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Abstract
We consider diffusion on a tree with nodes that randomly switch between
allowing and prohibiting particles to pass. We find exact expressions for
various splitting probabilities and mean first passage times for a single dif-
fusing particle and show how the many parameters in the problem, such as the
node gating statistics and tree topology, contribute to these exit statistics. We
also consider a concentration of particles that can always pass through interior
branch nodes and determine how an intermittent source at one end of the tree
affects the flux at the other end. The latter problem is motivated by applica-
tions to insect respiration.

Keywords: piecewise deterministic Markov processes, Brownian motion,
stochastic gates, insect respiration, diffusion on trees

(Some figures may appear in colour only in the online journal)

1. Introduction

Biological systems often employ branched tree structures in order to distribute nutrients from
a single source to many destinations or to gather nutrients from many sources. Examples
include plant roots, river basins, neuronal dendrites, and cardiovascular and tracheal systems.
Motivated by such systems, a number of recent works in theoretical biology study diffusion in
a tree [1–3]. In this paper, we consider diffusion in a tree with stochastically gated nodes. We
suppose that a Markov jump process controls whether or not particles can pass through the
nodes of the tree, and we find exact expressions for various splitting probabilities and mean
first passage times (MFPTs) for a particle diffusing through the tree. Our exact calculations
show how the many parameters in the problem (node gating statistics, tree topology, tree edge
length, etc) contribute to these exit statistics. We also consider a concentration of particles
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diffusing in a tree. We suppose that particles can always pass through interior branch nodes,
but that they are intermittently supplied at one end of the tree. In the case of nutrient transport
through a tree, one would like to know how much the flux at the opposite end of the tree
decreases as a result of an intermittent supply compared to a constant supply. We determine
this decrease exactly and find that it depends crucially on where the intermittent source is
located.

One such example of diffusive flow from an intermittent source through a branched
network is insect respiration. Insects breathe through a branched network of tracheal tubes
that allows oxygen to diffuse to their cells [4]. Oxygen is intermittently supplied to this
network through valves (called spiracles) in the exoskeleton, which rapidly open and close
during the so-called flutter phase [5]. Determining how the opening and closing decreases
oxygen uptake would help sort out the competing hypotheses for the purpose of this curious
behavior [6]. A previous model that ignored tracheal branching showed that rapid opening
and closing of the spiracles allows the insect to maintain high oxygen uptake during the flutter
phase [7]. We show that this result still holds in the more realistic case of a branching tracheal
network. In fact, we find that branching strengthens this result. That is, branching allows the
insect to maintain an even higher oxygen uptake during the flutter phase. Our work is also
motivated by medical applications. The state of the art in respiratory physiotherapy includes
various machines and devices, and almost all of them rely on supplying air to a patient’s lungs
intermittently at high frequency [8].

The paper is organized as follows. In section 2, we use the results of [9, 10] to collect
some facts on diffusion in an interval with switching boundaries. We then use these results to
study diffusion in an interval with switching at interior points (section 3). There, we find the
splitting probability that a diffusing particle will exit out one end of the interval given a set of
randomly opening and closing gates in the interior. We also determine the MFPT to escape
and find a homogenized diffusion coefficient in the case of many gates that rapidly open and
close. Armed with these results, we move to the full problem of diffusion in a tree with
switching at the nodes in sections 4 and 5. In section 4 we find the splitting probability that a
diffusing particle will exit out any particular terminal node given that all the nodes of the tree
randomly open and close, and we also find the MFPT to escape. In section 5, we consider an
intermittent supply of a concentration of particles diffusing through a tree. We conclude with
a brief discussion.

2. Boundary switching on an interval

In order to study the full problem of diffusion in a tree with stochastically gated nodes, we
first consider diffusion in an interval with switching boundaries. We will formulate the
problem from the so-called particle perspective, in which the boundaries do not physically
change but their effective permeability depends on the conformational state of the diffusing
Brownian particle, see figure 1(a). The dynamics is described by a stochastic differential
equation with switching boundaries. An alternative formulation is the so-called gate per-
spective, in which each boundary switches between a closed and open state, see figure 1(b).
The dynamics is now represented by a partial differential equation (PDE) with switching
boundaries, namely, the diffusion equation for particle concentration. The two perspectives
are mathematically equivalent if and only if all boundaries are perfectly correlated. We will
focus mainly on the particle perspective, but consider the gate perspective in section 5.
Throughout the paper, we refer to a switching boundary as a stochastic gate, irrespective of
whether it is the particle or boundary that physically switches.
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Consider a Brownian particle diffusing in an interval L0,[ ] that switches conformational
state according to a continuous-time Markov jump process În t 0, 1( ) { } with fixed transition
rates μ and ν

n

m
0 1. 2.1( )

Suppose that both boundaries are absorbing when =n t 0( ) and reflecting otherwise. Let
ÎX L0,t [ ] denote the position of the particle at time t. Define p x t,( ) to be the probability

density for the stochastic process Xt and set = =p x t p x t, , 1n n t n( ) [ ( ) ]( ) . The densities pn
evolve according to the differential Chapman–Kolmogorov (CK) equation
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where rn is the stationary measure of the ergodic two-state Markov process generated by the
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Figure 1. Switching barrier from (a) the particle perspective and (b) the gate
perspective.
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Following [9, 10] we now determine the splitting probability for being absorbed at x = 0
rather than x = L, say, and the MFPT for being absorbed at either end. Both quantities can be
defined in terms of the stopping time2

 Çt = Î =t X L n tinf 0 : 0, 0 .t{ { { }} { ( ) }}

2.1. Splitting probability

Define the splitting probability for escaping at the end x = 0 by

 Ç= = =tq x X n n X x0 0 .n 0( ) ≔ ( ( ) ∣ )

By constructing the backwards CK equation, it can be shown that qn satisfies the ordinary
differential equation (ODE)
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where Δ denotes the 1D Laplacian xd d2 2 and the boundary conditions are
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Adding the equations for q0 and q1, and setting = +q x q x q x0 1( ) ( ) ( ) gives

rD = = + =q x q q q L q L0, 0 0 , . 2.50 1 1( ) ( ) ( ) ( ) ( ) ( )

with q x1( ) satisfying the equation

m n nD - + = -q x q x q x . 2.61( ) ( ) ( ) ( ) ( )

It is straightforward to solve this boundary value problem (BVP) and obtain
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where x m n= + .
Two related quantities will be needed in section 5. The first is the probability of escape

through the end x = L when the particle is in state i, given that x = L is always open:

= +r x r x r x ,i i i
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2 A stopping time τ is a random variable whose value is interpreted as the time (finite or infinite) at which a given
stochastic process is terminated according to some stopping rule that depends on current and past states. A classical
example of a stopping time is a first passage time.
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We note that
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The second quantity is the probability that the particle is in state i when it first reaches x = L
assuming that x = 0 is always reflecting:
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2.2. MFPTs

Defining the MFPT to escape at either end according to

 t ==v x X x1 ,n n n0 0( ) ≔ [ ∣ ]{ ( ) }

it can be shown that vn satisfies the ODE [10, 11]
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Another useful quantity is the MFPT to escape from the end x = L, say, given that the other
end x = 0 is always closed:

+u x u x u x ,0 1( ) ≔ ( ) ( )
where
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3. Series of stochastic gates

Recently, the problem of diffusion through a 1D domain with multiple switching gates within the
interior of the domain has been analyzed from the gate perspective [12]. In this section, we
formulate the corresponding steady-state particle perspective problem in terms of splitting prob-
abilities and MFPTs, and use probabilistic arguments to find the solutions. Consider a single
particle diffusing in the interval NL0,[ ] and suppose that it switches conformational state according
to a continuous-time Markov jump process În t 0, 1( ) { } with fixed transition rates μ and ν

n

a
0 1.

