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Abstract
We investigate a class of irreversible networks whose chemical species 
can be partitioned into two disjoint sets S1 and S2, resulting in a weakly 
reversible subnetwork G2 involving only the species S2, and a semi-weakly-
reversible network G1; the latter reduces to a weakly reversible network on 
formally eliminating the chemical species S2. We introduce a generalized 
flux balance condition that can be understood as the natural analogue of the 
complex balance condition for weakly reversible networks, and which serves 
as a tool for investigating how irreversible networks differ from reversible 
ones. We also make a connection between the generalized balance condition 
and the theory of multiscale networks by taking S1 to consist of high copy 
number species (O(N)), where N is the system size, and S2 to consist of low 
copy number species (O(1)). We show how the generalized balance condition 
of the full stochastic model is related to a moment balance condition of the 
corresponding piecewise deterministic Markov process (PDMP) obtained in 
the thermodynamic limit N → ∞.

Keywords: chemical reaction networks, detailed balance, irreversibility, 
multiscale analysis, piecewise deterministic Markov processes, deficiency 
zero

(Some figures may appear in colour only in the online journal)

1.  Introduction

It is well known that much of the interesting dynamical behavior observed in biological sys-
tems can be understood by analyzing the underlying chemical components [1]. Chemical reac-
tion network theory provides a unified mathematical approach to studying these chemical 
processes. By relating the dynamical behavior of a system of chemical interactions to the 
topology of the reaction network, chemical reaction network theory has been able to identify 
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general network motifs in various biochemical systems [2–4]. Within chemical reaction net-
work theory, there are usually two types of models one studies: a deterministic model known 
as the reaction rate equations, and a stochastic model that is often formulated in terms of a 
chemical master equation [5]. The relationship between the two models is well understood 
over finite time intervals; it is given by a law of large numbers in terms of the system-size 
N [6]. However, because the limits N → ∞ and t → ∞ do not necessarily commute, under-
standing the relationship in steady-state has proven to be a more difficult task, and remains an 
active area of research [7–10]. This task is further complicated when one considers multi-scale 
systems, which have time-scales that are not dependent on the system-size.

One of the most notable results in chemical reaction network theory is the deficiency zero 
theorem [2], which gives general conditions under which the reaction rate equations have a 
nontrivial stable equilibrium. More recently, this result has been extended to the chemical 
master equation, where it has been shown that, under the same conditions, the stochastic 
model has a product form stationary density [11, 12]. The networks to which these theorems 
apply are known as complex balanced [13], and can be thought of as a generalization of the 
class of detailed balance networks. In addition to making the computation of the stationary 
density tractable for a wide class of models, these results link the steady-states of the deter-
ministic model to the stationary behavior of the stochastic model in a concrete way, thereby 
making progress towards a more complete understanding of how the two models are related. 
The deficiency zero theorem is also interesting from the perspective of non-equilibrium ther-
modynamics. For example, it as recently has been shown that for a complex balanced chemi-
cal reaction network one can sharpen the second law of thermodynamics [10, 14].

Results concerning complex balanced systems require the underlying network to be weakly 
reversible and deficiency zero. These are topological conditions: the former means that every 
reaction is contained in a closed cycle, while the later means that all cycles can be realized 
in the reaction graph [14]. There are many physically relevant networks that violate these 
conditions, while still behaving similarly to complex balanced networks over long periods 
of time. For such networks, one can usually obtain a complex balanced network by perform-
ing an averaging procedure, but it is not clear what is lost by doing so [15]. In this paper 
we investigate a class of non-complex balanced networks G  whose chemical species can be 
partitioned into two disjoint sets S1 and S2, resulting in a complex balanced subnetwork G2 
involving only the species S2, and a semi-weakly-reversible network G1; the latter reduces to 
a weakly reversible network on formally eliminating the chemical species S2. We introduce 
a generalized flux balance condition that can be understood as the natural analogue of the 
complex balance condition for weakly reversible networks, and which serves as a tool for 
investigating non-equilibrium steady-states in non-complex balanced networks. Our analysis 
reveals that, in contrast to complex-balanced networks, the structure of probability fluxes in 
non-complex balanced networks is sensitive to stochasticity. In particular, the equilibria of a 
deterministic mean-field model of a network can satisfy a balance relation which is violated 
by the stochastic model. One the other hand, we show that the balance relation is preserved in 
a partial mean-field limit.

The paper is organized as follows. In section 2 we introduce the background notation and 
terminology related to reversible chemical reaction networks. In section 3 we formulate our 
theory of non-complex balanced networks and introduce the generalized flux balance condi-
tion. In section 4, we consider various examples of catalytic reaction networks, illustrating 
how the generalized balance condition can be used, and when it breaks down. Finally, in 
section 5 we make a connection between the generalized balance condition and the theory of 
multiscale networks by taking S1 to consist of high copy number species (O(N)), where N 
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is the system size, and S2 to consist of low copy number species (O(1)). We show how the 
generalized balance condition of the full stochastic model is related to a moment balance con-
dition of the corresponding piecewise deterministic Markov process (PDMP) obtained in the 
thermodynamic limit N → ∞.

2.  Reversible chemical reaction networks

We begin by giving a general definition of a chemical reaction network for a well-mixed sys-
tem of p interacting species.

Definition 2.1 (Chemical reaction network [2]).  A chemical reaction network (CRN) 
is a triple G = (S , C , R) where

	 •	S  is a finite set of species labeled i = 1, 2, . . . , p, whose interactions we seek to describe. 
Species are often denoted by capital letters (e.g. A, B, C,...).

	 •	C  is a set of multi-sets of elements in S  called complexes. Each complex can be identi-

fied with a vector in the species space k ∈ Z|S |
�0 . We will adopt the usual abuse of notation 

and refer to both the multi-set (which lives in complex space) and the vector by the same 
symbol.

	 •	 R is a set of single step reactions. That is, for each Rj ∈ R

Rj = {kin
j → kout

j }, kin
j , kout

j ∈ C .

		 We once again abuse notation and refer to j ∈ R as both the reaction itself and the index. 
The species indexed by the nonzero entries of kin

j  are referred to as reactants, while the 
species indexed by the nonzero entries of kout

j  are products.

