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Stochastic Fokker-Planck equation in random environments
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We analyze the stochastic dynamics of a large population of noninteracting particles driven by a common
environmental input in the form of an Ornstein-Uhlenbeck (OU) process. The density of particles evolves
according to a stochastic Fokker-Planck (FP) equation with respect to different realizations of the OU process.
We then exploit the connection with previous work on diffusion in randomly switching environments in order
to derive moment equations for the distribution of solutions to the stochastic FP equation. We use perturbation
theory and Green’s functions to calculate the mean and variance of the distribution when the relaxation rate
of the OU process is fast (close to the white-noise limit). Finally, we show how the theory of noise-induced
synchronization can be recast into the framework of a stochastic FP equation.
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I. INTRODUCTION

A number of recent modeling studies have considered
stochastic partial differential equations (SPDEs) that describe
the evolution of the density of particles diffusing in a
domain with randomly switching boundary conditions [1–3].
The environmental variables that determine the boundary
conditions are taken to switch between a finite number of states
according to a continuous-time Markov chain. The resulting
SPDE is thus piecewise deterministic. This type of model has
recently been applied to several problem domains in biology
and biophysics, including diffusion-limited reactions [4], neu-
rotransmission [5], insect physiology [6], and stochastically
gated gap junctions [7].

Suppose, for the sake of illustration, that particles are
diffusing in some bounded domain � ⊂ Rd and that the
current state of the environment is n(t) = n, with n ∈ � ⊂ Z.
Each realization of the environment up to time t , σ (t) =
{n(τ ),0 � τ < t}, will tend to generate a different solution
of the underlying SPDE, which we denote by the density
P (x,t)—this represents the density of particles in state x at
time t . The presence of the random environment means that
the particle density P (x,t) is itself a random field, so there is
a distribution of densities. Introducing the rth order moments
of the corresponding distribution of P ,

C(r)(x1, . . . ,xr ,n) = Eσ [P (x1,t) · · · P (xr,t)1n(t)=n],

where expectation is taken with respect to realizations σ , one
can derive a closed hierarchy of moment equations in the form
of deterministic PDEs. This then establishes a relationship
between C(r)(x1, . . . ,xr ,n) and the joint probability density for
r diffusing particles having positions x1, . . . ,xr at time t , given
that the random environment is currently in state n(t) = n.

Although the relationship between the moments of the
distribution of solutions to an SPDE and the joint statistics
of a finite number of particles evolving in the same random
environment has been investigated primarily for diffusion-like
processes, it is in fact a much more general principle. For
example, rather than considering diffusing particles, one could
model a population of random walkers in a randomly switching
environment [8]. The diffusion equation for particle density is
replaced by a stochastic birth-death master equation for the
distribution of particles on a lattice, where the hopping rates

between neighboring lattice sites are themselves stochastic.
In this paper we focus on another example, namely a large
population of noninteracting particles driven by a common
environmental input in the form of an Ornstein-Uhlenbeck
(OU) process [9]. At the population level the density of
particles evolves according to a stochastic Fokker-Planck (FP)
equation that depends on the particular realization of the
random environment. It should be noted that we use the term
“particle” loosely here. That is, although x ∈ Rd could denote
the position of a physical particle, it could also represent a
set of concentrations for some biochemical network evolving
according to mass action kinetics. In the latter case, a particle
might be a single gene or cell and the environmental variable
might control the switching on and off of genes. Alternatively,
x could represent voltage and ion-channel gating variables in
the case of a neuron [10].

We take as our starting point the classical problem of a
Brownian particle driven by colored noise in the form of
an OU process [9] (Sec. II). In the white-noise limit the
associated two-dimensional FP equation reduces to a scalar
FP equation of the Stratonovich form. We then consider a
population of identical particles driven by a common OU
process, with the latter identified as some environmental
variable α(t). For a given realization of the OU process,
the population density evolves according to an FP equation
that depends on α(t), which implies that the density is itself
a random field with respect to different realizations of the
OU process. We then exploit the connection with previous
work on diffusion in randomly switching environments [2]
in order to derive moment equations for the distribution of
solutions to the stochastic FP equation (Sec. III). We thus
show how the rth moment is related to the joint probability
density of r identical particles driven by the same OU
process. We highlight the fact that the two quantities are not
necessarily equivalent, particularly in the case of boundary
value problems. In Sec. IV we use perturbation theory and
Green’s functions to calculate the steady-state solution of the
first and second-order moment equations when the relaxation
rate of the OU process is fast (close to the white-noise limit).
Finally, in Sec. V we apply our stochastic FP formulation
to recent work on noise-induced synchronization [11–18].
In particular, we emphasize how the SPDE perspective
allows one to establish synchronization of a population of
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oscillators under a single realization of the common random
input.

II. A CLASSICAL SDE WITH NONWHITE NOISE:
AN SPDE PERSPECTIVE

A classical problem in stochastic processes is the derivation
of the Stratonovich version of the FP equation for a single
particle driven by external white noise [9]. Let X(t) denote
the position of the particle at time t , which is taken to evolve
according to the stochastic differential equation (SDE),

dX(t) = [F (X) + γ b(X)α(t)]dt +
√

2DdW (t), (2.1)

where α(t) is a stochastic external input evolving according to
the OU process

dα(t) = −γ 2α(t)dt + γ dŴ (t). (2.2)

Here W (t) and Ŵ (t) are independent Wiener processes with

〈dW (t)〉 = 0 = 〈dŴ (t)〉, 〈dW (t)dW (t ′)〉 = δ(t − t ′)dtdt ′

and

〈dŴ (t)dŴ (t ′)〉 = δ(t − t ′)dtdt ′, 〈dW (t)dŴ (t ′)〉 = 0.