Suppose that the particle can diffuse freely through the interval when =n t 0( ) , but cannot
pass through =x l kLk ≔ when =n t 1( ) for   -k N1 1, see figure 2. (We could

Figure 2. Series of stochastic gates in the particle perspective.
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equivalently have assumed that the gates switch states provided all the gates are perfectly
correlated.) We also assume that the particle can be absorbed at x = 0 and x = L only when

=n t 0( ) , otherwise it is reflected.

3.1. Splitting probabilities

Let ÎX NL0,t [ ] denote the position of the particle and define the stopping time

  Ç= Î =t X NL n tinf 0 : 0, 0 . 3.1t{ { { }} { ( ) }} ( )
Assume  r= =n 0 0 0( ( ) ) . For În 0, 1{ }, let

 Çp = = = =x X X x n n0 0 . 3.2n 0( ) ( ∣ { } { ( ) }) ( )
One can show (see [9, 11]) that pn satisfies the ODEs
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A simple rescaling shows that

 Çr p = = = =p x x X n n X x0 0 3.4n n n 0( ) ≔ ( ) ( ( ) ∣ ) ( )

satisfies the ODEs
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r= =
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0 , 0,

0 0, 0,
0 0 0

1 1

( ) ( )
( ) ( )

and the same interior boundary conditions as pn.
By the definition of pn, we have that

+ = = =p x p x p x X X x0 . 3.60 1 0( ) ≔ ( ) ( ) ( ∣ ) ( )

By the strong Markov property3, if   -k N0 1 and Î +x l l,k k 1( ), then

r
= + - +p x q s p l q s p l

1
1 , 3.7k k

0
0 0 1( ) ( ( ) ( ) ( ( )) ( )) ( )

3 Recall that a stochastic process has the Markov property if the conditional probability distribution of future states
of the process (conditional on both past and present states) depends only upon the present state, not on the sequence
of events that preceded it. The term strong Markov property is similar to the Markov property, except that the
‘present’ is defined in terms of a stopping time.
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where = -s x lk and

= = =tq s X l X s ,k 0k
( ) ( ∣ )

is given in (2.7) since all the cells have length L, and tk is the stopping time

 Çt = Ï =+t X l l n tinf 0 : , 0 .k t k k 1{ { ( )} { ( ) }}
To see why (3.7) holds, let  t t 0{ } be the filtration generated by the strong Markov process

X n t,t t 0{( ( ))} . Let x denote the expectation conditioned on =X x0 and  r= =n 0 0 0( ( ) ) .
Similarly, let x n, denote the expectation conditioned on =X x0 and =n n0( ) . Then, by the
tower property of conditional expectation and the fact that the random variable =t1X lk k

is
measurable with respect to tk

, we have that


 
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 
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( ) [ ] [ [ ∣ ]]
[ [ ∣ ]] [ [ ∣ ]]

Applying the strong Markov property to both terms and using the linearity of expectation
yields

    
p p
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Applying the definition of p0 in (3.4) gives (3.7).
Since

r= =p l p NL, 0, 3.80 0 0 0( ) ( ) ( )

it follows that p(x) is determined by the remaining -N 1 constants

-p l p l,..., .N0 1 0 1( ) ( )

As the cells are evenly spaced, we find that each of these constants is the average of its
neighbors

= +- +p l p l p l
1

2
, 3.9k k k0 0 1 0 1( ) ( ( ) ( )) ( )

for = -k N1 ,..., 1. To see why (3.9) holds, define the stopping time

 Ç= Ï =- +s t X l l n tinf 0 : , 0 . 3.10k t k k1 1{ { ( )} { ( ) }} ( )
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As above, the strong Markov property and linearity imply that p lk0 ( ) is
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By symmetry,  = == =- +1 1 1 2l X l l X l,0 ,0k sk k k sk k1 1[ ] [ ] . Applying the definition of p0 in (3.4)
gives (3.9).

Rearranging (3.9), we see that the constants satisfy a discretized Laplace’s equation

- + =- +p l p l p l2 0, 3.11k k k0 1 0 0 1( ) ( ) ( ) ( )
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for = -k N1 ,..., 1, with (3.8) serving as boundary conditions. Solving this system and
applying (2.7) and (3.7) yields p(x).

3.2. Mean first passage times

Consider the same diffusing particle scenario as in section 3.1 above, but now we seek the
expected absorption time (MFPT) of the particle to either of the switching boundaries

= =w x 1 . 3.12n x n n0( ) [ ] ( ){ ( ) }

One can show (see [9, 11]) that wn satisfies the ODEs

⎜ ⎟
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and the same interior boundary conditions as pn.
By the definition of wn, we have that
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By the strong Markov property, if   -k N0 1 and Î +x l l,k k 1( ), then

r
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1
1 , 3.15k k

0
0 0 1( ) ( ) ( ( ) ( ) ( ( )) ( )) ( )

where = -s x lk, the exit time v(x) is given in (2.13), and the splitting probability q(s) is
given in (2.7). To see why (3.15) holds, observe that by the tower property and the fact that
the random variables =t1X lk k

and tk are measurable with respect to tk
, we have

  
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Applying the strong Markov property to the last two terms and using the linearity of
expectation yields

 

 
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Applying the definition of w0 in (3.12) gives (3.15).
Since = =w l w NL 00 0 0( ) ( ) , it remains to determine the -N 1 constants

-w l w l,..., .N0 1 0 1( ) ( )
Since the cells are evenly spaced, we have that

= + +- +w l V w l w l
1

2
, 3.16k k k0 0 1 0 1( ) ( ( ) ( )) ( )

for = -k N1 ,..., 1, where =V v L0
2 ( )( ) is given in (2.14). To see why (3.16) holds, observe

that r=w lk l0 0 ,0k
( ) [ ] and thus
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 

 

  

 
r

= + -

+ -

=

=

-

+

w l
s s

s

1

1 .

k
l k l X l l k s

l X l l k s

0

0
,0 ,0 ,0

,0 ,0

k k sk k k k

k sk k k k

1

1

( ) [ ] [ [ ∣ ]]

[ [ ∣ ]]

As before, applying the strong Markov property to the second two terms and using linearity
gives





  

 
r

= +

+

=

=

- -

+ +

w l
s 1

1 . 3.17

k
l k l X l l

l X l l

0

0
,0 ,0 ,0

,0 ,0

k k sk k k

k sk k k

1 1

1 1

( ) [ ] [ ] [ ]

[ ] [ ] ( )

By symmetry,  = == =- +1 1 1 2l X l l X l,0 ,0k sk k k sk k1 1[ ] [ ] . We further have that r =s Vl k0 ,0k
[ ]

by the reflection principle for Brownian motion. Multiplying (3.17) by r0 gives (3.16).
Rearranging (3.16), we notice that these constants satisfy a discretized Poisson equation

- + = -- +w l w l w l V2 2 , 3.18k k k0 1 0 0 1( ) ( ) ( ) ( )
for = -k N1 ,..., 1, and = =w l w NL 00 0 0( ) ( ) can be interpreted as boundary conditions.
Solving this system yields w(x).