We refer to ‖kin
j ‖1 =

∑ p
i=1 kin

j,i as the order of the jth reaction and maxj ‖kin
j ‖1 as the order 

of G . The vector Kj := kout
j − kin

j  will be referred to as the reaction direction or stochiometric 
vector for the jth reaction.

Corresponding to each reaction network G  is a unique, directed graph constructed as fol-
lows. The nodes of the graph are given by the set of distinct complexes z ∈ C . A directed 
edge is then placed from a complex z to a complex z′  if and only if z → z′ ∈ R . Each con-
nected component of the graph is called a linkage class of the graph, with the number of 
linkage classes denoted by l. A network is said to be reversible if for every forward reaction 
k → k′ ∈ R  there is a corresponding backward reaction k′ → k ∈ R . A network is said to be 
weakly reversible if for any reaction k → k′ ∈ R , there is a sequence of directed reactions 
starting with k′ as a reactant complex and ending with k as a product complex. If a network is 
not weakly reversible, we will say that it is irreversible. Another important notion is the span 
of the stochiometric vectors Kj = kout

j − kin
j , that is,

S = spanj=1,...,R{Kj} ⊂ R p.

In general, S  will be a subset of R p so that s ≡ dim[S] � p.
It should be noted that the terms reversible and irreversible are often used to refer to a 

dynamical notion of reversibility, namely the time-reversibility of a Markov process. To avoid 
confusion, we will refer to a time-reversible steady-state of a Markov process as an equilib-
rium steady-state.
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As an illustration, consider the following set of chemical reactions:

There are p = 4 chemical species (A, B, C, D), m = 5 complexes (A, B, C + D, 2A, 2C), and 
R = 5 reactions. There are two disconnected graphs so the number of linkages l = 2. The top 
graph is reversible, whereas the second is weakly reversible. For this example,

S = span








−1
1
0
0


 ,




0
−1
1
1


 ,




1
0
−1
−1


 ,




−2
0
2
0


 ,




2
0
−2
0







� (2.1)

= span








−1
1
0
0


 ,




0
−1
1
1


 ,




−2
0
2
0







,� (2.2)

so that s = 3.

2.1.  Chemical master equation (CME)

Let Xi(t) be the number of molecules of species i ∈ S  and set X(t) = (Xi(t))i∈S . Suppose 
the jth reaction occurs at a rate Nαj(X(t)/N). Here N  is a dimensionless quantity representing 
the system size. For example, in gene networks N  is typically taken to be the characteristic 
number of proteins. In other applications it may represent some volume scale factor. Between 
reactions, X(t) is constant, and hence the time until the next reaction, ∆t , is exponentially 
distributed with rate parameter equal to the sum of the rates. That is,

P(∆t > t′|X(t) = x) = exp


−t′N

∑
j∈R

αj(X(t)/N)


 .� (2.3)

Appropriate choices for the propensities Nαj can be derived from physical principles. For 
chemical systems, these are usually taken to be of the form [5]

αj(x/N) := κj

∏
i∈S

1

Nkin
j,i

xi!

(xi − kin
j,i)!

,� (2.4)

where κj is a positive constant, and we will assume rates of this form throughout the remainder 
of the paper.

The process X(t) obtained by repeatedly updating the state according to the reaction direc-
tion at exponentially distributed jump times is characterized by the generator [16],

Af (x) =
∑
j∈R

Nαj(x/N)( f (x + Kj)− f (x)).

Using the generator one can write down the forward Kolmogorov equation or chemical master 
equation (CME), which describes the evolution of the probability density
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p(x, t) := P(X(t) = x|X(0) = x0).� (2.5)

The CME is given in terms of the hermitian adjoint of A, denoted A∗:

d
dt

p(x, t) = A∗p(x, t) =
∑
j∈R

αj([x − Kj]/N) p(x − Kj, t)− αj(x/N) p(x, t).

� (2.6)
For the remainder of this paper we assume that the process X(t) is irreducible, although the 
results are easily generalized to the reducible case [5]. Recall that an irreducible Markov chain 
is one for which any state can be reached from any other. We will say that G  is irreducible 
when X(t) is.

In practice, the fully stochastic description is often intractable from both the computational 
and analytical perspectives [5]. This has motivated the development of reduced models by 
deriving limit theorems in terms of the scaling factor N  [17]. In the classical setting, every 
species in S  is taken to scale with N  and so a law of large numbers for the process yields a 
deterministic system of ODEs. In particular, introducing the concentrations XN

i (t) = Xi(t)/N  
and setting zi(t) = limN→∞ XN

i (t), one obtains (provided the limit is interpreted in the appro-
priate sense) the reaction rate equations [2]

dz
dt

=
∑
j∈R

ᾱj(z(t))Kj ᾱj(z(t)) := κj

∏
i∈S

zi(t)kin
j,i .� (2.7)

Note that ᾱj is simply the leading order term in the Taylor expansion of (2.4) in N−1, and 
that for first-order reactions these are identical. It turns out that the classical scaling is over 
simplified for the vast majority of biologically interesting models. In particular, many systems 
in biology operate in the multiscale setting, where abundances vary over many orders of mag-
nitude between species [18, 19]. This has motivated more sophisticated treatments that allow 
for only some fraction of the species abundances to scale with N  [20] (see section 5).

2.2.  Reversibility and deficiency zero theorem

One of the most import results in chemical reaction network theory relates weak reversibility 
to the equilibria of the deterministic model. In order to state this result, we require the fol-
lowing notion of the deficiency of a CRN: The deficiency of a chemical reaction network 
G = (S , C , R) is the quantity

δ = |C | − l − s,

where l is the number of linkage classes and s = dimS. Deficiency plays a fundamental role 
in the study of chemical reaction networks, for a detailed discussion see [11]. Note that the 
above reaction network has a zero deficiency δ = 0, since m = 5, l = 2, s = 3. We now state 
the deficiency zero theorem.