For simplicity, we take the intrinsic noise to be additive and
independent of α(t). Heuristically speaking, in the limit γ →
∞, we can set α(t)dt = dW (t)/γ such that we obtain the
scalar SDE

dX(t) = F (X)dt +
√

2DdW (t) + b(X)dŴ (t). (2.3)

However, since we have a multiplicative noise term, there
is an ambiguity with regards to the interpretation of this term
from the perspective of stochastic calculus, that is, whether one
should choose the Ito or Stratonovich versions. This means that
the form of the corresponding FP equation is also ambiguous.
[For the moment, we will assume that X(t) ∈ R so boundary
conditions can be ignored.] One way to resolve the above
issue is to start with the full two-dimensional (2D) Fokker-
Planck equation and to reduce it to a scalar FP equation in
the limit γ → ∞ using an adiabatic reduction and projection

methods [9]. This yields a Fokker-Planck equation for x that
is in the Stratonovich form [9]:

∂ρ∞
∂t

= − ∂

∂x
F (x)ρ∞(x,t) + D

∂2

∂x2
ρ∞(x,t)

+ 1

2

∂

∂x
b(x)

∂

∂x
b(x)ρ∞(x,t). (2.4)

Now suppose that γ is finite and treat the system given by
Eqs. (2.1) and (2.2) as a two-dimensional SDE for the variables
α(t),X(t). One then has to deal with the full 2D FP equation for
the probability density p(x,α,t |x0,α0,0). This takes the form
(after dropping the explicit dependence on initial conditions)

∂p

∂t
= γ 2

(
∂

∂α
α + 1

2

∂2

∂α2

)
p − γ

[
∂

∂x
b(x)α

]
p

+
[
− ∂

∂x
F (x) + D

∂2

∂x2

]
p. (2.5)

Note that from a computational perspective, the probability
p(x,α,t) can be determined by numerically solving Eqs. (2.1)
and (2.2) for an ensemble of independent particles each
evolving in a different realization of the environment, see
Fig. 1(a). It is convenient to rewrite (2.1) in the more suggestive
form

dX = F (X,α)dt +
√

2DdW (t), (2.6)

with F (X,α) = F (X) + γ b(X)α(t) and α evolving according
to the OU process (2.2). We can then view α(t) as some
stochastic environmental variable, while x(t) is an internal
state variable. For a given realization σ (t) = {α(τ ),0 � τ < t}
of the stochastic process α(t), Eq. (2.6) is an SDE that re-
duces to a deterministic, nonautonomous ordinary differential
equation (ODE) when D = 0 (no intrinsic noise).

Let us now consider an ensemble of identical particles
labeled by i = 1, . . . ,N with internal variables Xi(t) all being
driven by the same external or environmental variable α(t),
see Fig. 1(b). Equation (2.6) becomes

dXi(t) = F (Xi,α(t))dt +
√

2DdWi(t), (2.7)

particles

α1(t)(a)

(b)

1 α2(t) αN(t)

α(t)

x1(t)

x2(t)

x1(t)

x2(t)

xN(t)

xN(t)

P(x,t)

(c)

α(0)

α(t)

particles

FIG. 1. Diagram illustrating the difference between the particle and population perspectives. (a) Multiple realizations of a single particle
moving in a random environment generates the probability density p(x,α,t). (b) Large population (N → ∞) of particles evolving in a single
realization σ of the common random environment generates the population density P (x,t). (c) The stochastic FP equation describes the
evolution of the population density P (x,t) for a given realization σ of the noisy input α(t).
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for i = 1, . . . ,N and independent Wiener processes Wi(t),
with the stochastic variable α(t) independent of i and evolving
according to Eq. (2.2). Assume that the initial positions of the
particles, xi(0), are randomly generated from a density p0(x).
Take the thermodynamic limit N → ∞, and let P (x,t) denote
the density of particles in state x at time t given a particular
realization σ (t) of the OU process. The population density
evolves according to the stochastic FP equation

∂

∂t
P (x,t) =

[
− ∂

∂x
F (x,α(t)) + D

∂2

∂x2

]
P (x,t), (2.8)

with P (x,0) = p0(x). An important observation is that the
density P (x,t) is a random field with respect to realizations σ .

In the following we will refer to the deterministic FP
Eq. (2.5) for p(x,α,t) as representing a particle perspective,
whereas the SPDE given by (2.8) for P (x,t) represents a
population or continuum perspective. [This should not be
confused with the distinction between particle (Lagrangian)
and population (Eulerian) descriptions corresponding, re-
spectively, to SDEs and their associated deterministic FP
equations.] A similar classification has recently arisen in
other problem domains. One example is the diffusion of
particles in a randomly switching environment, specifically,
a finite domain with randomly switching boundary conditions
[1–4,6]; a related study looks at random walks in random
environments [8].

III. MOMENT EQUATIONS OF THE SPDE

Consider an ensemble of particles evolving according to
Eqs. (2.7) and (2.2) in the thermodynamic limit N → ∞.
For the sake of illustration, suppose that X ∈ [0,L] and
there are reflecting boundary conditions at x = 0,L In order
to analyze the corresponding stochastic FP Eq. (2.8), we
follow the approach of Ref. [2] by discretizing x using a
finite-difference scheme so (2.8) is converted to a higher-level
SDE. Introduce the lattice spacing a such that x = ja for
j = 0, . . . ,N + 1 with (N + 1)a = L. Let Pj (t) = P (aj,t)
and Fj (α) = F (ja,α) = F (ja) + γ b(ja)α. Then

dPi

dt
= −

N∑
j=1

Kij (α)Pj , if α(t) = α. (3.1)

Away from the boundaries (i 
= 1,N ),

Kij (α) = 1

a
[δi,j−1 − δi,j ]Fj (α) − �ij , (3.2)

where �ij is the discrete Laplacian

�ij = D

a2
[δi,j+1 + δi,j−1 − 2δi,j ]. (3.3)

At the two ends we have

u1F1(α) − D

a
[u1 − u0] = 0,

uN+1FN+1(α) − D

a
[uN+1 − uN ] = 0.

These boundary conditions can be implemented by taking

K1j (α) = F2(α)

a
δ2,j − D

a2
[δ2,j − δ1,j ]

and

KNj (α) = −FN (α)

a
δN,j − D

a2
[δN−1,j − δN,j ].

Let P(t) = (Pj (t), j = 1, . . . ,N) and introduce the joint prob-
ability density

�(P,α,t)dPdα = P[P(t) ∈ (P,P + dP),α(t) ∈ {α,α + dα}],
(3.4)

where we have dropped the explicit dependence on initial
conditions. The resulting FP equations for the SDE given by
Eqs. (3.1) and (2.2) is

∂�

∂t
=

N∑
i=1

∂

∂Pi

⎡⎣⎛⎝ N∑
j=1

Kij (α)Pj

⎞⎠�(P,α,t)

⎤⎦
+ γ 2

(
∂

∂α
α + 1

2

∂2

∂α2

)
�(P,α,t). (3.5)

Since the FP Eq. (3.5) is linear in �, we can derive a closed set
of equations for the moments of �. (Discretizing space allows
us to avoid dealing with a functional FP equation.)

First, let

Vj (α,t) = Eσ [Pj (t)1α(t)=α] =
∫

�(P,α,t)Pj (t)dP, (3.6)

where ∫
F (P)dP =

[
N∏

i=1

∫ ∞

0
dPi

]
f (P).

The subscript σ denotes taking expectations with respect to
realizations of the OU process. Multiplying both sides of
Eq. (3.5) by Pk(t) and integrating by parts with respect to
P gives [for �(P,α,t) → 0 as P → ∞]

∂Vk

∂t
= −

N∑
j=1

Kkj (α)Vj + γ 2

(
∂

∂α
α + 1

2

∂2

∂α2

)
Vk.

