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Nonlinear Langevin Equations for Wandering Patterns in Stochastic Neural Fields*
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Abstract. We analyze the effects of additive, spatially extended noise on spatiotemporal patterns in continuum
neural fields. Our main focus is how fluctuations impact patterns when they are weakly coupled
to an external stimulus or another equivalent pattern. Showing the generality of our approach, we
study both propagating fronts and stationary bumps. Using a separation of time scales, we represent
the effects of noise in terms of a phase-shift of a pattern from its uniformly translating position at
long time scales, and fluctuations in the pattern profile around its instantaneous position at short
time scales. In the case of a stimulus-locked front, we show that the phase-shift satisfies a nonlinear
Langevin equation (SDE) whose deterministic part has a unique stable fixed point. Using a linear-
noise approximation, we thus establish that wandering of the front about the stimulus-locked state
is given by an Ornstein—Uhlenbeck (OU) process. Analogous results hold for the relative phase-shift
between a pair of mutually coupled fronts, provided that the coupling is excitatory. On the other
hand, if the mutual coupling is given by a Mexican hat function (difference of exponentials), the
linear-noise approximation breaks down due to the coexistence of stable and unstable phase-locked
states in the deterministic limit. Similarly, the stochastic motion of mutually coupled bumps can be
described by a system of nonlinearly coupled SDEs, which can be linearized to yield a multivariate
OU process. As in the case of fronts, large deviations can cause bumps to temporarily decouple,
leading to a phase-slip in the bump positions.
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locking
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1. Introduction. Several previous studies have explored the impact of fluctuations on
spatiotemporal patterns in neural field equations by including a perturbative spatially ex-
tended noise term [6, 15, 20, 24]. Utilizing small-noise expansions, it is then possible to
develop effective equations to describe the stochastic motion of spatiotemporal patterns that
emerge in the noise-free system [27]. Typically, these effective equations are linear stochas-
tic differential equations (SDEs) [6, 16], although there have been derivations of stochastic
amplitude equations in the vicinity of bifurcations [15, 17] or nonlinear SDEs in spatially het-
erogeneous networks [20]. Here we demonstrate methods for deriving nonlinear SDEs for the
effective motion of patterns in stochastic neural field equations, focusing on fronts and bumps
in particular.
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The basic neural field equation with a noise term R(z,t) takes the form

T@u(m, t)

(1.1) o

= —u(x,t) + / w(zr —y)F(u(y,t))dydt + /eR(z,t),
Q

where u(z,t) represents neural population activity at position z € Q and time ¢, where 2 is a
one-dimensional domain such as R or the ring [—m, 7r]. The function F is a nonlinear firing-rate
function. Synaptic connectivity in the network is represented by the function w(x — y), which
describes the polarity (sign) and strength (amplitude) of connection from location y to 2. The
stochastic forcing is assumed to be weak by taking 0 < € < 1. Expressing R(x,t) in terms of a
spatially extended Wiener process, one can formulate the neural field equation as a stochastic
integrodifferential equation on a suitable function space such as L?(R). Suppose that the
deterministic neural field equation (e = 0) supports a wave solution Up(§) with & = x — ¢t and
¢ the wave speed (¢ = 0 for stationary waves such as bumps [20]). Motivated by perturbation
methods for analyzing fronts in stochastic reaction-diffusion equations [2, 26, 27], we used
a separation of time scales to decompose the effects of noise into (i) a slow, diffusive-like
displacement A(t) of the wave from its uniformly translating position, and (ii) fast fluctuations
in the wave profile. More explicitly,

