected to ensure
this. To do so, we arbitrarily assign the cycle c to be in the forward direction. There-
fore, −c represents the backward direction. Now by selecting all the rate constants
κ1, . . . , κl1 to be relatively large in the forward direction, the solution ζ1 will be forced
toward some ζ+ which points in the direction of the cycle:

ζ+ = Z̄(1)(0) + w+(c1U1 + · · ·+ cl1Ul1)

for some w+ > 0. Similarly, by selecting all the rate constants κl1+1, . . . , κl2 to be
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relatively large in the backward direction, ζ2 will approach

ζ− = Z̄(1)(0) + w−(cl1+1Ul1+1 + · · ·+ cl2Ul2)

= Z̄(1)(0)− w−(c1U1 + · · ·+ cl1Ul1)

for some w− > 0. Therefore,

ζ+ − ζ− = (w+ + w−)(c1U1 + · · ·+ cl1Ul1) ∈ H1 ∩H2,

which implies that for some possibly extreme values of the rate constants, ζ1 and ζ2

differ in components i = 1, 2, . . . , r. It follows that the dynamics of the PDMP (4.2)
approach different fixed points depending on the realization of the low copy dynamics.
The recurrence of X(1)(t) rules out the possibility of almost every realization resulting
in the same fixed point, so the result follows.

Note that because irreversible networks are obtained in the limit as reaction rates
become small, Theorem 4.2 is true for irreversible networks provided all the irreversible
reactions are going in the same direction along the cycles constructed in the proof
above. (Equation (2.4) is an example of such a network.) It is also worth noting that
Theorems 4.1 and 4.2 can be extended to systems with nonmass action kinetics by
replacing the definition of Hs(z) with

Hs(z) =

ls∑

j=ls−1+1

fj(z)Uj ,

where fj(z) encodes the reaction rate kinetics. In the proof of Theorem 4.1 we have
used the fact that fj(z) is given by mass-action kinetics to (I) establish that Hs(ζ) =
0 has a unique and stable solution and (II) to establish that stochastic dynamics
converge almost surely. Therefore, assuming that fj are selected such that conditions
(I) and (II) hold, one can obtain a version of Theorems 4.1 and 4.2 for systems with
nonmass action kinetics. In future publications we hope to discuss the details of how
these results are applied to systems with nonmass action kinetics in greater depth.

5. Implications for population level correlations. Thus far the selection of
intrinsic and extrinsic noise has been somewhat arbitrary. There is nothing inherently
extrinsic about the low copy dynamics in networks (2.1) and (3.2), for example. We
now introduce a population level perspective where the low copy dynamics are ex-
plicitly extrinsic. A motivating example is a population of noninteracting cells, each
containing the gene regulatory network of Figure 2.2, which is driven by a randomly
switching environment [31, 4]. Whether or not each gene is active depends on the
state of the environment, which will be common to all cells evolving in the same en-
vironment. The discrete environmental states could represent the presence of some
extracellular metabolite or signaling molecule, perhaps arising from changes in the
physiological or hormonal state that a cell experiences in a multicellular organism.
Variations in the population of cells may cause small differences in the model param-
eters, but the topological structure of each reaction network within the population
is assumed to be identical. While the chemical systems might not interact over a
timescale that is relevant to the function they perform, they are correlated through
the common environment in which they evolve. This interpretation leads to an en-
tirely new set of interesting statistics, namely, those corresponding to the population
level description [26, 5]. These statistics measure the degree to which environmental
factors introduce correlations between individuals (cells or organisms) in a population.
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from changes in the physiological or hormonal state that a cell experiences in a multicellular
organism. Variations in the population of cells may cause small differences in the model
parameters, but the topological structure of each reaction network within the population is
assumed to be identical. While the chemical systems might not interact over a timescale
that is relevant to the function they perform, they are correlated through the common envi-
ronment in which they evolve. This interpretation leads to an entirely new set of interesting
statistics, namely those corresponding to the population level description [26, 5]. These
statistics measure the degree to which environmental factors introduce correlations between
individuals (cells or organisms) in a population.

