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Abstract
We consider a diffusing particle that randomly switches conformational 
state. Motivated by various scenarios in cell biology, we suppose that (a) the 
diffusion coefficient depends on the conformational state and/or (b) the particle 
can only pass through a series of gates in the domain when it is in a particular 
conformational state. We develop probabilistic methods to analyze this case 
of diffusion with temporal heterogeneity, and use these methods to calculate 
the expected residence time in portions of the domain before absorption at 
a boundary. We find several new phenomena not seen in recent studies of 
diffusion with spatial heterogeneity, some of which are counterintuitive. In 
particular, the expected residence times can be non-monotonic functions of 
(i) the initial distance from the absorbing boundary and (ii) the diffusion 
coefficients. We focus on one-dimensional intervals, but show how the 
analysis can be extended to spherically symmetric d-dimensional domains.

Keywords: Brownian motion, residence times, stochastic gates,  
first passage times, temporal heterogenieity

(Some figures may appear in colour only in the online journal)

1. Introduction

A fundamental quantity in the mathematical theory of random walks and diffusion processes 
is the occupation time [16, 18], which was originally defined as the time spent by a Brownian 
particle in R+ = [0,∞) within a time window of size t. That is, given the Brownian motion 
X(t) ∈ R, the occupation time T is

T :=
∫ t

0
Θ(X(τ))dτ , (1.1)
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where Θ(X) denotes the Heaviside function. The occupation time T is an example of a 
Brownian functional. Since X(t), t � 0, is a Wiener process, it follows that each realization 
of a Brownian path will typically yield a different value of T, which means that T will be 
distributed according to some probability density P(T , t|x0, 0) for X(0)  =  x0. The statistical 
properties of a Brownian functional can be analyzed using path integrals, and leads to the 
well-known Feynman–Kac formula [17]. For a general review of Brownian functionals and 
their applications, see [19]. An immediate generalization of equation (1.1) is to take

T :=
∫ t

0
IV(X(τ))dτ , (1.2)

where X(t) ∈ Rd  is a continuous stochastic process and IV(x) denotes the indicator func-
tion of the set V ⊂ Rd , that is, IV(x)  =  1 if x ∈ V  and is zero otherwise. (Note that for one- 
dimensional (1D) motion, Θ(x) = IR+(x).) More recently, occupation times have figured 
prominently in a variety of physical applications under the alternative name of residence times. 
Examples include the non-equilibrium dynamics of coarsening systems [11, 20], ergodicity 
properties of anomalous diffusion [10, 21], simple models of blinking quantum dots [22], 
fluorescent imaging [1], and branching processes [12]. Since a residence time concerns the 
amount of time that a Brownian particle spends in some bounded or partially bounded domain 
M ⊂ Rd , a natural extension is to replace the upper limit t by a stopping time such as the first 
passage time (FPT) to reach a section of the boundary ∂M. This type of residence time has 
recently played an important role in the calculation of mean first-passage times (MFPTs) in 
spatially heterogeneous media [9, 23, 24].

In this paper we use probabilistic methods (conditional expectations and the strong Markov 
property) to determine the stopped residence times of a Brownian particle in a bounded domain 
with temporal rather than spatial heterogeneity. The introduction of temporal heterogeneity 
is motivated by the idea that macromolecules in cell biology often switch between different 
conformational states [2]. For simplicity, we will assume that a particle can randomly switch 
between two conformational states labeled n  =  0, 1 and that this switch has two possible 
effects: (i) the diffusion coefficient depends on the state n and (ii) there are pores separating 
different spatial domains and the particle can only pass through a pore when in the state n  =  0, 
say. Thus the pore acts like a stochastic gap junction [6, 7]. These two cases are illustrated in 
figure 1. The analysis of residence times with a switching diffusion coefficient is presented in 
section 2, and the extension to stochastically-gated residence times is presented in section 3. 
In particular, we show how temporal heterogeneity can lead to counterintuitive behaviors, 
such as the non-monotonic dependence of expected residence times on the initial distance 
from an absorbing boundary and on the diffusion coefficient.

2. Residence times without gating

2.1. Brownian particle with temporal heterogeneity

Consider a Brownian particle diffusing in the one-dimensional (1D) domain of length L shown 
in figure 2. The domain is partitioned into cells of size l, ml  =  L, with a pore or gate at each 
junction x  =  kl, k = 1, . . . (m − 1)l . Suppose that the particle switches between two con-
formational states labelled n  =  0,1 such that n(t) ∈ {0, 1} evolves according to a two-state 

Markov chain, 0
β
�
α

1, with the matrix generator
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A =

(
−β α

β −α

)
. (2.1)

We assume that the two conformational states have distinct diffusion coefficients Dn, n  =  0, 1 
as illustrated in figure 1(a). We then distinguish between two scenarios.

 (i) Ungated: the particle can pass through the pores in both conformational states so the cell 
junctions have no effect.

 (ii) Gated: the particle can only pass through a pore in conformational state n  =  0, see 
figure 1(b).