(1.2) u(e, t) = Ug(€ — A1) + Ved(E — A1), 1),

Substituting this decomposition into the neural field equation and carrying out an asymptotic
series expansion ® = &+ O(e'/?), one finds that boundedness of ®q leads to a self-consistency
condition for A(t), which takes the form of a stochastic ODE. One thus establishes that
A(t) undergoes Brownian motion. There have been several subsequent developments of the
theory, both in terms of applications and in terms of more rigorous mathematical treatments.
Bressloff and Webber have applied these methods to study the effects of noise in binocular
rivalry waves, showing that wandering of the wave associated with perceptual switching is
diffusive [29]. Second, Kilpatrick and Ermentrout have analyzed the wandering of stationary
pulses (bumps) in stochastic neural fields [20], and Kilpatrick has shown how weak interlaminar
coupling can regularize (reduce the variance) of stationary pulses and propagating waves in
a multilayered, stochastic neural field [16, 17]. Regarding rigorous treatments, Faugeras and
Inglis [11] have addressed the issue of solutions and well-posedness in stochastic neural fields
by adapting results from SPDEs, whereas Kriiger and Stannat [21] have developed a rigorous
treatment of the multiscale decomposition of solutions.

One feature that has emerged in some applications of stochastic neural fields is that the
displacement variable A(t) can satisfy an Ornstein—Uhlenbeck (OU) process rather than pure
Brownian motion. For example, this occurs in the case of stimulus-locked fronts [6] and in
the regularization of waves in multilayer networks, where A(¢) now represents the relative
displacement of fronts in different layers [17]. However, one assumption in the derivation
of the OU process is that the displacement A(¢) is small. In this paper, we show that this
assumption can break down and, in fact, A(t) evolves according to a nonlinear SDE. It turns
out that in the aforementioned applications, the deterministic part of the SDE has a unique
stable fixed point, so that one can carry out a linear-noise approximation and recover an OU
process, but with modified expressions for the drift term. More significantly, the nonlinear
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nature of the SDE also raises the possibility of a breakdown in the linear-noise approximation
due to the coexistence of multiple phase-locked states.

Our results are organized as follows. In section 2, we demonstrate how a nonlinear SDE
can be derived for the stochastic motion of a stimulus-locked front driven by additive noise.
The shape of the nonlinearity is determined by both the spatial profile of the stimulus as
well as the front profile. We extend our methods in section 3 to derive a nonlinear system
of SDEs for the motion of two reciprocally coupled fronts in two separate layers, rather than
truncating to linear order as in [16]. While coupling tends to regularize the propagation of
fronts by pulling their positions close together, large deviations in noise can decouple fronts,
leading to an instability in the case of lateral inhibitory interlaminar coupling (section 4).
Last, we show in section 5 that our analysis can be applied to study wandering bumps in
reciprocally coupled laminar neural fields. Similar to the case of fronts, the nonlinear system
of SDEs we derive can be used to predict the mean waiting time until a large deviation wherein
bumps become temporarily decoupled, leading to a phase-slip.

2. Stimulus-locked fronts with additive noise. Consider the stochastic neural field equa-
tion [6]

o0

7dU (x,t) = [—U(az,t) +/ w(x —y)F(U(y,t))dy| dt

—0o0

(2.1) + 21 (x — vt)dt + €27V 2dW (2,t), x € R,

where I(x — vt) represents a moving external stimulus of speed v, and dW (x,t) represents an
independent Wiener process such that

(2.2) (dW (z,t)) =0, (dW (z,t)dW (z',t)) = 2C(x — 2/)5(t — t')dtdt’ .

Here the (stochastic) neural field U(z,t) is a measure of activity within a local population of
excitatory neurons at € R and time ¢, 7 is a membrane time constant (of order 10 msec),
w(z) denotes the spatial distribution of synaptic connections between local populations, and
F(U) is a nonlinear firing rate function. F' is taken to be a sigmoid function

1

with gain v and threshold . In the high-gain limit v — oo, this reduces to the Heaviside
function

1 ifu>k,
(2.4) F(u)—>H(u—m)—{0 <k
with H(0) = 1/2. We will assume that the weight distribution is a positive, even function of
x, w(z) > 0 and w(—=z) = w(z), and that w(x) is a monotonically decreasing function of
for x > 0. A common choice is the exponential weight distribution
1

(2.5) w(z) = %e—m/a’
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where o determines the range of synaptic connections. The latter tends to range from 100pm
to 1 mm [25]. We fix the units of time by setting 7 = 1.

