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a b s t r a c t

We extend recent work on the analysis of synchronization in a pair of biochemical oscillators coupled
by linear bulk diffusion, in order to explore the effects of discrete delays. More specifically, we consider
two well-mixed, identical compartments located at either end of a bounded, one-dimensional domain.
The compartments can exchange signaling molecules with the bulk domain, within which the signaling
molecules undergo diffusion. The concentration of signaling molecules in each compartment is modeled
by a delay differential equation (DDE), while the concentration in the bulk medium is modeled by a
partial differential equation (PDE) for diffusion. Coupling in the resulting PDE–DDE system is via flux
terms at the boundaries. Using linear stability analysis, numerical simulations and bifurcation analysis,
we investigate the effect of diffusion on the onset of a supercritical Hopf bifurcation. The direction of
the Hopf bifurcation is determined by numerical simulations and a winding number argument. Near a
Hopf bifurcation point, we find that there are oscillations with two possible modes: in-phase and anti-
phase. Moreover, the critical delay for oscillations to occur increases with the diffusion coefficient. Our
numerical results suggest that the selection of the in-phase or anti-phase oscillation is sensitive to the
diffusion coefficient, time delay and coupling strength. For slow diffusion and weak coupling both modes
can coexist, while for fast diffusion and strong coupling, only one of the modes is dominant, depending
on the explicit choice of DDE.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

Recently, a class of compartmental model of synchronized
biochemical oscillators coupled by bulk diffusion has been
analyzed by Gou et al. [1–4] and Sancho et al. [5]. Specifically,
the models in [1–4] consider two or more well mixed identical
compartments and a bulk medium between the compartments
where signaling molecules undergo diffusion. The concentration
of signaling molecules within each compartment is modeled by a
system of nonlinear ordinary differential equations (ODEs) while
the concentration in the bulk medium is modeled by a partial
differential equation (PDE) for diffusion and degradation. Gou
et al. assume that each isolated compartment is a conditional
oscillator. That is, in isolation a compartment’s dynamics is
at a stable fixed point, but can exhibit sustained oscillations
in a different parameter regime. Each isolated compartment is
modeled in terms of a planar dynamical system without delays.
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Using linear stability analysis, the authors showed that diffusive
coupling can induce in-phase or anti-phase oscillations for a pair
of active compartments. One application of this type of PDE–ODE
model is to intercellular signaling mechanisms such as quorum
sensing, where each compartment is a microbial cell and the
bulk is the extracellular medium between cells [6–11]. Quorum
sensing involves the production and extracellular secretion of
certain signaling molecules called autoinducers. Each cell also has
receptors that can specifically detect the signaling molecule via
ligand–receptor binding, which then activates transcription of
certain genes, including those for inducer synthesis. However,
since there is a low likelihood of an individual bacterium detecting
its own secreted inducer, the cell must encounter signaling
molecules secreted by other cells in its environment in order
for gene transcription to be activated. When the cell density is
low, diffusion reduces the concentration of the inducer in the
surrounding medium to almost zero, resulting in small amounts
of inducer being produced. On the other hand, as the population
grows, the concentration of the inducer passes a threshold,
causing more inducer to be synthesized. This generates a positive
feedback loop that fully activates the receptor, and induces the up-
regulation of other specific genes. Hence, all of the cells initiate
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transcription at approximately the same time, resulting in some
form of coordinated behavior such as synchronized oscillations.

PDE–ODE models can also be applied at the single cell
level [12], with each compartment a dynamically activemembrane
and the bulk domain corresponding to the cytoplasm. In many
cases, a complicated multi-step chemical reaction within the
membrane can be reduced to a simpler single-step model with
discrete delays, see Refs. [13,14]. This motivates the current
study, namely, to investigate the effects of bulk diffusive coupling
on the synchronization of a pair of biochemical compartments
evolving according to a delay-differential equation (DDE) rather
than a planar ODE. For concreteness, we focus on a pair of
delayed logistic equations coupled by bulk diffusion, but establish
that similar results hold for another classical DDE, namely,
the Mackey–Glass equation [15]. Although the delayed logistic
equation has been well studied (see [16–20]), there has been
relatively littlework on the interaction of time delays and diffusion
under the framework of PDE–DDE models. One notable exception
concerns a PDE–DDE model of genetic control [21–23]. These
authors model the concentration of mRNA and a repressor protein
in two compartments: a well-mixed compartment (the nucleus)
where mRNA is produced and the cell cytoplasmwhere ribosomes
are randomly dispersed and translation occurs. In this paper, we
follow the PDE–ODE framework of Gou et al. [1–4] by considering
diffusive coupling between two well mixed compartments whose
intrinsic reaction dynamics includes a time delay. In particular,
we explore how diffusion affects the critical time delay for a
Hopf bifurcation and the nature of oscillatory solutions in the
parameter region above the Hopf bifurcation point. In contrast to
a single, well-mixed compartment, one has to distinguish between
in-phase and anti-phase oscillatory modes along the lines of Gou
et al. [1–3]. Note that one other major difference between the
PDE–ODE models of Gou et al. and our PDE–DDE model is that
we do not include a degradation term within the bulk diffusion
equation. This is a reasonable approximation if the degradation
time is much longer than the typical time delay. Moreover, our
main interest in this paper is how diffusion affects oscillations that
already exist in the absence of diffusion, rather than exploring
diffusion-induced oscillations; the latter appear to require non-
zero degradation rates [1–3]. Amore pragmatic reason for ignoring
degradation is that the introduction of a delay introduces another
time-scale into the system, and we want to restrict the number of
parameters that we vary.

The paper is organized as follows. In Section 2, we introduce
the one-dimensional PDE–DDE model for the delayed logistic
equation. We then use linear stability analysis to derive a
characteristic equation that depends nonlinearly on the associated
eigenvalue. We use the characteristic equation to derive necessary
conditions for a Hopf bifurcation. We then numerically calculate
the critical time delay as a function of various model parameters,
including the time delay, the bulk diffusivity and the strength
of diffusive coupling at the boundaries. We plot Hopf bifurcation
curves as a function of these different parameters, and then use
numerical simulations to explore the switching between in-phase
and anti-phase oscillationswith changes in parameters (Section 3).
We also use the bifurcation tool DDE-BIFTOOL [24] to plot the
amplitude of the periodic solutions. One limitation of our linear
stability analysis is that we do not check that the pair of pure
imaginary eigenvalues crosses over to the right-half complex plane
above the Hopf bifurcation point, nor determine whether or not
there are already other eigenvalues in the right-half complex plane.
Therefore, in Section 4 we apply the winding number method
to detect the number of eigenvalues in the right-half plane for
different parameter regimes. In Section 5, we briefly explore
extensions of our analysis to (i) asymmetric coupling and (ii) a
PDE–DDE model based on the Mackey–Glass equation [15].
Note that the PDE–DDE model considered in this paper is
distinct from our recent model of cell polarization in fission
yeast [25]. The latter model describes bulk diffusion of a signaling
molecule Rho GTPase Cdc42 in the cytoplasm, which is coupled
to a pair of delay differential equations (DDEs) at the ends of the
cell via boundary conditions. The latter represent the binding of
Cdc42 to the cell membrane and re-release into the cytoplasm via
unbinding. The nontrivial nature of the dynamics arises from the
fact that both the binding and unbinding rates at each end are
taken to depend nonlinearly on the local membrane concentration
of Cdc42. In particular, the association rate is regulated by positive
feedback and the dissociation rate is regulated by delayed negative
feedback. From a mathematical perspective, the fission yeast
model differs fromour current PDE–DDEmodel, since in the former
case each compartment does not have its own intrinsic dynamics,
rather it is solely driven by the diffusive flux into the compartment.