  In this section  we focus on the ungated case, and consider the effects of gating in  
section 3. Let X(t) be the position of the particle at time t, which evolves according to the 
piecewise stochastic differential equation (SDE)

dX(t) =
√

2Dn dW(t), (2.2)

  when n(t) = n ∈ {0, 1}. Here W(t) is a Wiener process with 〈dW(t)〉 = 0 and 
〈dW(t)dW(t′)〉 = δ(t − t′)dtdt′.

Figure 1. Schematic diagram of two possible trajectories for a Brownian particle that 
randomly switches between two conformational states n  =  0, 1 according to a two-
state Markov chain with transition rates α,β  (temporal heterogeneity). (a) Switching 
between different diffusion coefficients D0, D1. (b) Brownian particle can only pass 
through a pore when in the state n  =  0.

Figure 2. One-dimensional domain of length L partitioned into m cells of size l with 
gap junctions at the interior points x  =  ak  =  kl, k  =  1, m  −  1.

P C Bressloff and S D Lawley J. Phys. A: Math. Theor. 50 (2017) 195001
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Assuming the initial conditions X(0) = x0, n(0) = n0, we introduce the probability density 
pn(x, t|x0, n0, 0) with

P{X(t) ∈ (x, x + dx), n(t) = n|x0, n0} = pn(x, t|x0, n0, 0)dx.

It follows that pn evolves according to the forward differential CK equation  (dropping the 
explicit dependence on initial conditions) [2, 14]

∂pn

∂t
= Dn

∂2pn(x, t)
∂x2 +

∑
m=0,1

Anmpm(x, t), n = 0, 1. (2.3)

Now suppose that there is an absorbing boundary condition at x  =  0 and a reflecting boundary 
condition at x  =  L:

pn(0, t) = 0,
∂pn(L, t)

∂x
= 0. (2.4)

Given the first passage time

T := inf{t > 0 : X(t) = 0}, (2.5)

we define the (stopped) residence time in the interval (ak, ak+1) according to

Tk :=
∫ T

0
I(ak ,ak+1)(X(t))dt, k = 0, . . . , m − 1. (2.6)

Note that 
∑m−1

k=0 Tk = T  almost surely.
In this paper we are interested in calculating the mean residence times τm

k (x0), where

τm
k (x0) = Ex0,m[Tk], (2.7)

with Tk the residence time in the interval (ak, ak+1) and Ex0,m denotes expectation with 
respect to the stochastic process conditioned on X(0)  =  x0 and n(0)  =  m. Given the solution 
pn(x, t|x0, m, 0) to the CK equation (2.3), we have

τm
k (x0) =

∑
n=0,1

∫ ak+1

ak

dx
∫ ∞

0
dt pn(x, t|x0, m, 0). (2.8)

Setting qm(x0, t) =
∑

n=0,1 pn(x, t|x0, m, 0), the backward CK equation takes the form

∂qm

∂t
= Dm

∂2qm(x0, t)
∂x2

0
+

∑
n=0,1

A�
mnqn(x0, t). (2.9)

The associated boundary conditions are

qm(0, t) = 0,
∂qm(L, t)

∂x0
= 0.

It follows that τm
k  evolves according to

Dm
∂2τm

k (x0)

∂x2
0

+
∑

n=0,1

A�
mnτn(x0) = −I(ak ,ak+1)(x), (2.10)

supplemented by the boundary conditions

τm
k (0) = 0, τm

k
′(L) = 0.

P C Bressloff and S D Lawley J. Phys. A: Math. Theor. 50 (2017) 195001
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2.2. Probabilistic formulation

One could determine the mean residence times τm
k  by explicitly solving the piecewise differ-

ential equations (2.10). However, this becomes considerably more involved in the gated case, 
see section 3. Therefore, we will consider an alternative, probabilistic formulation of the above 
process, which will allow us to apply methods developed in previous work to the analysis of 
gated residence times [7]. In addition to simplifying the analysis, our approach has a number 
of other advantages. First, it provides insights into the nature of sample paths that contribute 
to the residence times. Second, the method can be extended to Brownian particles moving in a 
potential V, for which equation (2.2) becomes dX(t) = V(X)dt +

√
2Dn dW(t). Although the 

resulting Chapman–Kolmogorov equation cannot be solved exactly, except for special choices 
of V, qualitative aspects of the dynamics can be obtained using the probabilistic approach, see 
for example [4, 5].

For ease of notation we drop the subscript on the initial position x0. Before proceeding, it 
is useful to recall a few basic definitions from probability theory.

Conditional expectations and the tower property. Consider a sample space Ω with σ-algebra 
F  and probability measure P. In the case of two random variables on the probability space 
(Ω,F ,P), we define the conditional expectation of Y given X by

E(Y|X) =
∫

yρ(y|X)dy,

where ρ(y|X) is the conditional probability density with respect to X. This definition can be 
generalized to conditional expectation with respect to a σ-algebra (instead of with respect to a 
random variable), see [13, 15]. The conditional expectation satisfies

E(E(Y|X)) ≡
∫ ∫

yρ(y|x)ρ(x)dydx =

∫
yρ2(y, x)dydx = E(Y),

where ρ2 is a joint probability density. Using a similar argument, one can also derive the tower 
property

E(E(Y|X1, X2)|X1) = E(Y|X1).

