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Many biochemical systems appearing in applications have a multiscale structure so that 
they converge to piecewise deterministic Markov processes in a thermodynamic limit. The 
statistics of the piecewise deterministic process can be obtained much more efficiently 
than those of the exact process. We explore the possibility of coupling sample paths of 
the exact model to the piecewise deterministic process in order to reduce the variance of 
their difference. We then apply this coupling to reduce the computational complexity of a 
Monte Carlo estimator. Motivated by the rigorous results in [1], we show how this method 
can be applied to realistic biological models with nontrivial scalings.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Large stochastic biochemical reaction networks are a popular modeling framework for investigating cellular processes 
[2], but the complexity and population sizes involved in realistic models pose major computational challenges. However, 
when there is a separation of scales, such models lend themselves to a number of model reduction techniques that are 
useful for course grained analysis. One example occurs when there is a separation in species abundances [3,4]. If some 
subset of chemical species in a reaction network are extremely abundant, then reaction channels involving those species 
will generally occur much faster than reactions involving less abundant species. Another examples occurs when the model 
parameters vary over many orders of magnitude. For example, even if a species is in a very low abundance, it is possible 
that the reaction rates are such that a certain reaction involving this species occurs on a different timescale than other 
reactions involving the same species. One approach to analyzing the qualitative properties of such a multiscale model 
involves rescaling the system and taking a thermodynamic limit to obtain a piecewise deterministic Markov process (PDMP). 
A number of recent studies have provided rigorous errors bounds for this type of reduction [5,3,6,7]. While the PDMP yields 
useful information about stochastic effects of the rare species, quantitative information about the stochastic fluctuations of 
the abundant species is lost. On the other hand, in many systems, particularly those with feedback between the rare and 
abundant chemical species, there is an interest in quantifying the stochastic effects due to these fluctuations [8]. A common 
method for resolving these fluctuations is the diffusion approximation. While the diffusion approximation is often thought 
to be computationally advantageous, recent work on classically scaled population models has shown that this method yields 
only moderate computational gains [9]. Moreover, the error between the PDMP and the exact model is fixed. However, it is 
sometimes desirable to control this quantity, especially when the separation of scales is only moderate.
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An alternative to multiscale reduction techniques is to develop methods for accelerating stochastic simulation algorithms 
such as the Gillespie algorithm [10–12]. For example, there have been numerous studies of the method of τ -leaping in an 
effort to accelerate simulations of continuous time Markov chains [13,14]. More recently, multi-level methods that couple 
τ -leaping approximations at different resolutions have been used to reduce variances in Monte Carlo estimators [15,16,9]. 
Variance reduction techniques that utilize probabilistic couplings have also appeared earlier in the context of stochastic
differential equations (SDEs) and Markov Chain Monte Carlo methods [17,18]. While there has been some work that lever-
ages multiscale reduction techniques for Monte Carlo estimators [19], to our knowledge the idea of using these techniques 
directly as a variance reduction tool has not been studied.

In this paper we explore the idea of coupling reduced models to exact models as a variance reduction tool for Monte 
Carlo estimators. We develop a new efficient Monte Carlo estimator for multiscale chemical reaction networks that are 
sufficiently near a thermodynamic limit. The key insight is that, since only a small fraction of the degrees of freedom of 
the PDMP are stochastic, one can efficiently compute statistics of the process. On the other hand, if one wants to resolve 
demographic noise in the full model it is necessary to perform a large number of Monte Carlo simulations. By coupling the 
full stochastic model to the PDMP one can reduce the variance by a factor inversely related to the system size, and hence 
a smaller number of simulations need to be performed to achieve a given error tolerance. For practical applications the 
desired error tolerance of the Monte Carlo estimator scales with this factor. Hence, the coupled Monte Carlo estimator has 
the potential to speed up computations by a fractional power of the error tolerance. Our results extend the idea of variance 
reduction developed in [15,16], and provide a new computational application of the theory developed in previous work on 
PDMP approximations, or partial thermodynamic limits [5,3,6].

The paper is organized as follows. In section 2 we introduce some background material related to mathematical modeling 
chemical process. In section 3 we derive an approximation by taking a thermodynamic limit of a multi-scale system. We 
also discuss our approach to simulating this process. Our approach to variance reduction is introduced in section 4, and in 
section 4.1 we present an algorithm for coupling the exact process to the multi-scale approximation. Finally, we apply our 
method to models of gene expression in section 5 where it is shown that significant computational gains can be made in 
comparison to crude Monte Carlo methods.

2. Background

2.1. Stochastic chemical reaction networks in the classical setting

We consider a system involving d chemical species, denoted X = {Xi}i∈I with I = {1, 2, . . . , d}. The species interactions 
are prescribed by p reaction channels, denoted R = {R j} j∈J with J = {1, 2, . . . , p}. Let xi be the number of Xi and set 
x = (x1, . . . , xd). Then the j-th reaction takes the form

R j :
d∑

i=1

K in
j,iXi −→

d∑
i=1

K out
j,i Xi,

where K in
j,i, K

out
j,i are known as stochiometric coefficients. When such a reaction occurs the state x is changed according to

xi → xi + K j,i, K j,i = K out
j,i − K in

j,i .