2. Oscillations in a PDE–Logistic model

Consider the concentration of a single chemical species in a
one-dimensional finite domain [0, L]. The boundaries x = 0 and
x = L represent dynamically active membrane whose dynamics
is governed by a DDE. For concreteness, we take the DDE to be
the delayed logistic equation; we consider the Mackey–Glass DDE
in Section 5. The bulk region (0, L) represents the cytoplasm of
a cell within which molecules undergo diffusion with diffusion
coefficient D. The bulk region and the two end compartments
are coupled by a linear diffusive flux with coupling parameter β .
Denoting the concentration at the boundaries as X1(t), X2(t) and
the concentration in the bulk as C(x, t), the model is given by

∂C
∂t

(x, t) = D
∂2C
∂x2

, 0 < x < L, t > 0

D∂xC(0, t) = β(C(0, t) − X1(t)),
−D∂xC(L, t) = β(C(L, t) − X2(t)) (1)

and
dX1

dt
= β(C(0, t) − X1(t)) + f (X1(t), X1(t − τ)), (2a)

dX2

dt
= β(C(L, t) − X2(t)) + f (X2(t), X2(t − τ)) (2b)

where

f (x(t), x(t − τ)) = rx(t)(1 − x(t − τ)/M). (3)

Here τ is the time delay, r is the growth rate andM is the carrying
capacity.

A steady-state solution of the above PDE–DDE satisfies

C(x) =
CL − C0

L
x + C0,

D
CL − C0

L
= β(C0 − X1) = −β(CL − X2).

(4)

Rewriting C0 and CL in terms of X1 and X2 gives

C0 =
(1 + α)X1 + αX2

1 + 2α
, CL =

αX1 + (1 + α)X2

1 + 2α
,

with α = D/(Lβ). It follows that

C0 − X1 =
α(X2 − X1)

1 + 2α
, CL − X2 =

α(X1 − X2)

1 + 2α
. (5)

Suppose X1 > X2, then C0 − X1 < 0 and CL − X2 > 0. Thus
f (X1, X1) = −β(C0 − X1) > 0. Hence 0 < X1 < M . Similarly,
we have f (X2, X2) = −β(CL − X2) < 0. Hence X2 < 0 or X2 > M .
Since X1 > X2, we have X2 < 0. This implies that any nonnegative
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steady state solution (X1, X2) must satisfy X1 = X2. It then follows
that

C(x) = C0 = X1 = X2, f (X1, X1) = 0.

The function F(x) = f (x, x) has a trivial root at x = 0, which is
unstable, and a positive root at x = M .

2.1. Linear stability analysis

We will investigate the occurrence of oscillations in the
PDE–Logisticmodel by carrying out a linear stability analysis of the
positive steady state,

C(x) = C0 = X1, X1 = X2 = M,

and deriving conditions for a Hopf bifurcation. An investigation of
linear stability means that we want to determine the spectrum of
the linear operators obtained by linearizing about the fixed point.
Therefore, we consider perturbed solutions of the form

C(x) = C0 + eλtη(x), Xi = M + φieλt , i = 1, 2.

The condition for linear stability then reduces to the requirement
that all eigenvalues λ have negative real part. Substituting into the
linearized system near the steady state then givesDη′′(x) = λη(x),

Dη′(0) = β(η(0) − φ1)
−Dη′(L) = β(η(L) − φ2)

(6)

and
λφ1 = β(η(0) − φ1) − re−λτφ1

λφ2 = β(η(L) − φ2) − re−λτφ2.
(7)

Using Eq. (7), we can rewrite (φ1, φ2) in terms of η(0) and η(L).
That is,

φ1 =
βη(0)

λ + β + re−λτ
, φ2 =

βη(L)
λ + β + re−λτ

. (8)

Substituting it into the boundary conditions of η(x) givesDη′′(x) = λη(x),
Dη′(0) = B(λ, τ )η(0)
−Dη′(L) = B(λ, τ )η(L)

(9)

where

B(λ, τ ) = β


1 −

β

λ + β + re−λτ


. (10)

The eigenvector η(x) can be expressed in the form

η(x) =
η0 + η1

2
cosh

√
λ/D


x −

L
2


cosh

√
λ/D L

2


+

η1 − η0

2
sinh

√
λ/D


x −

L
2


sinh

√
λ/D L

2

 , (11)

where η0 and η1 are unknown coefficients. The boundary
conditions require

A+(λ) + B(λ, τ ) A−(λ)
A−(λ) A+(λ) + B(λ, τ )


η0
η1


= 0 (12)

where

A±(λ) =

√
λD
2


tanh


L
2


λ/D


± coth


L
2


λ/D


.

Since the matrix in Eq. (12) is cyclic and symmetric, it follows
that Eq. (12) has the solutions η0 = η1 = 1 (in-phase) and
η0 = −η1 = 1 (anti-phase) with λ satisfying the corresponding
pair of equations

B(λ, τ ) = −
√

λD tanh


L
2


λ

D


(in-phase), (13a)

B(λ, τ ) = −
√

λD coth


L
2


λ

D


(anti-phase). (13b)

Note that the presence of terms involving
√

λ/D means that
we have to introduce a branch cut in the complex λ-plane along
(−∞, 0] with −π < Arg(λ) < π . Fortunately, for finite D, L this
does not affect the eigenvalue relation (13) since, as λ → 0, we
have tanh(

√
λ/4D) →

√
λ/4D and coth(

√
λ/4D) →

√
4D/λ, that

is, any square roots in (13) cancel. However, care has to be taken
in the limit D → 0, since one can no longer eliminate the square
roots and there is a continuous spectrum in addition to a discrete
spectrum. We will avoid these complexities here by taking D > 0.