Stopping times and the strong Markov property. Let X = {X(t), t ∈ R+} be a continuous 
 stochastic process defined on (Ω,F ,P). The σ-algebra generated by the stochastic process X up 
to time t then corresponds to sets of sample paths, realizations or trajectories {X(s), 0 � s � t}. 
A stopping time T  is a time that depends on the path {X(t), t ∈ R+}, and is thus a random 
variable. A defining feature of a stopping time is that one knows at time t whether or not 
T � t , that is, knowledge of the sample path {X(s), s � t} is sufficient to determine whether 
or not T � t . It immediately follows that the first passage time (2.5) is a stopping time. Given 
any stopping time T  with respect to X, if the stochastic process Y(t) = X(t + T )− X(T ) is 
independent of {X(s), s < T } then X is said to satisfy the strong Markov property.

We will make repeated use of the strong Markov property and conditional expectations in 
the following. Define the first time the particle reaches position y ∈ [a0, am] when the jump 
process is in state n ∈ {0, 1},

sn
y := inf

{
t > 0 : {X(t) = y} ∩ {n(t) = n}

}
. (2.11)

P C Bressloff and S D Lawley J. Phys. A: Math. Theor. 50 (2017) 195001
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For any stopping time S, we denote the σ-algebra generated by the process {(X(t), n(t))}S
t=0 

until time S by F(S). If x ∈ [a0, ak], then by the tower property of conditional expectation and 
the strong Markov property, we have that

τ n
k (x) = Ex,n[Tk1s0

ak
<T 1s0

ak
<s1

ak
] + Ex,n[Tk1s1

ak
<T 1s1

ak
<s0

ak
]

= Ex,n[1s0
ak
<T 1s0

ak
<s1

ak
Ex,n[Tk|F(s0

ak
)]]

+ Ex,n[1s1
ak
<T 1s1

ak
<s0

ak
Ex,n[Tk|F(s1

ak
)]]

= Px,n({s0
ak
< T } ∩ {s0

ak
< s1

ak
})τ 0

k (ak)

+ Px,n({s1
ak
< T } ∩ {s1

ak
< s0

ak
})τ 1

k (ak).

 

(2.12)

Since we will be using similar arguments throughout the paper, it is worthwhile deconstruct-
ing this result. The first equality simply states that conditioning the residence time Tk on the 
particle entering the interval [ak, ak+1] is trivial when x  <  ak, since Tk = 0 otherwise. The sec-
ond equality is an application of the tower property, whereas the third uses the strong Markov 
property and the fact that there is no contribution to the residence time prior to first entering 
the interval [ak, ak+1]. Similarly, if x ∈ [ak+1, am], then

τ n
k (x) = Ex,n[Tk1s0

ak+1
<s1

ak+1
] + Ex,n[Tk1s1

ak+1
<s0

ak+1
]

= Px,n(s0
ak+1

< s1
ak+1

)τ 0
k (ak+1)

+
(
1 − Px,n(s0

ak+1
< s1

ak+1
)
)
τ 1

k (ak+1).

 

(2.13)

In order to use (2.12) and (2.13) to calculate τk, we will obtain explicit expressions for the 
splitting probabilities

pn
k(x) := Px,n({s0

ak
< T } ∩ {s0

ak
< s1

ak
}), x ∈ [0, ak]

p̃n
k(x) := Px,n({s1

ak
< T } ∩ {s1

ak
< s0

ak
}), x ∈ [0, ak]

qn
k(x) := Px,n(s0

ak+1
< s1

ak+1
), x ∈ [ak+1, am].

We will find it convenient to work with the following sums and differences

Sτ := τ 0
k + τ 1

k , ∆τ := τ 0
k − τ 1

k ,

with Sp, ∆p, Sp̃, ∆p̃, and Sq, ∆q defined analogously. In these new variables, (2.12) and (2.13) 
become

Sτ (x) =




1
2 (Sp(x) + Sp̃(x))Sτ (ak) +

1
2 (Sp(x)− Sp̃(x))∆τ (ak), x ∈ [0, ak]

Sτ (ak+1) + (Sq(x)− 1)∆τ (ak+1), x ∈ [ak+1, am]
 

(2.14)

and

∆τ (x) =




1
2 (∆p(x) + ∆p̃(x))Sτ (ak) +

1
2 (∆p(x)−∆p̃(x))∆τ (ak), x ∈ [0, ak]

∆q(x)∆τ (ak+1), x ∈ [ak+1, am]
 

(2.15)

Following our previous work [3, 4, 7] one can show that ∆p and Sp satisfy the following 
ODEs on (a0, ak)

L∆p − Γ+∆p = 0, (2.16a)

P C Bressloff and S D Lawley J. Phys. A: Math. Theor. 50 (2017) 195001
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LSp − Γ−∆p = 0, , (2.16b)

where

L :=
d2

dx2 , Γ± :=
D1β ± D0α

D1D0
, (2.17)

with boundary conditions

∆p(a0) = Sp(a0) = 0, ∆p(ak) = Sp(ak) = 1. (2.18)

Further, ∆p̃ and Sp̃ satisfy (2.16a) and (2.16b) and (2.18), except the boundary condition for 
∆p̃ at x  =  ak is ∆p̃(ak) = −1. It follows that

∆p̃ = −∆p, (2.19)

and thus

L(Sp + Sp̃) = 0 (2.20a)

L(Sp − Sp̃)− 2Γ−∆p = 0, (2.20b)

with boundary conditions

(Sp + Sp̃)(a0) = 0, (Sp + Sp̃)(ak) = 2
(Sp − Sp̃)(a0) = 0, (Sp − Sp̃)(ak) = 0.