Theorem 2.1 (Deterministic deficiency zero theorem [5]).  Let G = (S , C , R) be a 
weakly reversible deficiency zero CRN. Then G  modeled deterministically according to (2.7) 

has a unique equilibrium ζ ∈ R|S |
>0  satisfying the complex balance relation

∑
{ j:kin

j =k0}

αj(ζ) =
∑

{ j:kout
j =k0}

αj(ζ)� (2.8)

for each k0 ∈ C .
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If { j : kin
j = k0} and { j : kout

j = k0} each contain only a single reaction (for example, if G  
is given by A � B), we obtain the deterministic detailed balance (DDB) relation (also known 
as chemical detailed balance [9])

αj(ζ) = αj−1(ζ) for each j ∈ R,� (2.9)

with j−1 being the reversal of j. However, many networks admit detailed balanced equilibria 
even when the aforementioned sets are not singletons. While theorem 2.1 and its generaliza-
tion require only conditions on the network structure, conditions under which the stronger 
relation (2.9) holds are given in terms of the specific choice of rate constants [3].

Recently there has been a considerable amount of work on the development of stochastic 
analogs to theorem 2.1. For example, see [11–13]. We state a result which is essentially a sto-
chastic version of the deficiency zero theorem.

Theorem 2.2 (Stochastic deficiency zero theorem [13, theorem 5.1]).  Let 
G = (S , C , R) be a weakly reversible deficiency zero CRN with system size N . Then on 
each irreducible state space ΓN  there exists a stationary density πN of the CME satisfying the 
stochastic complex balance (SCB) relation

∑
{ j:kin

j =k0}

αj([x − Kj]/N)πN(x − Kj) =
∑

{ j:kout
j =k0}

αj(x/N)πN(x)� (2.10)

for each x ∈ ΓN and k0 ∈ C . Moreover, πN is given by the multivariate Poissonian stationary 
distribution

πN(x) = CN

∏
i∈S

(Nζi)
xi

xi!
e−Nζi ,� (2.11)

where ζ satisfies (2.8) and CN is a normalization constant.

Note that the detailed balance equation (2.10) is a particular form of the steady-state master 
equation for the invariant distribution πN, AπN = 0, which holds for time-reversible Markov 
chains. It states that the probability flux into each complex k0 is equal to the outdoing probabil-
ity flux. This is precisely the stochastic analogue of (2.8). In the remainder of this paper, we 
refer to a network G  that satisfies the hypothesis of theorems 2.1 and 2.2 as complex balanced. 
That is, G  is complex balanced if it is weakly-reversible and deficiency zero.

2.3.  Equilibrium stationary distributions and detailed balance

One might wonder whether the existence of a stochastic detailed balanced (SDB) stationary 
density

αj(x − Kj)πN(x − Kj) = αj−1(x)πN(x)� (2.12)

can be deduced from (2.9). In general it is not true that (2.9) implies (2.12), while it is always 
true that stochastic detailed balance implies deterministic detailed balance [21]. The following 
theorem says that they are equivalent for many networks of interest.

Theorem 2.3 (Relationship between SDB and DDB [21]).  Let G  be a reversible CRN 
and suppose

|{ j ∈ R : Kj = K}| � 1

E Levien and P C Bressloff﻿J. Phys. A: Math. Theor. 50 (2017) 475004
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for each K ∈ Z|S |. Then the deterministic rate model of G  satisfies deterministic detailed bal-
ance if and only if the CME satisfies stochastic detailed balance.

For stationary densities satisfying stochastic detailed balance, the product form density 
(2.11) can often be computed without knowledge of the equilibria ζ by directly solving the 
stochastic detailed balance relation. Physically speaking, the relation (2.12) says that in steady 
state the probability flux out of a state x ∈ Γ is equal to the probability flux into x, see figure 1.

Detailed balance and the resulting product form stationary density play a fundamental role 
in the development of the thermodynamic theory of chemical reaction networks [22]. In par
ticular, detailed balanced stationary densities correspond to equilibrium steady-states. In an 
equilibrium steady-state, the entropy production rate vanishes and the probability of finding 
the system in a given state is characterized by its internal energy [23]. Classical thermodynam-
ics provides a complete theory of systems in equilibrium; however, since biological systems 
necessarily exist far from equilibrium, there is an increasing interest in developing an analo-
gous theory for non-equilibrium systems [24].

3.  Semi-reversibility, orthogonal decomposability, and generalized balance 
relations

Calculating the stationary solution of the chemical master equation (if it exists) is non-trivial 
for even the simplest non-complex balanced networks. In this section, we introduce a form of 
so-called semi-reversibility that applies to a wide class of irreversible networks, particularly 
those involving catalytic reactions. We then use this to develop a set of generalized balance 
relations for semi–reversible networks.

Suppose that the species of an non-complex balanced reaction network G = (S , C , R) 
are decomposed into two disjoint sets S1 and S2. Any complex k ∈ C  can then be written as 
k = (u, v) with ki = ui for i = 1, . . . |S1| and ki = vi for i = 1, . . . , |S2|. Furthermore, suppose 
that under this decomposition the following properties hold:

	 (i)	The reactions can be decomposed into two sets R1 and R2 together with the complexes 
C1 and C2, such that G2 = (S2, C2, R2) forms a complex balanced subnetwork, whereas 
G1 = (S , C1, R1) is irreversible and involves a mixture of the species S1 and S2. In 
particular, if k ∈ C2 then it can be written as k = (0, v) for some |S2|-dimensional vector 
v, that is, ki = 0 for i ∈ S1.

	(ii)	The stochiometric vectors Kj of R1 and R2 are orthogonal, that is,

Kj,i = 0 for j ∈ R1, i ∈ S2

		 and

Kj,i = 0, for j ∈ R2, i ∈ S1.

	(iii)	The network G1 is semi-reversible or semi-weakly-reversible as defined below.

Figure 1.  A schematic illustration of stochastic detailed balance for two states 
0, 1 ∈ Γ. The stochastic model is reversible and satisfies detailed balance provided 
αj−1(1)π(1) = αj(0)π(0).
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Definition 3.1 (Semi-reversibility).  The network G1 is said to be semi-reversible if it is 
reversible with respect to the species S1, that is,

{(uin
j , vin

j ) → (uout
j , vout

j )} ∈ R1

implies there exists

{(uin
l , vin

l ) → (uout
l , vout

l )} ∈ R1,

such that uin
l = uout

j  and uout
l = uin

j . In other words, we relax the requirement that the com-
plexes involved in the reverse reaction have the same elements of S2 as the forward reaction. 
Structurally, eliminating the species S2 results in a reversible network denoted by G̃1. Simi-
larly, G1 is said to be semi-weakly-reversible if G̃1 is weakly-reversible deficiency zero with 
respect to the species S1. We will let C̃1 denote the complexes of G̃1, which correspond to u in 
the decomposition k = (u, v) ∈ C1.

