
Physical Biology
     

PAPER

Bidirectional transport model of morphogen gradient formation via
cytonemes
To cite this article: Paul C Bressloff and Hyunjoong Kim 2018 Phys. Biol. 15 026010

 

View the article online for updates and enhancements.

This content was downloaded from IP address 128.110.184.42 on 10/02/2018 at 18:59

https://doi.org/10.1088/1478-3975/aaa64c


© 2018 IOP Publishing Ltd

1.  Introduction

It has been known for some time that protein 
(morphogen) concentration gradients play a 
crucial role in the spatial regulation of patterning 
during development [37]. That is, a spatially varying 
concentration of a morphogen protein drives a 
corresponding spatial variation in gene expression 
through some form of concentration thresholding 
mechanism. For example, in regions where the 
morphogen concentration exceeds a particular 
threshold, a specific gene is activated (see figure 1(a)). 
Hence, a continuously varying morphogen 
concentration can be converted into a discrete spatial 
pattern of differentiated gene expression across a 
cell population. The most common mechanism of 
morphogen gradient formation is thought to involve 
a localized source of protein production within the 
embryo, combined with diffusion away from the 
source and subsequent degradation [1, 22, 24, 31, 
33, 36]. The latter can arise either from degradation 
within the extracellular domain or by binding 
to membrane bound receptors and subsequent 

removal from the diffusing pool by endocytosis (see 
figure 1(b)). The rates of binding and internalization 
thus control the effective degradation rate. The bound 
receptors can also initiate a signaling cascade resulting 
in the activation or repression of one or more genes. 
Coupling these two processes then leads to an effective 
degradation rate that depends on the local morphogen 
concentration. For example, a morphogen may 
activate the expression of its cognate receptor, thus 
increasing the morphogen degradation rate. This 
results in a faster degradation rate in regions of high 
morphogen concentration [15]. It is also possible 
that morphogens are transiently trapped by a cell. 
Indeed, transient trapping has been suggested as an 
alternative transport mechanism for morphogens 
known as transcytosis, whereby repeated rounds of 
endocytosis and exocytosis results in a dispersion of 
the molecules within the tissue [9, 21]. In addition to 
the establishment of morphogen gradients, another 
important issue concerns possible mechanisms for 
maintaining the robustness of morphogen-based 
patterning with respect to changes in environmental 
conditions such as the morphogen production rate, 
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and stochastic process at the level of receptors and gene 
circuits that interpret the signal [2, 8, 15, 23, 26, 35, 39], 
see figure 1(c). Robustness is related to the problem 
of morphogen gradient scaling, whereby the gradient 
automatically adjusts to variations in the size of tissue 
[3, 4].

Recently, there has been growing interest in an 
alternative mechanism for delivering morphogens 
to embryonic cells that employs so-called cytonemes 
[19, 20]. Cytonemes are thin, dynamic cellular exten-
sions with a diameter of around 100 nm and lengths 
that vary from 1 to 100 μm, see figure 2. Although these 
filaments are observed in multiple biological systems, 
their precise function is still controversial. Neverthe-
less, cytonemes are actin-rich structures that can 
extend and retract relatively fast, and their tips have 
been seen to attach to other cells. It has thus been sug-
gested that morphogens can be actively transported 
between source and target cells along actin filaments 
within a cytoneme via the action of myosin motors. 
One potential advantage of this active transport mech
anism is that it provides an adaptable and precise form 
of cellular communication. Cytonemes have been 
most extensively characterized in the wing imaginal 
disc of Drosophila and have been associated with the 
transport of both morphogenetic protein Decapenta-
plegic (Dpp) and Hedgehog (Hg) [7, 10, 14, 18, 27, 28]. 
Drosophila cytonemes either emanate from the recep-
tor-bearing target cells, transporting their receptors 
to the vicinity of source cells, or extend from the mor-
phogen-producing cells, transporting morphogens to 

target cells. Increasing experimental evidence indicates 
that cytonemes also mediate morphogen transport in 
vertebrates [16, 30]. Examples include sonic hedgehog 
(Shh) cell-to-cell signaling in chicken limb buds [29] 
and Wnt signaling in zebrafish [32].

In contrast to diffusion-based mechanisms, there 
has been almost no mathematical modeling of cyto-
neme-based morphogenesis. One notable excep-
tion is a compartmental model due to Teimouri and 
Kolomeisky [33, 34]. These authors consider a discrete 
set of N  +  1 cells arranged on a line. A source cell at 
one end makes direct contact with each of the N tar-
get cells via a single cytoneme per cell. Assuming that 
the rate wn of morphogen transport decreases with 
distance Ln between target and source cells, they show 
how a steady-state morphogen gradient can be estab-
lished. Their model suggests that the direct delivery 
mechanism may be more robust than diffusion, but 
comes at an energy cost.

In this paper, we extend the model of Teimouri and 
Kolomeisky [33] by explicitly modeling the transport 
of morphogens along actin filaments. More specifi-
cally, we consider a simple bidirectional motor trans-
port model, in which active particles carrying mor-
phogens randomly switch between anterograde and 
retrograde transport. A crucial aspect of our model is 
the choice of boundary conditions at the source and 
target ends of each cytoneme. We take particles to be 
injected at a rate that is proportional to the particle 
concentration in the source cell, whereas we impose 
an absorbing boundary condition at the target end. 