Similarly, ∆q and Sq satisfy (2.16a) and (2.16b) on (ak+1, am) with boundary conditions

∆q(ak+1) = Sq(ak+1) = 1
∆′

q(am) = S′
q(am) = 0.

We can now solve these boundary value problems explicitly and obtain exact expressions for 
∆p, Sp + Sp̃, Sp − Sp̃, ∆q, and Sq. Setting aj  =  jl for each j ∈ {0, 1, . . . , m}, we have

∆p(x) = csch(
√
Γ+kl) sinh(

√
Γ+x),

(Sp + Sp̃)(x) = 2x/(kl),

(Sp − Sp̃)(x) =
2Γ−

[
kl sinh(

√
Γ+x)csch(

√
Γ+kl)− x

]
Γ+kl

,

∆q(x) = sech
(√

Γ+(m − (k + 1))l
)
cosh

(√
Γ+(ml − x)

)
,

Sq(x) =
Γ−

Γ+
(∆q(x)− 1) + 1.

It remains to determine ∆τ  and Sτ  on [ak, ak+1]. Again, following our previous work [3, 4, 
7] one can show that ∆τ  and Sτ  satisfy the following ODEs on (ak, ak+1)

L∆τ − Γ+∆τ = −γ− (2.21a)

LSτ − Γ−∆τ = −γ+, (2.21b)

where

γ± :=
D1 ± D0

D1D0
.

Differentiating (2.14) and (2.15) and imposing continuity yields the boundary conditions

P C Bressloff and S D Lawley J. Phys. A: Math. Theor. 50 (2017) 195001
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S′
τ (ak) =

1
2
(S′

p(ak) + S′
p̃(ak))Sτ (ak) +

1
2
(S′

p(ak)− S′
p̃(ak))∆τ (ak)

∆′
τ (ak) = ∆′

p(ak)∆τ (ak)
 

(2.22)

S′
τ (ak+1) = S′

q(ak+1)∆τ (ak+1)

∆′
τ (ak+1) = ∆′

q(ak+1)∆τ (ak+1).
 

(2.23)

We have used (2.19) in (2.22) and (2.23). Again we can solve this boundary value problem 
explicitly and obtain explicit expressions for Sτ  and ∆τ . In particular, with aj  =  jl for each 
j ∈ {0, 1, . . . , m}, we have that

∆τ (x) =
γ−
Γ+

− γ−
2Γ+

sech
(√

Γ+ml
)[

cosh
(√

Γ+((k + 1 − m)l − x)
)

+ cosh
(√

Γ+((k + m)l − x)
)
+ cosh

(√
Γ+((k − m)l + x)

)

− cosh
(√

Γ+((k + 1 − m)l + x)
)]

,

Sτ (x) =
e−

√
Γ+(2kl+l+x)

4Γ2
+

[
2e
√

Γ+(2kl+l+x)
(
γ−Γ−

(
Γ+

(
k2l2 − 2(k + 1)lx + x2)+ 2

)

− γ+Γ
2
+

(
k2l2 − 2(k + 1)lx + x2))

+ γ−Γ−(e
√

Γ+l − 1)e
√

Γ+kl
(
(e
√

Γ+(2kl+l) + e2
√

Γ+x − 1) tanh(
√

Γ+ml)

+ sech(
√
Γ+ml)e

√
Γ+(2kl−lm+l+2x) − 1

)

− γ−Γ−
(
e
√

Γ+(kl+2x) + e
√

Γ+(kl+l+2x) + e
√

Γ+(3kl+l) + e
√

Γ+(3k+2)l)].

2.3. Results

In applications, one is not typically interested in the initial discrete state n(0). Therefore, in the 
following we will assume that n(t) starts in its invariant measure,

P(n(t) = 0) = ρ0 :=
α

α+ β
, P(n(t) = 1) = ρ1 :=

β

α+ β
.

and set τk = ρ0τ
0
k + ρ1τ

1
k . Thus all of our numerical results will be in terms of τk rather than 

the components τm
k . We fix the units of length by setting l  =  1 and taking a baseline switching 

rate to be α = β = 1. Within the context of cell biology we would typically have l = 1 µm 
and α = 1 s−1 so that D varies between 0.01–10 µm2 s−1.