In the absence of any external inputs and noise (¢ = 0), the resulting homogeneous neural
field equation

ou(x,t &
(2.6 wol) — —uwt)+ [ wle - )Pty 0)dy
ot o
supports a traveling front solution. First note that a homogeneous fixed point solution u* of
equation (2.6) satisfies

[e.e]

(2.7) u' = KoF(u"), Ky= / w(y)dy.

—00
It can be shown graphically that in the case of a sigmoid rate function, it is possible for the
space-clamped network to exhibit bistability, in which a pair of stable fixed points u*4+ are
separated by an unstable fixed point u§. Let u(x,t) = Up(§), & = = — ct, be a traveling
front solution with wave speed ¢ such that lime_,_o Up(§) = u? and limg o Up(§) = u’.
Substitution of this solution into (2.6) gives

(o]

(238) ~eUj() = ~Uo©) + [ w(e ~ )P e’

—00
Following Amari [1], an explicit traveling front solution can be constructed in the high-gain
limit F(u) — H(u — k) with 0 < k < Kj. One finds that Uy(§) is a monotonically decreasing
function of £ that crosses threshold at a unique point. We are free to take the threshold crossing
point to be at the origin, since (2.6) is equivariant with respect to uniform translations. That is,
Up(0) = &, so that Up(§) < k for £ > 0 and Uy(§) > k for £ < 0. Taking F(u) = H(u — k) in
(2.8) then gives

0

(2.9) _CUY(E) + Un(€) = /

— 00

w(é —¢&hde = /500 w(x)dx = K(§),

where U} (€) = dUp/d¢. Multiplying both sides of the above equation by e~¢/¢ and integrating
with respect to £ leads to the solution

C

(2.10) Up(€) = e8/¢ |:/€ — l/og e_y/cK(y)dy] .

Finally, requiring the solution to remain bounded as £ — oo (§ — —o0) for ¢ > 0 (for ¢ < 0)
implies that x must satisfy the condition

(2.11) K= ’_:;’/000 e Y/l K (sign(c)y)dy,

and thus

(2.12) Up(€) = L / el Il K (sign(c)y + €)dy.
el Jo
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In the case of the exponential weight distribution (2.5), the relationship between wave speed
c and threshold « is

(2.13a) c=cq(k) = %[1 —2k] for k < 0.5,
ol—2k
(2.13b) c=c_(k) = 51 . for 0.5 <k < 1.

Moreover, one result we will need later is the explicit form for Uy when & > 0 and ¢ > 0,
namely,

1 —£/o
(2.14) Uo(€) = 2—f+—a/

In summary, for a Heaviside rate function and no external input there exists a unique
stable front solution of (2.6) whose wave speed c is an explicit function of various physiological
parameters such as the range of synaptic connections and the firing threshold. Stability of the
front can be established by constructing the associated Evans function whose zeros determine
the spectrum of the resulting linear operator [5, 8, 30]. If one now includes an external stimulus
in the form of a step function of height Iy and speed v, one finds that the traveling front can
lock to the stimulus, provided v — ¢ lies within a certain range that depends on Iy, where ¢
is the natural wave speed in the absence of inputs [13]. Although it is not possible to obtain
explicit traveling wave solutions in the case of a smooth firing rate function, it is possible to
prove the existence of a unique front with or without an external stimulus [9, 10]. In this
paper, we develop our analysis of wandering fronts in stochastic neural fields using a smooth
sigmoid rate function F'. However, we illustrate the theory by taking the high-gain limit, since
this yields explicit formulae for the nonlinear Langevin equation describing wandering in the
weak noise limit.