Let us make the notion of population level statistics precise by returning to the network
(3.2). As written in section 3, this is a single network whose dynamics exist in isolation.
In the present setting we consider the reactions involving species A and B to be occurring
in many cells inside common environment, while the reactions involving C and D are a
property of this extracellular environment itself. If there are M cells in the environment,
then the entire system, including the population and environment, can be written as a single
CRN as indicated in Fig. 5.1. We will let κj,k correspond to the rate constant of the j-th
reaction in the k-th cell, and allow for the possibility that κj,k 6= κj,s for s 6= k.

Building on the notation used in previous sections, we let XAk
(t) denote the number

of species A in cell k. It is not difficult to see that XAk
(t) is equivalent in distribution to

the variables XA(t) used in section 3 if the appropriate rate constants are selected. What
might be less clear is that the density

P(XA1
(t) = xA1

, XA1
(t) = xA2

, . . . , XA1
(t) = xAM

)

cannot be expressed in terms of the density of the single cell model in a trivial way. In
particular, it is generally the case that

E[XA1
(t)XA2

(t) . . . XAk
(t)] 6=

K∏

k=1

E[XAk
(t)] K ≤M.

It’s important to emphasize that the correlations are induced by the environment and dif-
ferences in the rate constants, but not the demographic noise. For this reason, we also
have

E[Z̄A1
(t)Z̄A2

(t) . . . Z̄Ak
(t)] 6=

K∏

k=1

E[Z̄Ak
(t)] K ≤M

C             D

C+A1             C+B1

D+B1             D+A1

C+A2             C+B2

D+B2             D+A2

. . . . . . . 
C+AM             C+BM

D+BM             D+AM

cell 1 cell 2 cell M

environment

Fig. 5.1: A diagram of the CRN representing a population of CRNs in an environment.
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Fig. 5.1. A diagram of the CRN representing a population of CRNs in an environment.

Let us make the notion of population level statistics precise by returning to the
network (3.2). As written in section 3, this is a single network whose dynamics exist in
isolation. In the present setting we consider the reactions involving species A and B to
be occurring in many cells inside common environment, while the reactions involving
C and D are a property of this extracellular environment itself. If there are M cells in
the environment, then the entire system, including the population and environment,
can be written as a single CRN as indicated in Figure 5.1. We will let κj,k correspond
to the rate constant of the jth reaction in the kth cell and allow for the possibility
that κj,k 6= κj,s for s 6= k.

Building on the notation used in previous sections, we let XAk
(t) denote the

number of species A in cell k. It is not difficult to see that XAk
(t) is equivalent in

distribution to the variables XA(t) used in section 3 if the appropriate rate constants
are selected. What might be less clear is that the density

P(XA1
(t) = xA1

, XA1
(t) = xA2

, . . . , XA1
(t) = xAM

)

cannot be expressed in terms of the density of the single cell model in a trivial way.
In particular, it is generally the case that

E[XA1(t)XA2(t) . . . XAk
(t)] 6=

K∏

k=1

E[XAk
(t)] K ≤M.

It’s important to emphasize that the correlations are induced by the environment and
differences in the rate constants, but not the demographic noise. For this reason, we
also have

E[Z̄A1
(t)Z̄A2

(t) . . . Z̄Ak
(t)] 6=

K∏

k=1

E[Z̄Ak
(t)] K ≤M,

where Z̄Ak
(t) is the PDMP approximation of XAk

(t). These new statistics, which do
not appear in the single cell model, are what we refer to as a population level statistics,
and it has been established that their computation is highly nontrivial, even for simple
networks. Existing techniques for understanding such statistics involve taking the
large population limit: M → ∞ [26]. In contrast, our results are applicable when
it is appropriate to take the large system size limit Ω → ∞, while keeping M fixed.
Implicit in our analysis is the assumption that Ω is well defined at the population
level.
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Fig. 5.2. The covariance for the population level model of (3.2) with M = 2, κ1,1 = κ2,1 =
κ3,1 = κ4,1 = 1, κ1,2 = κ2,2 = 0.8, κ3,2 = κ4,2 = 1.2, and κ5 = κ6 = 10.