Plotting the various explicit formulae reveals that diffusion with temporal disorder exhibits 
some qualitative behavior not seen in diffusion with spatial disorder [9, 23, 24]. In particular, 
figure 3 shows that τk(x) (the expected residence time in [ak, ak+1] before absorption at a0 given 
initial position x) is not monotonically increasing in x. For diffusion without temporal disorder, 
τk(x) is monotonically increasing in x because starting further away from a0 increases the first 
passage time to a0 and therefore can only increase the time spent in [ak, ak+1]. However, this 
line of reasoning is violated if the diffusion coefficient changes in time. To see this, suppose 
D1 � 1 so that the particle is absorbed at a0 almost immediately once the diffusion coefficient 
becomes D1. Hence, the only appreciable residence time in [ak, ak+1] is accumulated when 

P C Bressloff and S D Lawley J. Phys. A: Math. Theor. 50 (2017) 195001
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the diffusion coefficient is D0. Further, suppose that D0 � 1 so that the particle is unlikely to 
move very far from its initial position before the diffusion coefficient becomes D1. Thus, if the 
initial condition is outside of [ak, ak+1] (or inside [ak, ak+1] but near ak or ak+1), then τk(x) will 
be much less than if x was closer to the center of [ak, ak+1].

In addition, figure 4 shows that increasing the diffusion coefficient can actually increase the 
expected residence time. To see how temporal disorder can yield this counterintuitive result, 
suppose that D0 � 1, D1 � 1, and x /∈ [ak, ak+1]. Thus, the particle will not accumulate much 
residence time in [ak, ak+1] before absorption at a0 because it is unlikely to enter [ak, ak+1] 
when the diffusion coefficient is D0 (because x /∈ [ak, ak+1] and D0 � 1), and the particle will 
be absorbed almost immediately once the diffusion coefficient becomes D1 (because D1 � 1). 
However, increasing D0 increases the probability that the particle will enter [ak, ak+1] and 
thereby increases the expected residence time in [ak, ak+1] before absorption at a0.

We now investigate how τk(x) depends on the switching rate α+ β. In the slow switching 
limit (α+ β � 1), the diffusion coefficient is very unlikely to switch before the particle is 
absorbed, so the expected residence time is simply the average

τk(x) ≈ ρ0T(x; D0) + ρ1T(x; D1), (2.24)

where T(x;D) is the expected residence time given that the diffusion coefficient is always D, 
which is of course a classical object. On the other hand, in the fast switching limit (α+ β � 1), 
switching between diffusion coefficients D0 and D1 averages to an effective diffusion coef-
ficient ρ0D0 + ρ1D1 (see [8]) so that the expected residence time becomes

τk(x) ≈ T(x; ρ0D0 + ρ1D1). (2.25)

Figure 5 shows that τk(x) decreases from (2.24) to (2.25) as the switching rate α+ β increases.

Figure 3. Expected residence time is non-monotonic in starting position. Here, 
D0  =  0.01, D1  =  10, a0  =  0, l  =  1, and am  =  3. The monotonically increasing 
green dashed curve is with D0 = D1 = 1

2 (0.01) + 1
2 (10) and thus with no temporal 

heterogeneity. (Smaller amplitude solid curves correspond to faster switching rates.)
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2.4. Higher spatial dimensions

The above analysis of residence times can be extended to higher spatial dimensions. Following 
[24], consider a Brownian particle diffusing in a spherically symmetric domain with an absorb-
ing inner boundary at radius a0 and a reflecting outer boundary at radius am. Thus, the radial 
position of the particle X(t) ∈ [a0, am] evolves according to the SDE

dX(t) = Dn
d − 1
X(t)

dt +
√

2Dn dW(t), (2.26)

when n(t) = n ∈ {0, 1}. As in section 2.2, we would like to compute the expected value of 
Tk as a function of starting position with Tk the residence time in the interval [ak, ak+1]. The 
analysis is almost identical except that the differential operator L of equation (2.17) becomes

L :=
d − 1

x
d
dx

+
d2

dx2 , Γ± :=
D1β ± D0α

D1D0
, (2.27)

The resulting analytical expressions are considerably more complicated, and require the use of 
a symbolic package such as Mathematica. For the sake of illustration, the relevant expressions 
in the two-dimensional case are given in the appendix.

In figure 6 we illustrate how the expected residence time in the kth interval, [ak, ak+1], grows 
as a function of k for different spatial dimensions, d ∈ {1, 2, 3}. We find that this expected 
residence time grows like kd−1, which is the size of the d-dimensional annular region defined 
by a radius between ak and ak+1. That is, let Sk(d) denote the size of this kth region in dimen-
sion d. Hence,

Figure 4. Increasing the diffusion coefficient can increase the expected residence 
time. The ratio of τ1(x; 5D0) to τ1(x; D0) is plotted as a function of initial condition x. 
τ1(x, D0) is the expected residence time in [a1, a2] with diffusion coefficient D0  =  0.01 
when n(t)  =  0 and diffusion coefficient D1  =  100 when n(t)  =  1. τ1(x, 5D0) is the same 
expected residence time except the diffusion coefficient is 5 times larger when n(t)  =  0. 
Notably, this ratio is greater than one for most initial conditions. Here, a0  =  0, l  =  1, 
and am  =  3. (Smaller amplitude solid curves correspond to faster switching rates.)
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Figure 5. Expected residence time τk(x) as a function of initial condition, x, for various 
switching rates, α+ β. Here, D0  =  1, D1  =  10, a0  =  0, l  =  1, and am  =  3. The green curve 
has α = 0.1, β = 0.2. The red curve has α = 0.4, β = 0.8. The black curve is (2.24) and 
the blue curve is (2.25). (Smaller amplitude solid curves correspond to faster switching rates.)