2.1. Stimulus-locking in the presence of noise. We want to determine from (2.1) how
the combination of a weak moving stimulus and weak additive noise affects the propagation
of the above traveling front solution in the small € limit. Suppose that the input is given
by a positive, bounded, monotonically decreasing function of amplitude Iy = I(—o0) — I(00).
From the theory of stimulus-locked fronts in deterministic neural fields [13, 29], we expect
that in the absence of noise, the resulting inhomogeneous neural field equation can support a
traveling front that locks to the stimulus, provided the stimulus speed v is sufficiently close
to the natural speed ¢ of spontaneous fronts, that is,

v =c+ Vevr.

On the other hand, following recent studies of wandering fronts [6, 29] and bumps [16, 17, 20]
in stochastic neural fields, we expect the additive noise term in (2.1) to generate two distinct
phenomena that occur on different time scales: a slow stochastic displacement of the front,
and fast fluctuations in the front profile. Both stimulus-locking and stochastic wandering can
thus be captured by decomposing the solution U(x,?) of (2.1) as a combination of a fixed wave
profile Uy that is displaced by an amount A(t) = A(t) 4 (v —¢)t from its uniformly translating
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mean position £ = x — ct, and a time-dependent fluctuation ® in the front shape about the
instantaneous position of the front:

(2.15) Uz, t) = Up(€ — A1) + €/2®(€ — A(t),1).

Here Uy is the front solution in the absence of inputs moving with natural speed c; see (2.9).
(For ease of notation, we have suppressed the fact that A and @ also depend on €.) It is
important to note that, as it stands, the decomposition (2.15) is nonunique with regards to
the separate functions A and . Hence, from a functional analytic perspective, one has to
impose an additional constraint involving, for example, the difference [|U(-,t) — Ug(- — A(t)]
with respect to an appropriate norm [21]. In the case of the formal perturbation method
developed below, we determine ﬁ(t) uniquely to leading order in e by applying the Fredholm
alternative, whereas the leading order expression for ® is nonunique. The same comments
apply to the decompositions carried out in subsequent sections.
The next step is to substitute the decomposition (2.15) into (2.1):!

—vUs(€ — AW)dt — (€ = A(t)dA() + ¢/ [dd( — A(t), 1) — v (¢ = A(t), ]

— €2/ (¢ — A(t), t)dA(t)
= —Up(& — A(t))dt — €'2B(& — A(t), t)dt + /2dW (€ + ct, 1)

o~

+ [ ule—eF [one - B + (¢ - B0 dgar

—00

(216) 4+ €216 — (v — )t t).

An important point to emphasize is that one cannot generally carry out a perturbation expan-
sion with respect to A(t), as was previously assumed in [6]. As we will show below, A(t) — &
as t — oo in the absence of noise with the constant & typically of O(1). On the other hand,
one can carry out a perturbation expansion in ® by writing ® = ®g + /e®; + O(e). Self-
consistency of this asymptotic expansion will then determine A(t). Substituting the series
expansion for ® into (2.16), Taylor expanding the nonlinear function F', and imposing the
homogeneous equation for Uy leads to the following equation for ®g:

—e! Py UY(€ — A())dt — Up(€ — A(t))dA(t)
% [d@o(g — A(t), 1) — e (& — A(t), t)dt] — €200 (¢ — A(t), t)dA(t)
= —' 200 — A(t), t)dt + /AW (€ + ct,t) + /2I(E — (v — o)t 1)
+el? / w(& — &)F'(Uo(&' — A1) Do(¢ — A(t), t)d¢/dt.

