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A Variational Method for Analyzing Stochastic Limit Cycle Oscillators∗
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Abstract. We introduce a variational method for analyzing limit cycle oscillators in Rd driven by Gaussian
noise. This allows us to derive exact stochastic differential equations for the amplitude and phase of
the solution, which are accurate over times of order (Cbε−1), where ε is the amplitude of the noise
and b the magnitude of decay of transverse fluctuations. Within the variational framework, different
choices of the amplitude-phase decomposition correspond to different choices of the inner product
space Rd. For concreteness, we take a weighted Euclidean norm, so that the minimization scheme
determines the phase by projecting the full solution onto the limit cycle using Floquet vectors. Since
there is coupling between the amplitude and phase equations, even in the weak noise limit, there
is a small but nonzero probability of a rare event in which the stochastic trajectory makes a large
excursion away from a neighborhood of the limit cycle. We use the amplitude and phase equations
to bound the probability of it doing this: finding that the typical time the system takes to leave
a neighborhood of the oscillator scales as exp(Cbε−1). We also show how the variational method
provides a numerically tractable framework for calculating a stochastic phase, which we illustrate
using a modified version of the Morris–Lecar model of a neuron.
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1. Introduction. A well-studied problem in dynamical systems theory is the construction
and analysis of phase equations for stochastic limit cycle oscillators [8, 21, 2]. For example,
consider the Ito stochastic differential equation (SDE) on Rd,

(1.1) du = F (u)dt+
√
εG(u)dW,

where ε > 0 determines the noise strength and Wt is a vector of (correlated) Brownian motions
with covariance Q ∈ Rd×d,

E
[
W (t)W>(t)

]
= tQ.

Suppose that the deterministic equation for ε = 0,

(1.2)
du

dt
= F (u), u ∈ Rd,

with F ∈ C2 has a stable periodic solution u = U(t) with U(t) = U(t+∆0), where ω0 = 2π/∆0

is the natural frequency of the oscillator. In state space the solution is an isolated attractive
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2206 PAUL C. BRESSLOFF AND JAMES N. MACLAURIN

trajectory called a limit cycle. The dynamics on the limit cycle can be described by a uniformly
rotating phase such that

(1.3)
dθ

dt
= ω0,

and u = Φ(θ(t)) with Φ a 2π-periodic function. Note that the phase is neutrally stable
with respect to perturbations along the limit cycle—this reflects invariance of an autonomous
dynamical system with respect to time shifts. Turning to the SDE (1.1), let us assume that
the noise amplitude ε is sufficiently small given the rate of attraction to the limit cycle, so
that deviations transverse to the limit cycle are also small (up to some exponentially large
stopping time). This suggests that the definition of a phase variable persists in the stochastic
setting, and one can derive a closed stochastic phase equation. Phase reduction typically
proceeds in two steps [27, 13, 22, 31, 26]. First, one extends the definition of phase to a
neighborhood of the limit cycle using the method of isochrons. However, as its stands, the
isochronal phase depends on all of the state variables so that there is a coupling between the
amplitude and phase dynamics. Therefore, the second step involves carrying out some form
of perturbation expansion to obtain a closed equation for the phase dynamics, which is an
approximation of the full dynamics. (The amplitude-phase decomposition can also be carried
out using projection methods [14, 17, 4].)

An important issue is the timescale over which the reduced phase equation remains a good
approximation of the full phase dynamics. In the case of SDEs, there are two distinct sources
of error. The first is due to the fact that the solution of the reduced phase equation is an
approximation of the exact isochronal phase, and is only accurate on timescales of O(ε−1). Of
course, one could simply take the solution of the phase-reduced equation as the definition of
the phase. This is particularly useful when considering the phase synchronization of coupled
limit cycle oscillators, assuming convergence to a common reduced phase implies convergence
to a common isochronal phase. On the other hand, if the occurrence of a particular event
such as the initiation of a neuron’s action potential is identified with a particular value of the
isochronal phase, then errors arising from phase reduction could be significant. The second
source of error, which is the main focus of our paper, arises from the observation that there
is a nonzero probability that Gaussian fluctuations eventually lead to a large deviation of a
stochastic trajectory from a neighborhood of the limit cycle. If the limit cycle has a finite
basin of attraction then this could result in a noise-induced transition to another attractor.
Moreover, even in the case of a globally attracting limit cycle, it is not clear that the notion of
phase remains useful when a large deviation occurs. Since large deviations tend to happen on
much longer timescales than the first type of error, it is necessary to construct a numerically
computable phase variable that persists over these longer timescales. (One possibility would
be to use the exact isochronal phase, but this can be difficult to compute.) Such a construction
should allow a rigorous analysis of large deviations that yields bounds on the amplitude of
transverse fluctuations about the limit cycle. (Such bounds also provide a necessary condition
for the synchronization of coupled limit cycle oscillators.)

Therefore, in this paper, we introduce a variational method for carrying out the amplitude-
phase decomposition of a stochastic limit cycle, in order to achieve the following goals: (i) to
provide a numerically computable, exact definition of a phase that persists over exponentially
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STOCHASTIC LIMIT CYCLE OSCILLATORS 2207

long timescales; (ii) to obtain rigorous estimates for the expected time to escape a small
neighborhood of the limit cycle. Within the variational framework, different choices of phase
correspond to different choices of the inner product space Rd. For concreteness, we take a
weighted Euclidean norm, so that the minimization scheme determines the phase by projecting
the full solution onto the limit cycle using Floquet vectors. Hence, in a neighborhood of the
limit cycle the phase variable coincides with the isochronal phase [4]. This has the advantage
that the amplitude and phase decouple to linear order in ε. We derive exact, implicit SDEs
for the amplitude and phase, and use these to show that the expectation of the time it takes
to leave an O(ερ) neighborhood of the limit cycle, with ρ < 1/2, scales as exp(Cbε2ρ−1), for a
constant C, where b is the magnitude of decay of the transverse fluctuations. These bounds
are thus very useful in both the small noise limit, and the limit of strong decay of transverse
fluctuations (as discussed in [26, 23]). Indeed they are accurate for finite ε/b and are more
flexible and powerful than classical large deviations bounds. Our method is novel and uses
a rescaling of time to demonstrate that the leading order behavior of the amplitude term is
that of a stable Ornstein–Uhlenbeck process. These bounds also mean that the SDE for the
phase is well-defined for times of order exp(Cb/ε).

We note that a recent work [12] has obtained exponential bounds on the probability of
the system leaving a neighborhood of the limit cycle that bear some similarities to ours. The
primary goal of the cited paper is to understand the effect of noise on the winding number of
a stochastic oscillator, in the limit as the magnitude of the noise tends to zero. The authors
use an isochronal phase reduction to find that the expected time for the system to stay close
to the limit cycle scales as exp(Cε−1) for some constant C. We obtain a similar bound in
the limit as ε → 0. However our bound is more general, and is much more accurate in the
asymptotic regime of a strong decay towards the limit cycle, or a large period.

In the remainder of this section we briefly review phase reduction methods. The varia-
tional formulation is introduced in section 2, where we derive the exact amplitude and phase
equations using Ito’s lemma. In section 3 we carry out a perturbation expansion in the weak
noise limit and compare the resulting phase equation with previous versions. We present a
numerical example in section 4, based on a modified Morris–Lecar [20] conductance-based
model of a neuron driven by extrinsic noise. We illustrate how the variational principle can
be used as the basis for a numerical method to construct the phase, and compare the latter
to the solution of the stochastic phase equation. Finally, exponential bounds on transverse
fluctuations are derived in section 5.

1.1. Isochrons and phase–resetting curves. Suppose that we observe the unperturbed
system (1.2) stroboscopically at time intervals of length ∆0. This leads to a Poincaré mapping

u(t)→ u(t+ ∆0) ≡ P(u(t)).

This mapping has all points on the limit cycle as fixed points. Choose a point u∗ on the cycle
and consider all points in the vicinity of u∗ that are attracted to it under the action of P.
They form a (d − 1)-dimensional hypersurface I, called an isochron, crossing the limit cycle
at u∗ (see Figure 1.1) [30, 18, 11, 6]. A unique isochron can be drawn through each point on
the limit cycle (at least locally) so the isochrons can be parameterized by the phase, I = I(θ).
Finally, the definition of phase is extended by taking all points u ∈ I(θ) to have the same
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2208 PAUL C. BRESSLOFF AND JAMES N. MACLAURIN

u*

I(θ)

Figure 1.1. Isochrons in the neighborhood of a stable limit cycle.

phase, Θ(u) = θ, which then rotates at the natural frequency ω0 (in the unperturbed case).
Hence, for an unperturbed oscillator in the vicinity of the limit cycle we have

ω0 =
dΘ

dt
=

d∑
k=1

∂Θ

∂uk

duk
dt

=
d∑

k=1

∂Θ

∂uk
Fk(u).