Definition 3.2 (Orthogonal decomposability).  Suppose that an irreversible net-
work G = (S , C , R) can be decomposed into two subnetworks G1 = (S , C1, R1) and 
G2 = (S2, C2, R2) such that conditions (i)–(iii) hold. The network G  is then said to be or-
thogonally decomposable.

While a network can have multiple orthogonal decompositions, the examples considered 
in this paper each have unique orthogonal decompositions. Furthermore, the general results 
discussed in this paper apply to any orthogonal decomposition, so a discussion of uniqueness 
is not relevant to the present study. With that said, it should be observed that one can obtain a 
unique orthogonal decomposition by taking G2 to be the reversible subnetwork with the maxi-
mum number of species over all such subnetworks satisfying (i)–(iii).

We now assume that all species of the orthogonally decomposable network G  scale with 
the system size N so that in the thermodynamic limit we have the reaction rate equations (2.7). 
Let z = (η, ζ) be an equilibrium of the rate equations. We can then rewrite the steady-state 
equations as follows:

0 =
∑
j∈R

αj(η, ζ)Kj,l =
∑
j∈R

κj

[∏
i∈S1

η
kin

j,i
i

][∏
i∈S2

ζ
kin

j,i
i

]
Kj,l, l ∈ S .

Using orthogonality of the stochiometric vectors (see condition (ii)) and kin
j,l = 0 for j ∈ R2 

and l ∈ S1, we have

0 =
∑
j∈R1

κj

[∏
i∈S1

η
kin

j,i
i

][∏
i∈S2

ζ
kin

j,i
i

]
Kj,l, l ∈ S1,� (3.1a)

0 =
∑
j∈R2

κj

[∏
i∈S2

ζ
kin

j,i
i

]
Kj,l l ∈ S2.� (3.1b)

Since the subnetwork G2 is weakly reversible deficiency zero, we can use the theorems 
of section  2 to establish that equation  (3.1b) has a unique solution ζ. Moreover, setting 

κ̃j(ζ) = κj
∏

i∈S2
ζ

kin
j,i

i  , equation (3.1a) can be rewritten as

0 =
∑
j∈R1

κ̃j(ζ)

[∏
i∈S1

η
kin

j,i
i

]
Kj,l, l ∈ S1.� (3.2)
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The semi-reversibility condition (iii) then ensures that these equations  correspond to the 
steady-state equations for a weakly reversible, defiency zero network G̃1, which is obtained 
by eliminating the species S2 from G . It follows from theorem 2.1 that (3.2) has a unique 
positive solution η. Moreover, this equilibria satisfies the generalized deterministic complex 
balance relations

∑
{ j∈R1:uout

j =u0}

αj(η, ζ) =
∑

{ j∈R1:uin
j =u0}

αj(η, ζ)
� (3.3)

for each u0 ∈ C̃1. Similarly, if G1 is semi-reversible then a detailed balance condition holds.
Recall from section  2 that in the case of weakly reversible networks, there is a strong 

connection between the existence of an equilibrium of the deterministic reaction rate equa-
tions and a stationary distribution πN of the corresponding CME. In other words, there is a sto-
chastic analog of the deterministic complex balance relation, see theorems 2.1 and 2.2. In the 
case of an orthogonally decomposable network, the generator of the CME can be wriiten as

Af (x) =
∑
j∈R1

Nαj(x/N)( f (x + Uj, y)− f (x)) +
∑
j∈R2

Nαj(x/N)( f (x, y + Vj)− f (x)),

� (3.4)

where {xi, i = 1, . . . , |S1|}, and {yi, i = 1, . . . , |S2|} denote the species counts, and we have 
set Kj = (Uj, Vj) with Uj = uout

j − uin
j  and Vj = vout

j − vin
j . From condition (ii) we see that 

Uj = 0 for j ∈ R2 and Vj = 0 for j ∈ R1. The existence of the generalized deterministic 
complex balance relation (3.3) for an orthogonally decomposable network then suggests that 
we define a generalized stochastic complex balance relation according to

∑
{ j∈R1:uout

j =u0}

∑
{y:αj(x−Uj,y)�=0}

αj(x − Uj, y)πN(x − Uj, y)

=
∑

{ j∈R1:uin
j =u0}

∑
{y:αj(x,y) �=0}

αj(x, y)πN(x, y),
�

(3.5)

for each u0 ∈ C̃1. Note that the inner sum is taken over all y for which the rates are not identi-
cally zero. Similarly, if j has a unique semi-reversal j−1 ∈ R1, we introduce the generalized 
stochastic detailed balance relation

∑
{y:αj(x−Uj,y) �=0}

αj(x − Uj, y)πN(x − Uj, y)

=
∑

{y:αj−1 (x,y) �=0}

αj−1(x, y)πN(x, y)
�

(3.6)

for each j ∈ R1. Like (2.12) and (2.10), (3.6) and (3.5) impose restrictions on the stationary 
density of the Markov chain modeling a CRN in terms of probability fluxes. In contrast to the 
complex balance relation, these relations are valid when the underlying network is irrevers-
ible. Through some specific examples, we now show that, unlike weakly reversible networks, 
the existence of the deterministic balance relation (3.2) for an orthogonally decomposable 
network does not necessarily ensure that the corresponding stochastic balance relation (3.5) 
also holds.
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4.  Examples of orthogonally decomposable chemical reaction networks

4.1.  Example I: calculation of a stationary distribution when generalized detailed balance 
holds

Consider an irreversible chemical reaction network G  given by the set of reactions

A + C κ1→B + C

B + D κ2→A + D

D
κ3
�
κ4

C.

� (4.1)

This reaction network (4.1) describes the interactions of a population of species in the set 
{A, B, C, D}. The positive constants κi indicate the rates at which the reactions occur. In this 
network, the chemical species A  is converted into B in the presence of a catalyst C. Similarly, 
B is converted into A  in the presence of a catalyst D. Finally, D and C are spontaneously con-
verted into each other. In terms of definition 2.1, we have G = (S , C , R), where

S = {A, B, C, D}
C = {A + C, B + C, A + D, B + D, C, D}.