We now use Eqs. (13) to derive necessary conditions for a Hopf
bifurcation. That is, we look for pure imaginary solutions λ = iω
with ω real and construct Hopf bifurcation curves as a function of
D, τ and β . Note, however, that in order to ensure the emergence
of limit cycle oscillations via a primary Hopf bifurcation, one also
has to check that a pair of eigenvalues cross over to the right-half
complex plane as one crosses the Hopf curve and that there are
no other eigenvalues already in the right-half plane. One way to
keep track of the number of eigenvalues in the right-half complex
plane is to use a winding number argument (see Section 4). One
issue that cannot be addressed using linear stability analysis is
whether or not a Hopf bifurcation is supercritical. However, all of
our numerical simulations suggest that the bifurcation is indeed
supercritical (see Section 3).

Although we take D > 0 throughout, we first briefly consider
the discrete spectrum when D → 0 for λ ≠ 0. Noting that

lim
D→0

√
λD tanh


L
2


λ

D


= lim

D→0

√
λD coth


L
2


λ

D


= 0,

we have

B(λ, τ ) = β


1 −

β

λ + β + re−λτ


= 0.

It follows that

λ + re−λτ
= 0. (14)

This is the characteristic equation of the delayed logistic equation

dx
dt

= f (x(t), x(t − τ)) = rx(t)(1 − x(t − τ)/M).

At a Hopf bifurcation point, the critical time delay τ and the
frequency ω satisfy

cos(ωτ) = 0, ω − r sin(ωτ) = 0.

It follows that

τ =
π

2r
+

2nπ
r

, ω = r > 0, n = 0, 1, 2, . . . (15)

In the slow diffusion limit, the Hopf point occurs at τ = π/(2r),
and is independent of the coupling parameter β . The diffusion is
too slow to affect the concentration at the membrane.

Next, we consider the solution of Eq. (13) as D → ∞. Assuming
|λ| = O(1) ≪ D, we have

lim
D→∞

√
λD tanh


L
2


λ

D


=

λL
2

,
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Fig. 1. Hopf bifurcation curves in (D, τ ) plane for different values of the coupling parameter β . (a, c) Critical time delay τc vs. D with β = 1, 0.5, respectively. Solid
curves show Hopf bifurcation points, whereas dashed curves are continuations through a double Hopf point (H–H). Below the primary branch, the steady state is stable.
(b, d) Frequency ω (imaginary eigenvalue) vs. Dwith β = 1, 0.5, respectively. As D increases the primary bifurcation switches from an anti-phase to an in-phase limit cycle
oscillation. Blue: in-phase. Green: anti-phase. Other parameters: L = 1, r = 1, M = 1. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
and
√

λD coth


L
2


λ

D


≈

2D
L

= O(D) → ∞.

Hence the solution (τ , ω) of Eq. (13) in the fast diffusion limit
satisfies

B(λ, τ ) = −
λL
2

, or B(λ, τ ) = O(D) → ∞. (16)

The first equation in Eq. (16) gives the characteristic equation

β


1 −

β

λ + β + re−λτ


= −

λL
2

. (17)

Noting that for any λ > 0 real and τ > 0,

1 −
β

λ + β + re−λτ
> 0 > −

λL
2β

,

thus Eq. (17) has no positive real root. In fact, there is a negative
real root. A Hopf bifurcation can occur as the eigenvalue crosses
the imaginary axis. Setting λ = iω, the critical time delay and
frequency at a Hopf point satisfy

1 + i
ωL
2β

=
β

iω + β + re−iωτ

=
β

β + r cosωτ + i(ω − r sin(ωτ))
. (18)

This equation can be solved numerically and the critical time delay
is the same as the asymptote of the Hopf curve (in-phase) in
Fig. 1(a).

The second equation in (16) does not have a solution unless

λ + β + re−λτ
= 0. (19)

This type of characteristic equation has been studied in detail
in [26,27]. Setting λ = iω, and taking ω > 0 without loss of
generality gives

β + r cosωτ = 0, ω − r sinωτ = 0. (20)
It follows that

cosωτ = −
β

r
, ω = r sinωτ =


r2 − β2.

If β > r , there is no solution of (ω, τ). This implies that the critical
time delay (associated with the anti-phase oscillation) does not
exist for strong coupling β in the fast diffusion limit. On the other
hand, if β < r , then there are denumerably many solutions

ω =


r2 − β2 > 0, τn =

(2n − 1)π − arccos(β/r)
ω

,

n ∈ N.

2.2. Hopf bifurcation curves

Using the above linear stability analysis, we now construct Hopf
bifurcation curves with respect to different model parameters. In
Fig. 1, Hopf bifurcation curves for the critical time delay τc are
plotted as a function of the diffusion coefficientD for fixed coupling
β . The critical time delay is computed by taking the real and
imaginary parts of the two eigenvalue relations in (13) and solving
the resulting system using Maple. There are two branches of Hopf
curves corresponding to in-phase and anti-phase oscillations; they
intersect at Hopf–Hopf points, which act as organizing centers for
more complex oscillatory solutions. It is difficult to resolve which
branch is dominant as D → 0, since both the in-phase and anti-
phase branches approach the critical time delay of the uncoupled
delayed logistic equation. However, away from the origin, we
find that as the diffusion coefficient D increases the critical time
delay increases, and the primary bifurcation switches from an
anti-phase to an in-phase oscillation. It can be checked that the
asymptotic limit of the in-phase branch agrees with the solution
(λ, τ ) = (iω, τ) of Eq. (17). In Fig. 2, we plot the corresponding
Hopf bifurcation curves in the (β, τ ) plane for fixed DNow there is
a switch from anti-phase to in-phase oscillations as β is increased
away from zero.
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Fig. 2. Hopf bifurcation curves in (β, τ ) plane for (a) D = 0.2 and (b) D = 1. Solid curves show Hopf bifurcation points, whereas dashed curves are continuations through
a double Hopf point (H–H). Below the primary branch the steady-state solution is stable. As β increases the primary bifurcation switches from an anti-phase to an in-phase
limit cycle oscillation. Blue: in-phase. Green: anti-phase. Other parameters: L = 1, r = 1, M = 1. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
Fig. 3. Phase diagram in (D, τ ) planewith different time delays. Anti-phase (in-phase) oscillations exist for (β,D) below the green (blue) line. (a) For τ = 2, the steady-state
is stable in region ①, and an anti-phase oscillation exists in regions ②. In region ③, both in-phase and anti-phase oscillations exist, however, numerical simulations suggest
that the in-phase oscillation is unstable, see Fig. 4(a). (b) τ = 2.4. The blue and green curves intersect. Our numerical plot in Fig. 4(b) suggests there is possibly an unstable
torus bifurcation. (c) τ = 2.45. Anti-phase oscillations exist for parameters below the green line. In-phase oscillations exist for any choice of (β,D). In the coexistence region,
i.e., below the green line, we find that an in-phase oscillation can evolve to an anti-phase oscillation, see Fig. 4(c). (d) The asymptote of the critical time delay (solution of
Eq. (18)) as a function of the coupling strength as D → ∞. The two points (β, τ ) = (0.25, 2.0) and (0.6, 2.4) implies the asymptote of β for τ = 2, 2.4, see Fig (a, b). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Next, we take the time delay to be fixed and plot the phase
diagram in the (β,D) plane, see Fig. 3. This is computed by
numerically solving the eigenvalue Eq. (13) for the solution λ =