Now consider the deterministically perturbed system

(1.4)
du

dt
= F (u) +

√
εG(u, t),

where, say, G is a ∆-periodic function of t. Keeping the definition of isochrons for the unper-
turbed system, one finds that to leading order

dΘ

dt
=

d∑
k=1

∂Θ

∂uk
(Fk(u) +

√
εGk(u, t)) = ω0 +

√
ε

d∑
k=1

∂Θ

∂uk
Gk(u, t).

As a further leading order approximation, deviations of u from the limit cycle are ignored.
Hence, setting u(t) = Φ(ω0t) with Φ the 2π-periodic solution on the limit cycle,

dΘ

dt
= ω0 +

√
ε

d∑
k=1

∂Θ

∂uk

∣∣∣∣
u=Φ

Gk(Φ, t).

Finally, since points on the limit cycle are in 1:1 correspondence with the phase θ, one can set
U = U(θ) and Θ(U(θ)) = θ to obtain the closed phase equation

(1.5)
dθ

dt
= ω0 +

√
ε

d∑
k=1

Rk(θ)Gk(Φ(θ), t),
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STOCHASTIC LIMIT CYCLE OSCILLATORS 2209

where

(1.6) Rk(θ) =
∂Θ

∂uk

∣∣∣∣
u=Φ(θ)

is a 2π-periodic function of θ known as the kth component of the phase response curve (PRC).
It is well known that the PRC R(θ) can also be obtained as a 2π-periodic solution of the

linear equation [7, 8, 21]

(1.7) ω0
dR(θ)

dθ
= −J(θ)> ·R(θ)

with the normalization condition

(1.8) R(θ) · dΦ(θ)

dθ
= 1.

Here J(θ)> is the transpose of the Jacobian matrix J(θ), i.e.,

(1.9) Jjk(θ) ≡
∂Fj
∂uk

∣∣∣∣
u=Φ(θ)

.

It should be noted that we can evaluate the multiplication of the Jacobian by the derivative
of Φ by differentiating the unperturbed ODE on the limit cycle,

ω0
dΦ

dθ
= F (Φ(θ)),

with respect to θ. This gives

(1.10)
d

dθ

(
dΦ

dθ

)
= ω−1

0 J(θ) · dΦ

dθ
.

The next step is to assume that the above phase reduction procedure can also be applied
to the SDE (1.1). This would then lead to the stochastic phase equation

(1.11) dθ = ω0dt+
√
ε

d∑
k,l=1

Rk(θ)Gkl(Φ(θ))dWl(t).

However, this does not take proper account of stochastic calculus as expressed by Ito’s lemma
[10]. That is, the phase reduction procedure assumes that the ordinary rules of calculus apply.
In the stochstic setting, this only holds if the multiplicative white noise term in (1.1) and (1.11)
is interepreted in the sense of Stratonovich. However, the Ito form of the stochastic phase
equation is more useful when calculating correlations, for example. Hence, converting (1.11)
from Stratonovich to Ito using Ito’s lemma gives [31, 26]

(1.12) dθ =

[
ω0 + ε

d∑
k=1

Z ′k(θ)QklZl(θ)

]
dt+

√
ε

d∑
k

Zk(θ)dWk(t),
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2210 PAUL C. BRESSLOFF AND JAMES N. MACLAURIN

Φ(ω0t)

u(t)

Φ(ω0t+θ(t))

√εv(t)

Figure 1.2. Decomposition of the stochastic solution u(t) into a random phase shift θ(t) along the deter-
ministic limit cycle and a random transversal component

√
εv(t).

where we have set

(1.13) Zl(θ) =
d∑

k=1

Rk(θ)Gkl(Φ(θ)).

Hence, Ito’s lemma yields an O(ε) contribution to the phase drift. Another subtle feature of
the stochastic phase reduction procedure is that another O(ε) contribution occurs when taking
into account perturbations transverse to the limit cycle [31]. However, the latter contribution
is negligible if the limit cycle is strongly attracting [26].

1.2. Amplitude-phase decomposition. An alternative way to derive a stochastic phase
equation is to explicitly decompose the solution of (1.1) into longitudinal (phase) and trans-
verse (amplitude) fluctuations of the limit cycle [3, 17, 4]. The basic intuition is that Gaussian-
like transverse fluctuations are distributed in a tube of radius 1/

√
ε (up to some stopping time),

whereas the phase around the limit cycle undergoes Brownian diffusion. Thus, the solution is
decomposed in the form

(1.14) u(t) = Φ(ω0t+ θ(t)) +
√
εv(t),

where the scalar random variable θ(t) represents the undamped random phase shift along the
limit cycle, and v(t) is a transversal perturbation; see Figure 1.2. Since there is no damping
of fluctuations along the limit cycle, the random phase θ(t) is taken to undergo Brownian
motion. However, it is important to note that the decomposition (1.14) is not unique, so
that the precise definition of the phase depends on the particular method of analysis. For
example, one study defines the phase so that there is no drift [17]. On the other hand, Gonze,
Halloy, and Gaspard [14] focus on determining an effective phase diffusion coefficient based
on a WKB approximation of solutions to the corresponding Fokker–Planck equation. Finally,
Bonnin [4] combines an amplitude-phase decomposition with Floquet theory to show that if
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x(0)

isochron

θ(t)

x(0)

vt

x(t)

θ(t)
Φ’(θ)

R(θ)

(a) (b)

x(t)

Figure 1.3. The two different projection schemes highlighted in [4]. (a) Orthogonal projection with respect
to the Euclidean norm of the solution x(t) at time t onto the limit cycle. Response to perturbations depends on
the tangent vector to the limit cycle, Φ′(θ). (b) The method of isochrons determines the phase θ(t) by tracing
where the isochron through x(t) intersects the limit cycle.The response to perturbations depends on the PRC
R(θ), which is normal to the isochron at the point of intersection with the limit cycle.

Floquet vectors are used, then the resulting phase variable in a neighborhood of the limit
cycle coincides with the asymptotic phase based on isochrons; see Figure 1.3.

2. Variational method. Suppose that the deterministic ODE

(2.1)
dut
dt

= F (ut), ut ∈ Rd,

supports a stable periodic solution of the form ut = Φ(ω0t) with Φ(ω0t+ 2πn) = Φ(t) for all
integers n, and ∆0 = 2π/ω0 is the fundamental period of the oscillator. We are interested
in deriving a stochastic equation for the effective phase of the oscillator when the system is
perturbed by weak noise. Therefore, consider the Ito SDE1

(2.2) dut = F (ut)dt+
√
εG(ut)dWt,

where ε > 0 determines the noise strength. Here Wt is a vector of (potentially correlated)
Brownian motions with covariance Q ∈ Rd×d,

E
[
WtW

>
t

]
= tQ.

In the above, G is a Lipschitz map from Rd → Rd×d. (Note that the vector of Brownian
motions need not have the same dimension as ut.) Throughout this paper, for any matrix A,
‖A‖ denotes the spectral norm. We assume a uniform bound on the spectral norm of G, i.e.,
there exists a constant λG such that

(2.3) sup
u∈Rd

‖G(u)‖ ≤ λG.

1It would be straightforward to extend the results of the paper if we were to interpret the stochastic integrals
in the Stratonovich sense.
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2212 PAUL C. BRESSLOFF AND JAMES N. MACLAURIN

In the presence of noise we wish to decompose the solution ut into two components: the
“closest” point of Φ(βt) to ut for a phase βt, and an “error” vt that represents the amplitude
of transversal fluctuations:

(2.4) ut = Φ(βt) +
√
εvt, vt ∈ Rd.

However, as pointed out in section 1.2, such a decomposition is not unique unless we impose
an additional mathematical constraint. We will adapt a variational principle previously intro-
duced by Inglis and Maclaurin [16] within the context of traveling waves in stochastic neural
fields; see also [19, 15]. First, we must introduce a little Floquet theory.

2.1. Floquet decomposition and weighted norm. For any 0 ≤ t, define Π(t) ∈ Rd×d to
be the following fundamental matrix for the ODE

(2.5)
dz

dt
= J(t)z,

where J(t) is the Jacobian of F evaluated at x = Φ(ω0t). That is,

Π(t) :=
(
z1(t)|z2(t)| . . . |zd(t)

)
,

where zi(t) satisfies (2.5), z1(0) = Φ′(0), and {zi(0)}di=1 is an orthogonal basis for Rd. Floquet
theory states that there exists a diagonal matrix S = diag(ν1, . . . , νd) whose diagonal entries
are the Floquet characteristic exponents, such that

(2.6) Π
(
t
)

= P
(
ω0t
)

exp
(
tS
)
P−1(0)

with P (θ) a 2π-periodic matrix whose first column is Φ′(ω0t) and ν1 = 0. That is, P−1(θ)Φ′(θ)
= e with ej = δ1,j . In order to simplify the following notation, we will assume throughout
this paper that the Floquet multipliers are real and hence P (θ) is a real matrix. One could
readily generalize these results to the case that S is complex. The limit cycle is taken to be
stable, meaning that for a constant b > 0, for all 2 ≤ i ≤ d,

(2.7) νi ≤ −b.