Figure 6. Expected residence time in the kth interval grows like kd−1 in spatial 
dimension d. The ratio τk(a1)/Sk(d) is plotted as a function of k, where Sk(d) is the size 
of the d-dimensional annular region defined by a radius between ak and ak+1, defined in 
(2.28a)–(2.28c). Here, D0  =  3, D1  =  50, α = 1, β = 1, a0  =  0.05, l  =  1, and am  =  100. 
(Top curve is 3D, middle curve is 1D, and bottom curve is 2D.)
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Sk(1) = (k + 1)l − kl = l (2.28a)

Sk(2) = π(a0 + (k + 1)l)2 − π(a0 + kl)2 ≈ k (2.28b)

Sk(3) =
4
3
π(a0 + (k + 1)l)3 − 4

3
π(a0 + kl)3 ≈ k2. (2.28c)

Figure 6 shows that the ratio τk(a1)/Sk(d) is constant for large k.

3. Gated residence times

Now, suppose that each internal boundary at x  =  ak is stochastically-gated. That is, there is a 
Markov jump process n(t) ∈ {0, 1},

0
β
�
α

1,

so that the particle cannot pass through x  =  ak if n(t)  =  1 (see figure 1(b)). Moreover, we 
take the diffusion coefficient to depend on the conformational state, n(t), as in section 2. Of 
course, if we want to consider the effects of the gating only (and not the switching diffusion 
coefficient), we can take D0 = D1. For the sake of simplicity, we focus on the 1D problem.

Following section 2, we would like to compute the expected value of Tk as a function of 
starting position, so we again decompose τk = ρ0τ

0
k + ρ1τ

1
k  with

τ n
k (x) = Ex,n[Tk].

Define the splitting probability rn
k  by

rn
k(x) = Px,n(s0

ak
< T ),

where s0
ak

 is as in (2.11). If x ∈ [0, ak), then by the tower property of conditional expectation 
and the strong Markov property, we have that

τ n
k (x) = Ex,n[Tk1s0

ak
<T ] = Ex,n[1s0

ak
<T Ex,n[Tk|F(s0

ak
)]]

= Px,n(s0
ak
< T )Eak ,0[Tk]

= rn
k(x)τ

0
k (ak).

 

(3.1)

Further, if x  >  ak+1 then

τ n
k (x) = Ex,n[Ex,n[Tk|F(s0

ak+1
)]] = Eak+1,0[Tk]

= τ 0
k (ak+1).

 
(3.2)

Thus, we now need to determine the splitting probability r0
k(x) in order to determine τk(x). We 

will do this three steps.
First, we show that if x ∈ (aj, aj+1), then rn

k(x) is an average of r0
k(aj) and r0

k(aj+1). By the 
strong Markov property,

rn
k(x) = Px,n(s0

ak
< T | s0

aj
< s0

aj+1
)Px,n(s0

aj
< s0

aj+1
)

+ Px,n(s0
ak
< T | s0

aj
> s0

aj+1
)Px,n(s0

aj
> s0

aj+1
)

= Paj,0(s
0
ak
< T )Px,n(s0

aj
< s0

aj+1
)

+ Paj+1,0(s0
ak
< T )Px,n(s0

aj
> s0

aj+1
)

= r0
k(aj)[1 − pn

j (x)] + r0
k(aj+1)pn

j (x),
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where pn
j (x) := Px,n(s0

aj
> s0

aj+1
). Following our previous work [3, 4, 7] one can show that pn

j  
satisfies the following ODEs on (aj, aj+1)

D0Lp0
j + β(p1

j − p0
j ) = 0, (3.3a)

D1Lp1
j + α(p0

j − p1
j ) = 0, (3.3b)

where L is the differential operator defined in (2.17), with boundary conditions

p0
j (aj) =

d
dx

p1
j (aj) =

d
dx

p1
j (aj+1) = 0, and p0

j (aj+1) = 1.

One can solve this boundary value problem explicitly and obtain explicit expressions for pn
j . 