More complicated multi-step reactions can always be decomposed into these fundamental single-step reactions with appro-
priate stochiometric coefficients. In practice, most reactions involve collisions between pairs of molecules, so that 

∑
i K in

j,i = 1
or 2. In the so-called classical setting, the abundances of each species are assumed to be the same order of magnitude. 
Therefore, if all the abundances are large then we can describe the evolution of the system by a set of deterministic kinetic 
equations involving the scaled variables zi = xi/S . Here S is a dimensionless quantity representing the system size, which in 
gene networks is typically taken to be the characteristic number of proteins. Alternatively, it could represent some volume 
scale factor. For a set of p reactions, the kinetic equations take the form (strictly speaking in the thermodynamic limit 
S → ∞)

dzi

dt
=

p∑
j=1

K j,i

[
κ j

d∏
l=1

z
K in

j,l

l

]
≡

p∑
j=1

K j,iᾱ j(z), (2.1)

where κ j is a constant that depends on the probability that a collision of the relevant molecules actually leads to a reaction. 
The product term is motivated by the idea that in a well-mixed container there is a spatially uniform distribution of each 
type of molecule, and the probability of a collision depends on the probability that each of the reactants is in the same local 
region of space. Ignoring any statistical correlations, the latter is given by the product of the individual components. The S
independent functions ᾱ j are known as transition intensities or propensities. These intensities are the leading order term of 
the scaled transition intensities for a finite population (S < ∞), which can be derived combinatorially. These are given by
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α j(xS−1) = κ j

S
∑

i K in
j,i−1

l∏
i=1

xi !
(xi − K in

j,i)!
= ᾱ j(xS−1) +O(S−1). (2.2)

Note that the factor of S ensures that the probability of a reaction depends on the probability that the interacting molecules 
are in the same local region of space, whereas the combinatorial factor takes into account the fact the probability that r
molecules of the same species are within a reaction radius is proportional to xi(x−1) . . . (xi − r + 1), which reduces to xr

i in 
the large S limit. For a more detailed discussion of the physical principles underlying chemical reactions see [20]. In terms 
of α j , the unscaled transition probabilities are given by

P(one j transition in time dt|X(t) = x) = Sα j(xS−1)dt .

Given this notation, it is straightforward to write down the corresponding chemical master equation for finite S , which takes 
into account intrinsic fluctuations in the number of molecules (demographic noise). Setting P (x, t) = P(x(t) = x|x(0) = x0), 
the chemical master equation is

dP (x, t)

dt
= S

p∑
j=1

α j((x − K j)/S)P (x − K j, t) − α j(x/S)P (x, t). (2.3)

If we let the random variable Xi(t) denote the number of molecules in species i, then an explicit representation of Xi(t) is 
given by

Xi(t) = Xi(0) +
p∑

j=1

R j(t)K j,i (2.4)

where R j(t) denotes the number of times reaction j has occurred by time t , and is a jump process for which the jump 
rate is locally given by Sα j(X(t)/S). It can be proved that if �(t) is a unit rate Poisson process, a representation of R j(t) is 
given by the time change representation [21],

R j(t) = �

⎛⎝ t∫
0

Sα j(X(s)/S)ds

⎞⎠ .

It follows that the expected number of reactions will grow linearly with S . Moreover, using the law of large numbers for 
Poisson processes,

lim
S→∞

�(ST )

S
= T ,

one has

lim
S→∞

R j(t)

S
=

t∫
0

ᾱ j(z(s))ds

provided α j(X(t)/S) =O(1). This fact can be used to derive deterministic equations (2.1) from (2.4).

Algorithm 1 Simulation of fully stochastic model.
1: Initialize X(0) and set t0 = 0 and k = 0.
2: while tk ≤ T do
3: Compute � = ∑p

j=1 α j(X(tk))

4: Generate random numbers τ ∼ Exp (�) and r ∼ Unif(0, 1)

5: jk+1 := minm

{
m : ∑m

j=1 α j(X(s)) < r�
}

6: tk+1 := tk + τ
7: k → k + 1
8: X(tk) = X(tk−1) + K jk

For the propose of simulation it is common to construct the aggregate process, 
∑p

j=1 R j(t), instead of simulating the 
individual terms in the sum. To do this, ones notes that if t1, t2, . . . are the jump times of Xi(t), then the interjump times 
satisfy

P(tk − tk−1 < t|X(tk−1) = x) = 1 − exp

⎧⎨⎩−t
p∑

j=1

α j(x)

⎫⎬⎭ .
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In other words, tk − tk−1 is exponentially distributed with a rate given by the aggregate jump rate 
∑p

j=1 α j(x). The reaction 
that fires after the k-th jump can then be selected by generating a uniform random variable r over [0, 1]. In particular, given 
that X(tk−1) = x, the index jk of the k-th reaction is given by

jk = min

⎧⎨⎩ j :
j∑

m=1

αm(x/S) < r
p∑

m=1

αm(x)

⎫⎬⎭
This procedure for generating samples paths of X(t) is known as Gillespie’s algorithm and a detailed description is given in 
Algorithm 1

2.2. Monte Carlo simulations in the classical setting

Suppose we wish to approximate some statistics of the scaled state variables Z(t) = X(t)/S using a crude Monte Carlo 
estimator (MCE) Q̂ crude(M) with M realizations of the process. That is,

Q̂ crude(M) = 1

M

M∑
j=1

f (Z[ j](T )). (2.5)

Here and elsewhere we use the convention that the subscript [ j] indicates a specific realization of a process. In order for 
Q̂ crude(M) to approximate E[ f (Z(T ))] to O(ε) in the sense of confidence intervals (i.e. the standard deviation of Q̂ crude(M)

is O(ε)), we require M =O(ε−2Var( f (Z(T ))) [22]. Here we have used the fact that E[ f (Z(T ))] =O(1).
Now suppose we seek an approximation of E[ f (Z(T ))] for some fixed value of S . If S is extremely large, Z(T ) is almost 

deterministic and any information that distinguishes f (Z(T )) from f (z(t)) will be inversely proportional to a power of S . As 
a consequence, if ε is too large, then all of the interesting information about the stochastic model will be lost in the sample 
noise. This observation leads us to conclude that the limiting behavior in S of any numerical method for approximating 
E[ f (Z(T ))] should not be studied independently of ε, and it is therefore import to quantify the relationship between these 
two parameters. With this in mind, we introduce the dimensionless parameter δ > 0 defined as the ratio

δ = − lnε

ln S
.