iω and D with a varying β . For τ = 2, anti-phase (in-phase)
oscillations exist for parameters below the green (blue) line. Above
these lines, i.e., region ①, the steady state is stable. This indicates
that for sufficiently large (β,D), the fixed time delay τ = 2
is below a Hopf bifurcation. This result is consistent with the
numerical results shown in Figs. 1 and 2. In the coexistence region
③, the in-phase oscillation is observed to be unstable, see Fig. 4(a).
For τ = 2.4, similar results are observed. However, one difference
between τ = 2 and τ = 2.4 is that the blue and green curves
intersect in the latter case. Numerical solutions for (β,D) chosen
within the coexistence region shows there is a torus bifurcation,
see Fig. 4(b). For τ = 2.45, the time delay is sufficiently large so
that in-phase oscillations exist for any (β,D). This can be explained
by the plot of the asymptote of the critical time delay in the limit
D → ∞, which has a maximum around 2.43, see Fig. 3(d). On the
other hand, anti-phase oscillations exist for parameters below the
green line. Again, we find that the in-phase oscillation can lose its
stability in the coexistence region, see Fig. 4(c).

In summary, our linear stability analysis suggests that the
existence of oscillations depends on the diffusion coefficient,
coupling strength and time delay. First, the critical time delay at a
Hopf bifurcation increases as the diffusion coefficient or coupling
strength increases. Second, for a fixed time delay, the effect of
diffusion or coupling on the stability of steady state is sensitive to
the value of the time delay. In particular, for a small time delay
(τ < π/2), changing the diffusion coefficient or coupling strength
will not destabilize the steady state. For a sufficiently large time
delay, oscillations always exist for any (D, β). For a moderate time
delay, decreasing the diffusion coefficient or coupling strength can
give rise to in-phase or anti-phase oscillations.
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Fig. 4. Instability of the in-phase oscillation in the coexistence region corresponding to points A, B, C , respectively, in Fig. 3(a)–(c). Initial condition: C(x, 0) = 1, X1(0) =

1.1, X2(0) = 1.11. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
3. In-phase vs. anti-phase oscillations

In this section, we numerically explore the occurrence of in-
phase and anti-phase oscillations. The full PDE–DDE system given
by Eq. (1) and (2) is simulated by discretizing the PDE into a system
of ODEs using a method of line approach with a spatial step size
h = 1/20. The resulting ODE–DDE system is solved using the
DDE solver dde23 in MATLAB. The amplitude plots and Floquet
multipliers are computed for the DDE–ODE system using DDE-
BIFTOOL.

First, suppose that the gain is β = 1 as in Fig. 1(a), (b). For
D = 0.1 and the initial condition

C(x, t) = 1, X1(t) = 1 + 0.1, X2(t) = 1 − 0.1,
−τ ≤ t ≤ 0,

(21)

the numerical solution with different time delays is shown in
Fig. 5(a), (b). We find that the primary Hopf bifurcation to an anti-
phase solution is supercritical at the predicted critical time delay
τ = τhp ≈ 1.99 (see the inset of Fig. 1(a)). As τ increases to
2.3, although the in-phase oscillation is observed for the initial
conditionX1 = X2 = 1.1 (indicating that the blue curve in the inset
of Fig. 1(a) has been crossed), we find that it is unstable for initial
conditions that are not symmetric. For the sake of illustration, we
choose the initial condition

C(x, t) = 1, X1(t) = 1 + 0.1, X2(t) = 1 + 0.09,
−τ ≤ t ≤ 0.

The numerical solution starts near an in-phase oscillation but
evolves to an anti-phase oscillation, see Fig. 5(c). The instability of
in-phase oscillations is also observed when we plot the amplitude
of the periodic solutions using DDE-BIFTOOL, see Fig. 5(d). The
stability is determined by computing the Floquet multipliers using
DDE-BIFTOOL. We find that the in-phase oscillations have Floquet
multipliers outside the unit circle. On the other hand, the anti-
phase oscillations have Floquet multipliers inside the unit circle.
Plotting the amplitude as a function of delay for β = 1 and fixed D
corresponds to taking a vertical slice through Fig. 1(a).
Now, suppose that the diffusion coefficient is increased to D =

0.6. Consistent with Fig. 1(a), (b) we now find that the anti-phase
oscillation is unstable and the in-phase oscillation is stable, see
Fig. 6. This feature was also observed in the PDE–ODE model of
Ref. [1]. More complex behavior can be obtained if the system
operates close to the double-Hopf point in Fig. 1(a), as has also
been found for a PDE–ODE system [2]. For example, if D = 0.5
then the anti-phase oscillation can change from unstable to stable
as the time delay τ is increased from 2.7 to 2.9, see Fig. 7(b), (c).
The numerical stability analysis of the anti-phase periodic solution
suggests that there exists a pair of complex Floquet multipliers
outside the unit circle for τ > τtr ≈ 2.8, see Fig. 7(a). This implies
there is a torus bifurcation near (D, τ ) ≈ (0.5, 2.8).

A change of oscillation modes is also observed when the
diffusion coefficient changes for a fixed time delay. For τ = 3.2, as
the diffusion coefficient D changes from 0.1 to 0.6, the oscillation
switches from anti-phase to in-phase, see Fig. 8. A similar result is
observed for τ = 2.5, as the diffusion coefficient D changes from
0.1 to 0.4, see Fig. 9.