Since F ∈ C2, it follows that P ∈ C2. Furthermore P−1(θ) exists for all θ, since Π−1(t) exists
for all t.

The above Floquet decomposition motivates the following weighted inner product: for any
θ ∈ R, denoting the standard Euclidean dot product on Rd by 〈·, ·〉,

〈u, v〉θ =
〈
P−1(θ)u, P−1(θ)v

〉
and ‖u‖θ =

√
〈u, u〉θ. This weighting is useful for two reasons: it leads to a leading order

separation of the phase from the amplitude (see section 3) and it facilitates the strong bounds
of section 4 because the weighted amplitude always decays, no matter what the phase is.
The former is a consequence of the fact that the matrix P−1(θ) generates a coordination
transformation in which the phase in a neighborhood of the limit cycle coincides with the
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asymptotic phase defined using isochrons (see also [4]). This is reflected by the following
relationship between the tangent vector to the limit cycle, Φ′(θ), and the PRC R(θ) of (1.6):

(2.8) M(θ)P>(θ)R(θ) = P−1(θ)Φ′(θ),

where

(2.9) M(θ) :=
∥∥P−1(θ)Φ′(θ)

∥∥2
.

We will proceed by defining R(θ) according to (2.8) and showing that it satisfies the adjoint
equation (1.7). We will need the relation

(2.10) ω0P
′(θ) = J(θ)P (θ)− P (θ)S,

which can be obtained by differentiating (2.6). Differentiating both sides of (2.8) with respect
to θ, we have

M′P>R+ MP TR′ + M(P>)′R = P−1Φ′′ + (P−1)′Φ′(2.11)

with

M′ = 2

〈
P−1Φ′′ + (P−1)′Φ′, P−1Φ′

〉
.

Equation (2.10) implies that

ω0(P>(θ))′ = P>(θ)J>(θ)− SP>(θ)

and
ω0(P−1(θ))′ = −P−1(θ)J(θ) + SP−1(θ).

We have used the fact that S is a diagonal matrix and P−1P ′ + (P−1)′P = 0 for any square
matrix. Substituting these identities in (2.11) yields

M′P>R+ MP T (R′ + ω−1
0 J>R)− ω−1

0 MSP>R
= P−1[Φ′′ − ω−1

0 JΦ′] + ω−1
0 SP

−1Φ′

and

M′ =

〈
P−1[Φ′′ − ω−1

0 JΦ′] + ω−1
0 SP

−1Φ′, P−1Φ′
〉
.

Now note that Φ′ satisfies (1.10) and SP−1Φ′ = 0. The latter follows from the condition
P (θ)−1Φ′(θ) = e and Se = ν1 = 0. It also holds that M′(θ) = 0. (In fact, for the specific
choice of P (θ), we have M(θ) = 〈e, e〉 = 1.) Finally, from the definition of (R(θ), (2.8)), we
deduce that SP>(θ)R(θ) = 0 and hence

MP T (R′ + ω−1
0 J>R) = 0.

Since P T (θ) is nonsingular for all θ, R satisfies (1.7) and can thus be identified as the PRC.
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2214 PAUL C. BRESSLOFF AND JAMES N. MACLAURIN

2.2. Defining the stochastic phase using a variational principle. We can now state the
variational principle for the stochastic phase: βt is determined by requiring βt = at(θt), where
at(θt) for a prescribed time dependent weight θt is a local minimum of the following variational
problem,

(2.12) inf
a∈N (a(θt))

‖ut − Φ(a)‖θt = ‖ut − Φ(at(θt))‖θt

with N (at(θt)) denoting a sufficiently small neighborhood of at(θt). The minimization scheme
is based on the orthogonal projection of the solution onto the limit cycle with respect to the
weighted Euclidean norm at some θt. We will derive an exact SDE for βt (up to some stopping
time) by considering the first derivative

(2.13) G0(z, a, θ) :=
∂

∂a
‖z − Φ(a)‖2θ = −2

〈
z − Φ(a),Φ′(a)

〉
θ
.

At the local minimum,

(2.14) G0(ut, βt, θt) = 0.

We stipulate that the location of the weight must coincide with the location of the minimum,
i.e., βt = θt, so that βt must satisfy the implicit equation

(2.15) G(ut, βt) := G0(ut, βt, βt) = 0.

It will be seen that, up to a stopping time τ , there exists a unique continuous solution to the
above equation. Note that we could have defined βt according to

(2.16) inf
a∈N (βt)

‖ut − Φ(a)‖a = ‖ut − Φ(βt)‖βt ,

which might seem more intuitive. However to leading order in (ut − Φ(βt)), the above two
schemes are equivalent, and we prefer the former because it leads to simpler equations.

Define H(z, a) ∈ R according to

H(z, a) :=
1

2

∂G(z, a)

∂a
=

1

2

∂G0(z, a, θ)

∂a

∣∣∣∣
θ=a

+
1

2

∂G0(z, a, θ)

∂θ

∣∣∣∣
θ=a

= 1−
〈
z − Φ(a),Φ′′(a)

〉
a
−
〈
z − Φ(a),

d

da

[
P (a)P>(a)

]−1
Φ′(a)

〉
,(2.17)

where we have used the fact that ‖Φ′(a)‖2a = 1, which we proved in the previous section.
Assume that initially H(u0, β0) > 0. We then seek an SDE for βt that holds for all times less
than the stopping time τ ,

(2.18) τ = inf{s ≥ 0 : H(us, βs) = 0}.

The implicit function theorem guarantees that a unique continuous βt exists until this time.
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It is a consequence of Theorem 5.1 in section 5 that there exist constants C, C̃ > 0 such that

P
(
τ ≤ exp

(
Cbε−1

))
≤ exp

(
− C̃bε−1

)
,

where we recall that b is the lower bound on the rate of decay of the Floquet exponents.
In order to derive the SDE for βt, we apply Ito’s lemma to the identity

(2.19) dGt := dG(ut, βt) = 0

with dut given by (2.2) and dβt taken to satisfy an SDE of the form

(2.20) dβt = V (ut, βt)dt+
√
ε 〈B(ut, βt), G(ut)dWt〉βt

for functions V and B that we determine below. Using the definition of G(ut, βt, βt), dGt is
found to be

dGt =− 2
〈
dut,Φ

′(βt)
〉
βt

+
∂Gt
∂a

∣∣∣∣
a=βt

dβt +
1

2

∂2Gt
∂a2

∣∣∣∣
a=βt

dβtdβt − 2
〈
dut,Φ

′′(βt)dβt
〉
βt

− 2

〈
dut,

d

da

[
P (a)P>(a)

]−1∣∣
a=βt

Φ′(βt)

〉
dβt.(2.21)

Note that we only include the dt contributions from the quadratic differential terms involving
the products dutdβt and dβtdβt, which are also known as cross variations. In particular,
writing K(ut, βt) = G>(ut)[P (βt)P

>(βt)]
−1,

(2.22) dβtdβt = ε 〈K(ut, βt)B(ut, βt), QK(ut, βt)B(ut, βt)〉 dt,〈
dut,Φ

′′(βt)dβt
〉
βt

=
√
ε
〈
G(ut)dWt,Φ

′′(βt)dβt
〉
βt

= ε
〈
G(ut)dWt,Φ

′′(βt)〈B(ut, βt), G(ut)dWt〉βt
〉
βt

= ε
〈
K(ut, βt)Φ

′′(βt), QK(ut, βt)B(ut, βt)
〉
dt(2.23)

and

(2.24)

〈
dut,

d

da

[
P (a)P>(a)

]−1∣∣
a=βt

Φ′(βt)

〉
dβt

= ε

〈
G>(ut)

d

da

[
P (a)P>(a)

]−1∣∣
a=βt

Φ′(βt), QK(ut, βt)B(ut, βt)

〉
.

Substituting (2.20), (2.22), and (2.23) into (2.21) yields an SDE of the form

(2.25) dGt = V(ut, βt)dt+
√
ε〈B(ut, βt), G(ut)dWt〉βt .

In order that (2.19) be satisfied, we require that both terms on the right-hand side of the
above equation are zero, which will determine V and B. First, we have

0 :=
1

2
〈B(ut, βt), G(ut)dWt〉βt = H(ut, βt) 〈B(ut, βt), G(ut)dWt〉βt

−
〈
G(ut)dWt,Φ

′(βt)
〉
βt
.
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2216 PAUL C. BRESSLOFF AND JAMES N. MACLAURIN

Since for all times less than τ , H(ut, βt) > 0, it follows that H−1 exists and, hence,

(2.26) B(ut, βt) = H(ut, βt)
−1Φ′(βt).