Roughly speaking, if the ratio is large the accuracy of our estimate relative to the O(S) fluctuations will be high. δ can be 
interpreted as a relative accuracy with respect to the noise in the model, which is in contrast to the absolute measure of 
accuracy ε. It should be emphasized that δ is introduced for the propose of analysis and in practice ε is usually selected 
based on other considerations. However, as we are interested in studying the asymptotic complexity in terms of S , we will 
take the relative accuracy δ to be fixed. Rearranging the expression for δ yields the formula for ε:

ε = ε(S) = S−δ.

This expression previously appeared in work on classically scaled models, where the efficiency of many existing Monte Carlo 
methods was studied in terms of δ [9]. In a similar spirit, we will judge the effectiveness of the methods proposed in this 
paper in terms of this parameter.

In terms of ε, the expected number of computations, or complexity, of the MCE Q̂ crude(M) is

Ccrude = O(ε−2CX Var( f (Z(T ))),

where CX is the complexity of generating the sample Z(T ):

CX = E[ # of computations to simulate Z(T )].
In the classical setting, it can be shown that Var( f (Z(T )) = O(S−1), which corresponds to the stochastic model approaching 
a deterministic limit at a rate inversely proportionally to the size of the system [9]. On the other hand, CX = O(S), so that 
in the classical setting, the contribution of the complexity from the simulation of the path cancels with the variance of the 
path, and we obtain

Ccrude = O(ε−2).

Essentially, when a stochastic model approaches a deterministic limit, variance reduction in terms of the system size is “for 
free”. This applies not only to the crude MCE, but any Monte Carlo method applied to a biochemical model in the classical 
setting. We refer to [9] for a rigorous analysis of Monte Carlo methods in the classical setting. The crucial observation that 
motivates the developments in this paper is that in the multiscale setting, where some species abundances do not scale 
with S , it is generally not possible to bound Var( f (Z(T )) in terms of S , and the complexity of any Monte Carlo method 
increases by an order of magnitude.
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3. The multiscale approximation

For biochemical networks of interest the classical assumption that a deterministic system is obtained in the scaling limit 
S → ∞ is a major oversimplification. Instead, one is often interested in multi-scale systems [5,23,24]. Multi-scale models 
are characterized by the fact that the reaction propensities α j , and hence the time between stochastic events may vary 
over many orders of magnitude for different reaction channels. As a result, it is not useful to approximate the system by 
a deterministic process, since the natural scalings of the model in S may not converge to a deterministic process. This 
motivates a multiscale approximation of the fully stochastic model, in which only a fraction of the species are taken to evolve 
continuously.

In order to describe the multiscale approximation, we begin by assuming that Xi(t) = O (Mi(S)) for some nondecreasing 
function M j(s). This is a generalization of the classical setting discussed earlier where Mi(S) = S for each i. We then 
introduce the decomposition of the species indices I = (I L, IH ) where

I L = {i : Mi = O(1)}
and IH = I \ I L . That is, I L and IH index the low and high copy species respectively. In this context, the high copy 
species are any species for which the abundances grow with S . This decomposition is generally derived from physical 
constraints on the model, but there is usually some freedom in how the scaling factors Mi are selected. The induced 
decomposition of the state variables is given by X(t) = (X L(t), X H (t)), which we rescale by setting Z H

i (t) = X H
i (t)/M j to 

obtain Z(t) = (X L(t), Z H (t)). Note that the meaning of an entry in Z(t) now depends on whether the corresponding species 
is in high or low copy. If Zi(t) ∈ Z H (t) then Zi can be thought of as dimensionless concentration that tracks the relative 
abundance of a species, while if Zi(t) = Xi(t) ∈ X L(t), Xi(t) counts the number of species.

The separation of scales in the species abundances, along with the fact that the rate constants κ j may vary over many 
orders of magnitude, induces a decomposition of the reactions: J = (J L, J H ). As with the species, J L and J H are indices 
of the reactions for which the rates are O(1) and O(G j(S)) respectively. Unlike M j , G j(S) is a function of S that may be 
monotonically increasing or decreasing. For j ∈ J L the corresponding propensity is given by α j(Z(t)), whereas for j ∈ J H

we include a factor of G j = G j(S) so that the propensity is G jα j(Z(t)). Note that this implies R j(t) is O(G j(S)) in terms of 
S , which suggest that for any physical meaningful scaling G j(S)/Mi(S) is bounded in S . This is because if this ratio is not 
controlled, the terms R j(t)/Mi(S) and hence the random variables

Z H
i (t) = X H

i (0)/Mi(S) +
∑

j∈J H

R j(t)/Mi(S)

grow infinitely large as S grows. We do however allow that G j(S)/Mi(S) → 0, which implies the term R j(t)/Mi(S) becomes 
negligible for large S . It will be important to keep track of the terms for which this ratio does not vanish, hence we define

J H
i = { j : lim

S→∞ G j(S)/Mi(S) > 0}.