Figure 1.  A schematic diagram illustrating how a morphogen gradient acts on embryo cells. (a) Thresholding of the morphogen 
concentration gradient activate different genes in cells at different locations (indicated by different colors). (b) Morphogens act as 
signaling molecules that bind to cell receptors and initiate signaling cascades that switch genes on or off. This may include genes 
responsible for synthesis of the receptors (nonlinear feedback). (c) Morphogenesis has to be robust to noise at different levels, 
including the morphogen production rate, receptors and genes.
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A number of different features of our model are 
explored. First, we obtain an analytical steady-state 
solution of the transport equations, which enables us 
to identify the phenomenological rate wn of [33] with 
a biophysically derived expression. Interestingly, the 
energy cost in our model arises from the presence of 
retrograde transport. Second, we calculate the analog 
of the accumulation time considered in diffusion-
based mechanisms [5, 6, 17]. This is important in order 
to check that the time to establish a morphogen gradi-
ent is consistent with developmental stages. Finally, we 
investigate the robustness of the model to fluctuations 
in the rate of morphogen production in the source cell.

2.  Deterministic compartmental model

We begin by briefly reviewing the deterministic model 
of [33, 34]. Consider N  +  1 cells arranged in a line, and 
introduce the cell label n = 0, 1, . . . , N , see figure 3. 
Suppose that the cell n  =  0 acts as the source cell and 
produces morphogens at a rate Q. (In anticipation of 
the motor-transport flux model, we will take a single 
particle to be a packet of signaling molecules that can 
be packed into a vesicle). The source cell also projects N 
tubular cytonemes, each of which attaches to a unique 
downstream cell. For simplicity, multiple contacts 

between the source cell and another cell are ignored 
so that each cytoneme inherits the label n of its target 
cell, n = 1, . . . , N . Morphogens are transported to the 
nth target cell via the nth cytoneme at an n-dependent 
rate wn, n = 1, . . . , N . One interpretation of 1/wn is 
the mean arrival time of signaling molecules to reach 
the target cell, assuming that this process has reached 
a stationary state. Finally, once morphogens have been 
delivered to a cell, they degrade at a rate k.

Let Pn(t) denote the density of signaling molecules 
at the nth cell at time t. The corresponding evolution 
equations take the form [33]

dP0

dt
= Q −

N∑
n=1

wnP0(t),� (2.1a)

dPn

dt
= wnP0(t)− kPn(t), n = 1, . . . , N.� (2.1b)

Given the initial conditions Pn(0)  =  0 for all n, these 
equations have the solution

P0(t) =
Q

η

[
1 − e−ηt

]
,� (2.2a)

Pn(t) =

[
Qwn

η(η − k)

]
e−ηt −

[
Qwn

k(η − k)

]
e−kt +

Qwn

ηk
,

� (2.2b)

Figure 2.  Micrograph showing cytonemes extending from tracheal cells of a Drosophila larva, which are marked with membrane-
tethered mCherry fluorescent protein. Some of the cytonemes contact the underlying wing imaginal disc and transport the Dpp 
morphogen protein (marked with Green Fluorescent Protein) to the tracheal cells. (Creative commons figure originally generated by 
Thomas Korenberg.).

wN

cytonemes

0 1 2 3

...

N

w3

cells

w2w1

Q

morphogen

Figure 3.  Schematic diagram of the cytoneme-based transport model introduced in [33]. A source cell (dark blue) generates 
morphogens at a rate Q, which are then delivered to other cells (light blue) via a set of tubular cytonemes. It is assumed that a single 
cytoneme links the source cell (labeled n  =  0) to each target cell (labeled n = 1, . . . , N), and transports morphogens (red dots) at a 
rate wn.
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for n = 1, . . . , N , where η =
∑N

n=1 wn and η �= k . It 
follows that the stationary solution (t → ∞) is

P∗
n =

Q

kη
wn, P∗

0 =
Q

η
.� (2.3)

In order to determine a spatial morphogen gra-
dient, it is necessary to specify the length Ln of the 
nth cytoneme and how wn depends on Ln. Two for
mulations are considered in [33]. The first uses a sta-
tistical mechanical argument, whereby the rate of 
transport along a cytoneme is determined by the free-
energy difference ∆G(n) arising from a morphogen 
being displaced from the source cell to the target cells:

wn = We−∆G(n)/kBT ,

where W is the background rate when 
∆G(n) = 0. Furthermore, the cytoneme length is 
taken to be Ln  =  An and it is assumed that an amount 
of energy εkBT  is spent in transferring a signaling 
molecule a distance l (presumably by active motor-
driven transport). Hence,

∆G(n) =
Ln

l
εkBT =

nkBT

ξ
, ξ = l/Aε.

Finally, from equation  (2.3) we have the stationary 
solution profile

P∗
n =

QW

kη
e−n/ξ , η =

e−1/ξ − e−(1+N)/ξ

1 − e−1/ξ
.� (2.4)

This model thus predicts that the stationary 
distribution decays exponentially with spatial 
variable n, and the length constant ξ is larger when 
the transport is more efficient (smaller ε). The 
second model formulation treats each cytoneme as 
a one-dimensional lattice and consider transport of 
morphogens as a totally asymmetric exclusion process 
(TASEP), and identifies wn with the stationary particle 
flux through the cytoneme to the nth target, see [33] 
for more details.