We have assumed that the initial variable α(0) is distributed
according to the stationary distribution ps(α). If we now retake
the continuum limit a → 0, then we obtain the FP equation

∂V

∂t
=

[
− ∂

∂x
F (x,α) + D

∂2

∂x2

]
V + γ 2

(
∂

∂α
α + 1

2

∂2

∂α2

)
V,

(3.7)

for V (x,α,t) = Eσ [P (x,t)1α(t)=α].
Next we consider the second-order moments

Ckl(α,t) = Eσ [Pk(t)Pl(t)1α(t)=α]

=
∫

�(P,α,t)Pk(t)Pl(t)dP.

Multiplying both sides of Eq. (3.5) by Pk(t)Pl(t) and integrat-
ing by parts with respect to P gives

dCkl

dt
= −

N∑
j=1

Kkj (α)Cjl −
N∑

j=1

Klj (α)Cjk

+ γ 2

(
∂

∂α
α + 1

2

∂2

∂α2

)
Ckl.
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If we now retake the continuum limit a → 0, then we obtain
an FP equation for the equal-time two-point correlations,

C(x,y,α,t) = Eσ [P (x,t)P (y,t)1α(t)=α], (3.8)

given by

∂C

∂t
= − ∂

∂x
(F (x,α)C) − ∂

∂y
(F (y,α)C)

+D
∂2C

∂x2
+ D

∂2C

∂y2
+ γ 2

(
∂

∂α
α + 1

2

∂2

∂α2

)
C. (3.9)

Similarly, the rth moments of �, r > 2, are

C(r)(x1, . . . ,xr ,α,t) ≡ Eσ [P (x1,t) · · ·P (xr,t)1α(t)=α]

and evolve according to an r-dimensional FP equation.
Formally speaking, Eq. (3.7) for the first-order moments

V (x,α,t) is identical in form to the deterministic FP Eq. (2.5)
for the single-particle probability density p(x,α,t). Similarly,
Eq. (3.9) for the second moment C(x,y,α,t) is identical in
form to the FP equation that would be written down for the
joint probability density of two particles with positions x and y

at time t . More generally, C(r) is related to the joint probability
density of r particles. [The latter would correspond to having
r particles in each of the boxes in Fig. 1(a).] However, these
two representations are not equivalent, particularly in the case
of bounded domains [2]. From a physical perspective, there
is a much wider class of boundary conditions that one can
impose on the SPDE (2.8) compared to the SDE (2.1) or its
finite-particle extension (2.7). This reflects the fact that particle
conservation need not hold at the SPDE level. For example,
if X ∈ [0,L], then one could impose an inhomogeneous
boundary condition at x = L, say, of the form (i) P (L,t) = η

or (ii) J (L,t) = η, where

J (x,t) =
[
F (x) + γα(t)b(x) − D

∂

∂x

]
P (x,t). (3.10)

These represent, respectively, maintenance of a bath of
particles or a constant flux at x = L, which does not make
sense at the single-particle level. One of the major benefits
of the discretization scheme used to derive Eq. (3.5) is that
boundary conditions can be absorbed into the discrete operator
Kij (α). Hence, the boundary conditions are maintained when
one takes moments and retakes the continuum limit a → 0.

IV. STEADY-STATE SOLUTIONS
OF MOMENT EQUATIONS

In this section we use a combination of perturbation
theory and Green’s functions to obtain general approximate
expressions for the steady-state solutions of the first-order and
second-order moment Eqs. (3.7) and (3.9), respectively.

A. Perturbation expansion in γ −1

We begin by carrying out a perturbation series expansion
in the small parameter ε = γ −1 for large γ . We use a more
direct method than the use of projection operators in Ref. [9]
and include higher-order terms. Suppose that we rescale time
according to τ = γ 2t and set ε = γ −1. [We nondimensionalize
time by taking the relaxation dynamics of the ODE ẋ = F (x)

to be O(1).] Equation (3.7) for the first-order moments
V (x,α,t) now becomes

∂V

∂τ
= LεV ≡ (L1 + εL2 + ε2L3)V, (4.1)

with the operators Lj given by

L1 = ∂

∂α
α + 1

2

∂2

∂α2
, (4.2a)

L2 = − ∂

∂x
b(x)α, (4.2b)

L3 = − ∂

∂x
F (x) + D

∂2

∂x2
. (4.2c)

In the limit ε → 0, we obtain the steady-state equation
L1V = 0, which has the (normalized solution) V (x,α) =
e−α2

/
√

π . In order to solve the corresponding steady-state
equation LεV = 0 for ε > 0, we will carry out a perturbation
expansion of V in terms of the eigenvalues λ and eigenfunc-
tions φλ of the linear operator L1 for the OU process:

L1φλ(α) = −λφλ(α).

Noting that this eigenvalue equation can be transformed into
a time-independent Schrodinger equation with a harmonic
potential, one obtains a discrete spectrum with λn = n =
0,1,2, . . . and

φn(α) =
√

1

2nn!π
e−α2

Hn(α), (4.3)

where Hn(α) are Hermite polynomials. In particular, the first
few polynomials are

H0(α) = 1, H1(α) = 2α, H2(x) = 4α2 − 2. (4.4)

It is also necessary to determine the eigenfunction ψn of the
adjoint operator L†

1, defined by

L†
1ψn = −λnψn, L†

1 = −α
∂

∂α
+ 1

2

∂2

∂α2
.

It is easy to show that ψn and φn are related according to

φn(α) = ps(α)ψn(α), ps(α) =
√

1

π
e−α2

, (4.5)

and satisfy the biorthogonality relation∫ ∞

−∞
ψn(α)φm(α)dα = δn,m.