Roughly speaking, the reactions indexed by J H
i make a non-negligible contribution to the evolution of the i-th high copy 

variable for large S . Finally, it should be emphasized that in practice S is often fixed, and the selection of the scaling factors 
M j and G j is not based on whether certain quantities actually change with the size of the system. Instead these are selected 
so that the limiting system obtained below is useful. A more extensive discussion of this topic is provided in [24].

We now return to the asymptotic regime in which S → ∞ and write down the process Z̄ for which Z = (Z H , X L) → Z̄ =
( Z̄ H , X̄ L). Here the convergence is in probability. This limit has been investigated rigorously in [24], and it was established 
that the dynamics of Z̄ are given by the piecewise deterministic process (PDMP),

d

dt
Z̄ H

i (t) =
∑

j∈J H
i

K jᾱ j( Z̄ H (t), X̄ L(t)) (3.1)

in between jumps, while X̄ L
i is given by the counting process

X̄ L(t) = X̄ L(0) +
∑
j∈J L

R̄ j(t)K j (3.2)

where R̄ j(t) are counting processes counting the number of jumps in each reaction channel. The reader should compare 
(3.1) and (3.2) to (2.1) and (2.4) respectively.

Sample paths of the process Z̄(t) can be generated by a modification of the Gillespie algorithm, known as the true jump 
method. We simplify notation by letting

�( Z̄(t)) =
∑

L

ᾱ j( Z̄(t)) (3.3)

j∈J
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denote the aggregate jump rate. In order to derive the true jump method, one first notes that the interjump times, tk − tk−1, 
satisfy

P(tk − tk−1 < t|X L(tk−1) = x) = 1 − exp

⎧⎨⎩−
t∫

0

�(Z H (s + tk−1), x)ds

⎫⎬⎭ . (3.4)

Note that we cannot simply generate tk − tk−1 directly from exponentially distributed random variables as is done in 
Gillespie’s algorithm, instead one must solve the ODE (3.1) between jumps using some appropriate discretization of the 
continuous process and use the solution to obtain tk . It follows from (3.4) that 

∫ tk
tk−1

�( Z̄(s))ds ∼ Exp(1). To understand how 
this statement relates to the next jump time in Gillespie’s algorithm, note that if � = �(z) is a constant, properties of 
exponentially distributed random variables can be used to deduce that tk−1 − tk ∼ Exp(�). We can now state an explicit 
representation of tk in terms of a minimization problem involving Sk ∼ Exp(1). This is given by

tk = inf
u

⎧⎪⎨⎪⎩u > 0 :
u∫

tk−1

�( Z̄(t′))dt′ = Sk

⎫⎪⎬⎪⎭ .

While a number of methods exist for approximating tk , the approach we will take is based on solving an ODE for the time 
variable which can be derived as follows. First, introduce the variable τ (s) > tk−1. Then, setting 

∫ τ (s)
tk−1

�( Z̄(t′))dt′ = s and 
differentiating with respect to s yields the equation

τ ′(s) = 1

�( Z̄(τ (s)))
.

Solving this equation between 0 and Sk with τ (0) = tk−1, yields τ (Sk) = tk . Finally, Z̄ H (tk) is found by setting z(s) =
Z̄ H (τ (s)) and applying the chain rule to get an ODE for z(s). To summarize, tk along with the state of the continuous 
variable at tk is given by ( Z̄ H (tk), tk) = (z(Sk), τ (Sk)) where⎧⎪⎨⎪⎩

z′(s) = ∑
j∈J H α j(z(s), X̄ L(tk−1))K j/�(z(s), X̄ L(tk−1))

τ ′(s) = 1/�(z(s), X̄ L(tk−1))

z(0) = Z̄ H (tk−1), τ (0) = tk−1.

(3.5)

This method for computing tk is known as the CHV method, and was recently proposed in [25] where a more detailed 
derivation and discussion of (3.5) can be found.

Once the time tk is computed, the selection of the next reaction is essentially the same as in Gillespie’s algorithm, except 
that one only selects from the reaction in J L . The details of this procedure to compute Z̄ (t) with an accuracy of h are given 
in (2).

Algorithm 2 Simulation of the multiscale approximation.
1: Select an accuracy h. Initialize Z̄(0) and set tk = 0 and k = 0.
2: while tk ≤ T do
3: Generate a random number Sk ∼ Exp(1).
4: Let (z(Sk), τ (Sk)) be the numerical solution to (3.5) with t0 = t and z0 = Z̄ H (tk).
5: Z̄(tk + τ (Sk)) = z(Sk)

6: � = ∑
j∈J L α j( Z̄(τ ))

7: Generate a random number r ∼ Unif(0, 1)

8: jk := mini{i : ∑ j∈J L : j<i α j( Z̄(Sk)) < r�}
9: tk+1 := tk + τ (Sk)

10: k → k + 1
11: X̄(tk) = X̄(tk−1) + K jk

12: Perform numerical integration to obtain Z̄(T ).

While other algorithms for generating samples paths of the multiscale approximation exist [6], we have found this 
method to be effective and leave a detailed comparison of the different methods to a future study. The import point to note 
is that the complexity of generating a sample path of the multiscale approximation does not grow with the system size. 
This means that is much easier to compute statistics of Z̄ (t) than Z(t) when S is large.