In dimension d  =  1:

p0
j (x) =

βD3/2
1

(
sinh ((−jl + l/2 + x)Λ) + sinh

( l
2Λ

))

2βD3/2
1 sinh

( l
2Λ

)
+ αl

√
D0(αD0 + βD1) cosh

( l
2Λ

)

+
α(−jl + l + x)

√
D0(αD0 + βD1) cosh

( l
2Λ

)

2βD3/2
1 sinh

( l
2Λ

)
+ αl

√
D0(αD0 + βD1) cosh

( l
2Λ

) ,

 

(3.4)

p1
j (x) =

√
D1

(
βD1 sinh

( l
2Λ

)
− αD0 sinh ((−jl + l/2 + x)Λ)

)

2βD3/2
1 sinh

( l
2Λ

)
+ αl

√
D0(αD0 + βD1) cosh

( l
2Λ

)

+
α(−jl + l + x)

√
D0(αD0 + βD1) cosh

( l
2Λ

)

2βD3/2
1 sinh

( l
2Λ

)
+ αl

√
D0(αD0 + βD1) cosh

( l
2Λ

) ,
 

(3.5)

where

Λ =

√
α

D1
+

β

D0
. (3.6)

Finally, to determine r0
k  it remains to find the k  −  1 constants, {r0

k(aj)}k−1
j=1 . Similar to the 

argument above, one can show that if 1 � j � k, then r0
k(aj) is an average of its neighbors, 

r0
k(aj−1) and r0

k(aj+1),

r0
k(aj) = (1 − Qj)r0

x(aj−1) + Qjr0
x(aj+1), (3.7)

where Qj is found by solving a certain boundary value problem. In particular, Qj = q0
j (aj) 

where qn
j (x) satisfies

D0Lq0
j + β(q1

j − q0
j ) = 0, x ∈ (aj−1, aj) ∪ (aj, aj+1),

D1Lq1
j + α(q0

j − q1
j ) = 0, x ∈ (aj−1, aj) ∪ (aj, aj+1),

with boundary conditions

q0
j (aj−1) =

d
dx

q1
j (aj−1) =

d
dx

q1
j (aj) =

d
dx

q1
j (aj) =

d
dx

q1
j (aj+1) = 0, q0

j (aj+1) = 1,

and continuity conditions

q0
j (0−) = q0

j (0+), and
d

dx−
q0

j (aj) =
d

dx+
q0

j (aj).
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In the case of uniform spacing, ak  =  kl, and one space dimension d  =  1, symmetry ensures 
that Qj  =  1/2. Thus in this case, rearranging (3.7) yields that the constants {r0

k(aj)}k
j=1 satisfy 

a discretized Laplace equation

r0
k(aj−1)− 2r0

k(aj) + r0
k(aj+1) = 0,

with boundary conditions r0
k(a0) = 0 and r0

k(ak) = 1. Thus,

r0
k(aj) =

j
k

.

Putting this together, we have that

d
dx

r0
k(ak) =

1
k

d
dx

p0
k(ak).

Now, with this explicit value of rn
k , we can find an explicit formula for τk = ρ0τ

0
k + ρ1τ

1
k . In 

particular, following our previous work [3, 4, 7] one can show that τ n
k  satisfies the following 

ODEs on (ak, ak+1)

D0Lτ 0
k + β(τ 1

k − τ 0
k ) = −1 (3.8a)

D1Lτ 1
k + α(τ 0

k − τ 1
k ) = −1. (3.8b)

Differentiating (3.1) and (3.2) and imposing continuity yields the boundary conditions

d
dx

τ 0
k (ak) = τ 0

k (ak)
d
dx

r0
k(ak) = τ 0

k (ak)
1
k

d
dx

p0
k(ak), (3.8c)

d
dx

τ 1
k (ak) = 0, (3.8d)

d
dx

τ n
k (ak+1) = 0. (3.8e)

We have used that d
dx r1

k(ak) = 0 to obtain the no flux boundary conditions for τ 1
k . Solving this 

boundary value problem explicitly, we find that the expected residence time in the kth interval, 
τk(x) = ρ0τ

0
k (x) + ρ1τ

1
k (x), is

τk(x) =
1

2AαD0(α+ β)(αD0 + βD1)2

[
2Aβl(α+ β)

√
D0D1(αD0 + βD1)

(
α(D0 − D1)csch(lΛ) cosh

([
(k + 1)l − x

]
Λ
)

+ D1(α+ β) coth(lΛ)
)
− (αD0 + βD1)

(
AαD0

(
α2(kl − x)((k + 2)l − x) + 2β(α(kl − x)((k + 2)l − x)− D0 + D1)

+ β2(kl − x)((k + 2)l − x)
)
− 2l(α+ β)2(αD0 + βD1)

)]
,

where A = 1
k

d
dx p0

k(ak) and p0
k  is in (3.4).

In figure 7, we investigate how the expected residence time τk(x) depends on the switching 
rate α+ β. As in section 2, we find that the expected residence time decreases as the switching 
rate increases. We further find that the gates have no effect on the particle in the fast switching 
limit. We have observed this phenomenon in other works [3, 4, 7], and there are multiple ways 
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to understand it. The simplest explanation follows from the behavior of Brownian motion at 
fine spatial scales; namely, any time a Brownian particle hits a boundary, it hits it infinitely 
often. Thus, even if n(t)  =  1 when the particle hits x  =  ak, the particle will hit x  =  ak many 
times shortly after the first hit, and n(t) must be equal to zero at one of those times if it is 
switching at a sufficiently high frequency. Indeed, if a Brownian particle starts on a boundary 
that switches between reflecting and absorbing, then the expected absorption time vanishes as 
the switching rate increases [4, 5].