One of the potential limitations of the above model 
is that it ignores the dynamics of the transport pro-
cess along the cytonemes, in the sense that wn is deter-
mined from a stationary process. However, since the 
flux through the cytoneme couples to the dynamically 
varying concentration P0(t), we expect wn also to be 

time-dependent. Although this would not affect the 
stationary-state, it could influence the approach to sta-
tionarity.

3.  Bidirectional transport model

Consider a single cytoneme of length L linking a source 
cell to a single target cell, see figure 4. We now explicitly 
model the transport of morphogen containing vesicles 
by treating the cytoneme as a one-dimensional domain 
of length L and denote the density of motor-cargo 
complexes at x ∈ [0, L] along the cytoneme by u(x, t). 
We assume that the complexes can be partitioned into 
anterograde (+) and retrograde (−) subpopulations 
labeled by u+ (x, t) and u−(x, t), respectively. (In the 
case of myosin transport along actin filaments, the 
retrograde flow would be due to treadmilling [25, 38]. 
For recent evidence of mysosin motor-based transport 
of puncta along cytonemes within the Drosophila 
wing imaginal disc, see [14]).) The corresponding 
differential Chapman–Kolmogorov equation takes the 
form

∂u+

∂t
= −v+

∂u+

∂x
+ αu− − βu+� (3.1a)

∂u−

∂t
= v−

∂u−

∂x
− αu− + βu+,� (3.1b)

where v± are the speeds of the  ±  states, α is the rate 
of switching from the retrograde to the anterograde 
state, and β is the switching rate from anterograde 
to retrograde. Equations  (3.1a) and (3.1b) are 
supplemented by the boundary conditions

u+(0, t) = κP0(t), u−(L, t) = 0,� (3.2)

where P0(t) is the density of vesicles in the source cell 
and κ is an injection rate. We assume that initially there 
are no particles within the cytonemes so u±(x, 0) = 0 
for all 0 � x � L. The transport component of the 
model couples to the number of vesicles in the source 
and target cells according to

dP0

dt
= Q − J(0, t),

dP1

dt
= J(L, t)− kP1(t),� (3.3)

where Q is the particle production rate in the source 
cell and J(x, t) is particle flux at position x at time t,

Q

x = 0 x = L

actin filament

v+v-

Figure 4.  Bidirectional transport model of a single cytoneme.
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J(x, t) = v+u+(x, t)− v−u−(x, t).� (3.4)

Example numerical solutions of the full system of 
equations are shown in figure 5. It can be seen that the 
morphogen concentrations in the source and target 
cells aproach steady-state values as t → ∞. (In all 
figures we take the concentration to be dimensionless 
by defining a baseline concentration Pbase := Q/α and 
setting Pbase = 1.)

3.1.  Stationary solution
We now calculate the steady-state solution P∗

0 , P∗
1  as a 

function of cytoneme length. Setting time derivatives 
to zero and adding equations (3.1a) and (3.1b) gives

d

dx
(v+u+(x)− v−u−(x)) = 0.

It follows that there is a stationary flux J(x)  =  J∗1 .  
Setting dPn/dt = 0 in equation  (3.3) implies that 
J∗1   =  J(0)  =  Q and P∗

1 = Q/k. Using these results to 
eliminate u− from equation (3.1a), we have

du+

dx
+ γu+ = − αQ

v+v−
, γ =

βv− − αv+
v+v−

.

This has the solution (after imposing the boundary 
condition at x  =  0)

u+(x) = κP∗
0 e−γx − αQ

γv+v−

[
1 − e−γx

]
.� (3.5)

(In the non-generic case that γ = 0, the concentration 
decreases linearly with x.) Finally, imposing the 
absorbing boundary condition at x  =  L, we can 
determine P∗

0 . We thus obtain the results

P∗
0 =

Q

w(L)
, P∗

1 =
Q

k
,� (3.6)

where

w(L) =
κv+e−γL

1 + α [1 − e−γL] /γv−
.� (3.7)

Note that w(L) > 0, since e−γL − 1 has the same sign 
as γ. An important quantity, which generalizes to the 
multi-cell case, is the ratio of the target and source 
densities,

P∗
1

P∗
0

=
w(L)

k
.� (3.8)

The length-dependence of this ratio is determined by 
the function w(L), which we identify as an effective 
cytoneme ‘conductance’.

Two results follow from this. First, from (3.7), bidi-
rectional transport can lead to a stationary flux that 
is an exponentially decaying function of cytoneme 
length provided that

v =
αv+ − βv−

α+ β
< 0,

α

γv−
� 1� (3.9)

where v is the mean velocity of a motor-cargo 
complex. That is, in our dynamical transport model, 
spending sufficient time in the retrograde state 
effectively provides a free energy cost for transporting 
morphogens from the source cell to the target cell. 
Second, the asymptotic value limL→∞ w(L) depends 
on the sign of v, see figure 6. If v < 0, then w(L) decays 
to zero as cytoneme length tends to infinity. On the 
other hand, if v > 0, then the anterograde transport 
state is dominant and one finds that

lim
L→∞

w(L) = κv+

(
1 − βv−

αv+

)
.� (3.10)

Interestingly, a recent study of cytoneme-based 
transport in the wing imaginal disc of Drosophila pro-
vides evidence for a significant retrograde component 
of motor-based transport [14]. They observed puncta 
moving at similar anterograde and retrograde speeds 
of around 0.4 μm s−1. This does not necessarily imply 
that γ = 0, since the switching rates α and β could 
differ. Thus, rather than taking v− < v+ and α = β, 
we could obtain a non-zero γ by taking v+ = v− and 
α �= β. In [14], periods between switching had an 