In particular, setting n = 0 or n = 1, we have the normalization
conditions∫ ∞

−∞
φm(α)dα = δn,0,

∫ ∞

−∞
αφm(α)dα = 1√

2
δm,1. (4.6)

We now introduce the following perturbation series expan-
sion of the steady-state solution of Eq. (4.1):

V (x,α) = A0(x)φ0(α) +
∑
m

φm(α)
[
εA(1)

m (x)

+ ε2A(2)
m (x) + O(ε3)

]
. (4.7)
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Substituting Eq. (4.7) into Eq. (4.1) and collecting O(ε) terms
gives ∑

m

mA(1)
m (x)φm(α) = L2A0(x)φ0(α). (4.8)

Multiplying Eq. (4.8) by the adjoint ψk(α), integrating with
respect to α and using Eq. (4.2b) yields (k 
= 0)

A
(1)
k (x) = −R0k

k

∂

∂x
b(x)A0(x). (4.9)

Note that we have used the completeness of the eigenfunctions
φn(x) to write

αφn(α) =
∑

l

Rnlφl(α). (4.10)

Proceeding to O(ε2) we obtain the equation

∑
m

mφm(α)A(2)
m (x) = L2

(∑
m

φm(α)A(1)
m (x)

)
+φ0(α)L3A0(x). (4.11)

Again taking the inner product with respect to φk(α), and using
Eqs. (4.2b), (4.2c), and the expansion (4.10), we have

− kA
(2)
k (x) =

∑
m

Rmk

∂

∂x
b(x)A(1)

m (x) − δk,0L3A0(x). (4.12)

Substituting for A(1)
m shows that for k 
= 0 we have

A
(2)
k (x) = L(2)

k A0(x)

=
⎡⎣∑

m
=0

R0mRmk

km

∂

∂x
b(x)

∂

∂x
b(x)

⎤⎦A0(x). (4.13)

Similarly, setting k = 0 in Eq. (4.12) yields a differential
equation for A0(x):

L3A0(x) =
∑
m
=0

R0mRm0

m

∂

∂x
b(x)

∂

∂x
b(x)A0(x). (4.14)

In the case of an OU process, one can use standard recursion
relations for Hermite polynomials to show that

Rnm = Rmn = δn,m−1

√
n + 1

2
+ δn,m+1

√
n

2
, (4.15)

and
∑

m
=0 R0mRm0/m = 1/2. Comparing Eq. (4.14) with the
Stratonovich FP Eq. (2.4) we deduce that A0(x) = V∞(x),
where V∞(x) is the steady-state solution of the latter. Finally,
combining Eqs. (4.7), (4.9), and (4.13), we obtain the following
approximation of the steady-state solution of Eq. (4.1):

V (x,α) =
{
φ0(α) − ε

∑
n>0

φn(α)

[
R0n

n

∂

∂x
b(x)

− ε
∑
m
=n

R0mRmn

nm

∂

∂x
b(x)

∂

∂x
b(x)

]}
V∞(x). (4.16)

Multiplying Eq. (4.16) by αl , l = 0,1, integrating with respect
to α, and using Eq. (4.6) gives∫ ∞

−∞
V (x,α)dα = V∞(x),∫ ∞

−∞
αV (x,α)dα = −1

2

∂

∂x
b(x)V∞(x), (4.17)

which hold for all γ . Incidentally, these results provide an
alternative derivation of the (steady-state) Stratonovich FP
Eq. (2.4), based on integrating (2.4) with respect to α. Finally,
using Eqs. (4.4) and (4.15),

V (x,α) = ps(α)

{
1 − εα

∂

∂x
b(x)

+ ε2

[
2α2 − 1

4

∂

∂x
b(x)

∂

∂x
b(x)

]}
V∞(x). (4.18)

It is straightforward to extend the above perturbation
analysis to steady-state solution of Eq. (3.9) and we find that

C(x,y,α) = ps(α)

{
1 − εα

[
∂

∂x
b(x) + ∂

∂y
b(y)

]
+ ε2 2α2 − 1

4

[
∂

∂x
b(x) + ∂

∂y
b(y)

]2}
C∞(x,y),

(4.19)

where

C∞(x,y) =
∫ ∞

−∞
C(x,y,α)dα

is the steady-state solution of the two-dimensional
Stratonovich equation

∂C∞
∂t

=
[
− ∂

∂x
F (x) − ∂

∂y
F (y) + D

∂2

∂x2
+ D

∂2

∂y2

]
C∞

+ 1

2

∂

∂x
b(x)

∂

∂x
b(x)C∞ + 1

2

∂

∂y
b(y)

∂

∂y
b(y)C∞

+ ∂

∂y
b(y)

∂

∂x
b(x)C∞. (4.20)

[The latter could also be derived by extending the projection
method of Gardiner [9] to the second-order FP Eq. (3.9).]
The mixed-derivative terms in Eqs. (4.19) and (4.20) reflect
the emergence of statistical correlations due to the randomly
switching environment: it prevents us from decomposing the
solution into the product form C∞(x,y,t) = V∞(x,t)V∞(y,t)
where V is the solution to Eq. (3.7).

B. Eigenfunction expansion for C∞

So far we have expressed the steady-state solutions of the
first-order and second-order moment equations in terms of a
perturbation expansion with respect to γ −1, which takes the
form of a linear operator acting on the steady-state solution
(V∞ or C∞) of the corresponding Stratonovich FP equation
obtained in the limit γ → ∞. When dealing with second-
order (and higher-order) moment equations, one has to solve
a multivariate FP equation, which generally does not have an
explicit solution. However, in certain limits, it is possible to
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proceed using another form of eigenfunction expansion. In
order to illustrate this, consider the stochastic FP Eq. (2.8) on
the bounded domain [0,L] with boundary conditions

P (0,t) = 0, P (L,t) = η,

and additive environmental noise, b(x) = √
2σ . Set Deff =

D + σ . We proceed by finding the steady-state solutions of
Eqs. (2.4) and (4.20) for p∞ = V∞ and C∞. First, Eq. (2.4)
becomes

0 = − d

dx
F (x)V∞(x) + Deff

d2

dx2
V∞(x), (4.21)

with V∞(0) = 0 and V∞(L) = η. Integrating once yields

dV∞
dx

− F (x)

Deff
V∞ = J0

Deff
,

where the integration constant J0 is the flux flowing from the
right to the left boundary. Setting F (x) = −U ′(x), integrating
again, and using the boundary conditions shows that

V∞(x) = η exp

[−[U (x) − U (L)]

Deff

] ∫ x

0 eU (y)/Deff dy∫ L

0 eU (y)/Deff dy
. (4.22)

Next, Eq. (4.20) becomes

0 = − ∂

∂x
F (x)C∞ − ∂

∂y
F (y)C∞ + Deff

∂2C∞
∂x2

+Deff
∂2C∞
∂y2

+ 2σ
∂2C∞
∂y∂x

, (4.23)

with the boundary conditions C∞(x,0) = C∞(0,y) = 0 and
C∞(x,L) = ηV∞(x), C∞(L,y) = ηV∞(y). Unfortunately, the
give boundary value problem cannot be solved explicitly. (For
an example that can be solved, see Sec. V.) Therefore, we will
proceed using a perturbation expansion in the noise term σ .
That is, we set

C∞(x,y) = V∞(x)V∞(y) + σφ(x,y) + O(σ 2)

and substitute into (4.23). Collecting O(σ ) terms yields

0 = − ∂

∂x
F (x)φ − ∂

∂y
F (y)φ + Deff

∂2φ

∂x2

+Deff
∂2φ

∂y2
+ 2

∂V∞(y)

∂y

∂V∞(x)

∂x
, (4.24)

with boundary conditions φ(0,y) = φ(x,0) = φ(L,y) =
φ(x,L) = 0. Equation (4.24) can be solved using Green’s
functions.