4. Discussion

In this paper, we considered diffusion in a spherically symmetric d-dimensional domain and 
assumed that the particle randomly switches conformational state according to a Markov 
jump process. Motivated by various scenarios in cell biology, we supposed that (a) the dif-
fusion coefficient depended on the conformational state and/or (b) the particle can only pass 
through a series of gates in the domain when it is in a particular conformational state. We 
calculated the expected residence time in certain portions of the domain before absorption 
at a boundary.

Our work can be viewed as a temporal analog of the work on diffusion in spatially hetero-
geneous media [9, 23, 24]. That is, while these previous studies supposed that the properties of 
the diffusing molecule change in space, we allowed the properties to change in time. In order 
to study this case of temporal heterogeneity, we developed probabilistic methods to analyze 
the problem. We found several new phenomena not seen in diffusion with only spatial hetero-
geneity, some of which are counterintuitive.

Figure 7. Gated expected residence time τk(x) as a function of initial condition, x, for 
various switching rates, α+ β. We see that the gates have no effect on the particle in the fast 
switching limit. Here, D0 = D1 = 10, a0  =  0, l  =  1, am  =  3, and the spatial dimension 
is d  =  1. The black curve has α = β = 0.1, the green curve has α = β = 1, the red curve 
has α = β = 100. (Smaller amplitude solid curves correspond to faster switching rates.)
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There are a number of possible extensions of our work. One is is to allow the rate at 
which the conformational state switches to depend on the position of the particle, thus 
resulting in a certain mix of spatial and temporal heterogeneity. This extension is natural 
because in cell biology, the change in conformational state of a molecule is often governed 
by binding or unbinding to a different molecule whose concentration varies across the cell. 
Another extension would be to consider a diffusion coefficient that depends on space (as in 
[24]) in the presence of stochastic gates. We expect that this analysis will depend crucially 
on whether one chooses the Ito, Stratonovich, or kinetic interpretations of the stochastic 
integral.
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Appendix

In this appendix, we collect some explicit formulas from section 2 for the two-dimensional 
case. Let In and Kn denote modified Bessel functions of the first and second kinds, respec-
tively, and introduce the set of functions

fmn(x, y) = In(
√
Γ+x)Kn(

√
Γ+y).

We then have the following expressions for the various functions used to determine the resi-
dence time in (ak, ak+1):

∆p(x) =
f00(x, a0)− f00(a0, x)

f00(ak, a0)− f00(a0, ak)

(Sp + Sp̃)(x) =
2 log

( a0
x

)

log
(

a0
ak

)

(Sp − Sp̃)(x) = −
2Γ−

(
log

(
x
a0

)
f00(a0, ak) + log

(
a0
ak

)
f00(a0, x) + log

(
ak
a0

)
f00(x, a0) + log

( a0
x

)
f00(ak, a0)

)

Γ+ log
(

a0
ak

)
( f00(ak, a0)− f00(a0, ak))

∆q(x) =
f10(am, x) + f01(x, am)

f10(am, ak+1) + f01(ak+1, am)

Sq(x) =
(Γ+ − Γ−)[ f10(am, ak+1) + f01(ak+1, am)] + Γ−[ f10(am, x) + f01(x, am)]

Γ+[ f10(am, ak+1) + f01(ak+1, am)]

∆τ (x) =

√
Γ+

[
Fk(x) + F̃k(x)− Gk(x)− G̃k(x)

]
+ γ−[ f10(am, a0) + f01(a0, am)]

Γ+[ f10(am, a0) + f01(a0, am)]
,

where

Fk(x) = γ−f10(am, x)[ak+1f01(a0, ak+1)− akf01(a0, ak)]

F̃k(x) = γ−f01(x, am)[ak+1f10(ak+1, a0)− akf10(ak, a0)]

Gk(x) = γ−f10(am, a0) [akf10(ak, x) + ak+1f01(x, ak+1)]

G̃k(x) = γ−f01(a0, am) [akf01(x, ak) + ak+1f10(ak+1, x)] .
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and

Sτ (x) =
(
[ f01(a0, am) + f10(am, a0)][Hk(x) + 4akγ−Γ−( f10(ak, ak) + f01(ak, ak))]

+ 4Γ−

[
Fk(x) + F̃k(x)− Gk(x)− G̃k(x)

] )(
4Γ3/2

+ (f10(am, a0) + f01(a0, am))
)−1

,

where

Hk(x) =
(
−2a2

kγ−Γ−
√

Γ+ log

(
a0

ak

)
+ 2a2

kγ+Γ
3/2
+ log

(
a0

ak

)
+ 2a2

k+1γ−Γ−
√
Γ+ log

(
a0

ak

)

− 2a2
k+1γ+Γ

3/2
+ log

(
a0

ak

)
− a2

kγ−Γ−
√

Γ+ + a2
kγ+Γ

3/2
+ + 2a2

k+1γ−Γ−
√

Γ+ log(ak)− 2a2
k+1γ+Γ

3/2
+ log(ak)

− 2a2
k+1γ−Γ−

√
Γ+ log(x) + 2a2

k+1γ+Γ
3/2
+ log(x) + γ−Γ−

√
Γ+x2 − γ+Γ

3/2
+ x2

)
.
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