—00

In carrying out the change of stochastic variables, care has to be taken with regards to Ito calculus [14].
That is, it turns out that ﬁ(t) evolves according to a diffusion process, which means there will be an Ito-
correction term involving the quadratic variation of A. However, this term will be of order ¢, which does not
contribute to the leading order Langevin equation for A. Therefore, we ignore any Ito-correction terms in our
subsequent analysis.
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Shifting & — £ + ﬁ(t) and dividing through by €'/2 then gives

Ao (&, 1) = LOo(E, t)dt + € V2UL(E)AA() + dW (€,1) + T(€ + A(t))dt
(2.17) + v Uy (€)dt,

where W(f, t) =W+ A(t) + vt, t) and L is the non-self-adjoint linear operator

(2.18) 2a©) = < -4+ [ wie- )P OnENAE)aE

for any function A(¢) € L?(R). It can be shown_that for a sigmoid firing rate function
and exponential weight distribution, the operator L has a one-dimensional (1D) null space
spanned by U}(§) [10]. (The fact that Uj(&) belongs to the null space follows immediately
from differentiating equation (2.8) with respect to £.) We then have the solvability condition
for the existence of a bounded solution of (2.17), namely, that the inhomogeneous part is
orthogonal to all elements of the null space of the adjoint operator L*. The latter is defined
with respect to the inner product

(219) | BeLaga - [ [TBe)] A,
where A(§) and B(§) are arbitrary integrable functions. Hence,
(2:20) 56 - 5 - B + ) [ wie- e

It can be proven that L* also has a 1D null space [10]; that is, it is spanned by some function
V(&). The solvability condition reflects the fact that the homogeneous system (e = 0) is
marginally stable with respect to uniform translations of a front. This means that the linear
operator L has a simple zero eigenvalue, while the remainder of the spectrum lies in the
left-half complex plane. Hence, perturbations of ®y that lie in the null space will not be
damped, and thus @y will be unbounded in the large ¢ limit unless these perturbations vanish
identically.

Taking the inner product of both sides of (2.17) with respect to V(£) leads to the solvability
condition

(2.21) /OO V(€) [6—1/2U5(§)dA(t) + I(€ + A@))dt + v UY(€)dt + dW (&, t)] d¢ = 0.

It follows that, to leading order, A(t) satisfies the nonlinear SDE
(2.22) AA(t) + 2G(A(®))dt = €/2dW (1),

where

/ TVEUE A+ onl(©)de
(2.23) G(A) = —= =
/ V(E)US(€)de

—00
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and
[ vewena
(2.24) W(t) = — 1= .
| v
Note that
(2.25) (dW () =0, (dW(t)dW (t)) = 2D5(t — t')dt'dt,

with D the effective diffusivity

| [ veve)awenaie. e
D= J=xJ-x

[ o] 2

| [ vece-¢meaea
(2.26) = Joo oo

[ v 2

Suppose that there exists a unique A = &, for which G(&) = 0 and G'(§) > 0. This
represents a stable stimulus-locked front in the absence of noise, with &y the relative shift

of the stimulus-locked front and the input. Taylor expanding about this solution by setting
2Y (t) = A(t) — & with Y (t) = O(1), we obtain the OU process?

(2.27) dY (t) + 2 AY (t)dt = dW (¢),
where -
| v
A= G,(SO) = s :
| v

(In our previous work [6], {n was assumed to be zero.) Using standard properties of an OU
process [14]

(2.282) (A@)) = & [1 - e_\/EAt} + A(0)eVEAL
(2.28b) (A()?) — (A(t))? = \/jD [1 —e—WEAt} .

2Note that the e expansion of the Langevin equation (2.22) under the linear noise approximation is distinct
from the original € expansion of the neural field equation. That is, the Langevin equation is an exact self-
consistency condition for the phase-shift A(¢) obtained by applying the Fredholm alternative to the leading
order terms in the € expansion of the neural field equation; see (2.17). The corresponding solution ®q of (2.17)
is nonunique, since it can be shifted by AoUj(€) with Ao arbitrary. In order to determine Ay, it is necessary
to consider the self-consistency condition obtained by applying the Fredholm alternative to the O(e) equation
for ®;. However, this does not modify the equation for A(t).
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In particular, the variance approaches a constant \/eD/A in the large ¢ limit and the mean
converges to the fixed point &.