10
Time t [100 sec]

0
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4
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nt

ra
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n
P0(t)
P1(t)
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0
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1

F
lu

x/
Q

J(0,t)
J(L,t)
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Time t [100 sec]

2 4 6 80

(a) (b)

Figure 5.  Numerical solutions of the transport model for a single cytoneme. (a) Plots of morphogen concentrations P0(t), P1(t) in 
the source and target cells as a function of time. (b) Corresponding plots of fluxes J(0, t) and J(L, t) at the two ends of the cytoneme. 
Morphogen is generated in source cell, P0(t), enters into cytoneme. Parameter values are as follows: v+   =  0.2 μm s−1, v−  =  0.1 μm 
s−1, α = 0.1 s−1, β = 0.1 s−1, Q  =  0.1 s−1, κ = 0.01 s−1, k  =  0.05 s−1, L  =  10 μm s−1. It follows that γ = −0.5 μm−1.
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upper bound of 40s, which implies that α,β > 0.02 
s−1. (It would be straightforward to modify our choice 
of units so that our chosen parameters are comparable 
to [14], namely by taking the unit of time to be 10 sec-
onds rather than 1 second. This would not affect any of 
our conclusions.)

3.2.  Multiple target cells
One can extend the single cytoneme model to multiple 
cytonemes of length Ln linking a source cell to multiple 
target cells, n = 1, . . . , N . We now have to specify the 
relative probability fn that a morphogen is injected into 
the nth cytoneme, see figure 7. Let un

+(x, t) and un
−(x, t) 

be anterograde and retrograde subpopulations in 
the cytoneme contacting the nth target cell. Then the 
bidirectional model for un

± takes the same form as 
equations (3.1a) and (3.1b) on x ∈ (0, Ln),

∂un
+

∂t
= −v+

∂un
+

∂x
+ αun

− − βun
+� (3.11a)

∂un
−

∂t
= v−

∂un
−

∂x
− αun

− + βun
+,� (3.11b)

with the modified boundary conditions

un
+(0, t) = κfnP0(t), un

−(Ln, t) = 0.� (3.12)

Extending (3.3) to the case of multiple target cells 
yields

dP0

dt
= Q −

N∑
m=1

Jm(0, t),
dPn

dt
= Jn(Ln, t)− kPn

�
(3.13)

where

Jn(x, t) = v+un
+(x, t)− v−un

−(x, t).

Solving the steady-state equations shows that

v+un
+(x)− v−un

−(x) = J∗n ,� (3.14)

where J∗n  is the stationary flux reaching the n-th target 
cell, and

un
+(x) = κfnP∗

0 e−γx − αJ∗n
γv+v−

[
1 − e−γx

]
.� (3.15)

Imposing the absorbing boundary condition at 
x  =  Ln implies that J∗n = fnP∗

0 w(Ln), with w(L) given 
by equation (3.7). Finally, the stationary versions of 
equation (3.12) show that

Cytoneme length L [µm]
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R
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Figure 6.  Transport rate w(L) plotted as a function of cytoneme length L. (a) γ > 0 so that v < 0 and the flux decays asymptotically 
to zero. (b) γ < 0 so that v > 0 and the asymptote is non-zero. Same parameter values as figure 5 except for v− and hence γ. (Units of 
γ are μm−1.).

 κ
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Figure 7.  Allocation of resources in a source cell. (a) Uniform distribution of morphogens across N  =  3 cytonemes.  
(b) Nonuniform distribution of morphogens across N  =  3 cytonemes.
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P∗
0 =

Q∑N
m=1 wm

, P∗
n =

Q

k

wn∑N
m=1 wm

=
wn

k
P∗

0 ,�

(3.16)

where wn = fnw(Ln). We thus recover the stationary 
solution of the compartmental model given by 
equation (2.3), except now wn is derived explicitly from 
our transport model. It should also be noted that one 
cannot identify the time-dependent equations (3.13) 
with (3.3), since the flux rate wnP0(t) �= Jn(Ln, t) for 
finite t.

For the sake of illustration, we take fn = f (Ln) and 
consider three different choices for f: the uniform dis-
tribution

fU(Ln) = 1/N,� (3.17)

and the monotone increasing/decreasing distributions

fI(Ln) =
1

N1

[
e(Ln−L1)/4 + 1

]
, fD(Ln) =

1

N2

[
e(LN−Ln) + 1

]
,

� (3.18)

where N1 and N2 are normalization constants such 
that 

∑N
n=1 f (Ln) = 1. Since each distribution can 

be re-expressed as a function of cytoneme length, 
fn = f (Ln), it follows that we can use equation (3.16) to 
determine the steady-state morphogen concentration 
P∗

n = P∗(Ln). The results are shown in figure 8. Note, 
in particular, that allocating resources to longer 
cytonemes can actually reverse the gradient so that the 
concentration increases with distance of a target cell 
from the source cell. This suggests that one possible 
advantage of cytoneme-based rather than diffusion-
based morphogen gradient formation is that the 
former has an additional mechanism of regulatory 
control, namely, determining how morphogenic 
resources are allocated to the various cytonemes 
projecting from a source cell. We model this in terms 
of a nonuniform injection probability distribution fn. 