Second,

(2.27) 0 := V(ut, βt)dt =

[
∂Gt
∂a

∣∣∣∣
a=βt

V (ut, βt)− 2
(〈
F (ut),Φ

′(βt)
〉
βt
dt+ εκ(ut, βt)

)]
dt

with

(2.28) εκ(ut, βt)dt := −1

4

∂2Gt
∂a2

∣∣∣∣
a=βt

dβtdβt +
〈
dut,Φ

′′(βt)dβt
〉
βt

+

〈
dut,

d

da

[
P (a)P>(a)

]−1∣∣
a=βt

Φ′(βt)

〉
dβt.

The cross variations (2.22) and (2.23) can now be evaluated using (2.26):

dβtdβt = εH(ut, βt)
−2
〈
K(ut, βt)Φ

′(βt), QK(ut, βt)Φ
′(βt)

〉
dt,(2.29) 〈

dut,Φ
′′(βt)dβt

〉
βt

= εH(ut, βt)
−1
〈
K(ut, βt)Φ

′′(βt), QK(ut, βt)Φ
′(βt)

〉
dt,(2.30)

and

(2.31)

〈
dut,

d

da

[
P (a)P>(a)

]−1∣∣
a=βt

Φ′(βt)

〉
dβt

= εH(ut, βt)
−1

〈
G>(ut)

d

da

[
P (a)P>(a)

]−1∣∣
a=βt

Φ′(βt), QK(ut, βt)Φ
′(βt)

〉
dt.

Equations (2.27)–(2.30) determine the drift term V so that

(2.32) dβt = H(ut, βt)
−1

[(〈
F (ut),Φ

′(βt)
〉
βt

+ εκ(ut, βt)
)
dt+

√
ε

〈
G(ut)dWt,Φ

′(βt)

〉
βt

]
,

where

(2.33) κ(ut, βt) := H(ut, βt)
−1
〈
K(ut, βt)Φ

′′(βt), QK(ut, βt)Φ
′(βt)

〉
+H(ut, βt)

−1

〈
G>(ut)

d

da

[
P (a)P>(a)

]−1∣∣
a=βt

Φ′(βt), QK(ut, βt)Φ
′(βt)

〉
+
H(ut, βt)

−2

2

[〈
ut − Φ(βt),Φ

′′′(βt)

〉
βt

−
〈

Φ′(βt),Φ
′′(βt)

〉
βt

+

〈
ut − Φ(βt),

d2

da2

[
P (a)P>(a)

]−1∣∣
a=βt

Φ′(βt)

〉
+ 2

〈
ut − Φ(βt),

d

da

[
P (a)P>(a)

]−1∣∣
a=βt

Φ′′(βt)

〉
−
〈

Φ′(βt),
d

da

[
P (a)P>(a)

]−1∣∣
a=βt

Φ′(βt)

〉]〈
K(ut, βt)Φ

′(βt), QK(ut, βt)Φ
′(βt)

〉
.
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Finally, recall that the amplitude term vt satisfies

(2.34)
√
εvt = ut − Φβt .

Hence, applying Ito’s lemma

√
εdvt = dut − Φ′(βt)dβt −

1

2
Φ′′(βt)dβtdβt

=
[
F (ut)−H(ut, βt)

−1Φ′(βt)
(〈
F (ut),Φ

′(βt)
〉
βt

+ εκ(ut, βt)
)

− ε

2
Φ′′(βt)H(ut, βt)

−2
〈
K(ut, βt)Φ

′(βt), QK(ut, βt)Φ
′(βt)

〉]
dt

+
√
ε
[
G(ut)dWt −H(ut, βt)

−1Φ′(βt)
〈
G(ut)dWt,Φ

′(βt)
〉
βt

]
,(2.35)

where we have used (2.2), and the differentials dΦt = F (Φt)dt and dΦβt = Φ′dβt+
1
2Φ′′dβtdβt.

3. Weak noise limit. In order to obtain a closed equation for βt we carry out a perturba-
tion analysis in the weak noise limit, and compare the variational phase equation with various
versions of the phase equations previously derived using isochronal phase reduction methods;
see section 1.1. We demonstrate that the linearization of our phase equation is accurate over
timescales of order ε−1. This means that the timescale over which the linearization of our
phase equation is accurate is of the same order as the isochronal phase equation. It should
be noted that, as we explain in more detail in section 5, our method possesses the additional
virtue of having an analytic SDE that is accurate over timescales of order O(exp(Cbε−1)),
where b is the rate of decay of transverse fluctuations.

Suppose that 0 < ε � 1 and set ut = Φ(βt) on the right-hand side of (2.32). That is, we
drop any vt-dependent terms. Setting βt = θ, we obtain the explicit stochastic phase equation

(3.1) dθ = [ω0 + εκ̂(θ)]dt+
√
ε

〈
G(Φ(θ))dWt, R(θ)

〉

with R(θ) identified as the normal to the isochron crossing the limit cycle at θ (see Figure
1.3(b) and (2.8)):

(3.2) R(θ) = [PP>(θ)]−1Φ′(θ),

since M(θ) = 1. We have used the identity

(3.3)
〈
Φ′(θ)

)
, R(θ)

〉
= 1

and F (Φ(θ)) = ω0Φ′(θ). Equation (3.1) has a similar form to the isochronal phase equation
(1.12). However, in contrast to the latter, there is no O(ε) contribution to the drift of the form

D
ow

nl
oa

de
d 

08
/2

2/
18

 to
 1

28
.1

10
.1

84
.4

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2218 PAUL C. BRESSLOFF AND JAMES N. MACLAURIN

〈Z ′(θ), QZ(θ)〉 since we take the noise in SDE (2.2) to be Ito rather than Stratonovich. Thus,
the O(ε) drift term κ̂(θ) in (3.1) is the analog of the contributions from transverse fluctuations
identified in [31, 26].

As highlighted by Bonnin [4], although neglecting the coupling between the phase and
amplitude dynamics by setting vt = 0 yields a closed equation for the phase, it does lead to
imprecision at short and intermediate times. (Errors at longer times due to large deviations
from the limit cycle will be addressed in section 4.) Here we show that taking into account
the amplitude coupling only results in O(ε) contributions to the drift, not O(

√
ε). Neglecting

vt-independent O(ε) drift terms, (2.32) becomes

(3.4) dβt =

〈
F (ut),R(ut, βt)

〉
βt

dt+
√
ε

〈
G(ut)dWt,R(ut, βt)

〉
βt

,

where

(3.5) R(ut, βt) = H(ut, βt)
−1Φ′(βt).

Suppose that we rewrite R as a function R̂ of βt and vt using (2.17): R(ut, βt) = R̂(vt, βt)
with

R̂(vt, βt) =

(
1−
√
ε

〈
vt,Φ

′′(βt)

〉
βt

−
√
ε

〈
vt,

d

da

[
P (a)P>(a)

−1]∣∣
a=βt

Φ′(βt)

〉)−1

Φ′(βt).

Let us define

(3.6) H(v, θ) =
〈
F (Φ(θ) +

√
εv), R̂(v, θ)

〉
θ
.

In the phase equation (3.1) we set v = 0 and used H(0, θ) = ω0. Suppose that we now include
higher-order terms by Taylor expanding H(v, θ) with respect to v. In particular, consider the
first derivative

∂H

∂v
(0, θ) · v =

√
εM−1

〈
J(θ) · v,Φ′(θ)

〉
θ

√
εM−2

〈
F
(
Φ(θ)),Φ′(θ)

〉
θ

[〈
v,Φ′′(θ)

〉
θ

+

〈
v,

d

da

[
P (a)P>(a)

−1]∣∣∣∣
a=θ

Φ′(θ)

〉]
=
√
ε

〈
J(θ) · v,Φ′(θ)

〉
θ

+
√
ε ω0

d

dθ

〈
v,Φ′(θ)

〉
θ

,
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since M(θ) = 1 and

〈
F
(
Φ(θ)),Φ′(θ)

〉
θ

= ω0. Observe that

〈
J(θ) · v,Φ′(θ)

〉
θ

=

〈
P−1(θ)J(θ) · v, P−1(θ)Φ′(θ)

〉
=

〈
J(θ) · v, [P (θ)P>(θ)]−1Φ′(θ)

〉
=

〈
v, J(θ)> ·R(θ)

〉
= −ω0

〈
v,R′(θ)

〉
= −ω0

〈
v,

d

dθ

{[
P (θ)P>(θ)

]−1
Φ′(θ)

}〉
= −ω0

d

dθ

〈
v,Φ′(θ)

〉
θ

,

where in the third last line we have used (1.7), and in the second last line we have used (3.2).
We have thus proven that the phase equation decouples from the amplitude equation at

O(
√
ε), which is consistent with the analysis of [4]. Since the errors in the SDE are of O(ε),

this linearization of our phase equation is accurate over timescales of order O(ε−1), which is
the same order as the isochronal phase equation.