In summary, it is necessary to modify the analysis of stimulus-locked fronts in [6] by noting
that A(t) actually evolves according to the nonlinear SDE (2.22) rather than an OU process.
In order to obtain an OU process one then has to model Gaussian-like fluctuations about
a stable fixed point & of the deterministic part using a linear-noise approximation. This
is reasonable provided that the deterministic equation does not exhibit multistability, which
holds for stimulus-locked fronts. One additional feature of the nonlinear theory is that an
explicit condition for the existence of a stimulus-locked front can be obtained in terms of the
fixed point &.

2.2. Explicit results for Heaviside rate function. We now illustrate the above analysis
by taking F'(u) = H(u— k) so that the null vector V can be calculated explicitly. For the sake
of illustration, we also assume that ¢ > 0. It follows that V satisfies the equation

(229) V(O V(O = g [ wle (et

which has the solution [4]

(2.30) V(E) = —H(&)exp (=¢/c).
We have used (2.12) for Up, which implies that

(2.31) Uye) = /0 e view(y + €)dy

C

For explicit calculations, we take w to be the exponential weight function, so that Uy has the
explicit form (2.14). In anticipation of subsequent sections, we evaluate (2.26) in the case of
the correlation function C(&) = Cpcos(&), for which

Uo e 5/Ccosédg] [foo _f/csinﬁdé]z B Coo?

e TR )

In order to determine the constant shift £ and the drift term A, we need to specify the form
of the input I. For the sake of illustration, let

I(§) = IoH(—¢).
The nonlinear function G(A) becomes
00 —A
| el ¢ - ) + ol | e
0 = =1+ I(]H( A) (X(,)
| e | e
0 0

(233) —o - pH(-A) 2t [1-e2].

(o

G(A) =
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4 1.
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Figure 1. (a) Existence regions for stimulus-locked traveling fronts in the (Io,v)-plane for e = 1, o = 2,
and ¢ = 3. For a given input amplitude Iy, stimulus-locking occurs for a finite range of v with ¢ < v < v*. The
curved boundary on the right-hand side of the existence region yields a function Iy = Io(v*) whose tangent in
the limit Iy — 0 is given by the straight line Iy = o(v* — ¢)a/2(c + )?). (b) Corresponding existence region
for ¢ = —18.

It follows that for a given stimulus velocity there exists a unique stimulus-locked front
with shift & satisfying G(&y) = 0, that is,

oU1
2.34 =cln|l— ———— 0
(2:34) & cn{ 210(C+0)2]< |
provided

21 2
(2.35) 0<wv <o) = w.

Note that (2.34) is consistent with the nonperturbative result obtained in [13] after Taylor
expanding to lowest order in €. Moreover,

1. 2(c+o0)? vy efo/e
/ _ ol 2\ T Y) Gofe LY
G'(&) =c Iy pa— cl—e50/0>0’

so the fixed point is stable. In Figure 1(a) we plot an example of an existence region for
stimulus-locked fronts in the (v, Iy)-plane and ¢ > 0. In the limit of small inputs the tangent
to the existence curve approaches the straight line obtained using perturbation theory. An

analogous calculation can be carried out for ¢ < 0; an example of an existence region is shown
in Figure 1(b). The stationary variance about the fixed point takes the explicit form

o
- G'(&)

Hence, increasing the stimulus velocity reduces the variance. Note that the singularity in the
limit v — ¢ reflects the fact that the stimulus-locked front becomes unstable.

(2.36) (A2 — (A@®)?

