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Abstract
We develop a mathematical model of the motor-based transport and delivery
of vesicles to synaptic targets of an axon. Our model incorporates the ‘stop-
and-go’ nature of bidirectional motor transport (which can be modeled in
terms of advection–diffusion) and the reversible exchange of vesicles between
motors and targets, both of which have been observed experimentally. Since
motor-target interactions are reversible, it is necessary to keep track of the
cluster size of vesicles bound to each motor-complex. This naturally leads to a
modified version of the Becker–Doring model of aggregation–fragmentation
processes. We analyze steady-state solutions of the transport model and obtain
an explicit solution that supports a uniform distribution of synaptic resources
along an axon. We thus establish a possible mechanism for the democratic
distribution of synaptic resources along the length of an axon, based on
reversible motor-target interactions. In the irreversible case, one finds that the
motor-driven transport of newly synthesized proteins from the soma to pre-
synaptic targets along the axon tends to favor the delivery of resources to more
proximal synapses.

Keywords: intracellular transport, molecular motors, aggregation–fragmenta-
tion models, Becker–Doring equations, synaptic democracy

(Some figures may appear in colour only in the online journal)

1. Introduction

Neurons are highly polarized cells with extensively branched input dendrites and a single long
output axon [1]. Communication between neurons is primarily mediated by highly regulated,
protein-rich subcellular compartments known as synapses. Each synapse consists of a pre-
synaptic active zone located either at an axon terminal or partway along an axon (en passant
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synapse), which is apposed to a postsynaptic density located on a dendritic branch. The active
zone is the site of neurotransmitter release, whereas the postsynaptic density contains
receptors to which neurotransmitter binds, resulting in local changes in the membrane voltage
of the postsynaptic cell. The formation of new synapses (synaptogenesis) and the modifica-
tion of existing synapses (synaptic plasticity) in response to synaptic activity from other
neurons, requires the transport of newly synthesized proteins along the axon and dendrites.
The long distances between the soma and distal synapses means that diffusion is too slow and
thus necessitates the packaging of proteins into vesicles, which are then actively transported
by molecular motors along microtubular filament tracks. Microtubules are directionally
polarized polymeric filaments with biophysically distinct (+) and ( )- ends, and this polarity
determines the preferred direction in which an individual molecular motor moves. For
example, kinesin moves towards the ( )+ end, whereas dynein moves towards the ( )- end [2].
Since microtubules tend to be aligned with the same polarity along axons and distal regions of
dendrites, it follows that kinesin (dynein) transports cargo from (towards) the cell body, that
is, in the anterograde (retrograde) direction.

In experiments where fluorescent labeling and live-cell imaging have been used to track
the position of vesicular cargo, the movement along a dendrite or axon is typically seen to
randomly pause and switch direction [3–5]. The random switching between different motile
states can be explained using a biophysical model of the cargo and microtubule interacting via
multiple molecular motors [6]. The motors interact through the forces they each place on the
cargo. If the set of motors transporting a cargo is comprised of motors with opposing
directional preference then they may compete in a tug-of-war [6, 7]. (Alternatively, there is
some signaling mechanism that switches between kinesin-based and dynein-based transport.)
Movement of the cargo is then ultimately determined by the random binding and unbinding of
the motors to the microtubule. The unbinding rate depends on the force applied to the motor.
If a force is applied opposite to the preferred direction of a motor, then it is more likely to
unbind from the microtubule. One can consider all of the motors attached to a cargo as a
motor-complex such that the different motile states of the motor-complex represent different
configurations of bound and unbound motors.