4. Variance reduction in the multiscale setting

As noted at the end of Section 2, for multiscale models we can generally not bound the sample variance in terms of the 
system size and the asymptotic complexity of Monte Carlo methods picks up a factor of S . For example,

Ccrude = O(ε−2−1/δ).
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While a great deal of information about the exact model is still contained in the thermodynamic limit ( Z̄ H , X̄ L), it is not 
being used in the computations. Again, we emphasize how this contrasts with the classical setting, where information about 
the deterministic limit is used to accelerate the converge of an MCE without any additional work. Generally speaking, our 
goal is to understand how information about the thermodynamic limit can be used in the multiscale setting.

The coupled Monte Carlo estimator we will introduce is based on the idea of variance reduction via a probabilistic 
coupling of the exact process with an approximate process. In our case the approximate process will be the PDMP Z̄(t). 
This idea has proven to be very useful in multilevel Monte Carlo methods [16,18] where different τ -leaping approximations 
are coupled. To construct an MCE in the present setting we note that

E[ f (Z(T ))] = E[ f (Z(T )) − f ( Z̄(T ))] +E[ f ( Z̄(T ))] (4.1)

Two observations allow us to use this decomposition to obtain statistics of E[ f (Z(T ))] more efficiently than the crude MCE 
(2.5). First, statistics of Z̄(T ) can be obtained much more efficiently than statistics of the exact process when S is even 
moderately large relative to the abundance of the rare species. These statistics can be obtained either by a MCE using Al-
gorithm 2 to generate the sample paths, or by non-Monte Carlo based methods which are difficult to apply to the exact 
process. Second, we can reduce the number of simulations we need of the full process by coupling the processes Z(t) and 
Z̄(t) in a way that reduces the variance of the difference f (Zi(T )) − f ( Z̄ i(T )). By coupling, we mean the construction of 
a random variable (Z(t), Z̄(t)) for which Z(t) and Z̄(t) are correlated, but Z(t) and Z̄(t) have the same marginal distribu-
tions as the original processes. We will develop this coupling in section 4.1, but first let us explore in greater depth the 
implications of (4.1).

For the second term in (4.1) let us assume we can produce an approximation Q̂ Z (h) ≈ E[ f ( Z̄ i(T ))] satisfying

E[|Q̂ Z (h) −E[ f ( Z̄ i(t))]|] = O(h)

and Var(Q̂ Z (h)) =O(h2) with h < ε. We will also need an approximate path to estimate the term f (Zi(T )) − f ( Z̄ i(T )). This 
can be obtained from Algorithm 2. Then an O(ε) estimator Q̂ coupled(M1, h) of (4.1) can be constructed by summing the 
estimator

Q̂ (Z , Z̄)(M1) = 1

M1

M1∑
j=1

( f (Z[ j](T )) − f ( Z̄[ j](T )))

and the approximation Q̂ Z (h):

Q̂ coupled(M1,h) = Q̂ (Z , Z̄)(M1) + Q̂ Z (h).

Technically the terms Z̄ i,[ j](T ) in the first expression are computed to O(h) from Algorithm 2; however, we have surpassed 
the dependence on h since it plays no role in the analysis. Setting

V (Z , Z̄)(T ) = Var( f (Zi(T )) − f ( Z̄ i(T ))), (4.2)

the variance of the coupled MC estimator, V coupled, is simply

V coupled = M−1
1 V (Z , Z̄) + Var(Q̂ Z (h)) ∼ M−1

1 V (Z , Z̄) (4.3)

where we are assuming the first term is leading order in S , meaning that the limiting factor in reducing the variance is 
the simulation of the coupled path. The methods of this paper are obviously applicable when Q̂ Z (h) is computed with 
non-Monte Carlo based methods, and hence Var(Q̂ Z (h)) = 0, but also apply when this term is estimated from Monte 
Carlo simulations of the PDMP. This is because simulations of Z̄(t) are much cheaper than simulations of X(t) and hence 
Var(Q̂ Z (h)) can be made o(ε) at a negligible cost. Of course for an order ε estimator, we require V coupled = O (ε2) so that

M1 = ε−2 V (Z , Z̄). (4.4)

It is now clear that for Q̂ coupled to be preferable over Q̂ crude, it must be that (1) V (Z , Z̄) is small and (2) Q̂ Z (h) is cheap to 
generate. (2) is true because statistics of Z̄(t) does not require implementing the large number of stochastic events needed 
for X(t), while (1) is the topic of the next section.

4.1. A coupling algorithm

We now construct an algorithm for simulating a coupled process (Z , Z̄ ) that keeps Z close to Z̄ , thereby minimizing 
the variance V (Z , Z̄) . The technique for coupling the two process is based around a decomposition of the counting processes 
R j(t) and R̄ j(t) (when j ∈ J L ) into a counting process that is common to both process, and a process which accounts for 
the fact that the rates may not be the same. Explicitly, we introduce the decompositions
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R j(t) = R j,1(t) + R j,2(t)

R̄ j(t) = R j,1(t) + R j,3(t)
(4.5)

where the counting processes R j,1(t) count jumps that occur in both the exact model and the multiscale approximation, 
while R j,2(t) and R j,3(t) account for the fact that the jump rates in the exact model differ from those in the approximation. 
Note that technically the equalities in (4.5) are in distribution. We let the jumps of R j,1(t) occur at rates equal to the 
minimum of the rates of R j(t) and R̄ j(t):

α j,1(Z(t), Z̄(t)) = min{α j(Z(t)),α j( Z̄(t))}.
In order for R j,1(t) + R j,2(t) to have the same distribution as R j(t), we require

α j(Z(t)) = α j,1(Z(t), Z̄(t)) + α j,2(Z(t))

α j( Z̄(t)) = α j,1(Z(t), Z̄(t)) + α j,3(Z(t))

and hence

α j,2(Z(t), Z̄(t)) = α j(Z(t)) − min{α j(Z(t)),α j( Z̄(t))}
α j,2(Z(t), Z̄(t)) = α j( Z̄(t)) − min{α j(Z(t)),α j( Z̄(t))}.