4. Winding number argument

In this section, we use the winding number argument studied
in [1] to count the number N0 of roots of the characteristic
Eq. (13) with Re λ > 0. If N0 = 0, then the steady state is linearly
stable. Otherwise, it is linearly unstable. Moreover, there is a Hopf
point if there exists a root on the imaginary axis. We start with the
eigenvalue λ associated with the in-phase oscillation and consider
the function

F(λ) = B(λ, τ ) +
√

λD tanh


L
2


λ

D



= β


1 −

β

λ + β + re−λτ


+

√
λD tanh


L
2


λ

D


. (22)

Recall that we are taking the primary branch of
√

λ, whilst the first
term on the right-hand side is analytic except for a countable set
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Fig. 5. Stable anti-phase solutions for D = 0.1, β = 1.0 and different delays τ . Corresponding bifurcation curves are shown in Fig. 1(a). (a) τ = 1.9. The steady state
solution is stable. (b) τ = 2.1. Anti-phase oscillations occur given the initial condition C(x, 0) = 1, X1(0) = 1.1, X2(0) = 0.9. (c) τ = 2.3. An in-phase oscillation changes
to an anti-phase oscillation for the initial condition C(x, 0) = 1, X1(0) = 1.1, X2(0) = 1.09. (d) Amplitude of the periodic solutions as a function of time delay. Numerical
result shows that the in-phase periodic solution has Floquet multipliers outside the unit circle and thus it is unstable. On the other hand, the anti-phase periodic solution
has Floquet multiplier inside the unit circle. Other parameters: L = 1, r = 1, M = 1. Spatial step size h = 0.05.
Fig. 6. Stable in-phase solutions for D = 0.6, β = 1.0 and different delays τ . Corresponding bifurcation curves are shown in Fig. 1(a). (a) Amplitude of the periodic solutions
as a function of time delay. Numerical result shows that the anti-phase periodic solution has Floquet multipliers outside the unit circle and thus it is unstable. On the other
hand, the in-phase periodic solution has Floquet multiplier inside the unit circle. (b, c) τ = 2.6, 3.2, respectively. Initial condition: C(x, 0) = 1, X1(0) = 1.1, X2(0) = 0.9.
Other parameters are L = 1, r = 1, M = 1.
of simple poles when D > 0. Replacing the tanh function by coth
gives the eigenvalue λ associated with the anti-phase oscillation.
To find the number of roots of F on the right-half complex plane
{z, Re(z) > 0}, we construct the counterclockwise contour Γ
consisting of the semi-circle ΓR = {z = Reiθ , −π/2 < θ < π/2}
and the imaginary axis ΓI = {z = iy, −R ≤ y ≤ R}, see
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Fig. 7. Stability of the anti-phase oscillation for D = 0.5 and sufficiently large time delay. (a) Amplitude of the periodic solutions with the number of unstable Floquet
multipliers. Blue: number of unstable Floquet multiplier (# unst) = 0, Red: number of unstable Floquet multiplier (# unst) = 2. (b) Plots of Floquet multipliers (anti-phase
branch) with τ = 2.7 and τ = 2.8. There are a pair of complex Floquetmultipliers (redmarkers) outside the unit circle for τ = 2.7. (c) For τ = 2.7, the anti-phase oscillation
is unstable. (d) For τ = 2.9, the anti-phase oscillation is stable. Initial condition: C(x, 0) = 1, X1(0) = 1.1, X2(0) = 0.9. Other parameters: L = 1, β = 1, r = 1, M = 1.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 10. Applying the argument principle to the function F(λ) on
the contour Γ gives

N0 − N∞ =
1
2π

∆Γ ArgF(λ), (23)

where N0(N∞) is the number of zeros (poles) of F inside Γ and
∆Γ ArgF(λ) is the change of the argument of F along the contour
Γ . In the following, we perform the classical analysis to calculate
N∞ and ∆Γ ArgF(λ) and determine N0.

For the path ΓR, as R = |λ| → ∞, we have

|B(λ, τ )| = β

1 −
β

λ + β + re−λτ


≤ β +

β2

|λ| − β − r
= β + O


1
R


, Re(λ) > 0,

and

√
λD tanh


L
2


λ

D


≈

√
λD.

Hence

F(λ) ≈ β +
√

λD ⇒ |F(λ)| ≈
√
RD ≠ 0,

for |λ| = R ≫ 1. (24)

So there are no zeros nor poles on ΓR. Furthermore, we have

∆ΓRArgF(λ) = ArgF(iR) − ArgF(−iR)

= 2[ArgF(iR) − ArgF(0)] ≈
π

2
, R ≫ 1. (25)
It follows that

N0 = N∞ +
1
2π

∆ΓRArgF(λ) +
1
2π

∆ΓIArgF(λ)

= N∞ +
1
4

+
1
2π

∆ΓIArgF(λ)

= N∞ +
1
4

+
1
π

∆Γ
+

I
ArgF(λ) (26)

where ΓI+ = {z = iy, 0 ≤ y ≤ R}. It remains to calculate
∆Γ

+

I
ArgF(λ). Noting that

F(iR) ≈
√
iDR =

√
DReiπ/4, F(0) =

βr
β + r

> 0, (27)

the change of argument along the half imaginary axis ΓI+ can be
π/4 + 2kπ or −π/4 + 2kπ . In Fig. 11, we sketch some possible
images of F(ΓI+). For a given set of parameter values, we need to
determine numerically whether or not the image F(ΓI+) crosses
the negative real axis, and if it does then the number of times it
crosses.

We also need to check if there are any poles or zeros on the path
ΓI . The number of poles or zeros is dependent on the parameters
(β, τ , r). Note that if F(λ) has a zero λ = iy, then there is a Hopf
bifurcation. Since we are interested in the parameter regime above
the Hopf curve, where an oscillatory solution has already emerged,
we choose parameters so that there are no zeros on the imaginary
axis. It can be checked that F has a pole where B(λ, τ ) is singular.
That is, B(λ, τ ) has a pole on the imaginary axis ΓI if there exists
λ = iy such that

H(λ) = λ + β + re−λτ
= 0. (28)
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Fig. 8. Switch from an anti-phase oscillation to an in-phase oscillation as D increases from 0.1 to 0.6 with a fixed time delay τ = 3.2. (a) D = 0.1, (b) D = 0.5, (c) D = 0.6.
As the diffusion coefficient increases from 0.1 to 0.6, the solution changes from anti-phase oscillations to in-phase oscillations, see (a) and (c). For D = 0.5, a new type of
oscillatory mode (torus) emerges due to the double Hopf bifurcation. However, the new mode disappears at a sufficiently large time (t ≈ 300, see (b)), and the oscillations
are again anti-phase. For D = 0.6, the oscillation starts as anti-phase but ends up as in-phase. Initial conditions: C(x, 0) = 1, X1(0) = 1.5, X2(0) = 0.5.
Fig. 9. As in Fig. 8, a switch in oscillationmode occurswhenD increases from 0.1 to 0.4with a fixed time delay τ = 2.5. Initial conditions: C(x, 0) = 1, X1(0) = 1.1, X2(0) =

1.09.
Setting λ = iy and separating the imaginary and real parts of H(λ)

gives

y − r sin(yτ) = 0, (29a)
β + r cos(yτ) = 0. (29b)

It follows that cos(yτ) = −β/r and sin(yτ) = ±

1 − β2/r2. Note

that if r < β , there is no solution of y to Eq. (29b). That is, there are
no poles on ΓI provided r < β .