A major challenge for a neuron is to ensure an even distribution of synaptic material
among neighboring synapses. Experimental studies in drosophila and C elegans indicate that
one mechanism for achieving ‘synaptic democracy’ is to combine bidirectional transport with
inefficient (reversible) capture of mobile vesicles by synapses, in order to prevent excessive
aggregation at any particular synapse [8–11]. For example, in the case of the transport of
synaptic vesicle precursors in axons, motor-cargo complexes make frequent stops at potential
synaptic sites where certain GTPases such as ARL-8 regulate the kinetics of association and
dissociation [9]. Recently, we developed a mathematical model of motor-driven vesicular
transport and showed quantitatively that a combination of ‘stop-and-go’ transport and
reversible interactions between motors and targets provides a biophysically plausible mech-
anism for the democratic distribution of molecular cargo among synapses [12]. In particular,
we considered a pair of advection–diffusion equations for the concentration of motor-com-
plexes with or without a vesicle, which included kinetic mass-action terms that represented
the reversible exchange of a vesicle with synaptic targets. However, one major simplification
of our previous model was to assume that each motor-complex could only carry at most one
vesicle. In this paper, we extend our model by allowing motor-complexes to carry an arbitrary
number of vesicles. We show that the kinetic part of the equations become a modified version
of the Becker–Doring (BD) equations for aggregation–fragmentation processes [13–17]. We
exploit this connection to analyze the existence of steady-state solutions, and derive
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conditions for the uniform distribution of synaptic resources along an axon. In particular, the
rate of exchange of vesicles between motors and targets has to be sufficiently fast.

2. Vesicular transport model

In order to highlight the basic problem we wish to solve, consider a population of motor-
complexes moving bidirectionally along a semi-infinite axonal domain, see figure 1. Suppose
that there is a uniform, continuous distribution of presynaptic targets along the axon, and that
each motor-complex can irreversibly deliver its cargo to a presynaptic target at a uniform rate
k. Let u x t,( ) denote the density of motor-complexes carrying a vesicle at position x at time t.
Neglecting any interactions between distinct complexes, we take u x t,( ) to evolve according
to the advection–diffusion equation

u

t
v

u

x
D

u

x
ku x, 0, 2.1

2

2
( )¶

¶
= -

¶
¶

+
¶
¶

- >

where v is the mean speed of the complex and D is an effective diffusivity. This transport
equation can be derived from more detailed biophysical models of bidirectional motor
transport under the assumption that the rates at which motor-complexes switch between
different motile states are relatively fast [12, 19], see also the appendix. The mean speed will
depend on the relative times that the complex spends in different anterograde and retrograde
states, whereas the diffusivity D reflects the underlying stochasticity of the motion. Suppose
that there is a constant flux of complexes injected at the end x=0, so that equation (2.1) is
supplemented by the boundary condition

D
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Let c x t,( ) denote the density of vesicles delivered to the presynaptic targets, with

c

t
ku x t c x t, , . 2.3c( ) ( ) ( )g

¶
¶

= -

Here cg is the rate of vesicle degradation within a presynaptic target. (If we were to neglect
degradation of vesicles, then it would be necessary to impose by hand a maximum capacity of
presynaptic targets, otherwise c x t,( ) could become unbounded.) A basic limitation of this
model follows from the observation that the steady-state distribution of vesicles decays
exponentially with respect to distance from the soma with a correlation length x . That is

Figure 1. Schematic diagram of the motor transport and irreversible delivery of vesicles
to presynaptic targets along an axon (not to scale). Bidirectional transport is modeled in
terms of an advection–diffusion equation with mean speed v and diffusivity D. For ease
of visualization, we represent each motor-complex by a single motor in this and
subsequent figures. However, in order to undergo bidirectional transport, a complex
will typically consist of several kinesin and dynein motors.
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Taking the typical values D 0.1 m s 1m= - for cytoplasmic diffusion and v 0.1 1 mm= - s−1

for motor transport [2], and assuming that k 1 s−1, we see that v k m( )x m» . Thus, in
order to have correlation lengths comparable to axonal lengths of several millimeters, we
would require delivery rates of the order k 10 5~ - s−1, whereas measured rates tend to be of
the order of a few per minute [20, 21]. This simple calculation establishes that injecting
motor-complexes from the somatic end of the axon leads to an exponentially decaying
distribution of synaptic resources along the axon.

Recently we showed that a more uniform distribution of presynaptic vesicles can be
achieved by taking the synaptic delivery of vesicles to be reversible [12], as has been
observed experimentally [8, 10], see figure 2. This requires generalizing the above advection–
diffusion equation in order to keep track of the number of vesicles the motor-complexes are
carrying. In our previous model we restricted each complex to carry at most one vesicle,
whereas here we relax this assumption and show how the resulting model is described by a
modified version of the BD equations for aggregation–fragmentation [13–17]. Let
u x t n, , 0, 1 ,..,n ( ) = denote the concentration of motor complexes at position x at time t that
are carrying n vesicles. It is mathematically convenient to assume that there is no upper bound
for the carrying capacity of a motor-complex—this is not a major issue since, as we shall
show in section 3, the steady-state solution satisfies ulim 0n n =¥ . Our next assumption is
that motor-complexes can only exchange one vesicle at a time with synaptic targets. We thus
have the following reaction scheme