To simplify notation, we once again introduce the aggregate jump rate

�(Z(t), Z̄(t)) =
∑
j∈J L

α j,1(Z(t), Z̄(t)) + α j,2(Z(t), Z̄(t)) + α j,3(Z(t), Z̄(t)) +
∑

j∈J H

G jα j(Z(t)) (4.6)

We can now express the jump times of the coupled process (Z(t), Z̄ (t)) as

P(tk − tk−1 < t|X(tk−1) = x) = 1 − exp

⎧⎨⎩−
t∫

0

�(Z(tk−1), Z̄(s))ds

⎫⎬⎭ .

Using this equation, the jump times tk can be computed in the exact same manner as they were for the process Z̄ in 
Algorithm 2. The only modification is that the aggregate jump rate now includes all the coupled rates, as well as the rates 
of the jumps in J H evaluated on the exact process. Explicitly, replacing (3.3) by (4.6) in (3.5) we obtain⎧⎪⎪⎨⎪⎪⎩

z′
i(s) = ∑

j∈J H
i

ᾱ j(z(s), X̄ L(tk−1))K j�(Z H (tk−1), X L(tk−1), z(s), X L(tk−1))
−1,

τ ′(s) = �(Z H (tk−1), X L(tk−1), z(s), X L(tk−1))
−1

z(0) = Z̄ H (tk−1), τ (0) = tk−1,

(4.7)

so that ( Z̄ H (tk), tk) = (z(Sk), τ (Sk)). In order to simulate the coupled process, we need to select the reaction that occurs at 
tk , as well as the specific term in the decompositions (4.5) that fires. We will continue to use jk to denote the k-th reaction, 
and introduce the index lk = 1, 2, 3 to specify the term in the decomposition (4.5). Given a uniform random variable r, jk is 
given by the familiar minimization problem

jk = min
j

⎧⎨⎩ j :
j∑

m=1

1{m∈J L}
3∑

l=1

αm,l(Z(tk−1), Z̄(tk)) + G j1{m∈J H }αm(Z(tk−1)) < r�(Z(tk−1), Z̄(tk))

⎫⎬⎭ . (4.8)

If jk ∈J L , then we need to compute lk which can be computed using the same value of r:

lk = min
j

{
l :

l∑
m=1

α jk,l(Z(tk−1), Z̄(tk)) < r
3∑

m=1

α jk,m(Z(tk−1), Z̄(tk))

}
(4.9)

What we have described is essentially the true jump method applied to the coupled process (Z(t), Z̄ (t)), and a detailed 
description of this procedure is provided in Algorithm 3.
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Algorithm 3 Simulation of coupled process.
1: Initialize Z̄(0) and set tk = 0 and k = 0.
2: while tk ≤ T do
3: Generate a random number Sk ∼ Exp(1).
4: Let (z, τ ) = (z(Sk), τ (Sk)) be the solution to (4.7) with t0 = t and z0 = Z̄ H (tk).
5: Set Z̄ H (tk + τ ) = z
6: Generate a random number r ∼ Unif(0, 1)

7: Compute jk using (4.8).
8: k → k + 1.
9: tk := tk−1 + τ

10: if jk ∈ J L then Compute lk using (4.9).
11: if lk = 1 then Set X L(tk) = X L(tk−1) + K jk and X̄ L(tk) = X̄ L(tk−1) + K jk

12: else if lk = 2 then Set X L(tk) = X L(tk−1) + K jk

13: else if lk = 3 then Set X̄ L(tk) = Z̄ L(tk−1) + K jk

14: else
15: Set Z H (tk) = Z H (tk−1) + K jk S−1

Table 1
The rate constants, G jκ j , and propensities for the model (5.1) with S = 102.

j α j(Z(t)) G jκ j κ j G j

1 κ1 X2(t) 1.3 × 102 1.3 S
2 κ2 Z1(t) 1.0 1.0 1
3 κ3 X2(t) 5.0 5.0 1
4 κ4 X3(t) 4.0 4.0 1

5. Application to modeling gene expression

We now demonstrate the effectiveness of our method on two models of stochastic gene expression.

5.1. A simple genetic model

A toy model of stochastic gene expression involves three species

X1 = M Protein monomer

X2 = G Gene in on state

X3 = G∗ Gene in off state,

and the reaction network is given by

G
κ1→ G + M

M
κ2→ ∅

G
κ3�
κ4

G∗.

(5.1)

When the gene is in state G, the protein is produced at a rate proportional to Sκ1, while when in state G∗ the protein is not 
produced. For example, G∗ could represent the presence of a repressor occupying the RNA polymerase binding site, thereby 
preventing the transcription of the gene [26,27]. This model was originally proposed in [28] to investigate the implications 
of stochastically in gene expression for haploinsufficiency. Note that the complex mechanism of transcription is viewed as a 
“back box” represented by the production rate Sκ1. The motivation for taking the rate of protein production to scale with S
is that the number of proteins in the system is typical very large. The propensities of this model as well as some physically 
relevant values of the rate constants are provided in Table 3.