One physical mechanism underlying a non-uniform 
distribution could be variations in the number of 
cytonemes per target cell.

4.  Properties of cytoneme-based 
morphogen gradient

4.1.  Accumulation time
So far we have only considered the steady-state 
solution of the cytoneme-based model of morphogen 
gradient formation. As in the case of diffusion-based 
models, it is also important to consider the dynamics 
of gradient formation. In particular, we need to 
address the question of whether or not the time to 
form the morphogen gradient is small compared 
to the time of cell differentiation. The latter process 
involves surface receptors measuring the local value 
of the extracellular morphogen concentration and 
translating this information into a corresponding 
change in the activation of its signaling pathways and 
gene expression. If gradient formation is relatively fast, 
then cell fate is determined by the steady-state value 
of the local morphogen concentration, otherwise 
the cell has to interpret a time-varying morphogen 
concentration.

In order to characterize the time-dependent 
approach to steady-state, we follow recent studies of 
diffusion-based models by considering the accumula-
tion time [5, 6, 17] . First, we introduce the function

Rn(t) = 1 − Pn(t)

P∗
n

,

which represents the fractional deviation of the 
concentration from the steady-state P∗

n . Assuming that 
Rn(t) is smooth enough and Pn(0)  =  0, then 1  −  Rn(t) 
is the fraction of the steady-state concentration that 
has accumulated by time t. The accumulation time 
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Figure 8.  Steady-state morphogen gradients for various choices of injection distribution fn = f (Ln) with N  =  10 and Ln  =  n. (a) 
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distribution fD. (b) Corresponding steady-state morphogen gradients P∗

n = P∗(Ln). Other parameter values are as figure 5.
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is then defined by analogy with mean first passage 
times. That is, we average the time with respect to the 
accumulation time density according to

τn =

∫ ∞

0
t
∂

∂t
(1 − Rn(t)) dt =

∫ ∞

0
Rn(t)dt.�

(4.1)
The accumulation time can be calculated using Laplace 
transforms. That is, defining

R̂n(s) =

∫ ∞

0
Rn(t)e

−stdt,

we have τn = lims→0 R̂(s). Integration by parts proves 
that lims→0 sP̂n(s) = P∗

n. Hence,

τn = lim
s→0

1

s

(
1 − sP̂n(s)

P∗
n

)
= − 1

P∗
n

d

ds
sP̂n(s)

∣∣∣
s=0

.

� (4.2)

The next step is to evaluate P̂n(s). Taking Laplace 
transforms of the second equation in (3.13) yields

sP̂n(s) =
v+

s + k
· sûn

+(Ln, s),

where we have used the initial condition un
±(L, 0) = 0. 

Substituting this and equations (3.16) into (4.2) and 
using

lim
s→0

sûn
+(Ln, s) = u+(Ln,∞) =

1

v+
Jn(Ln,∞) =

k

v+
P∗

n ,

we have

τn =
1

k
−

v+
∑

m wm

Qwn

d

ds
sûn

+(Ln, s)
∣∣

s=0
.� (4.3)

Now we want to find ûn
+(x, s). Introduce the operators 

L+ = 1
α (∂t + v+∂x + β), L− = 1

β (∂t − v−∂x + α)u− 

and L = L−L+. We can then rewrite equations (3.1a) 
and (3.1b) for un

± on x ∈ [0, Ln] as

L+un
+ = un

−, L−un
− = un

+.� (4.4)

Since L+ and L− commute, it follows that 
Lun

± = un
±, which is a version of the Telegrapher’s 

equation. Imposing the initial conditions un
±(x, 0) = 0 

for x ∈ [0, Ln], and taking Laplace transforms yields

∂2
x ûn

±(x, s)− 2
(

sδ − γ

2

)
∂xûn

±(x, s)

− s(s + α+ β)

v+v−
ûn
±(x, s) = 0,

where 2δ = 1/v− − 1/v+. The corresponding general 
solution is given by

ûn
±(x, s) =

[
An
±(s)e

f (s)x + Bn
±(s)e

−f (s)x
]

e(sδ−γ/2)x

� (4.5)

where the coefficients A(s), B(s) are determined by the 
corresponding boundary conditions (3.12), and

4f 2(s) =

(
1

v+
+

1

v−

)2

s2

+ 2

(
1

v+
+

1

v−

)(
β

v+
+

α

v−

)
s + γ2.

Taking the time derivative of the boundary condi-
tion at x  =  0, we have

∂tu
n
+(0, t) = fnκ∂tP0(t)

= fnκ[Q −
∑

m

(v+um
+(0, t)− v−um

−(0, t))].

Laplace transforming this equation then yields

s

fnκ
(An

+(s) + Bn
+(s)) + v+

N∑
m=1

(Am
+(s) + Bm

+(s))

= v−

N∑
m=1

(Am
−(s) + Bm

−(s)) +
Q

s
.

�

(4.6)

Similarly, Laplace transforming the remaining 
boundary condition at x  =  Ln gives

An
−(s)e

Lnf (s) + Bn
−(s)e

−Lnf (s) = 0.� (4.7)

We still need to generate two more equations for the 
four unknown coefficients An

±(s) and Bn
±(s) for fixed 

s and n. This can be achieved by Laplace transforming 
the first equation of (4.4),

(s + v+∂x + β)ûn
+(x, s) = αûn

−(x, s),

substituting for ûn
± using (4.5), and comparing 

coefficients. We thus find that

g(s)An
+(s) = αAn

−(s), h(s)Bn
+(s) = αBn

−(s),�

(4.8)where

g(s) = (1 + v+δ)s +
(
β − v+γ

2

)
+ v+f (s),

h(s) = (1 + v+δ)s +
(
β − v+γ

2

)
− v+f (s).