3.3. Limit of many gates and fast switching

Let = L N1 1 and x = N a2 for some >a 0. From (2.14) and (3.18), we have

r r- + = - = - +- +N w l w l w l N V a a2 2 tanh 1 .k k k
2

0 1 0 0 1
2

0 1( ( ) ( ) ( )) ( ( ))

Taking the continuum limit of the left-hand side and noting that r r»w w1 1 0 0( ) for fast
switching, we have »w x w x( ) ( ) with w x( ) the solution to the BVP

⎛
⎝⎜

⎞
⎠⎟

n
m

D = - + = =w x a a w w1 tanh 1 , 0 1 0. 3.19( ) ( ) ( ) ( ) ( )

The latter yields the classical MFPT for a diffusing particle with diffusion coefficient

⎡
⎣⎢

⎤
⎦⎥

n
m

+
-

a a1 tanh 1 3.20
1

( ) ( )

to escape from the interval 0, 1( ). We illustrate the accuracy of this approximation in figure 3.

4. Stochastic gates at the nodes of a tree

Consider a finite regular tree Γ consisting of Nv nodes or vertices and Ne line segments or
edges of length L (see figure 4(a)). The nodes a Î G of the network may be classified as
either branching or terminal (excluding the primary node). Let  denote the set of branching
nodes, and let denote the set of terminal nodes. The first branch node opposite the primary
node is denoted by a0. For every other branching node a Î and terminal node a Î there
exists a unique direct path from a0 to α (one that does not traverse any line segment more
than once). We can label each node a a¹ 0 uniquely by the index k of the final segment of
the direct path from a0 to α so that the branch node corresponding to a given segment label k
can be written a k( ). We denote the other node of segment k by a k( ). For example, a0 is the
primary node. We can also introduce a direction on each segment of the tree such that every
direct path from a0 always moves in the positive direction. Finally, we introduce the pra-
meterised local coordinate Îx s s L, 0,k ( ) [ ] for each segment k such that
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a a= =
 

x s k x s klim , lim . 4.1
s L

k
s

k
0

( ) ( ) ( ) ( ) ( )

Consider a single branching node a Î and label the set of segments radiating from it by a.
Let a denote the set of line segments Î ak that radiate from a Î in a positive direction
(see figure 4(b)). If we denote the total number of segments radiating from any branch node α
by the coordination number z, then the number of elements of a is -z 1. (In this paper we
take the coordination number of every branch point to be the same. However, the analysis
could be generalized to the case of a variable coordination number. For the sake of
illustration, we take the coordination number of the tree to be z = 3 in figure 4.) Using these
various definitions, we can introduce the idea of a generation. Take a0 to be the zeroth
generation. The first generation then consists of the set of nodes (or corresponding edges)

aS = Î ak k,1 0{ ( ) }, the second generation is a aS = Î Î Sal l, ,2 1{ ( ) } etc. Let N
denote the generation of the most downstream branch nodes, that is, N is the smallest integer
for which S +N 1 only includes terminal nodes.

We can now formulate the particle perspective problem on a tree. Consider a single
particle diffusing on the tree Γ and suppose that it switches conformational state according to
a continuous-time Markov jump process În t 0, 1( ) { } with fixed transition rates μ and ν

n

m
0 1.

The particle can diffuse freely through the branch nodes a Î when =n t 0( ) , but cannot
pass through any of them when =n t 1( ) . We also assume that the particle can be absorbed at
one of the terminal nodes a Î only when =n t 0( ) , otherwise it is reflected. We will
consider different boundary conditions for the primary node.

Figure 3. Homogenized diffusion. We plot the MFPT to escape from an interval with
many fast switching gates (w(x) in (3.14)) and the MFPT to escape an interval with
homogenized diffusion coefficient (3.20), which is w x( ) in (3.19). The three pairs of
curves correspond to r = 1 40 , 1/2, and 3/4, with higher curves corresponding to
lower values of r0. We note that w(x) has jump discontinuities at gates which we plot as
vertical lines. In all plots, we take the number of gates to be N = 15 and a = 1. The w
(x) and w x( ) plots become indistinguishable for larger values of N.
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4.1. Splitting probability to escape through a specific terminal node

First, suppose that the primary node also acts as a switching boundary, that is, the particle can
be absorbed at a0 if =n t 0( ) , otherwise it is reflected. Let Î GXt denote the position of the
particle on Γ and define the stopping time

  È Ça= Î =t X n tinf 0 : 0 .t 0{ { { }} { ( ) }}
Assume  r= =n 0 0 0( ( ) ) . For În 0, 1{ } and g Î , let

 Çp g= = = =g x X X x n n0 .n 0( ) ( ∣ ( ) )

Figure 4. Labeling scheme for a regular tree Γ with coordination number z = 3. (a)
Sketch of a tree with N = 3 generations (Gen) of branch nodes, a primary node, and

+N2 1( ) terminal nodes. (b) The branch node a k( ) is shown in relation to the
neighboring branch node a k( ) closest to the primary node. The branch segments
extending out from a k( ) in the positive direction together comprise the set a k( ).
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Generalizing the 1D case [9, 11], one can show that pgn satisfies

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

p
p

n n
m m

p
p

= D + -
-

g

g

g

g
0
0

, 4.20

1

0

1
( ) ( ) ( )

with exterior boundary conditions

 Èp a d p a a a= ¶ = Îg
a g

g a, 0, , 4.3x0 , 1 0( ) ( ) { } ( )

and interior boundary conditions at the branch points a Îk( ) . In particular, pg0 satisfies the
continuity conditions

p p= Îg g
ax L x j b0 , , 4.3k j0 0( ( )) ( ( )) ( )

and the flux conservation condition


åp p¶ + ¶ =g g

Î a

x L x c0 0. 4.3x k
j

x j0 0( ( )) ( ( )) ( )

Note that for the upstream segment k the flux flows into the branch node, whereas for the
remaining -z 1 downstream segments Î aj the flux flows out of the branch node. On the
other hand, pg1 satisfies the reflecting boundary conditions

p p¶ = ¶ = Îg g
ax L x j d0 0, . 4.3x k x j1 1( ( )) ( ( )) ( )

A simple rescaling shows that

 Çr p g= = = =g gp x x X n n X x0 4.4n n n 0( ) ≔ ( ) ( ( ) ∣ ) ( )

satisfies the ODEs

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

n m
n m= D +

-
-

g

g

g

g

p

p

p

p
0
0

, 4.50

1

0

1
( ) ( ) ( )

with exterior boundary conditions

 Èa r d a a a= ¶ = Îg
a g

gp p, 0, , 4.6x0 0 , 1 0( ) ( ) { } ( )

and the same interior boundary conditions as pgn . By the definition of gpn , we have that

 g+ = = =g g gp x p x p x X X x .0 1 0( ) ≔ ( ) ( ) ( ∣ )