X U U U X U n, , 1 2.5n
a

n n
b

n1 1
n n

( )+   ++ -

and

X U U . 2.6
a

0 1
0

( )+ 

Here X denotes a membrane bound vesicle, Un denotes a motor-complex with n vesicles, bn is
the rate at which a vesicle is transferred from the complex to a synaptic target, and an is the
rate of the reverse process. Next, we model the one-dimensional bidirectional transport of the
population of motor-complexes with n vesicles in terms of an advection–diffusion equation
with an effective diffusivity Dn and mean velocity vn; we are allowing for the possibility that
the mean speed and diffusivity of a motor-complex depends on the number of vesicles it is
carrying. This is based on the idea that motors carrying more vesicles tend to move more
slowly due to the increased load. (In the appendix, we use a quasi-steady-state (QSS)
diffusion approximation to derive the advection–diffusion equation from a more detailed

Figure 2. Schematic diagram of reversible vesicular transport model. Each motor-
complex can reversibly exchange a vesicle with a synaptic target, and there is clustering
of vesicles bound to motors and bound to targets.
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biophysical model of active motor transport.) When this is combined with the exchange of
vesicles with synaptic targets, we obtain the following system of equations
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For the moment, suppose that there are reflecting boundary conditions at x L0,= :

I t I L t I x t D
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v u0, , 0, , , 2.9n n n n
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with I x t,n ( ) denoting the flux of complexes carrying n vesicles. Ignoring any degradation of
vesicles, we have

c

t
b u x t a c x t u x t, , , 2.10

n
n n n n

0
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å

¶
¶
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with b 00 º . Note that we are keeping track of the discrete number of vesicles attached to a
motor-complex, but treating the vesicles incorporated into synaptic targets as a continuous
density.

3. Analysis of non-spatial model

In order to gain insights into the behavior of the full model, we first focus on the kinetic part
of the equations by assuming we have a well-mixed 1D domain, so that all concentrations are
independent of x. This situation could occur if there is initially a uniform distribution of
membrane-bound vesicles and motor-complexes, and the axon or dendrites of a neuron are
globally activated. The latter could be implemented by bathing the neuron in potassium
chloride, for example. Equations (2.7), (2.8) and (2.10) then reduce to the system of ODEs
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0

( )
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where we have introduced the vesicle fluxes

J a cu b u . 3.2n n n n n1 1 ( )= - + +

The system of equations (3.1a)–(3.1c) is a modified version of the BD equations for
aggregation–fragmentation processes. The latter equations were originally proposed as a
model for nucleation [13], in which clusters form by individual particles (monomers)
colliding with each other then grow via subsequent collisions between clusters and
monomers. The main simplifying assumption is that interactions between clusters are ignored,
which is reasonable when the cluster density is relatively small. If u n, 2n  denotes the
concentration of clusters of size n and u1 denotes the concentration of monomers then the BD
equations take the form
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with

J a u u b u . 3.4n n n n n1 1 1 ( )= - + +  

Now an and bn denote the rates of aggregation and partial fragmentation of a cluster of size n.
More precisely, equations (3.3a) and (3.3b) are a slightly modified version of the original BD
equations whereby the total mass of the system is conserved [15]—the original model took
the monomer concentration u1 to be fixed [13].

In our transport model, membrane bound vesicles play the role of monomers and motor-
complexes play the role of clusters, with n now labeling the number of motor-bound vesicles
rather than cluster size. Another major difference between our transport model and cluster
formation models is that the fastest diffusing element in the latter is a monomer, whereas in
our model the ‘monomer’ is membrane bound and does not diffuse. In recent years the BD
equations (3.3a) and (3.3b) have been applied to a wide range of chemical and biological
processes including micelle and vesicle formation [22, 23], viral capsid assembly [24], and
robust protein concentration gradient formation [25]. There have also been several mathe-
matical studies of the existence and uniqueness of steady-state solutions and large-time
asymptotics [14–17]. In the following we will adapt these analytical results to our model of
vesicular transport.