If r ≥ β , we can eliminate y from Eq. (29b) using y =

r sin(yτ) = ±r

1 − β2/r2. That is,

β + r cos(τ

r2 − β2) = 0. (30)

For any fixed β, τ > 0, and r ≥ β , Eq. (30) has denumerably
many positive solutions {ri(β)}, see Fig. 15. For any r ≠ ri(β), Eq.
(30) does not have a solution, i.e., there is no zeros of H(λ) on the
imaginary axis. That is, there are no poles of F on ΓI .
In order to find the number of poles N∞ inside the contour Γ ,
we cite the Lemma 3 in [26].

Lemma 4.1 (Hadeler and Tomiuk [26]). Let ν > 0 be given. Then
equation

ν + α cos


α2 − ν2 = 0

has denumerably many positive solutions

α1(ν) < α2(ν) < α3(ν) < · · ·

with sin
√

α2 − ν2 > 0, such that αk(ν) → ∞ as k → ∞. For
α ∈ (αk(ν), αk+1(ν)], equation

H(λ; α, ν) = ν + λ + αe−λ
= 0

has exactly k solutions λ1, λ2, . . . , λk in Reλ > 0, Imλ > 0, and

Reλl > 0, (2l − 3/2)π < Imλl < (2l − 1)π, l = 1, . . . , k.
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Fig. 10. Counterclockwise contour Γ consisting of the semi-circle ΓR = {z =

Reiθ , −π/2 < θ < π/2} and the imaginary axis ΓI = ΓI− ∪ ΓI+ = {z = iy, −R ≤

y ≤ R}.

4.1. Winding number for β ≥ r

Set α = rτ and ν = βτ in Lemma 4.1, if β ≥ r , then there are
no poles on ΓI nor inside the contour Γ . That is
N∞ = 0. (31)
In the particular case D = β = r = 1, the critical time delay (in-
phase) is τhp ≈ 2.436. For τ = 2.3 < τhp and τ = 2.5 > τhp, we
plot ReF(iy) and ImF(iy) in Fig. 12. It follows from these plots that

N0 =
1
4

+
1
π

∆Γ
+

I
ArgF(λ) =


1
4

−
1
4

= 0, if τ = 2.3 < τhp,

1
4

+
7
4

= 2, if τ = 2.5 > τhp.

(32)

Therefore, there are two eigenvalues associated with the in-phase
oscillation in Reλ > 0 when τ > τhp. This holds until τ is further
increased to the continuation of the anti-phase Hopf curve, see
Fig. 1(a). A similar result for the eigenvalues associated with the
anti-phase oscillation is shown in Fig. 13. The critical time delay
(anti-phase) is τhp ≈ 3.15. Finally, in Fig. 14, we plot the real parts
of the eigenvalues associated with the in-phase and anti-phase
mode for different D and τ . We see that for a diffusion coefficient
D ≥ 0.3 and sufficiently large time delay, the eigenvalue
corresponding to the synchronous mode has a larger positive real
part, indicating that it is the dominantmode. This indicates that for
an arbitrary perturbation near the steady-statewewould expect to
see in-phase oscillations for most initial conditions.

4.2. Winding number for β < r

Following from Lemma 4.1, for any β > 0 and r ∈

(rk(β), rk+1(β)], fixed, there are k solutions in Reλ > 0, Imλ >
0. Here, {rk(β)}k are solutions to Eq. (30), see Fig. 15. Since the
conjugate λ̄ is also an eigenvalue, it follows that
N∞ = 2k, for r ∈ (rk(β), rk+1(β)], k = 0, 1, 2, . . . . (33)
For simplicity, we will focus on the parameter regime with r ≤ r2,
for which the number of poles is

N∞ =


0, if r ∈ (0, r1(β)],
2, if r ∈ (r1(β), r2(β)].

(34)
For the sake of illustration, suppose that β = 0.6, τ = 3. We
find that there are two types of critical values of r:
(1) the critical value at a Hopf point of F occurs at rhp ≈ 0.81. If

r < rhp, then the eigenvalue has negative real part and the
steady state is linearly stable.

(2) the first two positive solutions of Eq. (30): r1 ≈ 0.96 and
r2 ≈ 1.56. If 0 < r < r1, there are no poles inside the contour
Γ , i.e., N∞ = 0; whereas if r1 < r < r2, there are two poles in
conjugate pairs, i.e., N∞ = 2.

For 0 < r < rhp, rhp < r < r1 and r1 < r < r2, we plot the real
and imaginary part of F in Fig. 16. The numerical result suggests

∆Γ
+

I
ArgF(λ) =


−

π

4
, if r ∈ (0, rhp),

7π
4

, if r ∈ (rhp, r1),

−
π

4
, if r ∈ (r1, r2).

Hence the formula of the Argument Principle (26) gives

N0 = N∞ +
1
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+
1
π

∆Γ
+

I
ArgF(λ)

=


0 +

1
4

−
1
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0 +
1
4

+
7
4

= 2, if r ∈ (rhp, r1),

2 +
1
4

−
1
4

= 2, if r ∈ (r1, r2).

(35)

The numerical result suggests that for the parameter r above the
Hopf curve in (β, r) plane, see Fig. 17, and r ∈ [rhp, r2], there
are two eigenvalues with positive real parts. For r = 0.9, 1, the
eigenvalues are λ = 0.058 ± 0.6i, 0.029 ± 0.588i, respectively.

5. Extensions of the analysis

So far we have focused on one example of a DDE, the delayed
logistic equation, and assumed that the coupling between each
compartment and the bulk is the same (symmetric coupling). In
this section, we briefly explore extensions of our analysis to (a)
asymmetric coupling and (b) a PDE–DDE model based on the
Mackey–Glass equation [15]. In the latter case, we show that most
of our results still hold, but that the dominant mode for large D is
now the anti-phase solution rather than the in-phase solution.