Substituting equations  (4.7) and (4.8) into (4.6) 
generates the following equation  for the coefficients 
An
+:

s
(

h(s)− g(s)e2Lnf (s)
)

An
+ =

κfnQh(s)

s

+ κfn(v+ − v−h(s)/α)g(s)
N∑

m=1

Am
+e2Lmf (s)

− κfn(v+ − v−g(s)/α)h(s)
N∑

m=1

Am
+.

Rearranging we have

An
+ =

κfnG(s)

san(s)
e−Lnf (s),� (4.9)

with

an(s) = h(s)e−Lnf (s) − g(s)eLnf (s),� (4.10a)

G(s) =
Qh(s)

s
+ (v+ − v−h(s)/α)g(s)A1

− (v+ − v−g(s)/α)h(s))A0
�

(4.10b)

and

A0 =

N∑
m=1

Am
+, A1 =

N∑
m=1

Am
+e2Lmf (s).� (4.10c)
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Substituting equation (4.9) into (4.10c) shows that

A0 = κG(s)
N∑

m=1

fm

am(s)
e−Lmf (s),

A1 = κG(s)
N∑

m=1

fm

am(s)
eLmf (s).

�

(4.11)

Substituting these equations  into (4.10b) and 
rearranging yields

G(s) =
Qh(s)

sq(s)
� (4.12)

with

q(s) = s + κv+ − κv−
α

g(s)h(s)

×
N∑

m=1

[
e−Lmf (s) − eLmf (s)

] fm

am(s)
.

�

(4.13)

Combining equations (4.7)–(4.9) and (4.12) gives

An
+(s) = h(s)e−Lnf (s) · κQ

s
· fn

an(s)
· 1

q(s)

Bn
+(s) = −g(s)eLnf (s) · κQ

s
· fn

an(s)
· 1

q(s)
.

and hence

s · ûn
+(Ln, s) = −2v+κQfn ·

f (s)

an(s)q(s)
· e(δs−γ/2)Ln .

Substituting the above equation into (4.2) finally yields

τn =
1

k
+ 2κv2

+

N∑
m=1

wm · e−γLn/2 fn

wn
· d

ds

esδLn f (s)

an(s)q(s)

∣∣∣∣
s=0

.

� (4.14)

From equation (4.14), we can compute the accu-
mulation time τn for the various injection distribu-
tions of equations (3.17) and (3.18). The results are 
depicted in figures 9 and 10. In order to set the base-
line, we first consider a single cytoneme and target cell 

(N  =  1) and plot the variation of accumulation time 
τ1 with the cytoneme length L1  =  L, see figure 9. It can 
be seen that τ1 is an increasing function of cytoneme 
length and also increases with γ. The latter means 
that increasing the level of retrograde flow increases 
the accumulation time. In the multi-cell case, we set 
τn = τK(Ln) for fn = fK(Ln), K  =  U,I,D, and plot 
the resulting accumulation times τK  as a function of 
length, see figure 10(a). (In contrast to the single-cell 
model, the lengths of the cytonemes are fixed and 
L  =  n identifies the length of the nth cytoneme.) One 
interesting result is that for each choice of injection 
distribution fJ there is crossover between the accumu-
lation time curve τ1(L) of a single target cell and the 
corresponding multi-cell accumulation time curve 
τK(L). This can be understood by taking a closer look 
at equation (4.14).

First, combining equations (3.13) and (4.1) shows 
that

τn =

∫ ∞

0

t

kP∗
n

[Jn(Ln, t)− Ṗn]dt.

Using the fact that kP∗
n = J∗n , and performing an 

integration by parts gives

τn =
1

k
+ Tn(Ln),� (4.15)

where Tn(x) is the accumulation time of Jn(x, t),

Tn(x) =

∫ ∞

0
t
∂

∂t

(
Jn(x, t)

J∗n

)
dt.� (4.16)

Second, adding equations  (3.11a) and (3.11b) and 
integrating with respect to x on [0,Ln] yields

∂

∂t
Vn(Ln, t) = Jn(0, t)− Jn(Ln, t),� (4.17)

where

Vn(Ln, t) =

∫ Ln

0
[un

+(x, t) + un
−(x, t)]dx.
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Recall that the stationary flux at x  =  0 and x  =  Ln are 
the same. Hence, differentiating both sides of (4.17) 
with respect to t and multiplying by t/J∗n gives

t

J∗n

∂2

∂t2
Vn(Ln, t) =

t

J∗n

∂Jn(0, t)

∂t
− t

J∗n

∂Jn(Ln, t)

∂t
.