If we instead choose to represent complexes as vectors in Z4, then

C = {(1, 0, 1, 0), (0, 1, 1, 0), (1, 0, 0, 1), (0, 1, 0, 1), (0, 0, 0, 1), (0, 0, 0, 1)}.

The set R consists of four reactions: the second-order reactions

{A + C → B + C} = {(1, 0, 1, 0) → (0, 1, 1, 0)}, k1 = (−1, 1, 0, 0)
{B + D → A + D} = {(0, 1, 0, 1) → (1, 0, 0, 1)}, k2 = (1,−1, 0, 0),

and the reversible first-order reactions

{D → C} = {(0, 0, 0, 1) → (0, 0, 1, 0)}, k3 = (0, 0, 1,−1)
{C → D} = {(0, 0, 1, 0) → (0, 0, 0, 1)}, k4 = (0, 0,−1, 1).

Note that (4.1) is deficiency one.
It is clear that the network (4.1) is not reversible in the standard reaction-wise sense. For 

example, the reaction

B + C → A + C,

corresponding to the reversal of

A + C → B + C,

is not present in G . G  is also not weakly reversible. However, it is orthogonally decomposable 
according to definition 3.2, as illustrated schematically in figure 2. First, we set S1 = {A, B} 
and S2 = {C, D} and

R1 = {A + C → B + C, B + D → A + D}, R2 = {D � C}.

It is straightforward to check that conditions (i)–(iii) hold. In particular, G2 is reversible and 
G1 is semi-reversible. The latter follows from the fact that A + C → B + C has the ‘semi-
reverse’ reaction B + D → A + D. Therefore, G1 inherits deterministic detailed balance from 
the reversible network G̃1 consisting of the reactions A � B. That is,
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κ̃1zA = κ̃2zB,� (4.2)

where κ̃1 = κ1zC and κ̃2 = κ2zD. Figure 2 can be simplified further by noting that the comp
onents of the complexes satisfy kA + kB = 1 and kC + kD = 1. Hence we can represent every 
complex uniquely by (kA, kC) ∈ {0, 1}2. The simplified diagram is shown in figure 3.

We now turn to the stochastic model. Let XA, XB, YC and YD denote the species counts. Noting 
that the system has two conservations laws, we take the classical scaling XA + XB = N  and 
YC + YD = N  with N � 1. (In section 5 we consider a multiscale network where A and B have 
high copy numbers, whereas C and D have low copy numbers, that is, we take XA + XB = N  
and YC + YD = 1.) Note that due to the conservation laws, the coordinates (xA, yC) uniquely 
specify the state of the system. Under the classical scaling, the four reactions have the follow-
ing propensities:

Nα1((xA, yC)/N) = κ1NxAyC, Nα2((xA, yC)/N) = κ2N(1 − xA/N)(1 − yC/N),
Nα3(yC/N) = κ3(N − yC), Nα4(yC/N) = κ4NyC.

We have used the conservation conditions to set xB = N − xA and yD = N − yC. The CME 
takes the explicit form

dp
dt

= Nα1(([xA + 1], yC)/N) p(xA + 1, yC, t)− Nα1((xA, yC)/N) p(xA, yC, t)

+ Nα2(([xA − 1], yC)/N) p(xA − 1, yC, t)− Nα2((xA, yC)/N) p(xA, yC, t)

+ α3([yC − 1]/N) p(xA, yC − 1, t) + α4([yC + 1]/N) p(xA, yC + 1, t)

− α3(yC/N) p(xA, yC, t)− α4(yC/N) p(xA, yC, t).
�

(4.3)

Rescaling and taking the limit N → ∞ recovers the rate equations considered above.
Given the generalized deterministic detailed balance relation (4.2), is their a corresponding 

generalized detailed balance condition? It turns out that for the particular network (4.1), the 
answer is yes, namely,

(xA + 1)κ1πN(xA + 1, 1) = (N − xA)κ2πN(xA, 0).� (4.4)

Figure 2.  The complex space Γ = {0, 1}4 of the orthogonally decomposable network 
(4.1) is shown in black with k = (kA, kB|kC, kD). The arrows represent edges in the graph 
of the corresponding transition matrix. In red we see the complexes (kA, kB) of the 
reversible network A � B obtained by eliminating C, D along the lines of the definition 
of semi-reversibility.
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This relation is automatically satisfied, since the probability flux is balanced across graph 
cuts, see [25] for details, and is illustrated graphically in figure 4 for N = 1. Setting p = πN  
in equation (4.3) shows that πN(x, y), y = 0, 1, satisfy the pair of equations

0 = κ1(x + 1)πN(x + 1, 1)− κ1xπN(x, 1) + κ4πN(x, 0)− κ3πN(x, 1),
0 = κ2(N − x + 1, 0)πN(x − 1, 0)− κ2(N − x)πN(x, 0) + κ3πN(x, 1)− κ4πN(x, 0).

We can utilize the balance condition (4.4) to decouple these equations. After simplification, 
the resulting uncoupled system is

(x + 1)
(

1 +
κ4

κ2(N − x)

)
κ1πN(x + 1, 1) = (κ3 + κ1x)πN(x, 1),

(N − x + 1)
(

1 +
κ3

xκ1

)
κ2πN(x − 1, 0) = (κ4 + κ2(N − x))πN(x, 0).

This allows us to write, for example,

πN(x, 1) = C1

N−1∏
k=x

κ1(k + 1)
(

1 + κ4
κ2(N−k)

)

(κ3 + κ1k)

= C1

(x + 1)N−x

(
x − N − κ4

κ2

)
N−x

(x − N)N−x

(
x + κ3

κ1

)
N−x

for some normalization constant C1. Here we are using the Pochammer symbol,

(x)a =
Γ(x + a)
Γ(x)

.

Figure 3.  Simplified version of figure  2 for Γ = {0, 1} × {0, 1} with complexes 
k = (kA, kC).
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Similarly,

πN(x, 0) = C2

(x − N − 1)2−x

(
x + κ3

κ1

)
2−x

(x)2−x

(
x − N − κ4

κ2

)
2−x

.

The constants C1 and C2 can be computed by summing over the state space and imposing nor-
malization conditions on the result. However, we omit the expressions, as they are somewhat 
complicated.