While the network is simple, it provides a useful test case for the methods developed in this paper. In particular, a 
natural multiscale decomposition follows immediately from the physical interpretation of the model, leading to a very 
simple thermodynamic limit. Since X2 and X3 are binary values, and S is defined to be the typical number of proteins in 
the system, we have IH = {1} with Mi = S . It then follows from Table 1 that J H = {1, 2}. This implies that the continuous 
part of the dynamics in the multiscale approximation is given by

d
Z̄1(t) = κ1 X̄2(t)ds − κ2 Z̄1(t)
dt
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Fig. 1. The observed speedup of the coupled estimator, Ccrude/Ccoupled measured in the total number of events needed to obtain an O(S−0.7) estimate 
of E[Z(10)] with initial data Z(0) = (Z A(0), XB (0), XC (0)) = (1, 0, 1)T . The faded dashed lines indicate the best fits for aSd + b using a non-linear least 
squares fit to determine a, b and d. The darker lines display the predicted speedups aS + b and aS1/2δ + b with least squares fits for a and b. Monte 
Carlo simulations were performed by generating samples until σmm−1/2 Q̂ −1

m < ε where m is the number of samples generated, σm is the sample standard 
deviation and Q̂ m is the estimate using those samples. We used a Python implementation of the LSODA algorithm to perform the integration step in 
Algorithm 2. We have confirmed that the estimates are within the expected confidence intervals. The rate constants used are from Tables 1 and 2.

Table 2
The rate constants and propensities for the model (5.2) with S = 102.

j α j(Z(t)) G jκ j κ j G j

1 κ1 X2(t) 1.3 × 102 1.3 S
2 κ2 Z1(t) 1.0 1.0 1
3 κ3 X2(t)Z1(t) 5.0 5.0 1
4 κ4 X3(t) 4.0 4.0 1

A bound on the complexity of the estimator can be derived from the fact that error between the coupled and exact process 
in L2 is O(S−1) [1]. This implies V (Z , Z̄h) =O(ε1/δ). Recalling (4.4), we have M1 = ε1/δ−δ , and since the asymptotic number 
of computations to generate a sample of (Z , Z̄ ) is equal to CZ =O(S), we obtain the asymptotic complexity

Ccoupled ∼ M1CZ = O(ε−δ).

This implies Ccrude/Ccoupled = S , which is independent of δ and therefore one benefits from using the coupling technique for 
any value of δ. In practice this means that in a sufficiently large systems, the coupling method will produce computational 
gains regardless of the desired accuracy. Note that this is exactly the complexity Ccrude in the classical setting. In this sense 
the coupling gives us the variance reduction that we get for free in the classical setting. This result is confirmed by numerical 
experiments performed over a range of system sizes, see Fig. 1.

If we drop the assumption that the dynamics of the gene do not depend on the concentration of the protein (that is, we 
add feedback), then we can obtain a similar limiting systems, but the complexity analysis must be revisited. For example, 
suppose we modify the network so that the concentration of the protein catalyses the transition of the gene into the off 
state:

G
κ1→ G + M

M
κ2→ ∅

M + G
κ3→ M + G∗

G∗ κ4→ G.

(5.2)

Not that this new network can be studied under the same scaling as the network without feedback, see Table 2. The 
continuous evolution of Z̄1(t) is therefore unchanged from the previous model.

Note that we are assuming the physical (unscaled) rate constants are the same as those for the simpler model considered 
above, but the structure of the model has changed. This corresponds to the physical assumption that the switching depends 
on the concentration of the protein and not the total number of proteins in the system. We have proven (see [1]) that for 
models of this type we have the larger L2 error of O(S−1/2), and hence the slower converge

Ccoupled ∼ M1CZ = O(ε−δ−1/2δ).
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Table 3
The physically prescribed rate constants and a possible set of scaling exponents for (5.3) with S = 102.

j α j(Z(t)) G jκ j κ j G j

1 κ1 X3(t) 4.3 × 10−2 4.3 S−1

2 κ2 Z1(t) 7.0 × 10−2 7.1 S−1

3 κ3 X5(t) 7.15 × 10−2 7.15 × 10−2 1
4 κ4 X3(t) 3.9 × 10−3 3.9 × 10−3 1
5 κ5 Z2(t)X4(t) 1.99 × 10−2 1.99 × 10−2 1
6 κ6 X5(t) 4.79 × 10−1 4.79 × 10−1 1
7 κ7 X5(t)Z2(t) 1.99 × 10−3 1.99 × 10−1 S−2

8 κ8 X6(t) 8.7 × 10−12 8.7 × 10−8 S−2

9 κ9 Z1(t)(Z1(t) − 1/S) 8.3 × 102 8.3 S
10 κ10 Z2(t) 5.5 × 101 5.5 × 10−1 S

In contrast to the results stated for systems without feedback, we now have the δ dependent speed up Ccrude/Ccoupled =
S1/2δ . As δ becomes large the coupling method becomes less effective. Note that this result does not say anything about 
the constant appearing in the O(·) term, but does give us a rough idea of when we can expect the method to be effective. 
In the present context we have found that method is effective for moderate S provided δ < 1. For example, in Fig. 1 we 
display results for δ = 0.7. If S = 102, this corresponds to an accuracy of approximately ε = 0.025.