Let

Lx = ∂

∂x
F (x) + Deff

∂2

∂x2

and consider the following eigenvalue equation on [0,L]:

Lx�n(x) = λn�n(x),

for integers n with the boundary conditions �(x) = 0 = �(L).
Clearly, λn 
= 0 for all n. We can now rewrite Eq. (4.24) as

Lxφ(x,y) + Lyφ(x,y) = �(x,y) ≡ −2
∂V∞(y)

∂y

∂V∞(x)

∂x
.

Next, consider the eigenvalue equation

Lxφ(x,y) + Lyφ(x,y) = �φ(x,y).

This can be solved using separation of variables: φ(x,y) =
A(x)B(y) such that

LxA(x) = CA(x), LyB(y) = (C − �)B(y),

for some constant C. It follows that A(x) = �n(x) and B(y) =
�m(y) for integers m,n with C = λn and C − � = λm, that is,
� = λm + λn. Assuming that the eigenfunctions �n(x) form
a complete biorthonormal set on [0,L], we can write down
an eigenfunction expansion for the Green’s function of the
operator Lx + Ly :

(Lx + Ly)G(x,y|x0,y0) = δ(x − x0)δ(y − y0),

with G vanishing at x = 0,L and y = 0,L. That is,

G(x,y|x0,y0) =
∑
n,m

�n(x)�n(x0)�m(y)�m(y0)

λn + λn

. (4.25)

Given the Green’s function G, the O(σ ) contribution to the
second moment is

φ(x,y) =
∫ L

0

∫ L

0
G(x,y|x0,y0)�(x0,y0)dx0dy0. (4.26)

Combining our various results we find that to O(σ )

C∞(x,y) = V∞(x)V∞(y) + σ
∑
n,m

CnCm

�n(x)�n(y)

λn + λn

,

(4.27)

where

Cn =
[∫ L

0
�n(z)

∂V∞(z)

∂z
dz

]
. (4.28)

V. STOCHASTIC SYNCHRONIZATION OF AN ENSEMBLE
OF POPULATION OSCILLATORS

So far we have considered one-dimensional particle dy-
namics, X(t) ∈ R. However, all of the analysis carries over to
higher spatial dimensions where more complicated dynamics
can occur in the deterministic limit, in particular limit cycle
oscillations. The d-dimensional version of Eq. (2.7) is

dX
μ

j = Fμ(Xj )dt + γ bμ(Xj )α(t)dt +
√

2DdW
μ

j (t) (5.1)

for j = 1, . . . ,N and μ = 1, . . . ,d, where μ labels the
components of the vector Xj ∈ Rd for the j th particle. We
associate an independent set of Wiener processes W

μ

j ,μ =
1, . . . ,d with each particle (independent noise) but take the
extrinsic environmental noise to be given by a common OU
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process α(t) evolving according to Eq. (2.2). Hence,〈
dW

μ

k (t)dWν
l (t ′)

〉 = δk,lδμ,νδ(t − t ′)dt, (5.2)〈
dW

μ

k (t)dŴ (t)
〉 = 0. (5.3)

SDEs of the form (5.1) have been the starting point for a
number of recent studies of noise-induced synchronization of
uncoupled limit cycle oscillators [11–18]. Here Xj represents
a set of state variables for a single oscillator, which could be
the concentrations of reacting chemical species in the case
of a chemical oscillator or voltage and ion-channel gating
variables in the case of neural oscillators. It is assumed that
the deterministic ODE, ẋ = F(x), supports a stable limit cycle.
Most previous studies of noise-induced synchronization have
taken the white-noise limit γ → ∞ and have carried out a
stochastic phase reduction of the resulting SDEs for finite N ,
taking care of the subtle features of stochastic calculus. One
exception is Ref. [15], where the authors carry out a careful
phase reduction of a single-limit-cycle oscillator with colored
external noise, which takes into account the different time
scales of the system. Here we will also keep γ finite and
explore the issue of noise-induced synchronization from the
perspective of stochastic FP equations.

A. Stochastic phase reduction

Introduce the phase variable θ ∈ (−π,π ] such that the
dynamics of an individual limit cycle oscillator (in the absence
of noise) reduces to the simple phase equation θ̇ = ω, where
ω = 2π/T is the natural frequency of the oscillator and denote
the limit cycle solution by x = x∗[θ (t)]. The phase reduction
method [19,20] exploits the observation that the notion of
phase can be extended into a neighborhood M ⊂ Rd of each
deterministic limit cycle, that is, there exists an isochronal
mapping � : M → [−π,π ) with θ = �(x). This allows us
to define a stochastic phase variable according to �j (t) =
�j (t)) ∈ [−π,π ) with Xj (t) evolving according to Eq. (5.1).
Since the extrinsic noise is colored and the intrinsic noise is
additive, we do not have to worry about Ito vs. Stratonovich in
carrying out the phase reduction. However, it is necessary to
take the noise terms to be sufficiently weak so the probability of
large deviations from the attracting limit cycle can be ignored.
We thus obtain the stochastic phase equations [11,13,15]:

d�j = ω + ε

d∑
μ=1

Zμ(�j )
[
γ bμ(�j )α(t)dt +

√
2DdW

μ

j

]
.

(5.4)

Here Zμ(θ ) is the μth component of the infinitesimal phase
resetting curve (PRC) defined as

Zμ(θ ) = ∂�(x)

∂xμ

∣∣∣∣
x=x∗(θ)

(5.5)

with
∑d

μ=1 Zμ(θ )Fμs[x∗(θ )] = ω. We have also scaled the
intrinsic and extrinsic noise terms by a small factor ε to ensure
that we are operating in the weak-noise regime. (This factor
is distinct from ε = γ −1.) All the terms multiplying Zk(θ )
are evaluated on the limit cycle. Note that Eq. (5.4) is valid
provided that the rate of relaxation γp to the limit cycle is must
faster than the relaxation rate γ of the colored noise [15]. Now

introduce the joint probability density p(θ ,α,t) according to

p(θ ,α,t)dθdα = P[θ <�(t)<θ + dθ , α<α(t) < α + dα].