4.2.  Example II: breakdown of generalized stochastic detailed balance

To illustrate the more general balance relation (3.5), consider the orthogonally decomposable 
network G  given by

A + C κ1→B + C

B + D κ2→A + D

2D
κ3
�
κ4

C + D.

�
(4.5)

Again S1 = {A, B} and S2 = {C, D} but now

R1 = {A + C → B + C, B + D → A + D}, R2 = {2D � C + D}.

Conditions (i)–(iii) still hold so that we have the generalized detailed balance equation of 
the form (4.2). However, in this case the corresponding CME does not satisfy generalized 
stochastic detailed balance. In order to illustrate this, suppose XA + XB = 1 and YD + YC = 2. 
If initially Y(t) = (YD(t), YC(t)) = (0, 2), then after the 4th reaction Y(t) = (1, 1). The third 
reaction then returns us to the state Y(t) = (0, 2). As a result, this model has a stationary den-
sity on the irreducible component

Figure 4.  An illustration of the generalized detailed balance condition for the network 
(4.1) with N = 1. Here the states are labeled by (xA, yC). The condition (3.6) holds when 
κ1π(1, 1) = κ2π(1, 1).
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Γ = {(1, 0, 2, 0), (1, 0, 1, 1), (0, 1, 2, 0), (0, 1, 1, 1)}.

This is contrast to the previous example where the effect of the third and fourth reactions was 
to switch between having one D molecule and one C molecule. As a consequence the sym-
metry of the previous model that led to a generalized stochastic detailed balance reaction is 
broken.

It is straightforward to establish that the stationary density is given by

π(1, 0, 1, 1) = Cκ1κ3κ4

π(1, 0, 0, 2) = C2κ1κ4(κ2 + κ4)

π(0, 1, 1, 1) = Cκ2κ3(κ1 + κ2 + κ3 + κ4)

π(0, 1, 0, 2) = Cκ2κ4(κ2 + κ3 + κ4)

for some normalization constant C. In order to see that complex rather than detailed balance 
holds, consider the left hand side of (3.5) with u0 = ((u0)A, (u0)B) = (1, 0). The only reaction 
containing u0 as an outgoing complex is B + D κ2→A + D. Therefore,

∑
{ j∈R1:uout

j =u0}

∑
{y:αj(x−Uj,y)�=0}

αj(x − Uj, y)π(x − Uj, y)

= κ1(xB + 1)2π(x − (1,−1), 0, 2) + κ1(xB + 1)π(x − (1,−1), 1, 1).

To make this expression nonzero we set x = (1, 0), which yields

κ12π(0, 1, 0, 2) + κ1π(0, 1, 1, 1) = C2κ1κ2κ4(κ2 + κ3 + κ4).

Similarly, taking x = (1, 0) on the right hand side of (3.5),
∑

{ j∈R1:kin
j =k0}

∑
{y:αj(x,y)�=0}

αj(x, y)π(x, y)

= α1(1, 0, 1, 1)π(1, 0, 1, 1) = C2κ1κ2κ4(κ2 + κ3 + κ4).

The resulting equality shows that equation (3.5) is satisfied. This complex balance relation is 
illustrated in figure 5, where we have recreated figure 4 for this network.

4.3.  Example III: breakdown of generalized stochastic complex balance

Consider the network

A + D 1→B + D 1→C + D

C + E 1→A + E

E
1
�
1

D.

�

(4.6)

 For simplicity we set all the rate constants to 1 and impose the conservation laws

XA + XB + XC = 2

and

YD + YE = 1.

For this model S1 = {A, B, C} and S2 = {D, E} with

R1 = {A + D → B + D, B + D → C + D, C + E → A + E}, R2 = {E � D}.
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It is straightforward to check that conditions (i)–(iii) hold with G2 reversible and G1 semi-
weakly-reversible. The latter follows from the fact that eliminating D and E yields the network 
G̃1 given by the linear cycle

A → B → C → A.
Moreover, the latter clearly satisfies the hypothesis of theorem 2.2, that is, it is weakly revers-
ible and deficiency zero.

The state space of the model is

Γ =
{(2, 0, 0, 1, 0), (1, 1, 0, 1, 0), (0, 1, 1, 1, 0), (1, 0, 1, 1, 0), (0, 0, 2, 1, 0), (0, 2, 0, 1, 0),
(2, 0, 0, 0, 1), (1, 1, 0, 0, 1), (0, 1, 1, 0, 1), (1, 0, 1, 0, 1), (0, 0, 2, 0, 1), (0, 2, 0, 0, 1)} .

Note that using the conservation laws the state of the system is uniquely specified by the 
tuple (xA, xB, xD). The complete state space along with the transition arrows is depicted in 
figure 6. The size of the state-space makes it cumbersome to obtain general relations, but 
in order to show that this network does not satisfy (3.5) we only need to select one u0 and 
x for which the condition is violated. We will take u0 = ((u0)A, (u0)B, (u0)C) = (1, 0, 0) 
and x = (xA, xB, xC) = (1, 1, 0). u0 appears in the outgoing complex in the third reaction, 
C + E 1→A + E , and in the ingoing complex in the first reaction, A + D 1→B + D. Finally, the 
relevant reaction direction appearing in (3.5) is U3 = (1, 0,−1). Combing this information, 
we find that (3.5) is of the form

∑
y

α3(x − U3, y)π(x − U1, y) =
∑

y

α1(x, y)π(x, y),

which simplifies to π(1, 1, 0, 0, 1) = π(0, 1, 1, 1, 0). On the other hand, computing the sta-
tionary density of the corresponding CME amounts to finding the nullspace of a 12 × 12 
matrix, which can easily be done in any modern computer algebra system. One finds that 
π(1, 1, 0, 0, 1) = 7/96 while π(0, 1, 1, 1, 0) = 5/48, implying that equation (3.5) is not satis-
fied. Hence, this example shows that although the averaged network satisfies the stochastic 

Figure 5.  An illustration of the generalized complex balance condition on the reaction 
network (4.5). Here the states are labeled by (xA, yC). The green overlay illustrates how 
the condition (3.5) relates π(0, 1) to π(1, 0) and π(0, 0).
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complex balance relation (2.10), this does not guarantee that the full network satisfies the 
generalized relation (3.6).