4. Example: Stochastic Morris–Lecar model. So far we have presented a new variational
method for determining the phase of a limit cycle oscillator driven by multiplicative white
noise. One of the motivations for this formulation is that it allows us to derive exponential
bounds on transverse fluctuations, as detailed in section 5. However, it is also important
to highlight that the variational formula (2.12) can be solved numerically to determine the
variational phase in a relatively straightforward manner. We illustrate this by considering an
explicit example, namely, a modified version of the Morris–Lecar model of a neuron [20]. The
latter was originally introduced as a model of Ca2+ spikes in molluscs, but has subsequently
been used to study neural excitability for Na+ spikes [9], since it exhibits many of the same
bifurcation scenarios as more complex models. Here we consider a stochastic version of the
model that has been used to study subthreshold membrane potential oscillations (STOs) due
to persistent sodium (Na+) currents [28, 5].

The SDE for the membrane voltage v and recovery variable w (representing the fraction
of open potassium (K+) channels) evolves as

(4.1)

dvt =

[
a∞(v)fNa(v) + wfK(v) + fL(v) + Iapp

]
dt+

√
εdWt,

dwt =

[
(1− w)αK(v)− wβK

]
dt,

where Wt is a Brownian motion. It is assumed that the Na+ channels are in quasi-steady-
state so that the fraction of open Na+ ion channels is given by the voltage-dependent function
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Figure 4.1. (a) Bifurcation diagram of the deterministic model. As Iapp is increased, the system undergoes
a supercritical Hopf bifurcation (H) at I∗app = 183, which leads to the generation of stable oscillations. The
maximum and minimum values of oscillations are plotted as black (solid) curves. Oscillations disappear via
another supercritical Hopf bifurcation. (b) Phase plane diagram of the deterministic model for Iapp = 190
µA (point A above the Hopf bifurcation point). The red (dashed) curve is the w-nullcline and the solid (gray)
curve represents the v-nullcline. (c) Corresponding voltage time courses. Sodium parameters: gNa = 4.4 mS,
VNa = 55 mV, αNa = 100 ms−1, vn,1 = −1.2mV, vn,2 = 18 mV. Leak parameters: gL = 2 mS, VL = −60
mV. Potassium parameters: gK = 8 mS, VK = −84 mV, αK = 0.35 ms−1, vk,1 = 2 mV, vk,2 = 30 mV.

a∞(v), thus eliminating Na+ as a variable. For i = K,Na,L, let fi = gi(Vi − v), where gi are
ion conductances and Vi are reversal potentials. For concreteness, we take

(4.2) αi(v) = αiexp

(
2(v − vi,1)

vi,2

)
, i = K,Na,

with αi, vi,1, vi,2 constant. Parameters are chosen such that stable oscillations arise for suf-
ficient values of the applied current via a supercritical Hopf bifurcation (see Figure 4.1(a)).
This corresponds well to observed behavior of STOs and is not meant to function as a tradi-
tional spiking neuron model. Limit cycles in a traditional spiking model often appear via a
subcritical Hopf bifurcation. Figures 4.1(b),(c) show oscillations corresponding to point A in
the bifurcation diagram.

Results from simulations of the stochastic Morris–Lecar model (4.1) for ε = 0.1 are shown
in Figure 4.2. In particular, we compare the linearized phase θt−tω0 with the exact variational
phase βt−tω0 obtained from (2.15). It can be seen that initially the phases are very close, and
then they slowly drift apart as noise accumulates. The diffusive nature of the drift in both
phases can be clearly seen, with the typical deviation of the phase from ω0t increasing in time.
The stable attractor of the deterministic limit cycle is quite large, which is why the system
can tolerate quite substantial stochastic perturbations. The fact that, even with relatively
large ε, the system stays close to the limit cycle for a very long time is a key motivation for
the exponential probability bounds that we outline in section 5.
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Figure 4.2. We simulate the stochastic Morris–Lecar model with ε = 0.1. (a) Plot of the linearized phase
θt − tω0 in blue, and the exact variational phase (satisfying (2.15)) βt − tω0 in black. (b) Stochastic trajectory
around limit cycle (dashed curve) in the v, w-plane. (c,d) Corresponding time variations in v and w.

4.1. Some perspectives on the numerical implementation. One of the major advantages
of the variational approach to phase reduction introduced in this paper is that it is both easier
to implement, and also more numerically efficient than decompositions based on the isochronal
phase. Indeed, evaluating the full nonlinear isochronal phase is known to be numerically
expensive [2]. Furthermore, if one wishes to implement an SDE for the isochronal phase (which
one could obtain through applying Ito’s lemma to the isochronal phase map) then one would
require the first and second derivatives of the isochronal phase. In most cases these would
be numerically expensive to calculate [2] and, in almost all cases, there is not an analytical
expression. The variational phase perspective is particularly flexible, since it is straightforward
to switch between the “Hamiltonian” perspective of (2.12), and the “Lagrangian” dynamical
perspective of (2.32). One can calculate the nonlinear variational phase in two different ways:
either through taking a solution xt, and directly minimizing (2.12), or through implementing
the nonlinear SDE of βt using (2.32). Before one performs either of these calculations, one
must first calculate the Floquet matrix. This is relatively simple, since one just has to solve the
ODE in (2.5) d times, with different starting conditions, and then combine the two solutions.
One can then use this solution to determine the variational phase. It should be noted that
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even if one were implementing the simplest of all phase equations, i.e., the linearized isochronal
SDE, then one would still need to calculate the Floquet decomposition to obtain R(θ). Thus
there is nothing unreasonable in our requirement of the Floquet decomposition. If one wishes
to determine the variational phase through minimizing (2.12), then a simple optimization
routine suffices. We used the MATLAB nonlinear optimization package, and we achieved an
accuracy of O(10−5) using O(10) steps.

5. Explicit bounds on the growth of the weighted amplitude ‖ut − Φ(βt)‖βt
. In this

section we obtain powerful bounds on how long it takes the weighted amplitude of the or-
thogonal fluctuations, ‖ut − Φ(βt)‖βt , to exceed some value a. These bounds are valid for
‖ut − Φ(βt)‖βt = o(b), where b is the magnitude of the decay of transverse fluctuations, and
are useful in a variety of situations. Since we are looking at the asymptotic regime of certain
variables, it first needs to be noted which constants are taken to be O(1): it is these constants
which determine the constants C1, C2, and C below. These O(1) constants are

sup
θ∈[0,2π]

‖Φ(θ)‖ , sup
θ∈[0,2π]

‖P (θ)‖ , sup
θ∈[0,2π]

∥∥P−1(θ)
∥∥ , sup

θ∈[0,2π]

∥∥P ′(θ)∥∥ , ‖Q‖ , sup
z∈Rd

‖G(z)‖ .(5.1a)

Since Φ′(θ) is the first column of P (θ), the above conditions also imply that

(5.1b) sup
θ∈[0,2π]

∥∥Φ′(θ)
∥∥ , sup

θ∈[0,2π]

∥∥Φ′′(θ)
∥∥ = O(1).

Two regimes where our bounds are particularly useful are (i) the small noise limit (ε→ 0) and
(ii) a finite noise regime in which there is a large decay of fluctuations that are transverse to the
limit cycle (i.e., large b) [26, 23]. These bounds are more powerful and flexible than classical
large deviations bounds, because both the neighborhood [0, a] and the time interval T can vary
with ε and b. The relative simplicity of the proof of this theorem provides further justification
for the phase decomposition outlined in the first half of this paper. It results in a uniform
lower bound for the decay of the transformed drift wt = P

(
βt
)−1

vt, which means that after a
rescaling of time using the Dambis–Dubins–Schwarz theorem [24], it becomes straightforward
to demonstrate that the amplitude term behaves like a stable Ornstein–Uhlenbeck process.
This theorem can also be used to bound the probability of the stopping time τ (defined in
(2.18)) exceeding a certain value.

The following bounds are expressed in terms of the first hitting time of the scalar Ornstein–

Uhlenbeck process, which we restate here. Let p
(−b)
x,a (t) be the density for the first hitting time

of the Ornstein–Uhlenbeck process with drift gradient −b started at x. More precisely, if

dYt =− bYtdt+ dWt, Y0 = x,(5.2)

for a one-dimensional Brownian motion W , then

(5.3) P
(

inf{s > 0 : Ys = κ} ∈ [t, t+ dt]

)
:= p(−b)

x,κ (t)dt.