This satisfies the multivariate FP equation of the form

∂p(θ ,α,t)

∂t
= −

N∑
j=1

∂

∂θj

[F(θj ,α)p(θ ,α,t)]

+ ε2D

N∑
j=1

∂2p(θ,α,t)

∂θ2
j

+ γ 2

(
∂

∂α
α + 1

2

∂2

∂α2

)
p(θ,α,t), (5.6)

where
F(θ,α) = ω + γ εB(θ )α (5.7)

and

B(θ ) =
d∑

μ=1

Zμ(θ )bμ(θ ). (5.8)

Applying the projection method of Gardiner [9], we can also
derive a Stratonovich FP equation for

ρ(θ ,t) = lim
γ→∞p(θ ,α,t)

given by

∂ρ(θ ,t)

∂t
= −

N∑
j=1

∂

∂θj

[ωρ(θ ,t)] + ε2D

N∑
j=1

∂2p(θ,α,t)

∂θ2
j

+ ε2

2

N∑
i,j=1

∂

∂θi

B(θi)
∂

∂θj

B(θj )ρ(θ ,t). (5.9)

One could also derive higher-order corrections to Eq. (5.9)
by carrying out a perturbation-expansion in γ −1 along the
lines highlighted in Sec. IV. Note that ρ(θ ,t) satisfies periodic
boundary conditions on the N -torus [−π,π ]N .

B. Phase averaging

Having obtained the FP Eq. (5.9), we can now carry out
the averaging procedure of Nakao et al. [13]. The basic idea
is to introduce the slow phase variables ψ = (ψ1, . . . ,ψN )
according to θj = ωt + ψj and set Q(ψ,t) = ρ(ωt1 + ψ,t)
with 1 = (1,1, . . . ,1). For sufficiently weak noise (small bμ

and D), Q is a slowly varying function of time so we can
average Eq. (5.6) for Q over one cycle of length T = 2π/ω.
[One cannot apply averaging to Eq. (5.6), due to the γ 2

term.] In order to carry out the averaging procedure, we first
convert (3.9) into the Ito form

∂ρ(θ,t)

∂t
= −

N∑
j=1

∂

∂θj

[ω + ε2B ′(θj )]ρ(θ,t)

+ ε2D

N∑
j=1

∂2ρ(θ ,t)

∂θ2
j

+ ε2

2

N∑
i,j=1

∂

∂θi

∂

∂θj

B(θi)B(θj )ρ(θ ,t). (5.10)

042129-7



PAUL C. BRESSLOFF PHYSICAL REVIEW E 94, 042129 (2016)

The averaged FP equation for Q is then

∂Q(ψ,t)

∂t
=

N∑
i,j=1

∂2

∂ψi∂ψj

[D(ψi,ψj )Q(ψ,t)], (5.11)

where we have absorbed the factor ε2 into t and

D(ψi,ψj ) = g(ψi − ψj ) + Dδi,j (5.12)

with

g(ψ) = 1

4π

∫ π

−π

B(θ ′)B(θ ′ + ψ)dθ ′. (5.13)

Following Nakao et al. [13] and Ly and Ermentrout [16], one
can now investigate the role of common environmental noise
on the synchronization of a pair of oscillators. Setting N = 2
in Eq. (5.11) gives

∂Q

∂t
= (g(0) + D)

[(
∂

∂ψ1

)2

+
(

∂

∂ψ2

)2]
Q

+ ∂2

∂ψ1∂ψ2
[g(ψ1 − ψ2)Q].

Performing the change of variables

ψ = (ψ1 + ψ2)/2, φ = ψ1 − ψ2

and writing Q(ψ1,ψ2,t) = �(ψ,t)�(φ,t), we obtain the pair
of PDEs

∂�

∂t
= 1

2
[g(0) + g(φ) + D]

∂2�

∂ψ2

and

∂�

∂t
= 2

∂2

∂φ2
[g(0) − g(φ) + D]�.

These have the steady-state solution [13]

�s(ψ) = 1

2π
, �s(φ) = �0

[g(0) − g(φ)] + D
, (5.14)

where �0 is a normalization constant. A number of important
results follow from (5.14). First, in the absence of a common
extrinsic noise source (g ≡ 0) and D > 0, �0(φ) is a uniform
distribution, which means that the oscillators are completely
desynchronized. On the other hand, if D = 0 (no intrinsic
noise), then the distribution �0(φ) diverges at θ = 0 while
keeping positive since it can be shown that g(0) � g(θ ) [13].
Hence, the phase difference between any pair of oscillators
accumulates at zero, resulting in complete noise-induced
synchronization.

C. SPDE perspective

The analysis carried out in Sec. V A and V B was from
the particle perspective, in which deterministic FP equations
were derived for the joint probability densities ofN uncoupled
oscillators evolving in the same environment. Thus Eqs. (5.6)
and (5.9) for N = 2 are the analogs of the second-order
moment Eqs. (3.9) and (4.20). An additional feature of the
phase oscillator model is that under an appropriate separation
of time scales, one can use phase averaging to solve the
associated multivariate FP equation. However, one limitation

of the above analysis is that noise-induced synchronization
was established after averaging over multiple realizations
of the environmental noise. A stronger result is to show
that a population of oscillators synchronizes within a single
realization of the random environment. This can be achieved
using the population or SPDE perspective.

Consider the phase-reduced SDE (5.4) for a given re-
alization σ (t) = {α(τ ),0 � τ < t} of the stochastic process
α(t). Suppose that the initial phase of the oscillators, �j (0),
are randomly generated from a density p0(θ ). Taking the
thermodynamic limit, the resulting population density P (θ,t)
evolves according to the stochastic FP equation

∂P (θ,t)

∂t
= − ∂

∂θ
[F(θ,α(t))P (θ,t)] + ε2D

∂2P (θ,t)

∂θ2
(5.15)

with F(θ,α) given by Eq. (5.7), and P (θ,t) represents the
density of oscillators that have the phase θ at time t . As in the
1D case, we have the mapping

p(θ1, . . . ,θr ,α,t) → Eσ [P (θ1) · · · P (θr )1α(t)=α]. (5.16)

That is, the rth moments of the distribution of P satisfy the
same FP equation as the rth order joint probability density p.