First, adding equations (3.1a)–(3.1c) shows that the total concentration of motor-com-
plexes U un n0= å is conserved:
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This yields the motor conservation condition
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Hence the total number of vesicles is conserved:

c t nu t . 3.7
n

n
1

( ) ( ) ( )

år = +

One subtlety regarding the above derivation of the conservation equations is that we have
assumed that we can reverse the order of infinite summation and differentiation. It turns out
that for certain choices of the n-dependent transition rates a b,n n, reversibility breaks down,
reflecting the fact that a steady-state solution no longer exists [14, 15]. However, we will not
consider such possibilities here.
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Therefore, we now look for steady-state solutions J t Jn ( ) = for all n 0 . In the absence
of vesicle degradation, the only physical solution is the equilibrium solution J=0, since
c td d  ¥ otherwise. Hence

b u a cu ,n n n n1 1 =+ +

which on rearranging and iterating gives
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The conservation equations (3.6) and (3.7) then yield the results
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We will assume that for a given choice of an and bn the infinite series defining F c1( ) has a
finite radius of convergence c=z—the corresponding series expansion of F z0 ( ) also then
converges. There will then exist a steady-state solution provided that equation (3.10) has a
solution for which c z .

The approach to equilibrium can be established by constructing an appropriate Liapunov
function. Adapting the analysis of Penrose [15], consider the function
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The above suggests considering the modified Liapunov function
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Again, following along analogous lines to [15], we can also establish that L0 is bounded
below, and, hence that L is bounded below. First note that each term

f u u u Qlog 1n n n n( ) [ ( ) ]º -

is a convex function of un so that at an arbitrary value un*,
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We have now established that L must approach a limit as t  ¥ such that L td d 0 .
Since every term on the right-hand side of equation (3.18) is non-positive, it follows that the
individual terms approach zero:

J a cu b u t n0 as , 0.n n n n n1 1 º -   ¥+ +

Therefore

u Q c u t n0 as , 1. 3.19n n
n

0 ( )-   ¥

However, we still need to determine how u0 and c behave as t  ¥. From the conservation
equations, we have
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On the other hand, equation (3.19) tells us that
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If we can interchange the two limit operations t  ¥ and n  ¥, then we obtain the
asymptotic results

c t c u t ulim , lim , 3.24
t t

0 0( ) ( ) ( )= =
¥ ¥

with u c,0 satisfying equations (3.9) and (3.10).
As a simple example, suppose that a a b b,n n= = for all n, that is, the exchange rates of

vesicles between motor-complexes and synaptic targets are independent of the cluster size n.
Then Q a bn

n( )= and

F c
ac b

ac b
F c

ac b

ac b1
,

1
3.250 1 2

( ) ( )
( )

( )=
-

=
-

provided that ac b 1< . That is, F c1( ) has the radius of convergence c b a( )= -, which
means that there is an upper bound to the steady-state membrane-bound vesicle concentration.
Moreover, for all finite M (total density of motor-complexes) and ρ (total density of motor-
bound vesicles) the steady-state concentration c is given by the unique solution to
equation (3.10), which becomes

Figure 3. Graphical construction of rescaled steady-state density C=ac/b. For given
M, r, C is determined by the intercept of the straight line a b Cr - with the
function f C aM b C C1 2( ) ( ) ( )= - .
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c
ac b

ac b
M

1
.

2( )
r = +

-

Existence of a unique solution can be demonstrated graphically, as illustrated in figure 3. Note
that for fixed M, we have r  ¥ as c b a . On the other hand, increasing M for fixed ρ

decreases the steady-state concentration.

4. Effects of advection–diffusion

There has been relatively little rigorous work on aggregation–fragmentation models with
diffusion. Most studies have considered convergence to partially uniform steady-state solu-
tions, see for example [26–30]. Here we will proceed formally by summing the full equations
over n, under the assumption that we can reverse the operations of differentiation and infinite
summation. Therefore, let us return to the full model equations given by (2.7) and (2.8). For
simplicity, we assume that D Dn = and v vn = and take b b a a,n n= = for all n 0 :
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n n n n

2

2 1 1 [ ] ( )g
¶
¶

=
¶
¶

-
¶
¶

+ + - + -+ -

and

u

t
D

u

x
v

u

x
bu acu u . 4.20

2
0

2
0

1 0 0 ( )g
¶
¶

=
¶
¶

-
¶
¶

+ - -

We have also included degradation terms, which takes into account the fact that motors can be
removed from active transport and recycled to the soma. We impose reflecting boundary
conditions at x=L and constant flux conditions at x=0,