D
ow

nl
oa

de
d 

08
/2

2/
18

 to
 1

28
.1

10
.1

84
.4

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STOCHASTIC LIMIT CYCLE OSCILLATORS 2223

Let I(ε, b) ⊂ R+ be the following closed interval

(5.4) I(ε, b) =

{
a ∈ R+ : C1ε+ C2

(
1 + sup

z∈Rd

∥∥F ′′(z)∥∥ )a2 ≤ ba

2
and

a ≤ 1

2
sup

α∈[0,2π]

∥∥∥∥Φ′′(α)− d

dθ

[
P (θ)P>(θ)

]∣∣
θ=α

P−>(α)P−1(α)Φ′
(
α
)∥∥∥∥−1

α

}
,

where C1 and C2 are positive constants (independent of ε and b) that are specified in Lemma
A.1. These constants can be written as a function of the O(1) parameters in (5.1a) and (5.1b).
The second condition in the above definition is to ensure that the SDE for βt is well-defined
as long as ‖ut − Φ(βt)‖βt ∈ I(ε, b).

The following theorem obtains bounds on how long it takes ‖ut − Φ(βt)‖βt to attain any
a in I(ε, b). The theorem is most useful in the regime

a ∈
[
O

(√
ε

b

)
, O

(
b/ sup

z∈Rd

∥∥F ′′(z)∥∥)],
where ‖F ′′(z)‖ is the Euclidean norm of the tensor F ′′. It is less useful for values of a towards
the lower end of I(ε, b), since ‖ut − Φ(βt)‖βt will very quickly attain O

(√
ε/b
)
, since in this

regime the fluctuations of the noise dominate the −b decay resulting from the stability of the
deterministic dynamics.

Recall that τ (defined in (2.18)) is the stopping time such that the SDE for the phase in
section 2 is well-defined for all t ≤ τ .

Theorem 5.1. For all a ∈ I(ε, b), if

(5.5) sup
s∈[0,T ]

‖us − Φ(βs)‖βs ≤ a,

then T ≤ τ . Furthermore, if ‖u0 − Φ(β0)‖β0 := x < a
2 , then

(5.6) P
(

sup
s∈[0,T ]

‖us − Φ(βs)‖βs ≥ a
)
≤
∫ T

0
p

(−b)
x̄,ā (u)du,

where x̄ = x/
√
λε and ā = a/2

√
λε, and λ is a positive constant that is given in (A.22). Note

that λ is determined by Π, G, and Q.

Remark 1. To facilitate the exposition, we have chosen ā = a/2
√
λε. In fact, we could

have chosen ā = ρa/
√
λε for any ρ ∈ (0, 1), and the bound would still hold in the limit ε/b→ 0.

Remark 2. We can use classical results on the first hitting time of the Ornstein–Uhlenbeck
process to derive the leading order asymptotics of the above [25, 1]. To leading order, as
b/ε→∞,

(5.7) p
(−b)
0,ā (t) ' bg

(
a2b

4λε

)
exp

{
− btg

(
a2b

4λε

)}
,

where g(z) =
√
z√

2π
exp{− z

2}. We find that for a ∈ I(ε, b), if T = o(g{ a2b4λε}
−1), then
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P(sups∈[0,T ] ‖us − Φ(βs)‖βs ≥ a) ' Tg{ a2b4λε} � 1. There are much more refined estimates
in the literature: note in particular the exact analytic expression in [1, Theorem 3.1].

6. Discussion and future work. In summary, the variational approach developed in this
paper determines the phase of a stochastic oscillator by requiring it to minimize a weighted
norm. We have demonstrated that, to leading order, the phase separates from the amplitude
and agrees with the isochronal phase. Hence, the linearization of our phase dynamics is
accurate over timescales of O(ε−1), which is the same order of accuracy as the isochronal phase
equation. In addition, our exact phase equation (2.32) is accurate over much longer timescales
of order O

(
exp(Cbε−1)

)
, recalling that b is the rate of decay of transverse fluctuations. There

exists a precise analytic expression for the phase SDE, as well as a stopping time τ up to which
this SDE applies. Furthermore, one can immediately determine the phase from any particular
realization of the fundamental SDE using (2.15) (as long as one takes the phase to be the
global minimum). This is an advantage of our method compared to the isochronal method,
since in most cases there does not exist an analytic solution for the isochronal method, and it
is difficult to implement in a computationally efficient way [2].

We noted in the introduction that Giacomin, Poquet, and Shapira [12, Lemma 4.1, 4.2]
also bound the probability of the system escaping a neighborhood of the limit cycle. They
use a different method than us, approximating the rate of change of the phase to be constant
over the course of one cycle. In the regime ε → 0, their results are comparable to ours.
However their bound is much less accurate than ours in the regime b → ∞, since their
bound predicts that the system will stay in a neighborhood of the limit cycle over times of
order exp(−Cε−1 exp(−4bω−1

0 )), where 2πω−1
0 is the period of the limit cycle. Also, ours is

in general more accurate for a limit cycle with large period (i.e., small ω0), as long as the
variables in (5.1a) and (5.1b) remain O(1). This comes from our particular choice of phase,
since we do not need to assume that the rate of change of the phase is approximately constant
over the course of one limit cycle. Herein lies the advantage of continually and dynamicalIy
adjusting the phase. Indeed the accuracy of our method for this regime can be seen from our
simulated results. Since ω0 is quite small relative to ε, the bound exp(−Cε−1 exp(−4bω−1

0 ))
of [12] is not particularly powerful but, on the other hand, our results demonstrate that the
system stays in a neighborhood of the limit cycle for a much longer time than their result
might predict. To be fair to [12], the aim of their paper is a little different from ours: they
are primarily looking at the asymptote of the winding number in the limit as ε→ 0.

The phase SDE (2.32) is thus very well suited to studying the long-time dynamics of the
phase on timescales of O

(
exp(Cbε−1)

)
. In section 5 we obtained powerful bounds on the

probability of the oscillator leaving any particular neighborhood of the oscillator over any
particular timescale. These bounds are very flexible, because they shed light on the mutual
scaling of the amplitude of the noise, rate of decay of transverse fluctuations, the size of the
neighborhood of the limit cycle, the period of the limit cycle, and the time the oscillator
spends in this neighborhood.

In forthcoming work, we will use the phase SDE of this paper to study the synchronization
of uncoupled oscillators subject to common noise. In particular, we will obtain precise bounds
on the probability of two synchronized oscillators desynchronizing, and conditions under which
two oscillators never desynchronize. Another interesting application of the phase SDE of this
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paper would be the effect of finite noise on oscillators with a strong decay of transverse
fluctuations [23].

Appendix A. Proof of Theorem 5.1.

Proof. We start with the first part of the theorem. From (2.17),

H(z, θ) = 1−
〈
z − Φ(θ),Φ′′(θ)

〉
θ

−
〈
z − Φ(θ), P (θ)P>(θ)

d

dθ

[
P (θ)P>(θ)

]−1
Φ′(θ)

〉
θ

= 1−
〈
z − Φ(θ),Φ′′(θ)− d

dθ

[
P (θ)P>(θ)

][
P (θ)P>(θ)

]−1
Φ′(θ)

〉
θ

,

and through an application of the Cauchy–Schwarz inequality to the above, it may be observed
that

H(ut, βt) ≥ 1− ‖ut − Φ(βt)‖βt

∥∥∥∥Φ′′(βt)−
d

dθ

[
P (θ)P>(θ)

]∣∣
θ=βt

P−>(βt)P
−1(βt)Φ

′(βt)∥∥∥∥
βt

.

It then follows from the definition of I(ε, b) that if sups∈[0,t] ‖us − Φ(βs)‖βs ≤ a for a ∈ I(ε, b),

then H(us, βs) ≥ 1
2 for all s ∈ [0, t] and, therefore,

(A.1) sup
s∈[0,t]

H(us, βs)
−1 ≤ 2.

This means that

(A.2) τ ≥ inf
{
s ≥ 0 : ‖us − Φ(βs)‖βs = a

}
.

In other words, the SDE for the phase βt that we derived in section 2 is well-defined as long
as ‖ut − Φ(βt)‖βt ≤ a.

We now prove the second part of the theorem. Recall that the amplitude term satisfies
(2.35). In the following it is convenient to perform the rescaling

√
εvt → vt:

dvt =
[
J
(
βt
)
vt + γ0(ut, βt)

]
dt+

√
εG̃(ut, βt)dWt,(A.3)

where

(A.4) γ0(ut, βt) = F (ut)− J(βt)vt −H(ut, βt)
−1Φ′(βt)

(〈
F (ut),Φ

′(βt)
〉
βt

+ εκ(ut, βt)
)

− ε

2
Φ′′(βt)H(ut, βt)

−2
〈
K(ut, βt)Φ

′(βt), QK(ut, βt)Φ
′(βt)

〉
and G̃(ut, βt) ∈ Rd×d is given by

G̃(ut, βt) = G(ut)−H(ut, βt)
−1Φ′(βt)Φ

′(βt)
>P−>

(
βt
)
P−1

(
βt
)
G(ut).