5.  Balance relations for multiscale networks

In our analysis of orthogonally decomposable chemical reaction networks (sections 3 and 4), 
we assumed that all species scaled with the system size N (classical scaling). However, aside 
from the derivation of the reaction rate equations, the choice of scaling played no significant 
role in the analysis. In particular orthogonal decomposability is a structural property of a net-
work that is independent of the choice of scaling. In this section we consider a form of multi-
scaling where S1 is identified with species having high copy numbers (O(N)), whereas S2 
is identified with low copy number species (O(1)). This is often the case in catalytic reaction 
networks such as those considered in section 4.

Let (x, y) ∈ Z|S1|+|S2|
�0  denote the state variables of an orthogonally decomposable network 

G . The stochastic process associated with G  is generated by (compare with equation (3.4))

Af (x, y) = A1f (x, y) + A2f (x, y)

= N
∑
j∈R1

αj(x/N, y)( f (x + Uj, y)− f (x, y))

+
∑
j∈R2

αj(x/N, y)( f (x, y + Vj)− f (x, y)).

�

(5.1)

Figure 6.  The state space of the network (4.6). We have used the conserved quantities 
to label the states by (xA, xB, yD).
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After introducing the rescaled state variable (XN(t), Y(t)) = (X(t)/N, Y(t)) and defining the 
limiting process (Z(t), Y(t)) = limN→∞(XN(t), Y(t)), we obtain the piecewise deterministic 
Markov process (PDMP) [20]

dZi

dt
=

p∑
j∈R1

αj(Z, Y(t))Uj,i, i ∈ S1,� (5.2)

while the time to the next jump in Y(t) now depends on Z(t). In terms of the notation used 
earlier, see equation (2.3),

P(∆t > t′|(z(t), Y(t)) = (z, y)) = exp


−

∫ t′

0

∑
j∈R2

αj(z(s), Y(t))ds


 .

The generator corresponding to the process (Z(t), Y(t)) is

Āf (z, y) = Ā1f (z, y) + A2f (z, y)

=
∑
j∈R1

αj(z, y)Uj · ∇f (z, y) +
∑
j∈R2

αj(z, y)( f (z, y + Vj)− f (z, y)),

� (5.3)
and in place of the CME we have a differential Chapman–Kolmogorov (dCK) equation for 
p = p(z, y, t):

∂

∂t
p(z, y, t) = Ā∗p(z, y, t).� (5.4)

In practice, the problem of obtaining information about the density of the thermodynamic 
limit is usually much more manageable than attempting to study the full stochastic model. In 
particular, the PDMP is much less costly to simulate [26].

As a specific example, let us return to the network (4.1). The four reactions propensities of 
the network under a multiscale scaling are given by

Nα1(xA/N, yC) = κ1NxAyC, Nα2(xA/N, yC) = κ2N(N − xA)(1 − yC),
α3(yC/N) = κ3(1 − yC), α4(yC) = κ4yC

where we now have yD = 1 − yC ∈ {0, 1}. The corresponding CME becomes

dp
dt

= Nα1([xA + 1]/N, yC) p(xA + 1, yC, t)− Nα1(xA/N, yC) p(xA, yC, t)

+ Nα2([xA − 1]/N, yC) p(xA − 1, yC, t)− Nα2(xA/N, yC) p(xA, yC, t)

+ α3(1 − yC) p(xA, 1 − yC, t) + α4(1 − yC) p(xA, 1 − yC, t)

− α3(yC) p(xA, yC, t)− α4(yC) p(xA, yC, t).
�

(5.5)

Applying the system-size expansion to the first four terms on the right-hand side in the large-N 
limit wth z = xA/N  now yields the dCK equation

∂p̄(z, yC, t)
∂t

= − ∂

∂z
[α2(z, yC)− α1(z, yc)] p̄(z, yC, t)

+ α3(1 − yC)p̄(z, 1 − yC, t) + α4(1 − yC)p̄(z, 1 − yC, t)

− α3(yC)p̄(z, yC, t)− α4(yC)p̄(z, yC, t).

�

(5.6)
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This represents the evolution of the probability density for sample paths of the following 
piecewise deterministic Markov process (PDMP) for (Z(t), YC(t)) [20]:

dZ
dt

= α2(Z, YC)− α1(Z, YC),� (5.7)

with YC ∈ {0, 1} given by the two-state Markov process

0
κ3
�
κ4

1.

Since the transition rates κ3,κ4 are independent of Z, the PDMP is said to be without any 
feedback.

We now add one further restriction on the orthogonally decomposable, multiscale network 
G , namely, that the complex balanced network G̃1 (see definition 3.1) is first-order and con-
servative. We then have the following theorem, which gives a relationship between the station-
ary density of the CME and the moments of the PDMP.

Theorem 5.1.  Let G = (G1, G2) be an orthogonally decomposable, multiscale network 
such that G̃1 is first-order and conservative. Let πN denote the stationary density of the CME 
of G  generated by (5.1), and let (Z(t), Y(t)) be the process generated by (5.3). Then

E

[
1{Y(t) = y}

∏
i∈S1

Zxi
i (t)

]
= πN(x, y)� (5.8)

for 
∑

i xi = N , with the expectation being taken with respect to the stationary density of the 
PDMP. The index function 1{Y(t) = y} = 1 when Y(y) = y  and is zero otherwise.

Proof.  Consider the time-dependent moment

M(x, y, t) := E

[
1{Y(t) = y}

∏
i∈S1

Zxi
i (t)

]

=

∫ 1

0
dz

∑
y′

[
1{y′ = y}

∏
i∈S1

zxi
i

]
p(z, y′, t),

�

(5.9)

where p  evolves according to equation  (5.4). The proof involves showing that M(x, y, t) 
evolves according to the same evolution equation as the CME for p(x, y, t). First, differentiat-
ing both sides of equation (5.9) with respect to t gives

d
dt
M(x, y, t) =

∫ 1

0
dz

∑
y′

[
1{y′ = y}

∏
i∈S1

zxi
i

]
∂

∂t
p(z, y′, t).