J u t J u L t n0, , , 0, 0,n n n( ( )) ( ( )) k= =

where J u D u vux( ) = - ¶ + . It is important to emphasize that the injected motor-complexes
are not necessarily newly synthesized from the cell body. For it has been found
experimentally that motor-complexes recycle between the distal and somatic ends of the
soma [8, 10]. In the case of a finite axon, we could model recycling by imposing an absorbing
boundary condition at the distal end and reinjecting the distal flux into the somatic end. If the
axon is much longer than the range of vesicular delivery necessary to supply synapses, then
the effects of the absorbing boundary can be ignored and we can treat the axon as semi-
infinite.

The concentration of vesicles in presynaptic targets evolves as

c

t
bu x t ac x t u x t

bu x t aU x t c x t

, 1 , ,

, , , , 4.3
n

n n n
0

,0[ ( )[ ] ( ) ( )]

( ) ( ) ( ) ( )

å d

¶
¶

= - -

= -

where

u x t u x t U x t u x t u x t u x t, , , , , , , . 4.4
n

n
n

n
1 0

0( ) ( ) ( ) ( ) ( ) ( ) ( )
 
å å= = = +

Following the analysis of section 3, we assume that we can reverse the operations of
differentiation and infinite summation for n-independent exchange rates. Summing both sides
of equations (4.1) with respect to n and adding equation (4.2) then yields the following
equation for U x t,( ):
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t
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U

x
v

U

x
U U u u, 4.5

2

2 0 ( )g
¶
¶

=
¶
¶

-
¶
¶

- = +

with J U t0, n n( ( )) k k= º å and J U L t, 0( ( )) = . Similarly, multiplying both sides of
equation (4.1) by n and then summing over n n, 1 gives

n

t
D

n

x
v

n

x
n bu x t aU x t c x t, , , , 4.6

2

2
( ) ( ) ( ) ( )g

¶
¶

=
¶
¶

-
¶
¶

- - +

where

n x t nu x t, , , 4.7
n

n
1

( ) ( ) ( )

å=

and J n t n0, n n( ( )) k= å , J n L t, 0( ( )) = .
Note from equations (4.3), (4.5) and (4.6) that we recover the spatially uniform con-

servation conditions (3.6) and (3.7) when 0g = and 0k = . Unfortunately, the system of
equations (4.3), (4.5) and (4.6) for U x t c x t n x t, , , , ,( ) ( ) ¯ ( ) is not closed, since one needs to
determine u x t,0 ( ) (in order to obtain u x t U x t u x t, , ,0( ) ( ) ( )= - ), which means that we
have to solve the full hierarchy of equations (4.1) and (4.2). In the case of spatially uniform
steady-state solutions with 0ng k= = for all n, we can proceed iteratively, as shown in
section 3. It turns out that for a special choice of the boundary fluxes nk , we can also construct
a non-spatially uniform steady-state solution of equations (4.1) and (4.2) that supports a
uniform distribution of membrane-bound vesicles. First, setting c x t c, 0( ) = in equation (4.3)
yields the steady-state condition

u x
c a

b
U x , 4.80( ) ( ) ( )=

where U(x) is the steady-state solution of equation (4.5):

D
U

x
v

U

x
U 0, 4.9

2

2
( )g

¶
¶

-
¶
¶

- =

with J U 0( ( )) k= and J U L 0( ( )) = . This is identical to the steady-state version of
equation (2.1) with the delivery rate k replaced by the degradation rate γ. Hence, U(x) decays
exponentially with respect to distance from the soma with a modified correlation length x
(assuming a semi-infinite cable):