Performing an integration by parts then shows that
∫ ∞

0
t
∂

∂t

(
Jn(Ln, t)

J∗n

)
dt

=

∫ ∞

0
t
∂

∂t

(
Jn(0, t)

J∗n

)
dt +

Vn(Ln,∞)

J∗n
,

that is,

Tn(Ln) = Tn(0) +
Vn(Ln,∞)

J∗n
.� (4.18)

From equations (4.15) and (4.18), one thus has

τn = Tn(0) +
Vn(Ln,∞)

J∗n
+

1

k
.� (4.19)

It follows that the accumulation time of the n-th 
target cell is the sum of the accumulation time Tn(0) 
of Jn(0,t), and two terms that are independent of the 
number of cytonemes N. In order to establish that 
Vn(Ln,∞)/J∗n  is independent of N, we substitute for 

un
−(x) using the steady-state flux condition (3.14) gives

Vn(Ln,∞) =

∫ Ln

0

[(
1 +

v+
v−

)
un
+(x)−

J∗n
v−

]
dx.

Now substituting for un
+(x) using equation (3.15) yields

Vn(Ln,∞) =

(
1 +

v+
v−

)(
κfnP∗

0 +
αJ∗n

γv+v−

)
1 − e−γLn

γ

− LnJ∗n

((
1 +

v+
v−

)
α

γv+v−
+

1

v−

)
.

Dividing through by J∗n  and using equation (3.6), we 
have

Vn(Ln,∞)

J∗n
=

(
1 +

v+
v−

)(
κ

w(Ln)
+

α

γv+v−

)
1 − e−γLn

γ

− Ln

((
1 +

v+
v−

)
α

γv+v−
+

1

v−

)
:= V(Ln).

� (4.20)

This establishes that the contribution Vn/J∗n is the 
same function of length for the single target cell and 
multiple cell cases. Thus, equation  (4.19) implies 
that the difference between the accumulation 
time curve τ1(L) of a single target cell and the 
corresponding accumulation time curve τK(L) of the 
multiple cell case arises from the term Tn(0). Since 
Jn(0, t) = v+κP0(t)− v−u−(0, t), it follows that 
Tn(0) depends on the time to reach the steady-state 
concentration of the source cell, P∗

0 . In particular, 
higher P∗

0  implies larger Tn(0). This suggests that 
the crossover in figure  10(a) can be understood by 
comparing the steady-state concentration P∗

0  of the 
multi-cell model with P∗

0  for a single cytoneme of 
length L  =  n, see figure 10(b).

4.2.  Robustness of morphogen gradient
A major focus of research on morphogen gradients 
is the robustness of patterning based on morphogen 
gradient with respect to changes in environmental 
conditions such as the morphogen production rate 
Q [15]. Following previous studies of diffused-based 
morphogenesis, we will characterize the sensitivity 
of the cytoneme-based morphogen gradient to 
fluctuations in Q by considering the corresponding 
induced spatial shift in morphogen concentration. 
For analytical convenience, we replace the discrete set 
of target cells n = 1, . . . , N  by a continuum of target 
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cells distributed uniformly on the domain y ∈ [0,L] 
such that Pn(t) → P(y, t) and Jn(t) → J(y, t). The 
source cell is treated as a single compartment with 
particle density P0(t). Equations (3.1a) and (3.1b) still 
hold with un

±(x, t) → u±(x, y, t), while the boundary 
conditions (3.2) become

u+(0, y, t) = κf (y)P0(t), u−(L(y), t) = 0.�
(4.21)

Here L(y) is the length of cytonemes contacting cells at 
y and f (y) is the probability density of particles being 
injected into these cytonemes such that

∫ L

0
f (y)dy = 1.

Finally, the transport component of the model couples 
to the distributions of particles in the source and target 
cells according to

dP0

dt
= Q −

∫ L

0
J(0, y, t)dy,

∂P(y, t)

dt
= J(L(y), y, t)− kP(y, t),

�

(4.22)

where J(x, y, t) is the particle flux at position x at time 
t through the cytonemes linking the source cell to cells 
at y:

J(x, y, t) = v+u+(x, y, t)− v−u−(x, y, t).�
(4.23)

We assume that both f (y) and L(y) are smooth 
functions of y. As a further simplification, we set 
L(y) = y  so L = L.

For fixed y, the steady-state solution of the trans-
port equations  (3.1a) and (3.1b) can be solved as 
before. We thus obtain the steady-state solutions

P∗
0 =

Q∫ L
0 f (y)w(y)dy

, P∗(y) =
Q

k
· f (y)w(y)∫ L

0 f (y)w(y)dy
.

� (4.24)

Consider some threshold morphogen concentration 
Pc and denote the cellular position where this threshold 
occurs by yc, that is,

P∗(yc) = Pc.� (4.25)

We wish to determine the shift in threshold position 
yc → yc +∆yc in response to a shift in the production 

rate, Q → Q +∆Q. Since Γ :=
∫ L

0 f (y)w(y)dy is 

fixed, we have

Qf (y)w(y) =(Q +∆Q) f (y +∆y)w(y +∆y)

=(Q +∆Q) f (y)w(y) + Q( f ′(y)w(y)

+ f (y)w′(y))∆y.