Substituting equation (5.4) then yields

d
dt
M(x, y, t) =

∫ 1

0
dz

∑
y′

A

[
1{y′ = y}

∏
i∈S1

zxi
i

]
p(z, y′, t).� (5.10)

For x ∈ Z|S1|
�0  define

fy′,x(z, y) = 1{y = y′}
∏

i∈S1

zxi
i ,
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and note the useful identities

∂

∂zi
fy′,x(z, y) = 1{y = y′}xi

∏
i′∈S1

z
xi′−δi′ ,i
i′ = xify′,x1,...,xi−1,...,xi(z, y)

= xify′,x−ei(z, y),

where ei denotes the unit vector with only the ith component non-zero, and

αj(z, y) fy′,x(z, y) = κ̃j(y)1{y = y′}
∏

i∈S1

z
kin

ji
i

∏
i∈S1

zxi
i

= κ̃j(y)1{y = y′}
∏

i∈S1

z
kin

j,i+xi

i = κ̃j(y) fy′,x+kin
j
(z, y),

where κ̃j is the effective rate constant that depends on y. Applying Ā to fy′,x(z, y) yields

Āfy′,x(z, y) =
∑
i∈S1

∑
j∈R1

Uj,iκ̃j(y)xify′,x−ei+kin
j
(z, y)

+
∑
j∈R2

κ̃j(y − Vj) fy′,x(z, y − Vj)− κ̃j(y) fy′,x(z, y).

Substituting the results into equation (5.10) yields the evolution equation

d
dt
M(x, y, t) = L1M(x, y, t) + L2M(x, y, t)� (5.11)

with

L1f (x, y) :=
∑
i∈S1

∑
j∈R1

Uj,iκ̃j(y)xif (x − ei + kin
j , y)

L2f (x, y) :=
∑
j∈R2

κ̃j(y − Vj) f (x, y − Vj)− κ̃j(y) f (x, y).

To prove the relation (5.8) we now simply identify an equivalence between the moment 
equation (5.11) and the CME

d
dt

p(x, y, t) = A∗
1 p(x, y, t) + A∗

2 p(x, y, t),

where A1 and A2 generate the dynamics induced by R1 and R2 respectively. Note that the 
terms involving changes in the low copy variable y are trivially identical to those appearing in 
the moment flow equations. Turning to the first term, and using the fact that G̃1 is first-order, 
we have

A∗
1 f (x, y) =

∑
j∈R1

κ̃j(y)(xiinj
+ 1) f (x − Uj, y)− κ̃j(y)xiinj

f (x, y),

with iinj  and iout
j  denoting the ingoing and outgoing species of the jth reaction. Since 

xiinj
+ 1 = xiout

j
 and

Uj,i = δi,iout
j
− δi,iinj

,
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it follows that

A∗
1 f (x, y) =

∑
j∈R1

κ̃j(y)xiout
j

f (x − eiout
j
+ kin

j , y)− κ̃j(y)xiinj
f (x − eiinj

+ kin
j , y)

=
∑
j∈R1

|S1|∑
i=1

Uj,iκ̃j(y)xif (x − ei + kin
j , y)

= L1f (x, y).

Hence, the evolution equation for M(x, y, t) is formally identical to that of p(x, y, t). Taking 
the limit t → ∞ with p(x, y, t) → πN(x, y) [27] then establishes equation (5.8).� □ 

Returning to the network (4.1) and the stochastic detailed balance condition (4.4), theorem 
5.1 implies the following:

(x + 1)κ1E[Zx+1
A ZN−x−1

B (t)1{YC(t) = 1}] = (N − x)κ2E[Zx
AZN−x

B (t)1{YC(t) = 0}]
� (5.12)

for all N > 0, 0 � x � N  with the expectation being taken with respect to the invariant den-
sity of the PDMP arising from G . Using the theory developed thus far, we can interpret (5.12) 
as a flux balance condition on the moments. To see how this relates to the classical determin-
istic detailed balance condition, take N = 1. Then

κ1E[ZA(t)1{YC(t) = 0}] = κ2E[ZB(t)1{YC(t) = 1}],

which has a clear resemblance to (2.9), with the expectation of the piecewise deterministic 
variable playing the role of the deterministic equilibrium ζ.

To establish a more general result, we introduce the moment detailed balance condition

∑
{y:αj(x−Uj,y) �=0}

E

[∏
i∈S1

αj(Z(t), Y(t))xi−Uj 1{Y(t) = y}

]

=
∑

{y:αj−1 (x,y) �=0}

E

[∏
i∈S1

αj−1(Z(t), y)xi 1{Y(t) = y}

]
,

�

(5.13)

with j−1 denoting the reversal of j in R1 (with respect to the orthogonal decomposition). 
We say that the PDMP satisfies moment detailed balance if (5.13) holds for each j and each 

x = (x1, x2, . . . , x|S1|) ∈ Z|S1|
�0 . Noting that αj(x, y) is linear in x for a first order chemical reac-

tion network, we have the following corollary of theorem 5.1:

Corollary 5.1.  Let G  be an orthogonally decomposable multiscale network with G̃1 a first-
order conservative reversible network. Then the CME of the full network G  satisfies general-
ized stochastic detailed balance if and only if the stationary PDMP obtained in the large-N 
limit satisfies moment detailed balance for each x such that 

∑
i xi = N .

This result should be interpreted as partial progress towards a generalization of theorem 2.3 
in the multi-scale setting.

6.  Discussion

We have investigated the stationary behavior of class of non-complex balanced stochas-
tic chemical reaction networks based on the notions of semi-reversibility and orthogonal 
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decomposition. Following recent publications in the area of stochastic chemical reaction net-
work theory [11–13], the focus of our investigation has been the flux balancing structure of the 
stationary densities for the stochastic model. In particular, we have identified a natural gener-
alization of the well studied stochastic complex balance condition [2], which is essentially a 
probability flux balance relation, and shown through examples how the flux balance condition 
can break down. This demonstrates a fundamental difference in the behavior of non-complex 
balanced networks, even when they appear to have similar topological properties as reversible 
ones. It further suggests, as a future avenue for study, the identification of the class of irreduc-
ible networks for which the flux balance conditions are preserved.

Finally, we have generalized the existing theory by exploring the relationship between the 
PDMP obtained in the multiscale, large system-size limit and the full stochastic model. We 
proved that under certain additional constraints, the generalized complex balance relation for 
the chemical master equation is equivalent to a moment balance condition for the PDMP. This 
result is similar in spirit to existing results relating the equilibria of the reaction rate equa-
tions to the stationary density of the chemical master equation [11, 21].
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