We now perform the change of variable wt = P−1(βt)vt, since ‖vt‖βt = ‖wt‖. Using Ito’s
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lemma, we find that

(A.5) dwt =
1

2

d2

dβ2
t

P−1(βt)vtdβtdβt − P−1
(
βt
)
P ′
(
βt
)
wtdβt + P−1

(
βt
)
dvt

− P−1
(
βt
)
P ′
(
βt
)
P−1

(
βt
)
dvtdβt.

As will be seen further below, the reason for this change of variable is that the drift of wt
decays uniformly (to leading order), so that the leading order behavior of the SDE is like a
stable Ornstein–Uhlenbeck process. We now demonstrate this. Recall from (2.10) that the
derivative of P (t) satisfies

(A.6) ω0P
′(θ) = J(θ)P (θ)− P (θ)S.

This means that

dwt =
1

2

d2

dβ2
t

P−1(βt)vtdβtdβt + ω−1
0

(
− P−1

(
βt
)
J(βt)vt + Swt

)
dβt

+ P−1
(
βt
)
dvt − P−1

(
βt
)
P ′
(
βt
)
P−1

(
βt
)
dvtdβt

and, therefore,

(A.7) dwt =
[
Swt + γ(ut, βt)

]
dt+

√
εP−1(βt)G̃(ut, βt)dWt

+
√
εω−1

0 H(ut, βt)
−1
{
− P−1

(
βt
)
J(βt)vt + Swt

}
Φ′(βt)

>P−>(βt)P
−1(βt)G(ut)dWt,

where

(A.8) γ(ut, βt) =
1

2

d2

dβ2
t

P−1(βt)vtdβtdβt − ω−1
0 P−1(βt)

(
J(βt)vt + γ0(ut, βt)

)
− Swt

+ ω−1
0

(
− P−1

(
βt
)
J(βt)vt + Swt

)
H(ut, βt)

−1
(〈
F (ut),Φ

′(βt)
〉
βt

+ εκ(ut, βt)
)

− εH(ut, βt)
−1P−1

(
βt
)
P ′
(
βt
)
P−1

(
βt
)
G̃
(
ut, βt

)
QG>(ut)P

−>(βt)P
−1(βt)Φ

′(βt)

and we have used the fact that

dβt =
√
εH(ut, βt)

−1
〈
P−1(βt)Φ

′(βt), P
−1(βt)G(ut)dWt

〉
+ F.V.T

=
√
εH(ut, βt)

−1Φ′(βt)
>P−>(βt)P

−1(βt)G(ut)dWt + F.V.T,

where F.V.T stands for “finite variation terms” (i.e., the drift terms). We write this as

(A.9) dwt =

[
Swt + γ(ut, βt)

]
dt+

√
εḠ(ut, βt)dWt,

where Ḡ(ut, βt) can be inferred from (A.7).
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Since the map w → ‖w‖2 is twice differentiable, we can apply Ito’s lemma to (A.9). We
find that

(A.10) d ‖wt‖2 =

[
2
〈
wt,Swt + γ(ut, βt)

〉
+ εtr

{
Ḡ(ut, βt)QḠ>(ut, βt)

}]
dt

+ 2
√
ε

〈
wt, Ḡ(ut, βt)dWt

〉
.

It follows from the stability assumption at the start of this paper that
〈
wt,Swt

〉
≤ −b ‖wt‖2,

which means that

(A.11) d ‖wt‖2 ≤
[
− 2b ‖wt‖2 + 2γ2(ut, βt)

]
dt+ 2

√
ε〈wt, Ḡ(ut, βt)dWt〉,

where
γ2(ut, βt) = 〈wt, γ(ut, βt)〉+

ε

2
tr
{

Ḡ(ut, βt)QḠ>(ut, βt)
}
.

Define the stopping time

(A.12) τ̂a = inf

{
s ≤ τ : ‖ws‖−1 γ2

(
us, βs

)
= ba/2

}
,

recalling that τ (defined in (2.18)) is the stopping time for which the SDE for βt is well-defined.
We determine an SDE for ‖wt‖ by applying Ito’s lemma to the square root function,

finding that for all times t ≤ τ̂a

(A.13) d ‖wt‖ ≤
√
ε ‖wt‖−1 〈wt, Ḡ(ut, βt)dWt

〉
+

(
− b ‖wt‖+ ‖wt‖−1 γ2(ut, βt)−

ε

2 ‖wt‖3
〈
QḠ>(ut)wt, Ḡ

>(ut, βt)wt
〉)
dt

≤
√
ε ‖wt‖−1 〈wt, Ḡ(ut, βt)dWt

〉
+

(
− b ‖wt‖+ ‖wt‖−1 γ2(ut, βt)

)
dt,

since ε
4‖wt‖3

〈
QḠ>(ut, βt)wt, Ḡ

>,βt(ut)wt
〉
≥ 0, because the covariance matrix Q is positive

semi-definite. Note that the coefficients of the above SDE are continuous and bounded in a
sufficiently small neighborhood of ‖wt‖ = 0. This is true for ‖wt‖−1 γ2 thanks to the inequality
in Lemma A.1, and it is true for the diffusion term thanks to the Cauchy–Schwarz inequality
(this will be clear in the following).

Now define yt = exp
(
bt
)
‖wt‖. Through Ito’s lemma, we find that

dyt = bytdt+ exp
(
bt
)
d ‖wt‖

and, therefore, for all times t ≤ τ̂a,

dyt ≤ exp
(
bt
){
b ‖wt‖ − b ‖wt‖+ ‖wt‖−1 γ2(ut, βt)

}
dt

+
√
ε ‖wt‖−1 exp

(
bt
)〈
wt, Ḡ(ut, βt)dWt

〉
.
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We integrate the above expression, before dividing both sides by exp(bt), and find that

‖wt∧τ̂a‖ ≤ exp
{
− b(t ∧ τ̂a)

}
‖w0‖+

√
ε

∫ t∧τ̂a

0
exp

(
b(s− t ∧ τ̂a)

)
‖ws‖−1 〈ws, Ḡ(us, βs)dWs

〉
+

∫ t∧τ̂a

0
exp

(
b(s− t ∧ τ̂a)

)
‖ws‖−1 γ2(us, βs)ds.

This means that

(A.14) ‖wt∧τ̂a‖ ≤ exp
{
− b(t ∧ τ̂a)

}
‖w0‖+

1

b
sup

s∈[0,t∧τ̂a]
‖ws‖−1

∣∣γ2(us, βs)|

+
√
ε

∫ t∧τ̂a

0
‖ws‖−1 exp

(
b(s− t ∧ τ̂a)

)〈
ws, Ḡ(us, βs)dWs

〉
≤ exp

{
− b(t ∧ τ̂a)

}
‖w0‖+

a

2
+
√
ε

∫ t∧τ̂a

0
‖ws‖−1 exp

{
b(s− t ∧ τ̂a)

}〈
ws, Ḡ(us, βs)dWs

〉
,

using the definition of τ̂a.
Define the stopping time

(A.15) τa,x = inf
{
τ̂a, τ̀a,x

}
,

where

τ̀a,x = inf

{
s ≥ 0 : x exp

(
− bs

)
+
√
ε

∫ s

0
‖wt‖−1 exp

(
b(t− s)

)〈
wt, Ḡ(ut, βt)dWt

〉
= a/2

}
.

(A.16)

It follows from (A.14) that for all s ∈ [0, τa,x],

(A.17) ‖ws‖ ≤ a.

This means that

(A.18) P
(
τa,x ≤ T

)
≤ P

(
There exists s ∈ [0, T ] such that either ζs − x ≥ exp(bs)

a

2

or

∣∣∣∣ 1

‖ws‖
γ2(us, βs)

∣∣∣∣ = ba/2, and sup
r∈[0,s]

‖wr‖ ≤ a
)

≤ P
(

There exists s ∈ [0, T ] such that ζs − x ≥ exp(bs)a/2

)
+ P

(
There exists s ∈ [0, T ] such that

∣∣γ2(us, βs)
∣∣ = ba/2

and sup
r∈[0,s]

‖wr‖ ≤ a
)
,

where ζs =
√
ε
∫ s

0 ‖wt‖
−1 exp

(
bt
)〈
wt, Ḡ(ut, βt)dWt

〉
.