In general, given a multiscale network satisfying Assumption 1 described in section
4, we can construct a population level model as follows. To avoid technicalities, we

will assume X(2)(t) does not depend on X
(1)
k (t), although this assumption can easily

be relaxed. Let X
(1)
1 (t),X

(1)
2 (t), . . . ,X

(1)
M (t) be identical copies of the random variable

X(1)(t) constructed such that in between reactions indexed by j = p1 + 1, . . . , p1 + p2

each X
(1)
k (t) evolve independently according to the same CRN, but with possibly

different rate constants. When a transition in X(2)(t) does occur, it affects each

X
(1)
k (t) so that the samples paths of the high copy species are correlated though

X(2)(t). Theorem 4.1 then has the following implications for the population level

statistics: if Z̄
(1)
k = limΩ→∞X

(1)
k (t)/Ω becomes deterministic, the correlations vanish.

We state this observation as a corollary of Theorem 4.1.

Corollary 5.1. Let Z̄
(1)
1 (t), Z̄

(1)
2 (t), . . . , Z̄

(1)
M (t),X(2)(t) be a PDMP approxima-

tion of the population level model corresponding to a network satisfying the assump-

tions of Theorem 4.1. If Z̄
(1)
k (0) are sufficiently close to the equilibria ζ for all k,

E

[
K∏

k=1

Z̄
(1)
k (t)

]
→

K∏

k=1

E
[
Z̄

(1)
k (t)

]
, K ≤M,

as t→∞.

In particular, this result says that as t→∞,

Cov(Z̄
(1)
k (t), Z̄(1)

s (t))→ 0

provided k 6= s. In Figure 5.2 we have shown this covariance as a function of time for
a pair of cells evolving according to (3.2).

5.1. Correlations in gene expression. Let us now consider a specific example
of a network that does not satisfy the above corollary, but satisfies the hypothesis of
Theorem 4.2, namely, the gene network of Figure 2.2. It turns out this network has
been well studied from the perspective of a single cell, but not from the population
perspective. In the present context, (xC , xD) = (1, 0) or (xC , xD) = (0, 1), and for
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the rate constants we will use the notation of Figure 2.2 that is typical in the gene
network literature: κ1 = κ3 = γ, κ2 = κC , κ4 = κD, κ5 = λ2, and κ6 = λ1. The
PDMP (4.2) thus reduces to

d

dt
Z̄A(t) = XC(t)(κC − γZ̄A(t)) +XD(t)(κD − γZ̄A(t)).(5.1)

This particular PDMP has been well studied [23, 31, 20, 4], and one can prove the
existence of, and explicitly calculate, the steady-state probability density π(zA) =
π(zA, 0) + π(zA, 1), where π(zA, xC) = limt→∞ p(zA, xC , t) with p(zA, xC , t)dzA =
P[zA < Z̄A(t) < zA + dzA, XC(t) = xC ∈ {0, 1}] [23, 31]. One finds that when the
switching rates λ1,2 between the active and inactive gene states are faster than the rate
of degradation β then the steady-state density is unimodal or graded. On the other
hand, if the rate of degradation is faster, then the density tends to be concentrated
around z = 0 or z = 1, consistent with a binary process.

For the sake of illustration, suppose that there are two cells, each containing a
single copy of the gene, and that whether or not each gene is active depends on the
state of the environment. Let Z̄j(t) denote the concentration of protein A produced by
the gene network of the jth cell, j = 1, 2. Setting XC(t) = 1−XD(t) = N(t) ∈ {0, 1},
we thus have the PDMP

d

dt
Z̄1(t) = κD +N(t)(κC − κD)− γZ̄1(t),(5.2a)

d

dt
Z̄2(t) = κD +N(t)(κC − κD)− γZ̄2(t).(5.2b)

For a given realization of the two-state Markov chain N(t), we can integrate these
equations to give

Z̄1(t) = e−γtZ̄1(0) + Z(t), Z̄2(t) = e−γtZ̄2(0) + Z(t),

where

Z(t) =

∫ t

0

e−γ(t−s) [κD +N(s)(κC − κD)] ds.

Taking the difference of these two equations shows that

lim
t→∞

|Z̄1(t)− Z̄2(t)| = 0,

so the two cells become strongly correlated with

Cov(Z̄1(t), Z̄2(t))→ Var(Z(t)).