Rearranging and taking the limits ∆Q,∆y → 0 yields 
the sensitivity

dy

dQ

∣∣∣∣
y=yc

= − f (yc)w(yc)

Q[ f ′(yc)w(yc) + f (yc)w′(yc)]
.�

(4.26)

For example, assuming uniform injection probability 
f (y) = 1/L gives

dy

dQ

∣∣∣∣
y=yc

= − w(yc)

Qw′(yc)
=

1

Qγ
· v−γ + α(1 − e−γyc)

v−γ + α
,

� (4.27)

where we have used equation (3.7).
The sensitivity with respect to Q has different 

behavior depending on the sign of γ. This is illustrated 
in figure 11 for f = fU(y) = 1/L. If γ > 0, so that the 
mean velocity of motor-cargo complex satisfies v < 0, 
then 0 < e−γyc � 1. Hence,

0 <
dy

dQ

∣∣∣∣
y=y0

<
1

Qγ
,� (4.28)

and the sensitivity with respect to fluctuations in Q is 
bounded regardless of the size of yc. On the other hand, 
if γ < 0 with v > 0, then e−γyc � 1. It follows that
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dy

dQ

∣∣∣∣
y=y0

=
1

Q|γ|

[
1

1 − |γ|v−/α
e|γ|yc − 1

]
> 0.

� (4.29)

Therefore, the sensitivity is always positive and 
increases exponentially with respect to yc. Our analysis 
strongly suggests that in order to ensure that the 
morphogen gradient is not exponentially sensitive 
to fluctuations in the production rate, it is necessary 
that v < 0. This reinforces the observation of [33] that 
robustness comes at the expense of an energy cost, in 
this case a strong retrograde flow.

To see how robustness depends on the choice of the 
distribution f (y) we consider continuum versions of 
equation (3.18),

fI(y) =
ey/4 + 1

N3
, fD(y) =

e(L−y)/4 + 1

N4
,� (4.30)

where N3 and N4 are normalization constants such 

that 
∫ L

0 f (y)dy. The resulting sensitivity curves are 

shown in figure 12.

5.  Discussion

In this paper, we considered a simple bidirectional 
motor transport model for the flux of morphogens 
along a set of cytonemes, which link a source cell 
to a one-dimensional array of target cells. We 
obtained an analytical steady-state solution of the 
transport equations, which enabled us to identify 
the phenomenological transport rate of [33] with 
a biophysically derived expression. In particular, 
we related the energy cost of cytoneme-based 
morphogenesis with the degree of retrograde 
transport. We then investigated various properties 
of the resulting morphogen gradient, including its 
accumulation time, and its robustness to fluctuations 
in the rate of morphogen production in the source 

cell. One important parameter that emerged from our 
analysis is

γ =
βv− − αv+

v+v−
= −v̄

α+ β

v+v−
,

where v̄ is the mean motor velocity, v± are the 
anterograde and retrograde speeds, and α,β  are the 
velocity switching rates. First, the rate of decay of 
the morphogen gradient depends on |γ|. Second, the 
sign of γ determines the asymptotic behavior of the 
morphogen concentration for long cytonemes. We 
found that the asymptotic behavior was consistent with 
diffusion-based mechanisms if γ > 0, which implies 
that v̄ < 0 and retrograde flow dominates. More 
significantly, in order to obtain a bounded sensitivity 
to fluctuations in the morphogen production rate Q, it 
was necessary for γ > 0. A recent experimental study is 
at least consistent with the idea that there is significant 
retrograde flow [14]. Another finding of the latter 
study is that puncta along a cytoneme can undergo 
periods of stalling. It would be straightforward to add 
a stalled state into our transport model. However, it 
would not affect the main conclusion of our work.

Another interesting feature of our transport 
model, which is absent in diffusion-based models, is 
that morphogenic resources can be non-uniformly 
allocated to the various cytonemes projecting from a 
source cell, which could reflect variations in the num-
ber of cytonemes per target cell, for example. This 
competition for resources provides a potential sub-
strate for regulatory control, which could lead to a 
variety of possible morphogen concentration profiles, 
including those that are non-monotonic.

One of the major simplifying assumptions of our 
cytoneme-based transport model is that each cyto-
neme projecting from a source cell is attached to its 
target cell for significant periods. However, it has been 
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found experimentally that cytonemes do not remain 
permanently attached, undergoing alternating periods 
of retraction and growth [10, 14, 19]. This needn’t be 
inconsistent with our model because all we require is 
that there is cytoneme-mediated contact between the 
source and target cells for a sufficient time - presuma-
bly consistent with the accumulation time. Hence, this 
could be maintained by a population of cytonemes, 
whose individual members are dynamic. It should 
also be noted that there is evidence that cytonemes 
can be stabilized by their targets [10]. Nevertheless 
the dynamic nature of cytonemes raises two interest-
ing issues that we hope to explore in future work. First, 
one could model dynamic interactions between the 
cytoneme tip and the target cell as a stochastic pro-
cess, which then couples to the transport model as a 
switching boundary condition at the target end of the 
cytoneme. It should then be possible to analyze the 
resulting stochastic transport model along analogous 
lines to recent studies of advection-diffusion equa-
tions in domains with randomly switching boundaries  
[12, 13]. Second, cytonemes also need to find their tar-
get cells in the first place. It has been suggested that this 
could occur either via a random search process based 
on retraction and growth, or via some chemoattract-
ant [19]. There are certain parallels with microtubules 
of the mitotic spindle searching for kinetochores prior 
to separation of cytochrome pairs [11], although it 
is important to note that cytonemes are actin-based. 
Finally, it would also be interesting to explore to what 
extent direct contacts via cytonemes play a role in other 
types of cellular self-organization that are traditionally 
based on diffusive transport, such as Turing pattern 
formation. This will also require understanding within 
the context of morphogenesis the interplay between 
cytonemes that transport receptors to source cells and 
those that transport ligands to target cells; we focused 

on the latter in this paper.
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