5.1. Asymmetric coupling

Let β1 and β2 denote the diffusive coupling between the two
compartments and the bulk. In previous sections, we took β1 =

β2 = β (symmetric coupling). Here, we briefly explore what
happens in the case of asymmetric coupling, β1 ≠ β2, see also
section 5 of [1]. Eq. (1) and (2) become

∂C
∂t

(x, t) = D
∂2C
∂x2

, 0 < x < L, t > 0

D∂xC(0, t) = β1(C(0, t) − X1(t)),
−D∂xC(L, t) = β2(C(L, t) − X2(t)) (36)

and
dX1

dt
(t) = β1(C(0, t) − X1(t)) + f (X1(t), X1(t − τ)), (37a)

dX2

dt
(t) = β2(C(L, t) − X2(t)) + f (X2(t), X2(t − τ)). (37b)

It can be checked that the nonnegative steady-state solutions are
X1 = X2 = C(x) = 0 and X1 = X2 = C(x) = 1. Although
the steady-state solution is the same as the case when β1 = β2,
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Fig. 11. Sketch of possible trajectories of F(iy) as y changes fromR to 0. (a) Three examples of trajectories that donot pass through the negative real axis and1ArgF = 0−π/4.
(b) Hopf bifurcation. There exists a y0 ∈ (0, R) such that F(iy0) = 0. (c) F(iy) crosses the negative real x-axis, ∆ΓI+

ArgF = (π − π/4) + 0 − (−π) = 7π/4. Noting that the
square root function does not appear in the function B(iy, τ ), it is possible that F(iy) crosses the negative x-axis.
Fig. 12. Numerical plots of F(iy) (in-phase) as y changes from R to 0 for different values of the delay τ . (a) Below the Hopf point. τ = 2.3 < τhp, ∆ΓI+
ArgF = −π/4. (b)

τ = τhp = 2.435. (c) τ = 2.5 > τhp, ∆ΓI+
ArgF = 7π/4. Other parameters: L = 1, D = 1, β = 1, r = 1, M = 1, R = 10.
Fig. 13. Numerical plots of F(iy) (anti-phase) as y changes fromR to 0 for different values of the delay τ . (a) τ = 2.5 < τhp, ∆ΓI+
ArgF = −π/4.Re(F) > 0. (b) τ = τhp = 3.15.

(c) τ = 3.2 > τhp, ∆ΓI+
ArgF = 7π/4. Other parameters: L = 1, D = 1, β = 1, r = 1, M = 1, R = 10.
Fig. 14. Contour plots of max(ℜ(λ), 0) in the (D, τ ) plane with D ∈ [0.1, 1] and τ ∈ [0, 5]. (a) Eigenvalues of in-phase mode. (b) Eigenvalues of anti-phase mode. The
numerical results indicate that for a diffusion coefficient D ≥ 0.3 and sufficiently large time delay, the eigenvalue corresponding to the synchronous or in-phase mode has
a larger positive real part. Parameters: L = 1, β = 1, r = 1, M = 1.
the amplitude and phase of the oscillations at the two end
compartments are sensitive to the coupling parameters β1 and β2,
see Fig. 18. For asymmetric coupling, the two oscillators are less
likely to be synchronized. Firstly, the phases of the solutions can be
different. Secondly, the weakly coupled oscillator has a relatively
larger amplitude, see Fig. 18(a), (b), (d) and Fig. 11 of Ref. [1]. The
difference of the amplitudes decreases when the asymmetry of the
two coupling strengths gets smaller, see Fig. 18(a), (b).

To explore the effect of asymmetric coupling on the Hopf
bifurcation, we take β2 = 1 and plot the Hopf bifurcation curves
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Fig. 15. (a) Plot of cos(τ

r2 − β2) (blue) and−β/r (red) as a function of r . As r increased from β to∞, these two functions intersect many times at r = ri(β), i ∈ N. (b) the

smallest positive solution r1(β) as a function of β . For the parameter (β, r) lies below the curve, there is no zeros of H(λ) = λ + β + re−λτ on the right half plane. Baseline
parameters β = 0.6, τ = 3. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 16. ReF(λ) and ImF(λ) as λ travels along ΓI+ = {iy} with y changes from 100 to 0.01. (a) r = 0.75 < rhp = 0.81. Since ImF > 0, we have ∆ΓI+
= −π/4. (b)

r = 0.9 ∈ (rhp, r1), ∆ΓI+
= 7π/4. (c) r = 1 ∈ (r1, r2), ∆ΓI+

= −π/4. Other parameters: β = 0.6, τ = 3, D = 1, L = 1, R = 100.
Fig. 17. Hopf bifurcation in (β, r) plane. Parameters D = 1, τ = 3, L = 1.

in the (β1, τ ) plane for different values of D in Fig. 19. For D = 0.2
and D = 0.3, there are two Hopf branches, which have different
limiting values of time delay as β1 goes to 0, see Fig. 19(a). As
β1 → 0, the Hopf bifurcation curve (blue) has the critical time
delay τ → π/2 which is the critical time delay of the delayed
logistic equation. This suggests that diffusion has a weak effect on
the time delay of the weakly coupled compartment X1. As β1 → 0,
the time delay on the second Hopf branch (dashed green line) is
the same as the critical time delay of the model given by Eq. (36)
and (37) with β1 = 0. The two Hopf branches separate the (β1, τ )
plane into three different regions, see Fig. 19(a). In region 1, below
theHopf curve, the steady state solution is stable. In region 2, above
the Hopf curve, the steady state solution is unstable and there are
periodic solutions of X1,2 with different phases and amplitudes. For
the sake of illustration, we take β1 = 0.1, and plot the numerical
solution with time delay below or above the critical time delay in
Fig. 19(c), (d). In region 3, there exist an in-phase oscillation and
oscillations with different phases, see Fig. 18(b), (c). In particular,
the in-phase oscillation occurs when β1 = β2.

In Fig. 20, we compare the numerical solutions for β1 < β2 and
β1 = β2. For β1 = β2, if τ is below the second Hopf branch, then
the numerical solution with initial condition X1 = X2 converges
to the steady state; if τ is above the second Hopf branch, then the
solution changes to periodic solutions with different phases, see
Fig. 20(a), (b). For β1 < β2, the numerical solution of X1,2 starts
with the same phase and amplitude but ends up with different
phases and amplitudes, see Fig. 20(c), (d).

5.2. PDE coupled with the Mackey–Glass equation

In this section, we replace the delay Logistic equation (3)
by another classical delay differential equation, namely, the
Mackey–Glass equation [15]. Let

f (x(t), x(t − τ)) = a1
x(t − τ)

1 + xn(t − τ)
− a2x(t). (38)

If a2/a1 > 1, then f has a positive solution at

x =
n

a1/a2 − 1.