As in (3.7), if = Îx x s s L, 0,k ( ) ( ), then by the strong Markov property

r
= + -g g gp x q s p x q s p x L

1
0 1 , 4.7k k

0
0 0( ) ( ( ) ( ( )) ( ( )) ( ( ))) ( )

where

= = =tq s X x X x s0 ,k k0k
( ) ( ( )∣ ( ))

is given in (2.7) since all the edges have length L, and tk is the stopping time

 Çt = Î =t X x x L n tinf 0 : 0 , 0 .k t k k{ { { ( ) ( )}} { ( ) }}
Introduce the set of constants evaluated at the nodes

F º = Îga
g g

ap x L p x j0 , . 4.8k k j0 0( ( )) ( ( )) ( )( )

As in (3.9), we have that each of these constants is the average of its neighbors

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟


ÈåF = F + F Î Sga ga ga

Î =a
z

k
1

, . 4.9k k
j

j

N

j
j

0
( )( ) ( ) ( )
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Rearranging this equation, we see that the constants satisfy a discretized Laplace’s equation
on the tree


ÈåF - F + F = Î Sga ga ga

Î =a

z k0, 4.10k k
j

j

N

j
j

0
( )( ) ( ) ( )

with boundary conditions determined by equation (4.6):
r dF = F = Î Sga ga a g +j0, , . 4.11j j N0 , 10

( )( ) ( )

Our strategy for solving this set of iterative equations will be to start at the final generationSN

of branch nodes and work inward to the primary node solving recursively. (An analogous
iterative scheme was previously used to determine the Green’s function of the advection-
diffusion equation on a tree [1].) Let = +k m N, 1, 2, , 1m{ } be a sequence of segments
starting at a node a Î Sk N1( ) and proceeding along a direct path toward the primary node
with a a=+kN 1 0( ) . For ease of notation, set F = Fgaj kj( ) and F = Fgaj kj( ).

First consider the case that g Î a k1( ) and denote the corresponding path to the primary
node by g , see figure 5. Starting at the outer branch node a k1( ) we have

rF = + F
z

1
,1 0 2( )

which we can rewrite as
r

F = +
F

=
H z H z

H z z, . 4.121
0

1

1

1
1( ) ( )
( ) ( )

The next iteration is

F = F + - F + F
z

z
1

2 ,2 1 1 3( ( ) )

Figure 5. Direct path g from terminal node γ to the primary node a0 (indicated by
blue). Here γ is the labelled node where the particle is absorbed. There are three
generations of branch nodes (N = 2). Also shown is a path (indicated by green) from
another terminal node that joins g at a k3( ), which means that r = 3.
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where F1 is evaluated on any branch node a Î SN such that a a¹ k1( ). It follows that
F = F z1 2 so that

⎜ ⎟⎛
⎝

⎞
⎠rF = + F +

-
F + F

z z

z

z

1 1 2
,2 0 2 2 3( )

which on rearranging gives

r
F = +

F
= -

-
H z H z H z

H z H z
z

H z
,

1
.2

0

1 2

2

2
2 1

1( ) ( ) ( )
( ) ( )

( )

We can thus establish the general recurrence relation

r
F = +

F
G z H z

, 4.13m
m

m

m

0

( ) ( )
( )

with the functions Hm(z) defined recursively:

= -
-

= ¼ +
-

H z z
z

H z
m N

1
, 2, , 1, 4.14m

m 1
( )

( )
( )

and

=
=

G z H z . 4.15m
j

m

j
1

( ) ( ) ( )

Note that iterating equation (4.14) leads to a finite continued fraction. For example, in the case
of three generations (N = 3), we have

= -
-

-
a -

- -

H z z
z

z

1
. 4.16

z

z

1
z

z

0

1

( ) ( )

One way to derive the general recurrence relation (4.13) is to use proof by induction.
That is, suppose equation (4.13) holds for = - >m n 1 2. Use the fact that

F = F + - F + F- - +


z
z

1
2 ,n n n n1 1 1( ( ) )

with the path from S +N 1 to F -n 1 not intersecting g . It follows that F -n 1 satisfies
equation (4.13) with r = 00 . Hence

r
F = +

F
+ -

F
+ F

- - -
+z

G z H z
z

H z
2 .n

n

n

n

n

n
n

0

1 1 1
1( ) ( )

( )
( )

Rearranging this equation yields equation (4.13) for m = n. It is also straightforward to write
down the modified recurrence relation starting from a terminal node for which F = 0.
Suppose g Ï a k1( ) such that Ï gkm for < <m r0 and Î gkm for   +r m N 1 with

< +r N1 1. (If r = 1 then we recover the path g.) It follows that

 r
F =

F
< < F = +

F
+

H z
m r

G z H z
r m N0 , 1 . 4.17m

m

m
m

m

m

m

0

( )
( )

( ) ( )
( ) ( )

Given the recursive equations for Fm we can now start from the primary node a0 with
F º F =ga+ 0N 1 0

, and iterate forwards along the tree using F = F-m m1 . Thus
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 

r

r

F =

F = +
F

F =
F

< <

+
+

+

+

G z

G z H z
r m N

H z
m r

,

, ,

, 0 .

N
N

m
m

m

m

m
m

m

1
0

1

0 1

1

( )

( ) ( )
( )

( )
( )

If r = 1, then we have

⎡
⎣⎢

⎤
⎦⎥

rF = + + +¼

+

+ + +

+ + 

G z G z H z G z H z H z

G z H z H z H z

1 1 1

1
. 4.18

m
m m m m m m

N m m N

0
1 2 1

1 1

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( )

For all  m N1 . Similarly, if >r 1 then Fm satisfies equation (4.18) for  r m N and

F =
F

- H z H z
. 4.19m

r

r m1( ) ( )
( )

For < <m r0 . Finally, we can substitute our solution into equation (4.7) expressed in the
form

r
= F + - F = Îg

-p x q s q s x x s s L
1

1 , , 0, . 4.20k k k
0

1( ) ( ( ) ( ( )) ) ( ) ( ) ( )

4.2. MFPT to escape through a terminal node

We now seek the MFPT of the particle to be absorbed at any of the terminal nodes a Î ,
assuming the primary node is always closed. Define

= ==w x X x1 . 4.21n n n0 0( ) [ ∣ ] ( ){ ( ) }

One can show (see [9, 11]) that wn satisfies

⎜ ⎟
⎛
⎝

⎞
⎠

r
r

n m
n m- = D +

-
-

w
w

w
w , 4.220

1

0

1

0

1( )( ) ( ) ( )

with exterior boundary conditions

a a a
a a a a

= ¶ = Î
¶ = ¶ = =

w w
w w

0, ,
0, ,

x

x x

0 1

0 1 0

( ) ( )
( ) ( )

and the same interior boundary conditions (4.3b)–(4.3d) as pn. By the definition of wn, we
have that