Let us now focus on the special case of zero intrinsic
noise (D = 0). In that case, the phase of each oscillator in
the population evolves according to the nonautonomous ODE,

dθ

dt
= ω + εB(θ )α(t). (5.17)

This has the formal solution

θ (t,q) = ωt + ε

∫ t

0
B(θ (s,q))α(s)ds + q, (5.18)

with θ (0,q) = q. Moreover,

P (θ,t) =
∫ 2π

0
δ[θ − θ (t,q)]p0(q)dq, (5.19)

where p0(q) is the initial distribution of phases. Synchro-
nization can be established if the solution θ (t,q) becomes
independent of the initial phase q in the large t limit. We will
proceed by carrying out a perturbation expansion in ε along
the lines of Ref. [17]. That is, we substitute the approximation

θ (s,q) ≈ ωs + ε

∫ t

0
B(ωs + q)α(s)ds + q

into the integral on the right-hand side and Taylor expand B

to obtain the O(ε2) solution

θ (t,q) = ωt + q + ε

∫ t

0
B(ωs + q)α(s)ds

+ ε2
∫ t

0
B ′(ωs + q)

∫ s

0
B(ωs ′ + q)α(s ′)α(s)ds ′ds.

(5.20)

Now suppose that γ � ω/2π so the colored noise α(t) varies
much more rapidly than the phase ωt . We can then time average
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the noise so

θ (t,q) ≈ ωt + q + ε

∫ t

0
B(ωs + q)〈α(s)〉ds

+ ε2
∫ t

0
B ′(ωs + q)

∫ s

0
B(ωs ′ + q)〈α(s ′)α(s)〉ds ′ds.

(5.21)

Since we have a stationary OU process, which is ergodic,
we can replace the time averages by ensemble averages with
〈α(s)〉 = 0 and

〈α(s)α(s ′)〉 = C(s − s ′) = 1

2γ
e−γ |s−s ′ |.

Shifting s and s ′, we thus obtain the approximation

θ (t,q) = ωt + q

+ ε2
∫ t+q/ω

q/ω

B ′(ωs)
∫ s+q/ω

q/ω

B(ωs ′)C(s − s ′)ds ′ds.

(5.22)

Note that θ (t,q) is no longer dependent on the particular
realization σ . Finally, dividing through by t and taking the
large-t limit, we see that the dependence on the initial phase
disappears such that θ (t,q) → �(t), where

�(t) = (ω + ε2�)t, (5.23)

with

� = lim
t→∞

1

t

∫ t

0
B ′(ωs)

∫ s

0
B(ωs ′)C(s − s ′)ds ′ds. (5.24)

It follows from Eq. (5.19) that

P (θ,t) → δ[θ − �(t)],

which is independent of the particular realization of the noise.
We conclude that an ensemble of uncoupled identical phase
oscillators evolving in the same random environment driven by
fast colored noise synchronize their activity, and the collective
oscillation has an O(ε2) correction to the natural frequency
ω. We can also take the white-noise limit in Eq. (5.24) with
C(s − s ′) → δ(s − s ′) to obtain

� = 1

T

∫ T

0
B ′(ωs)B(ωs)ds = 0. (5.25)

We have exploited the fact that B(θ ) is 2π periodic. For an
explicit numerical example of noise-induced synchronization
under a single realization of a common noisy environment, see
Fig. 1 of Ref. [11].

Although the above results are not new, our derivation in
terms of independence of initial conditions and our explicit
emphasis of the SPDE framework is distinct from previous
studies [11–18]. Several of the latter establish synchrony
by calculating the Lyapunov exponent of nearby trajectories
for oscillators driven by the same environmental noise and
showing that the Lyapunov exponent is always negative.
[The expression for the Lyapunov exponent is given by the
integrals in Eq. (5.24) or (5.25) after replacing B ′ by B ′′.]
In summary, the major difference between the particle and
population perspectives within the context of noise-induced
synchronization is that the latter establishes a stronger form

of synchrony based on a single realization of the random
environmental input. As noted in Sec. III, another difference
between the particle and population or SPDE formulations is
that the latter can incorporate a broader range of boundary
conditions. For example, one could consider a more general
class of model, in which the number of oscillators is not
conserved.

VI. DISCUSSION

In this paper we developed a general framework for
studying SDEs in random environments, based on the idea
that one can separate out the realizations (ensemble averag-
ing) of intrinsic and environmental noise, see Fig. 1. The
standard approach, which we call the particle perspective,
is to simultaneously consider realizations of both sources of
noise, which results in a deterministic FP equation. Here we
introduced the so-called population or SPDE perspective, in
which we consider multiple realizations of the intrinsic noise
for a single realization of the environmental noise, which leads
to a stochastic FP equation. A relationship between the particle
and population perspectives was obtained by deriving moment
equations for the distribution of the resulting stochastic
population density by averaging over multiple realizations
of the environment. We gave two examples where the two
formulations are not equivalent. The first involved boundary
value problems that do not conserve particle number, and the
other concerned establishing noise-induced synchronization
of oscillators without averaging with respect to realizations of
the environment.

As we indicated in the Introduction, one could apply the
same approach to systems where either or both the intrinsic
and environmental noise are discrete rather than continuous
stochastic processes. One example where both processes are
discrete is a population of random walkers moving on a
stochastically gated lattice, which has applications to the
diffusion of particles in the plasma membrane of cells [8].
An example of a hybrid system with continuous intrinsic
noise and discrete environmental noise is a population of
stochastic gene networks in which the switching on and
off of a promoter site is driven by discrete environmental
noise [21].

In this paper, the particles were taken to be noninteracting
so any statistical correlations arose from the fact that they
were driven by a common random environment. Another
mechanism for introducing correlations would be to include
physical coupling between a set of N particles. One could
apply our methods if each “particle” was identified with a
single interacting population so x ∈ RN and we considered
an ensemble of independent populations driven by a common
environmental input. We could then analyze interpopulation
correlations. However, most studies of interacting particle
systems focus on intrapopulation correlations in the absence of
a common environmental drive. Examples include interacting
Brownian particles with long-range interactions [22,23] and
the Kuramoto model [19,24–26]. In the thermodynamic limit
N → ∞ one can derive a mean-field model that takes the form
of a nonlinear FP equation; for finite N , fluctuations about the
mean-field solution can be modeled in terms of a stochastic
FP equation. Note, however, there has been some work on
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noise-induced synchronization of coupled phase oscillators
with environmental noise, based on solutions of deterministic
FP equations [16].

ACKNOWLEDGMENT

P.C.B. was supported by the National Science Foundation
(Grant No. DMS-1613048).

[1] S. D. Lawley, J. C. Mattingly, and M. C. Reed, SIAM J. Math.
Anal. 47, 3035 (2015).

[2] P. C. Bressloff and S. D. Lawley, J. Phys. A 48, 105001 (2015).
[3] S. D. Lawley and J. P. Keener, SIAM J. Appl. Dyn. Syst. 14,

1845 (2015).
[4] P. C. Bressloff and S. D. Lawley, Phys. Rev. E 92, 062117

(2015).
[5] S. D. Lawley, J. Best, and M. C. Reed, Dis. Cont. Dyn. Syst. B

21, 2255 (2016).
[6] P. C. Bressloff and S. D. Lawley, J. Phys. A 49, 245601 (2016).
[7] P. C. Bressloff, SIAM J. Appl. Math. 76, 1658 (2016).
[8] E. Levien and P. C. Bressloff (unpublished).
[9] C. W. Gardiner, Handbook of Stochastic Methods, 4th ed.