Now it follows from (A.2) that

P
(
τ ≤ T and sup

s∈[0,T ]
‖ws‖ ≤ a

)
= 0.
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Furthermore, it follows from Lemma A.1 that

P
(

There exists s ∈ [0, τ ] such that
∣∣ ‖ws‖−1 γ2(us, βs)

)∣∣ = ba/2 and sup
t∈[0,s]

‖wt‖ ≤ a
)

≤ P
(

There exists s ∈ [0, τ ] such that C1ε+ C2 ‖ws‖2 = ba/2 and sup
t∈[0,s]

‖wt‖ ≤ a
)

= 0,

thanks to the fact that a ∈ I(ε, b), which we recall is defined in (5.4).
It therefore remains for us to prove that

(A.19) P
(

There exists s ∈ [0, T ] such that ζs − x ≥ exp(bs)
a

2

)
≤
∫ T

0
p

(−b)
x̄,ā (y)dy,

recalling that ā = a/2
√
λε and x̄ = x/

√
λε.

By the Dambis–Dubins–Schwarz theorem [24, Theorem 1.6, Page 181], Xt := ζιt is Brow-
nian, where

ιs = inf
{
r ≥ 0 : ηr ≥ s

}
and(A.20)

ηr := ε

∫ r

0
‖ws‖−2 exp

(
2bs
)〈
Ḡ>(us, βt)ws, QḠ

>(us, βs)ws
〉
ds.(A.21)

Let λG,P be an upper bound for
∥∥Ḡ(ut, βt)

∥∥ (the spectral norm) that is uniform over all
βt ∈ R and ut ∈ Rd, recalling the implicit definition of Ḡ in (A.9). Such an upper bound
exists, because by assumption ‖G(ut)‖ possesses a uniform upper bound. Similarly P−1(βt)
and J(βt) possess uniform upper bounds because they are continuous and 2π-periodic. Since
Ḡ(ut, βt) is equal to sums and multiplications of matrices with uniform upper bounds, it must
also possess a uniform upper bound. It follows that〈

Ḡ>(us, βs)ws, QḠ
>(us, βs)ws

〉
=
〈
ws, G(us, βs)QḠ

>(us, βs)ws
〉

≤ λ ‖ws‖2 ,(A.22)

where λ = λ2
G,PλQ. We find that ηr ≤ η̄r := ε

2b{exp(br)− 1}λ. Writing ῑs = inf{r ≥ 0 : η̄r ≥
s}, we have that ῑs ≤ ιs and

P
(

There exists r ∈ [0, T ] , ζr − x ≥ exp(br)
a

2

)
= P

(
There exists r ∈ [0, T ] , Xηr − x ≥ exp(br)

a

2

)
= P

(
There exists y ∈ [0, ηT ] , Xy − x ≥ exp(bιy)

a

2

)
≤ P

(
There exists y ∈ [0, η̄T ] , Xy − x ≥ exp

(
bιy
)a

2

)
≤ P

(
There exists y ∈ [0, η̄T ] , Xy − x ≥ exp

(
bῑy
)a

2

)
.(A.23)
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Now suppose that Z satisfies the SDE

dZt =− bZtdt+
√
λεdWt,(A.24)

Z0 =x,(A.25)

for a 1-dimensional Brownian motion W . The solution of this SDE is

(A.26) Zt = exp
(
− bt

)
x+
√
λε

∫ t

0
exp

(
b(s− t)

)
dWs.

Now let αt =
√
λε
∫ t

0 exp
(
bs
)
dWs, and observe that the quadratic variation of αt is η̄t. This

means that

P
(

sup
t∈[0,T ]

Zt ≥
a

2

)
= P

(
There exists t ∈ [0, T ] such that αt + x ≥ a

2
exp

(
bt
))

= P
(

There exists t ∈
[
0, η̄T

]
such that υt + x ≥ a

2
exp

(
bῑt
))

(A.27)

by the Dambis–Dubins–Schwarz theorem, since υt := αῑt is Brownian. It can be observed that
the expressions in (A.27) and (A.23) are equal.

This means that

P
(

There exists t ∈ [0, T ] such that Zt ≥
a

2

)
= P

(
There exists y ∈ [0, η̄aT ] such that Xy − ‖u0 − Φ(β0)‖β0 ≥ exp(bῑy)

a

2

)
.

Now it can be seen that Z̄t := 1√
λε
Zt is an Ornstein–Uhlenbeck process and, therefore,

P
(

There exists t ∈ [0, T ] such that Zt ≥
a

2

)
= P

(
There exists t ∈ [0, T ] such that Z̄t ≥

a

2
√
ελ

)
=

∫ T

0
p

(−b)
x̄,ā (s)ds,

and we have proved the required bound in (A.19).

Lemma A.1. There exist positive constants C1 and C2 such that, as long as ‖wt‖ ≤ a ∈
I(ε, b), ∣∣γ2(ut, βt)

∣∣ ≤ C1 ‖wt‖ ε+ C2

(
1 + sup

z∈Rd

∥∥F ′′(z)∥∥) ‖wt‖3 .
Proof. We can decompose γ2 = γ1

2 + εγ2
2 , where γ1

2 comprises higher-order corrections to
the linearized behavior, and γ2

2 arises from quadratic and cross variations. In the following
equations, since vt = P (βt)

−1wt and P (βt)
−1 is continuous on S1, it must be the case that
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for some constant CP , supθ∈[0,2π]

∥∥P−1(θ)
∥∥ ≤ CP and, therefore, ‖vt‖ ≤ CP ‖wt‖. Using the

definitions in (A.4), the higher-order corrections to the linearized behavior are

γ1
2 =

〈
wt, P

−1(βt)

{
F (ut)−H(ut, βt)

−1Φ′(βt)
〈
F (ut),Φ

′(βt)
〉
βt

− J
(
βt
)
vtH(ut, βt)

−1
〈
F (ut),Φ

′(βt)
〉
βt

}〉
+ ω−1

0

〈
wt,Swt

〉(
ω0 −H(ut, βt)

−1
〈
F (ut),Φ

′(βt)
〉
βt

)
,

and the quadratic/cross-variation terms are

(A.28) γ2
2 = −κ(ut, βt)H(ut, βt)

−1

〈
wt, P

−1(βt)Φ
′(βt)

〉
− H(ut, βt)

−2

2

〈
K(ut, βt)Φ

′(βt), QK(ut, βt)Φ
′(βt)

〉〈
wt, P

−1(βt)Φ
′′(βt)

〉
+H(ut, βt)

−1

〈
wt, P

−1
(
βt
)
P ′
(
βt
)
P−1

(
βt
)
G̃
(
ut, βt

)
QG>(ut, βt)P

−>(βt)P
−1(βt)Φ

′(βt)

〉
+

1

2
tr
{

Ḡ(ut, βt)QḠ>(ut, βt)
}

+
1

2

d2

dβ2
t

P−1(βt)vtdβtdβt + ω−1
0 H(ut, βt)

−1
(
− P−1(βt)J(βt)vt + Swt

)
κ(ut, βt).

We start by bounding the quadratic and cross-variation terms, i.e., γ2
2 . Now since, by assump-

tion, ‖wt‖ ≤ a ∈ I(ε, b), it follows from (A.1) that

(A.29) H(us, βs)
−1 ≤ 2.

Our assumption in (5.1a)–(5.1b) means that there are uniform bounds for ‖G(ut)‖, ‖Q‖,
‖P (βt)‖,

∥∥P (βt)
−1
∥∥, and ‖P ′(βt)‖. It follows from this that there are uniform bounds for

‖Φ′(βt)‖, ‖Φ′′(βt)‖.
We now turn to bounding γ1

2 . First, it follows from the uniform boundedness of P−1 that
for some constant CP ,

‖wt‖ =
∥∥P−1(βt)vt

∥∥ ≤ CP ‖vt‖ .
Now we saw in the equations following (3.6) that

H(ut, βt)
−1
〈
F (ut),Φ

′(βt)
〉
βt

= ω0 +O
(
‖vt‖2

)
.

This means that〈
wt,Swt

〉(
ω0 −H(ut, βt)

−1
〈
F (ut),Φ

′(βt)
〉
βt

)
' O

(
‖wt‖4

)
.

It remains for us to show that F (ut)−J
(
βt
)
vt−Φ′

(
βt
)

= O(‖vt‖2). But this follows from the
multivariate Taylor remainder theorem, since for some υ ∈ [0, 1],

(A.30) F
(
Φ(βt) + vt

)
= F

(
Φ(βt)

)
+ J

(
βt
)
vt +

1

2
F ′′
(
υΦ(βt) + (1− υ)vt

)
· vt · vt.

D
ow

nl
oa

de
d 

08
/2

2/
18

 to
 1

28
.1

10
.1

84
.4

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2232 PAUL C. BRESSLOFF AND JAMES N. MACLAURIN

By assumption, the second derivative of F is uniformly bounded, and we have therefore
obtained the required bound.
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