+ = =w x w x w x X x . 4.230 1 0( ) ≔ ( ) ( ) [ ∣ ] ( )
Suppose that the particle starts on a segment k (not the primary segment). As in (3.15), if
= Îx x s s L, 0,k ( ) ( ), then by the strong Markov property

r
= + + -w x v s q s w x q s w x L

1
0 1 , 4.24k k

0
0 0( ) ( ) ( ( ) ( ( )) ( ( )) ( ( ))) ( )

where the exit time v(s) is given in (2.13) and the splitting probability q(s) is given in (2.7).
On the other hand, if the particle starts on the primary segment, then it can only exit via the
branch point a0 so that
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a
r

= +w x u s
w

, 4.250 0

0

( ) ( ) ( ) ( )

where u(s) is given in (2.15). Introducing the following set of constants evaluated at the nodes

Y º = Îa aw x L w x j0 , , 4.26k k j0 0( ( )) ( ( )) ( )( )

we see that, as in equation (3.16),

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟


ÈåY = + Y + Y Î Sa a a

Î =a

V
z

k
1

, ,k k
j

j

N

j
j

0
( ) ( ) ( )

with =V v L0
2 ( )( ) given by equation (2.14). Rearranging this equation, shows that the

constants satisfy a discretized Poisson equation on the tree


ÈåY - Y + Y = - Î Sa a a

Î =a

z zV k, 4.27k k
j

j

N

j
j

0
( )( ) ( ) ( )

with boundary conditions

aY = Îa 0, . 4.28( )

From equation (4.25),

Y = + Ya au 0 . 4.2900 0( ) ( )

We can solve the discrete equation (4.27) using a similar recursive method to the analysis
of equation (4.10). Since Y =a 0 for all a Î , it follows from symmetry that Ya k( ) only
depends on the generation of the segment k. Thus, let = +k m N, 1, 2, , 1m{ } be any
sequence of segments starting at a node a Î Sk N1( ) and proceeding along a direct path
toward the primary node with a a=+kN 1 0( ) . For ease of notation, set Y = Yaj kj( ) and
Y = Yaj kj( ). Starting from any terminal node in S +N 1, we see that

Y = +
Y

V
z

,1
2

which we can rewrite as

Y = +
Y

=V
H z

H z z, . 4.301
1

1
1( )
( ) ( )

Then, as we continue inwards we find that

Y = +
YV

F z H z
, 4.31m

m

m

m( ) ( )
( )

with

⎛
⎝⎜

⎞
⎠⎟

= +
-

+
-

+¼

+
-

- - -

-

- 

F z
z

H z

z

H z H z

z

H z H z H z

z

H z H z H z

1 1 1 1

1
. 4.32

m m m m m m m

m

m m

1

2

1 2

1

1 1

( ) ( ) ( ) ( )
( )

( ) ( ) ( )
( )

( ) ( ) ( )
( )

We now move forward through the tree starting from the primary branch node a0 using
Y = Y +m m 1:
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⎡
⎣⎢

⎤
⎦⎥

Y = + + +¼

+
Y

+ + +

+

+ 

V
F z F z H z F z H z H z

H z H z H z

1 1 1

. 4.33

m
m m m m m m

N

m m N

1 2 1

1

1

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
( )

For all  m N1 . We can determine Y +N 1 by substituting Y = + Y+ +u 0N N1 0 1( ) into
equation (4.31) for = +m N 1, that is

Y = +
+ Y

+
+

+

+

V

F z

u

H z

0
,N

N

N

N
1

1

0 1

1( )
( )

( )

which can be rearranged to give

⎛
⎝⎜

⎞
⎠⎟Y =

-
++

+

+

+H z

H z V

F z
u

1

1
0 . 4.34N

N

N

N
1

1

1

1
0( )

( )
( )

( ) ( )

Finally, we substitute into equation (4.24), rewritten as

r
= + Y + - Y-w x v s q s q s

1
1 4.35k k

0
1( ) ( ) ( ( ) ( ( )) ) ( )

for = Îx x s s L, 0,k ( ) ( ). If x is on the primary segment, then

r
= +

Y +w x u s . 4.36N 1

0

( ) ( ) ( )

In figure 6, we plot the MFPT aw 0( ) as a function of the switching rate for different
values of the coordination number, z. It can be seen that increasing z decreases the MFPT.
This is because, as the analysis above shows, the symmetry in the problem reduces it to a one-
dimensional random walk on the generation number with probability of hopping to a larger
generation equal to -z z1( ) and probability of hopping to a smaller generation equal to -z 1.
Thus, increasing z tends to push the particle towards terminal nodes. This is consistent with
the well-known result that for a discrete-time symmetric random walk on a tree, the distance
from the primary node is described by a random walk with a computable drift away from the
primary node for any coordination number >z 2.

5. Flux through a tree with stochastically gated nodes

Driven by the biological applications described in the Introduction, we now take the gate
perspective and keep track of the concentration of particles diffusing in a tree Γ with per-
manently open branch nodes and randomly switching primary or terminal nodes. We begin in
section 5.1 by calculating the flux without any switching nodes, and quickly find the flux in
the case that either the primary node or terminal nodes switch between being a source
(inhomogeneous Dirichlet condition) and a sink (homogeneous Dirichlet condition). In
section 5.2, we suppose that the primary node is an intermittent source (switches between an
inhomogeneous Dirichlet condition and a no flux Neumann condition) and calculate the flux
through the terminal nodes. In section 5.3, we consider the reverse situation in which the
terminal nodes are intermittent sources and find the flux through the primary node.

J. Phys. A: Math. Theor. 49 (2016) 245601 P C Bressloff and S D Lawley

18



5.1. Non-switching case and intermittent sink/source

We first analyze the case without any switching nodes. Let h > 0 and consider the con-
centration ph x t,( ) of particles diffusing in a tree Γ satisfying

p
p

¶
¶

= D Î G >
h

h

t
x t, , 0, 5.1( )

with exterior boundary conditions

p a h a= > " Îh t, 0, , 5.2( ) ( )

p a =h t, 0, 5.30( ) ( )

and interior boundary conditions

p p= Îh h
ax L x j0 , , 5.4k j( ( )) ( ( )) ( )


åp p¶ + ¶ =h h

Î a

x L x 0 0. 5.5x k
j

x j( ( )) ( ( )) ( )

Defining the steady-state solution p pºh h
¥x x tlim ,t( ) ( ) and introducing the constants

p aQ =a
h kk ( ( ))( ) , we solve the steady-state diffusion equation on each segment k according

to

p = Q - Q + Qh
a a ax s

s

L
. 5.6k k k k( ( )) [ ] ( )( ) ( ) ( )

We can solve forQa k( ) recursively by imposing current conservation at each branching node,
that is,

Figure 6. Fast switching and increased coordination number z both decrease MFPT to
terminal nodes. We plot the MFPT aw 0( ) against the switching rate m n= . Increasing
the switching rate decreases the MFPT. Increasing the coordination number z decreases
the MFPT since more branching tends to push the particle towards the terminal nodes.
In all plots, N = 2 and L = 1.
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
åQ - Q - Q - Q =a a a a
Î a

0. 5.7k k
j

j j

k

[ ] ( )( ) ( ) ( ) ( )
( )