We will assume that the discrete process N(t) is in its stationary state so that,
for example, E[N(t)] = ρ1. It then follows that

E[Z̄(t)] =

∫ t

0

e−γ(t−s) [ρ0κD + ρ1κC ] ds = γ−1 [ρ0κD + ρ1κC ]
(
1− e−γt

)
,

where

ρ0 =
λ2

λ1 + λ2
, ρ1 =

λ1

λ1 + λ2
,



ROBUSTNESS OF CHEMICAL REACTION NETWORKS 21

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1
·10−2

t

C
ov

(Z
1
(t
),
Z
2
(t
))

(κC−κD)2ρ0ρ1

(γ+λ1+λ2)γ
≈ 0.00297

Fig. 5.3. The covariance for the population level model of (2.4) with M = 2, κC = 1, κD = 0.5,
γ = 1, and λ1 = λ2 = 10.

and

Var(Z̄(t)) = (κC − κD)2E
[∫ t

0

∫ t

0

e−γ(2t−s−s′)(N(s)− ρ1)(N(s′)− ρ1)ds′ds

]

= (κC − κD)2E
[∫ t

0

∫ t

0

e−γ(2t−s−s′)Cov(N(s), N(s′))ds′ds

]

= (κC − κD)2ρ0ρ1

∫ t

0

∫ t

0

e−γ(2t−s−s′)e−|s−s
′|(λ1+λ2)ds′ds

= 2(κC − κD)2ρ0ρ1

∫ t

0

∫ s

0

e−γ(2t−s−s′)e−(s−s′)(λ1+λ2)ds′ds

= 2(κC − κD)2ρ0ρ1
e−2γt

γ + λ1 + λ2

[
e2γt − 1

2γ
+

1− eγ−λ1−λ2t

(γ − λ1 − λ2)

]

for γ 6= λ1 + λ2. It follows that

(5.3) Cov(Z̄1(t), Z̄2(t))→ (κC − κD)2ρ0ρ1

(γ + λ1 + λ2)γ
6= 0.

A plot of this covariance as a function of time is shown in Figure 5.3. We see that
after the transient phase it does converge to the predicated value.

6. Conclusions. In this paper we have explored how the topological deficiency
relates to the stationary behavior of a multiscale CRN. The type of multiscale dy-
namics we have focused on is typical in systems with intrinsic and extrinsic noise
[20, 28, 26, 11]. In such systems, a scaling limit of the extrinsic noise is not physically
meaningful, and therefore a deterministic approximation of the full stochastic dynam-
ics fails to capture important features of the dynamics. Instead, one must study a
multiscale approximation where only the intrinsic noise is approximated determinis-
tically [20]. One can then study the effects of extrinsic noise in isolation. Using the
multiscale approximation, we have made progress toward understanding the topologi-
cal features that ensure systems are robust to extrinsic noise. Our main finding is that
when the deficiency of the network is zero, the multiscale approximation approaches a
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deterministic fixed point almost surely. This result extends a growing body of research
on the role of deficiency in stochastic CRNs, but to our knowledge, it is the only such
result specifically concerning multiscale dynamics. In addition, we have shown that
under certain assumptions, the multiscale approximation of a network with positive
deficiency has nondeterministic behavior over long periods of time. As an application
of these results, we have established conditions under which higher order statistics of
a population level model vanish. These population level statistics arise when many
independent chemical systems are functioning in the same random environment, and
are difficult to study analytically [26, 6, 3, 4, 5].

Looking forward, it would be fruitful to extend our findings to wider classes of
CRNs. Reactions satisfying Assumption 1 typically arise from model reductions of
more complex reactions. For example, consider the following network, which includes
an enzymatic reaction:

S −−⇀↽−− 2 S,

E + S −−⇀↽−− C −−⇀↽−− E + P,

E −−⇀↽−− F.

On the one hand, this network fails Assumption 1. On the other hand, it is clearly
similar in structure to the network 3.2. From a stoichiometric perspective, the only
difference is the existence of an intermediate species C. Understanding how our results
can be extended to networks of this form is ongoing work. Finally, the thermodynamic
implications of our results should be explored in depth. In particular, understanding
which network topologies are effective at utilizing environmental energy sources is of
great interest [19, 18], and our analysis suggests deficiency plays an important role in
this problem.
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