(Springer, Berlin, 2009).
[10] J. M. Newby, P. C. Bressloff, and J. P. Keener, Phys. Rev. Lett.

111, 128101 (2013).
[11] J. N. Teramae and D. Tanaka, Phys. Rev. Lett. 93, 204103 (2004).
[12] D. S. Goldobin and A. Pikovsky, Phys. Rev. E 71, 045201

(2005).
[13] H. Nakao, K. Arai, and Y. Kawamura, Phys. Rev. Lett. 98,

184101 (2007).

[14] K. Yoshimura and K. Arai, Phys. Rev. Lett. 101, 154101 (2008).
[15] J. N. Teramae, H. Nakao, and G. B. Ermentrout, Phys. Rev. Lett.

102, 194102 (2009).
[16] C. Ly and G. B. Ermentrout, J. Comput. Neurosci. 26, 425

(2009).
[17] G. B. Ermentrout, in Stochastic Methods in Neuroscience, edited

by C. R. Laing and G. J. Lord (Oxford University Press, Oxford,
2009).

[18] P. C. Bressloff and Y. M. Lai, J. Math. Neurosci. 1, 2 (2011).
[19] Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence

(Dover, Amsterdam, 1984).
[20] G. B. Ermentrout and N. Kopell, J. Math. Biol. 29, 195

(1991).
[21] P. C. Bressloff, Stochastic Processes in Cell Biology (Springer,

Berlin, 2014).
[22] P. H. Chavanis, J. Stat. Mech. (2010) P05019.
[23] P. H. Chavanis, Eur. Phys. J. B 87, 1 (2014).
[24] S. H. Strogatz, Physica D 143, 1 (2000).
[25] E. J. Hildebrand, M. A. Buice, and C. C. Chow, Phys. Rev. Lett.

98, 054101 (2007).
[26] M. A. Buice and C. C. Chow, Phys. Rev. E 76, 031118 (2007).

042129-10

https://doi.org/10.1137/140976716
https://doi.org/10.1137/140976716
https://doi.org/10.1137/140976716
https://doi.org/10.1137/140976716
https://doi.org/10.1088/1751-8113/48/10/105001
https://doi.org/10.1088/1751-8113/48/10/105001
https://doi.org/10.1088/1751-8113/48/10/105001
https://doi.org/10.1088/1751-8113/48/10/105001
https://doi.org/10.1137/15M1015182
https://doi.org/10.1137/15M1015182
https://doi.org/10.1137/15M1015182
https://doi.org/10.1137/15M1015182
https://doi.org/10.1103/PhysRevE.92.062117
https://doi.org/10.1103/PhysRevE.92.062117
https://doi.org/10.1103/PhysRevE.92.062117
https://doi.org/10.1103/PhysRevE.92.062117
https://doi.org/10.3934/dcdsb.2016046
https://doi.org/10.3934/dcdsb.2016046
https://doi.org/10.3934/dcdsb.2016046
https://doi.org/10.3934/dcdsb.2016046
https://doi.org/10.1088/1751-8113/49/24/245601
https://doi.org/10.1088/1751-8113/49/24/245601
https://doi.org/10.1088/1751-8113/49/24/245601
https://doi.org/10.1088/1751-8113/49/24/245601
https://doi.org/10.1137/15M1045818
https://doi.org/10.1137/15M1045818
https://doi.org/10.1137/15M1045818
https://doi.org/10.1137/15M1045818
https://doi.org/10.1103/PhysRevLett.111.128101
https://doi.org/10.1103/PhysRevLett.111.128101
https://doi.org/10.1103/PhysRevLett.111.128101
https://doi.org/10.1103/PhysRevLett.111.128101
https://doi.org/10.1103/PhysRevLett.93.204103
https://doi.org/10.1103/PhysRevLett.93.204103
https://doi.org/10.1103/PhysRevLett.93.204103
https://doi.org/10.1103/PhysRevLett.93.204103
https://doi.org/10.1103/PhysRevE.71.045201
https://doi.org/10.1103/PhysRevE.71.045201
https://doi.org/10.1103/PhysRevE.71.045201
https://doi.org/10.1103/PhysRevE.71.045201
https://doi.org/10.1103/PhysRevLett.98.184101
https://doi.org/10.1103/PhysRevLett.98.184101
https://doi.org/10.1103/PhysRevLett.98.184101
https://doi.org/10.1103/PhysRevLett.98.184101
https://doi.org/10.1103/PhysRevLett.101.154101
https://doi.org/10.1103/PhysRevLett.101.154101
https://doi.org/10.1103/PhysRevLett.101.154101
https://doi.org/10.1103/PhysRevLett.101.154101
https://doi.org/10.1103/PhysRevLett.102.194102
https://doi.org/10.1103/PhysRevLett.102.194102
https://doi.org/10.1103/PhysRevLett.102.194102
https://doi.org/10.1103/PhysRevLett.102.194102
https://doi.org/10.1007/s10827-008-0120-8
https://doi.org/10.1007/s10827-008-0120-8
https://doi.org/10.1007/s10827-008-0120-8
https://doi.org/10.1007/s10827-008-0120-8
https://doi.org/10.1186/2190-8567-1-2
https://doi.org/10.1186/2190-8567-1-2
https://doi.org/10.1186/2190-8567-1-2
https://doi.org/10.1186/2190-8567-1-2
https://doi.org/10.1007/BF00160535
https://doi.org/10.1007/BF00160535
https://doi.org/10.1007/BF00160535
https://doi.org/10.1007/BF00160535
https://doi.org/10.1088/1742-5468/2010/05/P05019
https://doi.org/10.1088/1742-5468/2010/05/P05019
https://doi.org/10.1088/1742-5468/2010/05/P05019
https://doi.org/10.1140/epjb/e2013-40587-y
https://doi.org/10.1140/epjb/e2013-40587-y
https://doi.org/10.1140/epjb/e2013-40587-y
https://doi.org/10.1140/epjb/e2013-40587-y
https://doi.org/10.1016/S0167-2789(00)00094-4
https://doi.org/10.1016/S0167-2789(00)00094-4
https://doi.org/10.1016/S0167-2789(00)00094-4
https://doi.org/10.1016/S0167-2789(00)00094-4
https://doi.org/10.1103/PhysRevLett.98.054101
https://doi.org/10.1103/PhysRevLett.98.054101
https://doi.org/10.1103/PhysRevLett.98.054101
https://doi.org/10.1103/PhysRevLett.98.054101
https://doi.org/10.1103/PhysRevE.76.031118
https://doi.org/10.1103/PhysRevE.76.031118
https://doi.org/10.1103/PhysRevE.76.031118
https://doi.org/10.1103/PhysRevE.76.031118