The exit flux through the primary node per each terminal node source can then be determined
according to

p
=

¶
-

=
Q
-

h
a a=
+ +

J
x

L z L z1 1
,x x

N N1 1
0 0

( )∣
( ) ( )

where - +z 1 N 1( ) is the number of terminal nodes.
Since all terminal nodes satisfy the same boundary condition, it follows from symmetry that

Qa k( ) only depends on the generation of the segment k. Thus, let = +k m N, 1, 2, , 1m{ } be
any sequence of segments starting at a node a Î Sk N1( ) and proceeding along a direct path
toward the primary node with a a=+kN 1 0( ) . For ease of notation, set Q = Qaj kj( ) and
Q = Q = Qa+j j k1 j( ). Starting from any terminal node inS +N 1, current conservation implies that

hQ - Q = - Q -z 1 ,2 1 1( )( )
which we can rewrite as

h
Q =

Q + -z

z

1
. 5.81

2 ( ) ( )

Then, as we continue inwards we find that

h
Q =

Q
+

-
H z

z

G z

1
5.9m

m

m

m

m( )
( )

( )
( )

with Hm and Gm defined according to equations (4.14) and (4.15). The final step is to move
forward through the tree starting from the primary branch node a0 using the boundary
condition q =+ 0N 1 . We thus find that the flux through the primary node per each terminal
node source is

h
=

+

J
L G z

1
. 5.10

N 1( )
( )

Finally, setting h = 1 and p p= - 1 1, it follows that

p a a= - - ¶ Î+ J z 1 , , 5.11N
x

1( ) ( ) ( )
is the steady-state exit flux through the - +z 1 N 1( ) open terminal nodes given that the
boundary condition at the primary node is p a = t, 10( ) .

Now suppose that the boundary conditions at the terminal nodes switch between a
homogeneous and inhomogeneous Dirichlet conditions. That is, suppose u x t,( ) satisfies the
PDE (5.1) with interior boundary conditions (5.4) and (5.5), boundary condition at the
primary node (5.3) and randomly switching boundary conditions at terminal nodes

a a a= = " Îu t u t, 1 and , 0, ,( ) ( )
depending on whether =n t 0( ) or 1, respectively, where n(t) is as in (2.1). Following [9], we
introduce the first moment of the solution to the stochastic PDE according to

= =V x t u x t, , 1 . 5.12n n t n( ) [ ( ) ] ( )( )

such that

n m
¶
¶

= D - +
V

t
V V V a, 5.130

0 0 1 ( )
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n m
¶
¶

= D + -
V

t
V V V b5.131

1 0 1 ( )

with exterior boundary conditions

a a a r a a= = = = " ÎV t V t V t V t, , 0, , , , 0, 5.140 0 1 0 0 0 1( ) ( ) ( ) ( ) ( )

and the same interior boundary conditions as u.
We would like to calculate the steady-state solution of equations (5.13a) and (5.13b).

First, note that

 = +u x t V x t V x t, , , . 5.150 1[ ( )] ( ) ( ) ( )

Since there exists a globally attracting steady-state, it follows that

 å= º
¥ =

u x t V x V xlim , , 5.16
t n

n
0,1

[ ( )] ( ) ( ) ( )

where º ¥V x V x tlim ,n t n( ) ( ). Adding equations (5.13a) and (5.13b) then gives

D = Î GV x x0, 5.17( ) ( )
with exterior boundary conditions

a a r a= = " ÎV V0, , . 5.180 0( ) ( ) ( )

Thus, replacing η by r0 we see that V(x) is given by pr x0 ( ). In particular, replacing η by r0 in
(5.10) shows that switching between homogeneous and inhomogeneous Dirichlet conditions
at the terminal nodes reduces the flux to the primary node by the proportion of time the
condition is inhomogeneous. It is straightforward to check that this same relation holds for the
flux to the terminal nodes if we switch between homogeneous and inhomogeneous Dirichlet
conditions at the primary node. We will see below in sections 5.2 and 5.3 that this simple
relation no longer holds if we switch between Dirichlet and Neumann conditions.

All of the above has a direct probabilistic interpretation from the particle perspective. Let
Xt denote the position of a particle diffusing on Γ that can freely pass through all branch nodes
and can be absorbed at any terminal node. Define the absorption time

 Èt a= Ît Xinf 0 : .t 0{ { }}

If h = 1, then the resulting BVP for p x1( ) implies that p x1( ) is the splitting probability

p = Îtx X . 5.19x
1( ) ( ) ( )

And of course

p p a- = =t x x X1 5.20x
1

0( ) ≔ ( ) ( ) ( )

satisfies the same BVP as p x1( ), but with the inhomogeneous condition at the primary node.
The case of switching inhomogeneous/homogeneous Dirichlet conditions at the primary node
is thus immediate. Further, the conservation equation (5.7) follows from the same
probabilistic argument that yielded (4.9). Finally, letting n(t) be as in (2.1) we see that

   Ç t t
r p p

= Î = = Î =
= =

t t
r

V x X n X n

x x

0 0

,
x x x

0
1 0

( ) ( ( ) ) ( ) ( ( ) )
( ) ( )

by independence. On the other hand (see below), if terminal nodes switch between absorbing
and reflecting boundary conditions, then Xt and n(t) are no longer independent and the
analysis is much more delicate.
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5.2. Flux through a tree with a stochastically gated primary node

In our next example, we assume that the primary node is an intermittent source (switches
between an inhomogeneous Dirichlet condition and a no flux Neumann condition) and cal-
culate the flux through the open terminal nodes. The particle concentration u x t,( ) satisfies the
diffusion equation (5.1), interior boundary conditions (5.4) and (5.5), boundary conditions at
the terminal nodes

a a= " Îu t, 0 ,( )
and a boundary condition at the primary node that randomly switches between

a a= ¶ =u t u t, 1 and , 0,x0 0( ) ( )

depending on whether =n t 0( ) or 1, respectively, where n(t) is as in (2.1). As in the previous
example, section 5.1, V x t,n ( ) is defined according to equation (5.12), which satisfies (5.13a)
and (5.13b) with modified exterior boundary conditions

a r a a a a= ¶ = = = " ÎV t V t V t V t, , , 0, , , 0, 5.21x0 0 0 1 0 0 1( ) ( ) ( ) ( ) ( )

and interior boundary conditions (5.4) and (5.5). Finding the expected value of u at large time
amounts to finding ¥V x V x tlim ,n t n( ) ≔ ( ).