U x
D v

D

v v D

e
,

2

4
. 4.10

x

2
( ) ( )k

x
x

g
=

+
=

- + +

x-

Since the rate of exchange of vesicles between motors and targets is typically much faster
than the degradation or removal rate of motors from the axon ( kg  ), it follows that the new
model greatly increases the correlation length of the motor-complex concentration. Moreover,
as we now demonstrate, for a particular choice of boundary fluxes nk , an exponentially
decaying concentration of motor-complexes can support a spatially uniform concentration of
membrane-bound vesicles. First, it immediately follows from equation (4.8) that

u x
c a

b
U x1 .0

0( ) ( )⎜ ⎟
⎛
⎝

⎞
⎠= -

Substituting this solution into equation (4.2) and using equation (4.9) shows that

u x
c a

b

c a

b
U x1 .1

0 0( ) ( )⎜ ⎟
⎛
⎝

⎞
⎠= -
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Similarly substituting for u x1( ) into equation (4.1) for n=1 and iterating shows that

u x
c a

b

c a

b
U x1 . 4.11n

n
0 0( ) ( ) ( )⎜ ⎟ ⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠= -

It remains to impose the boundary conditions on the fluxes at the ends x L0,= . Self-
consistency yields the following condition on nk :

c a

b

c a

b
n1 , 0. 4.12n

n
0 0 ( )⎜ ⎟ ⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ k k= -

This has the unique solution

c a

b
n

c a

b
, 0, 1 4.13n

n

n
n

0

0

0
1

( )⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠


åk k k= = = -

-

provided that c b a0 < . In conclusion, in the special case that the constant flux of motor-
complexes carrying n vesicles is of the form n

nk = G , 0 1< G < , the steady-state
concentration of membrane-bound vesicles is spatially uniform with c b a0 = G .

Of course, the specific form of the fluxes nk assumed in the above construction is non-
generic. Nevertheless, it is a ‘proof of principle’ that incorporating reversible interactions
between motors and targets, which has been observed experimentally, provides a possible
mechanism for a more democratic distribution of synaptic resources along the axon or den-
drite of a neuron. It is consistent with the more analytically tractable case considered in our
previous work [12], where we restricted each motor-complex to carry at most one vesicle.

5. Discussion

In this paper, we introduced a new application of aggregation–fragmentation models of the
BD form, namely, to molecular motor-driven vesicular transport in axons and dendrites of
neurons. This type of model naturally arises when the delivery of vesicles to synaptic targets
is reversible, which has been observed in a number of experiments. That is, one has to keep
track of the cluster size of vesicles bound to each motor-complex. By adapting methods for
analyzing the BD equations, we determined steady-state solutions of our transport model and
found an explicit solution for which there is a uniform distribution of synaptic resources along
an axon. Note, however, that there are some significant differences between our model and
the standard BD model. In the latter model monomers are simply identified as clusters of size
n=1, whereas in our model monomers correspond to membrane-bound vesicles that are
distinct from n-clusters of motor-bound vesicles. It also follows that there can exist a cluster
of size zero (motor-complex with no cargo). There are number of possible extensions of our
model, which we hope to explore in future work:

(1) One simplification of our model concerns the kinetic interactions between motors and
targets; we used simple first-order kinetics, neglected the range of interactions, and
assumed that only single vesicles are exchanged. Unfortunately, there is very little known
experimentally regarding the interactions between motors and targets, other than the
identity of important molecular players such as ARL-8 [9]. Therefore, we will investigate
a variety of possible models regarding the association and dissociation of vesicles at
synaptic targets. A related issue concerns the simplifying assumption that the capacity of
each motor-complex is unbounded so that it can carry an arbitrary number of vesicles n.
In the case of n-independent exchange rates, a a b b,n n= = , this was not a severe
approximation, since the stationary motor-complex densities in the non-spatial model
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rapidly decrease with n, that is, u ac bn
n( )~ with ac b 1< . However, this result could

break down when more complicated forms of motor-target kinetics are considered, in
which case we would need to impose an explicit upper bound on motor capacity. Yet
another extension would be to take Dn and vn to be n-dependent in the full model
equation (4.1), rather than D Dn = and v vn = for all n.

(2) Another simplification of our model is that it ignores the discrete and inhomogeneous
nature of the distribution of synaptic targets—we simply treated the target concentration c
as continuous and assumed vertical interactions between motors and targets. One method
for handling the discrete nature of synaptic targets is homogenization theory, which we
have previously used to analyze the diffusive transport of signaling molecules along
spiny dendrites [31]. It should be possible to extend this approach to the more complex
advection–diffusion model. There is also heterogeneity at a longer spatial scale, since
certain regions of an axon do not have any synaptic targets. Following [10], this can be
handled by partitioning the axon into compartments.