5.2. Goutsias’s model of regulated transcription

In order to establish that our method is indeed applicable to more realistic models appearing in biology, we will examine 
a model of regulated gene transcription that involves six species,

X1 = M Protein monomer

X2 = D Transcription factor

X3 = RNA mRN A

X4 = DNA Unbound DN A

X5 = DNA · D DN A bound at one site

X6 = DNA · 2D DN A bound at two sites,

and is described by the reaction network

RN A
κ1→ RN A + M

M
κ2→ ∅

DN A · D
κ3→ RN A + DN A · D

RN A
κ4→ ∅

DN A + D
κ5�
κ6

DN A · D

DN A·D + D
κ7�
κ8

DN A·2D

2M
κ9�
κ10

D

(5.3)

This model has previously been studied in [29,24]. Here, the process of translation produces protein monomers from mRNA 
in the first reaction, while the third reaction models the transcription of DNA. It is assumed that transcription occurs 
only when a transcription factor occupies one the binding sites. The last reaction models the dimerization of the protein 
monomer into the transcription factor, while remaining reactions incorporate the binding and unbinding of the transcription 
factors to the DNA and the degradation of various species.

By analogy with the previous examples, one can think of the binding and unbinding of the transcription factor as a 
source of switching between discrete states of the gene. This motivates the multi-scale approximation in which IH = {1, 2}
with M1 = M2 = S . Selecting an appropriate multi-scale decomposition of the reactions is much more subtle, and as noted 
earlier, there is some freedom in how we proceed. For the propose of illustration, suppose we select J H = {1, 2, 7, 8, 9, 10}
using the values of G j in Table 3. This choice of scaling factors is motived by previous research on multiscale approximations 
of this model, see [24]. One then finds that the continuous dynamics of the multi-scale approximation are then given by



12 E. Levien, P.C. Bressloff / Journal of Computational Physics 346 (2017) 1–13
Fig. 2. The observed speedup of the coupled estimator, Ccrude/Ccoupled measured in the total number of events needed to obtain an O(S−1) estimate of 
E[Z(5)] with initial data Z(0) = (1, 1, X3(0), 2, 0, 0)T . The faded line indicates the best fit. The implementation details are the same as in Fig. 1. The y axis 
begins at 1, so all of the simulations did produce speeds ups, although they are negligible for small values of X3(0). The inset shows the CPU time used to 
compute a representative sample path for each system size, and it can be seen that the cost of computing the hybrid paths is essentially constant. The rate 
constants used are from Table 3.

d

dt
Z̄1(t) = 2κ10 Z̄2(t) − 2κ9 Z̄1(t)

2

d

dt
Z̄2(t) = κ9 Z̄1(t)

2 − κ10 Z̄2(t).

Note that this system is decoupled from the stochastic dynamics of the low copy species, and hence the term E[ Z̄ H (T )] can 
be obtained via deterministic integration methods.

We have found that this particular limiting model works well with our method. Numerical results are presented in Fig. 2, 
where we see that computational improvements are clearly made. Fig. 2 also illustrates the role of the reaction channels 
involving RNA in the coupling. Recall that the coupled channels in Algorithm 3 are those for which j ∈ J L . In the present 
context, the channels involving RNA (channels 3 and 4) are the coupled channels, so intuitively one would expect that 
occurrences of theses reaction help in reducing the L2 error. This is observed in our numerical results, where it can be 
seen that increasing the initial RNA significantly improves the effectiveness of the coupled estimator. When X3(0) = 2 the 
production of RNA is very rare, and hence channels 3 and 4 rarely fire, making the coupling significantly less effective. 
In light of this observation, we expect that the optimal choice of scaling parameters depends not only on the model, but 
the specific problem, including the initial data. For example, is there another choice of scaling parameters for which the 
estimator performs better when there is no RNA initially in the system? We hope this question will be addressed in a 
future study.

6. Conclusions

Variance reduction in Monte Carlo estimators through probabilistic coupling has been used extensively in the scientific 
computing literature [30,31,16,17]. However, there has been little work exploring the application of simplified models to 
reduce variances in Monte Carlo estimators for complex chemical reaction networks. We have extended the idea of variance 
reduction to models with partial thermodynamic limits in which the qualitative behavior of the full stochastic model is well 
approximated by a PDMP. Such population models arise in the biological and chemical sciences whenever the population can 
be decomposed into a group of abundant species, and a group of rare species. The rare species often act as an environment 
that controls the dynamics of a large population, such as how the discrete state of a gene controls the production of 
a protein. Building on previous variance reduction techniques, we have constructed a coupling between the PDMP the 
thee exact process which significantly reduced the variance of their squared difference, and applied this to a Monte Carlo 
estimator. While bounds on the asymptotic complexity exist for simple scalings, we have shown how our method can be 
applied to more arbitrary scalings. In the future we hope to develop more systematic methods for determining the scaling 
that minimizes the complexity of our estimator.

Our results suggest that approximate stochastic models, such as the ones studied rigorously in [5,3,6] may be useful 
in the context of variance reduction for exact models. It would be particularly fruitful to extend our work to develop 
computational tools that are specifically tailored to spatial process. In particular, the reaction diffusion master equation 
(RDME) is a continuous time Markov chain approximation of reaction diffusion processes for which there is a great deal of 
interest in simulating efficiently [32,33]. Other future directions include extending the coupling to other model reductions, 
such as the quasi-steady state, an idea that was briefly explored in [16].
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