We will use the probabilistic arguments of previous sections to find Vn(x). Consider a
single particle diffusing on Γ that can always diffuse freely through branch nodes and be
absorbed at terminal nodes. Assume that the particle can be absorbed at the primary node only
when =n t 0( ) , otherwise it is reflected. Let Î GXt denote the position of the particle at time
t and define the absorption time

  È Ça= Î = =t X X n tinf 0 : 0 ,t t 0{ { } {{ } { ( ) }}}
so that Vn(x) has the probabilistic interpretation

 Ça= = = =V x p x X n n X x0 .n n 0 0( ) ( ) ≔ ({ } { ( ) } ∣ )

By the strong Markov property, or from the BVP satisfied by V(x), it follows that

p r a+ = +p x p x p x x p ,0 1 0 1 0( ) ≔ ( ) ( ) ( )( ( ))

for Î Gx , where p x( ) is the splitting probability computed above in (5.20). From the
equivalent deterministic interpretation of p x( ) in section 5.1, the expected flux to the terminal
nodes with an intermittent source at the primary node is thus reduced by the factor

k r a= + p , 5.220 1 0( ) ( )

compared to the case where the concentration at the primary node is always unity. That is, the
expected flux is

k a ÎF J, , 5.23≔ ( )

where J is the flux with a constant source given in (5.11).
It thus remains to find ap1 0( ). We will proceed by solving for p0 and p1 evaluated at all

the nodes. First, from continuity, we introduce a constant vector for each segment k of the
form

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ c = Îa a

p x L

p x L

p x

p x
j

0

0
, . 5.24k

k

k

j

j
k

0

1

0

1
≔

( ( ))
( ( ))

( ( ))
( ( ))

( )( ) ( )

By symmetry, ca k( ) only depends on the generation of the segment k, so let k :m{
= +m N0, 1 ,..., 1} be any sequence of segments starting at a node a Î S +k N0 1( ) and
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proceeding along a direct path toward the primary node with a a=+kN 1 0( ) . For ease, let
c c= aj kj( ) and c c= aj kj( ) and denote the components of cj by c c,j j

0 1( ).
Let x n, denote the probability measure conditioned on = Î GX x0 and
= În n0 0, 1( ) { }. Define the stopping time

 Èa a= = =- +s t X k X kinf 0 : .m t m t m1 1{ { ( )} { ( )}}
For În 0, 1{ } and Îm N1 ,...,{ }, the strong Markov property shows that













 
 
 
 

Ç
Ç
Ç
Ç

c

r
a

a a
a a
a a
a a

= =

= = = =
+ = = =
+ = = =
+ = = =

a

a a

a a

a a

a a

-

-

+

+

-

-

+

+

X

X X k n s

X X k n s

X X k n s

X X k n s

0

1

0

1 . 5.25

m
n

n
k n

k k n s m m

k k n s m m

k k n s m m

k k n s m m

, 0

,0 0 , 1

,1 0 , 1

,0 0 , 1

,1 0 , 1

m

m m m

m m m

m m m

m m m

1

1

1

1

( )

( ) ( ( ) ( ) )
( ) ( ( ) ( ) )
( ) ( ( ) ( ) )
( ) ( ( ) ( ) ) ( )

( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

By symmetry, we have that for Îi 0, 1{ }


 
Ça

a
= = -

= = = -
a

a a





X k n s i

X k n s i

1

1 .
k n s m m

k n s m k n m

, 1

, 1 ,

m m

m m m

( ( ) ( ) )
( ( )) ( ( ) )

( )

( ) ( )

Furthermore





a

a

= =
-

= =

a

a

-

+

X k
z

z

X k
z

1

and
1

,

k n s m

k n s m

, 1

, 1

m m

m m

( ( ))

( ( ))

( )

( )

and


r

= - =a

-

n s i
a

1 ,k n m
n

i

n
,

1

m
( ( ) )( )

where -an
i1 is given in (2.10)–(2.12). Rewriting equation (5.25) in matrix notation gives

⎜ ⎟⎛
⎝

⎞
⎠c c c= +

-
-z

z

z
B

1 1
, 5.26m m m 1 ( )

where B is the matrix

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

r r

r r

=

a a

a a
B

0 0

0 0
.

0
0

0

0
1

1

1
0

0

1
1

1

( ) ( )

( ) ( )

Using the fact that c0 is the zero vector, we solve this system iteratively as in previous
sections and find that

c c= -
+z , 5.27m m m

1
1( ( )) ( )

with  = -z zB1
1( ) and  zm( ) is defined recursively

⎡
⎣⎢

⎤
⎦⎥ = -

-
= +-

-
-z z I

z

z
z m NB B

1
, 2 ,..., 1.m m

1
1

1( ) ( ( ))

Note that  zm( ) reduces to (4.14) in the case that B is just the scalar 1.
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Finally, it can be seen that c r=+N 1
0

0 and, by the strong Markov property









  
 

Ç
Ç

c

r
a

a a a
a a

= =

= = + = = =
+ = = =

a

a a a

a a

+ X

X X X n s

X X n s

0

1 , 5.28

N

s s

s

1
1

1
,1 0

,1 0 ,0 0 ,1 0 0

,1 0 ,1 0 0

0

0 0 0 0 0

0 0 0

( )

( ) ( ) ( ( ) )
( ) ( ( ) ) ( )

where s0 is the stopping time

 Ç Èa a= = = =s t X n t Xinf 0 : 0 .t t0 0 0{ {{ } { ( ) }} { }}

Now







Ç

Ç

a
r

a
r

a
r

= = -
+

= = =

= = =

a

a

a

X
r r

X n s
r

X n s
r

1
0 0

,

0
0

,

1
0

,

s

s

s

,1 0
1
0

1
1

1

,1 0 0
1
0

1

,1 0 0
1
1

1

0 0

0 0

0 0

( )
( ( ) ( ))

( ( ) )
( )

( ( ) )
( )

where r i1 is given in (2.8) and (2.9). Equation (5.28) can be rewritten in matrix notation as

c c= ++ +c C , 5.29N N1 1 ( )

with the vector r r= - -c r r, 0 00 1 1
0

1
1( ( ) ( )) and C is the matrix

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟r r

= r rC

0 0
0 0 .1

0

0

1
1

1

( ) ( )

Combining equations (5.26), (5.27), and (5.29), we find that

⎡
⎣⎢

⎡
⎣⎢

⎤
⎦⎥

⎤
⎦⎥c = - -

-
+

-
- -

I I
z

z
z

z
cC B B

1 1
. 5.30N N1

1
1 1

[ ( ( )) ( )

The sum of the components of (5.30) give the flux reduction factor κ of equation (5.22).
In figures 7 and 8, we plot κ and the expected flux through the terminal nodes F of
equation (5.23). As expected, figure 7 shows that increasing the switching rate m n=
increases both κ and F. However, it is interesting that the tree topology affects κ and F
differently: if the coordination number z increases, then κ decreases and k=F J increases.
We expect that increasing z increases J as this is analogous to the fact that increasing z
decreases the MFPT to a terminal node (see figure 6). The fact that increasing z increases F,
however, shows that even though more branching decreases κ, the increase in J is great
enough so that k=F J increases. The situation is reversed in section 5.3 below.

5.3. Flux through a tree with stochastically gated terminal nodes

Finally, suppose that the intermittent sources are at the terminal nodes and consider the flux to
the primary node. The analysis is analogous to section 5.2 above, so we only sketch it briefly.
The particle concentration u x t,( ) satisfies the diffusion equation (5.1), interior boundary
conditions (5.4) and (5.5), boundary conditions at the primary node
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a =u t, 0,0( )
and a boundary condition at the terminal nodes that randomly switches between

a a a= ¶ = " Îu t u t, 1 and , 0 ,x( ) ( )

depending on whether =n t 0( ) or 1, respectively, where n(t) is as in (2.1).