Suppose that we set a2 = 1. Example Hopf bifurcation curves of
the Mackey–Glass equation

dX
dt

= a1
X(t − τ)

1 + Xn(t − τ)
− a2X(t)

are shown Fig. 21(a). For both n = 10 and n = 15, the critical time
delay decreases as a1 increases. For a1 = 2 and n = 10, 15, the
critical time delay is τ ≈ 0.47, 0.27, respectively.
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Fig. 18. Change of the phase and amplitude of the oscillations with different values of the coupling parameter β1 . The other coupling parameter β2 is fixed to be 1.
(a, b) β1 = 0.1 and β1 = 0.5. The oscillator with a weaker coupling has a larger amplitude. The difference between the amplitudes becomes smaller as β1 increased
from 0.1 to 0.5. (c) Symmetric coupling β1 = β2 . The two oscillators have the same amplitude and phase. (d) Strongly coupled oscillators with β1 = 2. The difference of the
amplitude or phase is small when the coupling strength is strong at both ends. Initial condition: X1(t) = X2(t) = 1.1, C(x, t) = 1. Parameters: D = 0.2, τ = 2.5, β2 = 1.
Other parameters are the same as in Fig. 1.
Fig. 19. Hopf bifurcation curves in the (β1, τ ) plane for β2 = 1 and different D. (a) D = 0.2. There are three regions separated by the first two Hopf curves. In Region 1, the
steady state is linearly stable. In Region 2, there are periodic solutions of X1,2(t) with different phases. In Region 3, when β1 = β2 , there is an in-phase periodic solution, see
Fig. 18(c). The first two Hopf branches do not intersect for β1 ∈ [0, 2]. (b) Hopf bifurcation curves with D = 0.3. There is a Hopf–Hopf point. (c, d) Numerical solution with
D = 0.2, β1 = 0.1 and τ = 1.6, 1.7, respectively. Initial condition: X1(t) = 1.2, X2(t) = 0.8, C(x, t) = 1. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
We then take a2 = 2 and consider the full PDE-Mackey–Glass
model (1)–(2) with f given by the Eq. (38). The Hopf bifurcation
curves are plotted in Fig. 21(b), (c). The critical time delay increases
as the diffusion coefficient increases, which is similar to our re-
sult of the PDE–Logistic model, see Fig. 1. On the other hand, in
contrast to the PDE–Logistic equation, the mode of the oscillation
emerging from a Hopf bifurcation is anti-phase rather than in-
phase for awide range of diffusion coefficients. This result suggests
that the oscillation mode depends on the explicit form of the de-
lay differential equations. For D = 0.5 and n = 10, the numeri-
cal solution with different time delays near the critical time delay
τhp ≈ 0.55 is shown in Fig. 21(d)–(e). The existence of oscillation
for τ = 0.57 > τhp suggests that the Hopf bifurcation is super-
critical. The oscillation modes are both anti-phase for τ = 0.57
and τ = 0.6. Although an in-phase oscillation is also observed for
τ = 0.6, we find that it is unstable with respect to perturbations
near the initial condition X1 = X2 = 1.

6. Conclusions

In this paper, we analyzed a one-dimensional PDE–DDE model
consisting of a pair of delayed logistic equations or Mackey–Glass
equations coupled by one-dimensional bulk diffusion. We used
linear stability analysis to derive the associated characteristic
equation and then solved this equation numerically to plot
the Hopf curves as a function of various model parameters. In
the parameter regions above the Hopf bifurcation curves, our
numerical results suggest that there are two different oscillation
modes (reflecting the exchange symmetry of the system): in-
phase and anti-phase. The selection of these modes is sensitive to
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Fig. 20. Numerical solution with different τ and β1 close to β2 . (a, b) β1 = β2 and τ = 2.2, 2.5, respectively. The solution converges to the steady state for a smaller time
delay τ = 2.2 while it converges to a periodic solution(in-phase) for τ = 2.5. The time delay τ = 2.2 is below the time delay on the second Hopf branch, see Fig. 19(a).
(c, d) β1 = 0.9 < β2 and τ = 2.2, 2.5, respectively. The numerical solution of X1,2 starts with the same phase and amplitude but ends up with different phases and
amplitudes. Initial condition: X1(t) = X2(t) = 1.2 and C(x, t) = 1. Other parameters: β2 = 1, D = 0.2.
Fig. 21. Numerical result of PDE–DDE model with Mackey–Glass model. (a) Hopf bifurcation in (a2, τ ) plane with n = 10, 15. (b, c) Hopf bifurcation curves of the PDE-
Mackey–Glass model in (D, τ ) plane with a2 = 2. (d, e) Numerical solution for D = 0.5 and τ = 0.57, 0.6. Initial condition: C(x, 0) = 1, X1(0) = 1.1, X2(0) = 1.2. Other
parameters: a1 = 2, a2 = 1, β = 1, L = 1.
the diffusion coefficient, the time delay and the explicit form of
delayed feedback.

Certain care has to be taken in directly comparing our results to
those of Gou et al. for one-dimensional PDE–ODE systems [1,2,4],
since we do not include a degradation term in the bulk diffusion
equation. Nevertheless, a number of similarities can be noted. First,
both PDE–DDE and PDE–ODE systems support oscillations that
can be in-phase or anti-phase. Second, the onset of oscillations
and the selection between the two oscillation modes is sensitive
to the value of the diffusion coefficient. In the PDE–DDE case
without degradation,we found that increasing the diffusivity tends
to stabilize the stead-state solution, thus delaying the onset of a
Hopf bifurcation. On the other hand, for a PDE–ODE model with
degradation and conditional oscillators [4], oscillations occur over
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a bounded range of diffusivities that excludes D = 0, so that
increasing D from zero can induce an oscillation. For the PDE–ODE
models studied in Refs. [1,2,4], the in-phase solution tended to be
dominant over a wide range of parameters. We also found this to
be true in the case of the logistic delayed equation, but found the
anti-phase solution to be dominant in the case of Mackey–Glass.
Finally, both the PDE–DDE andPDE–ODEmodels exhibit parameter
regimes where in-phase and anti-phase oscillations coexist due to
the presence of a Hopf–Hopf bifurcation point, which also acts as
the organizing center for more complex oscillations indicative of a
torus bifurcation [3].

There are a number of issues worth further exploration. First,
it would be interesting to carry out a more detailed study of the
double Hopf bifurcation arising from the PDE–DDE model and to
determine the basin of attractions of coexistent in-phase and anti-
phase solutions, see also [3]. Second, in this paper, we considered a
few common scalar DDEs to develop the basic theory. However, we
are ultimately interested in understanding the effects of diffusive
coupling on complexmulti-species biochemical oscillators. As part
of this, we would like to compare the behavior of the resulting
PDE–ODE system to the corresponding PDE–DDE system, with the
latter obtained by reducing each multi-component ODE by a DDE
along the lines of Ref. [13].
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