(3) The advection–diffusion model given by equations (4.1) and (4.2) is deterministic. There
are two levels of stochasticity that could be introduced. First, rather than approximating
bidirectional motor transport in terms of advection–diffusion equations, we could
consider a more detailed biophysical model that keeps track of different motile states and
the switching between them. This was illustrated in the appendix using a simple three-
state model of bidirectional motion. A second source of stochasticity would arise when
the number of motors is sufficiently small, resulting in demographic noise. One would
then have to develop a master equation description that tracks transitions between
different motile states and sizes of aggregates.
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Appendix

In this appendix, we consider a more biophysically detailed model of motor transport, in
which a motor-cargo complex executes bidirectional transport by switching between different
motile states. Using a QSS diffusion approximation, we will show will how the transport
model can be reduced to a system of advection–diffusion equations of the form (2.7). For the
sake of illustration, consider a simple three-state transport model of a single motor-complex
moving on a semi-infinite 1D track as shown in figure A1 . (Although we represent the
complex in terms of a single motor, in practice bidirectional transport is mediated by several
molecular motors attached to the same cargo.) The motor complex is taken to be in one of
three motile states labeled by j 0,= : stationary or slowly diffusing (j = 0), moving to the
right (anterograde) with speed v+ (j = +), or moving to the left (retrograde) with speed v- -

( j = -); transitions between the three states are governed by a discrete Markov process. In
addition, the motor complex can carry a variable number of vesicles n, which can be
reversibly exchanged with membrane-bound synaptic targets when in the state j=0. Let
p x t,nj ( ) denote the probability density that at time t the complex is at position x, x 0,( )Î ¥ ,
is in motile state j, and is carrying n vesicles. The evolution of the probability density is
described by the following system of partial differential equations:
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For concreteness, we take the end x=0 to be reflecting so that v p t v p t0, 0,n n n n( ) ( )=+ + - - .
Here ,a b are the transition rates between the slowly diffusing and ballistic states, and Dn0 is
the diffusivity in the state j=0. As in the model of section 2, we are assuming that there is a
continuous distribution c of presynaptic targets along the axon, which can exchange vesicles
with the motor-complex at the rates a b,n n. (Note that a b 01 0= =- .)

For intracellular transport, one finds that the transition rates ,a b are fast compared to the
exchange rates a b,n n, and the effective displacement rate v ln , where l is a fundamental
microscopic length-scale such as the size of a synaptic target (l∼1 μm). One can then use a
QSS diffusion approximation to derive an advection–diffusion equation for the total prob-
ability density

p x t p x t, , . 5.2n
j

nj
0,

( ) ( ) ( )å=
= 

This involves a relatively straightforward extension of our previous analysis of a three-state
molecular motor model with irreversible target delivery [12, 18, 19]. That is

p

t
v

p

x
D

p

x
b p a cp b a c p 5.3n
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n n n n n n n
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with mean velocity v v vn n n( )r= -+ - +, effective diffusivity Dn given by

D D v v v v
2

,n n n n n n0 0
2 2

( )
(( ) ( ) )r

a
b a b

= +
+

- + ++ -

Figure A1. Three-state model of the bidirectional transport of a motor-cargo complex.
The particle switches between an anterograde state (j = +) of speed v+, a stationary or
slowly diffusing state (j = 0), and a retrograde state j( = -) of speed v-. The motor-
complex can only exchange vesicles with presynaptic targets when in the state j=0.
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and the rescaled exchange rates a b a b, ,n n n n0 0r r . Here

2
,

2
5.40 ( )r

b
a b

r
a

a b
=

+
=

+

are the stationary probabilities of the three-state Markov process describing transitions
between the motile states j=0 and j = , respectively. The basic idea of the QSS reduction
is to fix units so that v a b O, , 1n n n ( )= and O, 1( )a b = with 0 1<  . In this regime,
there are typically a large number of transitions between different motor-complex states j
while the position x and number of vesicles n do not change. Therefore, we expect the three-
state Markov process to rapidly converge to the steady-state nr , which is then perturbed as
x n, slowly evolve. This motivates decomposing the probability densities as
p x t p x t w x t, , ,nj n j nj( ) ( ) ( )r= + with w x t, 0j nj ( )å = . Substituting such a solution into
equations (5.1a) and (5.1b), and performing an asymptotic expansion in wnj then yields
equation (5.3) to leading order in ò. In particular, D D On n0 0 ( )r- = .
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