Figure 7. The effect of tree topology on the flux reduction factor and the expected flux
for different placements of the intermittent source. We plot κ of (5.22) and k of (5.31)
in the left figure and we plot F of (5.23) and F of (5.32) in the right figure, all as
functions of the switching rate m n= . In all cases, increasing the switching rate m n=
increases κ, F, k, and F (we note that κ and k both converge to 1 as m n=  ¥).
However, increasing the coordination number z decreases κ and increases F, and
increases k and decreases F . In all plots, N = 2 and L = 1.

Figure 8. The effect of switching rate parameters, r n m n= +1 ( ) and x m n= + ,
on the flux reduction factor and the expected flux for different placements of the
intermittent source. We plot κ of (5.22) and k of (5.31) in the left figure and we plot F
of (5.23) and F of (5.32) in the right figure, all as functions of the proportion of time in
the closed state, r Î 0, 11 ( ). In all cases, increasing ξ and/or decreasing r1 increases κ,
F, k, and F . We note that κ and k both converge to 1 as x  ¥ for any r Î 0, 11 ( ).
Thus, the source can be closed almost all of the time, and yet the flux reduction factor
can be close to 1 if ξ is taken sufficiently large. In all plots, N = 2, L = 1, and z = 3.
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As above, we define V x t,n ( ) according to (5.12) and use probabilistic arguments to find
¥V x V x tlim ,n t n( ) ≔ ( ). Consider a single particle diffusing on Γ that can always diffuse

freely through branch nodes and be absorbed at the primary node. Assume that the particle
can be absorbed at the terminal nodes only when =n t 0( ) , otherwise it is reflected. Let

Î GXt denote the position of the particle at time t and define the absorption time

  È Ça= = Î =t X X n tinf 0 : 0 .t t0{ { } {{ } { ( ) }}}
so that

 Ça= ¹ = =V x p x X n n X x0 .n n 0 0( ) ( ) ≔ ( ( ) ∣ )

By the strong Markov property, if Î Gx , then

p r a a+ = + Îp x p x p x x p , ,0 1
1

0 1( ) ≔ ( ) ( ) ( )( ( ))

where p x1( ) is the splitting probability computed above in (5.19). From the equivalent
deterministic interpretation of p x1( ) in section 5.1, the expected flux to the primary node with
intermittent sources at the terminal nodes is reduced by the factor

k r a a= + Î p , , 5.310 1 ( ) ( )

compared to the case where the concentration at the terminal nodes a Î is always unity.
That is, the expected flux (per each terminal node source) is

kF J , 5.32≔ ( )
where J is the flux with a constant source given in(5.10).

To find ap1 ( ) for a Î , we define ca k( ) by (5.24) and let = +k m N: 0, 1 ,..., 1m{ } be
any sequence of segments starting at the primary branch node a k0( ) and proceeding along a
direct path toward any terminal node a Î . As above, let c c= aj kj( ) and c c= aj kj( ) and

denote the components of cj by c c,j j
0 1( ). By the same argument as in section 5.2, one finds

that c =
+

m m
N

0
1{ } satisfy (5.26) with z1 and -z z1( ) swapped. Solving this system, establishes

that if a Î , then k r a= + p0 1 ( ) is given by the sum of the components of

⎡
⎣
⎢⎢

⎡
⎣⎢

⎡
⎣⎢

⎤
⎦⎥

⎤
⎦⎥- -

--
- -

I I
z

z
z

z
cC B B

1 1
,N

1
1 1

( ( ))

where B, C, and c are as in section 5.2 and  zm( ) defined recursively

⎡
⎣⎢

⎤
⎦⎥ =

-
- = +-

-
-z

z

z
I

z
z m NB B

1

1
, 2 ,..., 1,m m

1
1

1( ) ( ( ))

with  =
-

-z Bz

z1 1
1( ) .

In figures 7 and 8, we plot the flux reduction factor k of equation (5.31) and the expected
flux through the primary node F of equation (5.32). In contrast to section 5.2 above, figure 7
shows that if the coordination number z increases, then k increases and k= F J decreases.

6. Discussion

In this paper, we considered diffusion in a tree with stochastically gated nodes. We found
exact expressions for various splitting probabilities and MFPTs for a single particle diffusing
through a tree. Prompted by applications to respiration, we also considered a concentration of
particles diffusing in a tree. Supposing that particles can always pass through interior branch
nodes but that they are intermittently supplied at one end of the tree, we calculated the flux at
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the other end of the tree. Our examples in section 5 extend the insect respiration model in [7]
which ignored tracheal branching. The model in [7] sought to explain the rapid opening and
closing of respiratory valves (spiracles) in an insect’s exoskeleton (see figure 9) by showing
that rapid opening and closing allows an insect to maintain high oxygen uptake. Our work
establishes that this result still holds in the more realistic case of branching trachea. In fact,
branching trachea allow the insect to maintain an even higher level of oxygen uptake.

Future work will include comparing these model predictions with experimental data. In order
to make a closer comparison with such data, it will be necessary to take account of the fact that the
different levels of trachea and tracheoles have ever decreasing diameters, so that our simplifying
assumption of a homogeneous tree will need to be modified. That is, we assumed throughout that
all branches have the same length L and the same diffusion coefficient D (which we set to unity).
Here we briefly sketch how to extend the analysis of section 5 in order to incorporate changes in
branch diameter. The first step is to note that the diffusion coefficient D becomes smaller as the
branch diameter decreases so that Dwill depend on the generation, D Dm, m= 0,K, N, where
N is the number of generations excluding the primary branch. (We still assume that all branches of
a given generation are identical.) It follows that the Laplacian in equation (5.1) must be multiplied
by Dm for =x x sk ( ), < <s L0 , and Î Sk m (branch k belongs to themth generation). The only
modification in the steady-state equations of section 5.1 is that the current conservation
equation (5.5) becomes


åp p¶ + ¶ = Î Sh h

+
Î a

D x L D x k0 0, ,m x k m
j

x j m1( ( )) ( ( ))

which implies that the iterative equation (5.7) becomes


åQ - Q - Q - Q = Î Sa a a a
Î a

C k0,k k m
j

j j m

k

[ ]( ) ( ) ( ) ( )
( )

with = +C D Dm m m1 . Solving this iterative equation will then require keeping track of the
coefficients Cm, and this will lead to more complicated expressions for the generation-dependent

Figure 9. Sketch of a simple insect tracheal system. Insects use a different system for
respiration than vertebrates. Instead of lungs, they have a series of branching tubes
(trachea and tracheoles) through which oxygen flows from the atmosphere to individual
cells or small groups of cells. Carbon dioxide then travels back out along the same
tubes. Air enters the insect’s body through valve-like openings in the exoskeleton.
These openings (called spiracles) are located laterally along the thorax and abdomen of
most insectsusually one pair of spiracles per body segment.
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functions Hm(x) and Gm(x). Turning to the more involved examples of sections 5.2 and 5.3, the
presence of r-dependent diffusion coefficients means that one has to modify the symmetry
conditions listed below equation (5.25), resulting in a more complicated matrix equation than
equation (5.26), for example.
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