3. Fronts in weakly coupled stochastic neural fields. Another example of wandering
fronts exhibiting an OU process occurs in a laminar neural field model [17]. As in the previous
example of stimulus-locked fronts, we will show that the noise-induced wandering is described
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by a nonlinear SDE, and it is only by linearizing about a stable fixed point of the SDE that
one obtains an OU process. For the sake of illustration, consider a pair of identical 1D neural
fields labeled j = 1,2 that are mutually coupled via the interlaminar weight distributions
Ji(z) and Jo(x):

(e}

(3.1a)  7dUy(z,t) = [—U1($,t) +/

—00

w(z — y)F(Ul(y,t))dy} dt
1l / Ji(z — y)F(Us(y, t))dydt + /7 /2dW; (z, 1)

and

(e}

(3.1b)  TdUs(z,t) = [—Ug(:c,t)Jr/

—00

w(x —y)F(Ua(y, t))dy] dt
+e/? / To(@ — y)F(Ui(y, t))dydt + €°7'2dWa(x, 1).

Here W1 (z,t) and Wa(z,t) represent spatially extended Wiener processes such that
(3.2) (dWj(x,t)) =0, (dW;(z, t)dW;(2',t")) = 2C;;(x — 2')d(t — t')dtdt’.

Note that the interlaminar coupling is assumed to be weak and asymmetric (unless J; =
J2). As with the intralaminar coupling, the distributions J;(x) will be taken to be positive
exponentials:

(3.3) Ji(z) = aje~lel/es,

As shown by Kilpatrick [17], in the absence of noise, the interlaminar coupling phase-locks
the fronts propagating in each of the two networks, resulting in a composite front with fixed
relative shift £y. We wish to derive conditions for such locking and determine how the presence
of noise induces wandering of the composite front relative to &.

3.1. Interlaminar coupling of fronts in the presence of noise. In the absence of inter-
laminar coupling and noise (e = 0), each neural field independently supports a traveling front
solution Uy(&) along the lines outlined in section 2 with & = x — c¢t. Since each neural field
is homogeneous the threshold crossing point of each front is arbitrary. Following our analysis
of stimulus-locked fronts, we can simultaneously investigate the effects of weak coupling and
noise by considering the decompositions

(3.4) Uj(e.1) = Up(€ — Aj(0) + €/20,(6 — Aj().0), j=1.2

with ®; = ®;o 4+ /e®;1 + O(e). Substituting into (3.1a) and (3.1b), Taylor expanding the
nonlinear function F, and imposing the homogeneous equation (2.10) for Uy leads to the
following equations for ®;q:

d®1o(€,t) = LO1o(&, t)dt + € V2UY(E)dAL () + dW (&, 1)
(3.50) 4 / (€ — EVF(U(E + A (t) — Ag(t)))de'ds
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and

Ao (€,t) = Lo (€, t)dt + € 2UH(€)d Ao (t) + dWa (€, t)
(3.5b) 4 / o€ — €)F(Up(€' + Aa(t) — Ay (1)))de'dt,
where

Wj(€,t) = Wj(€ + et + Aj(t), 1),

and the linear operator L is given by (2.18).

As in the case of stimulus-locked fronts, boundedness of the fast fluctuations ®,q require
that the inhomogeneous terms are orthogonal to the null vector V() of the adjoint operator
L*. This leads to the following two-dimensional nonlinear SDE for (Ay(t), Ag(t)):

(3.6a) dAL (1) + €2G1 (AL (1) — Ag(t))dt = €/2dW (1),
(3.6b) dAs(t) + €2Go (Do (t) — Ay (t))dt = €/2dWy(t),
where

/ [/ Ji(€ — €VF(Uy (€ + A)de| de

(3.7) Gj(A) =

[ v
and

[ v

(3.8) Wi(t) = -7 :

| v
Note that
(3.9) (dWi(t)) =0, (dW;(t")dWi(t)) = 2D;6(t — t')dt'dt,

with Djj, the effective diffusion matrix

/ / AW (€ 4 ct + Aj(t), 1) dWi (& + et + Ag(t),t))dedE’

[ v 2

/ T VE)CE — €+ A1) — Ap()V(E)de de

[ v 2

Dy, =

(3.10)
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It is clear that if we allow correlations between the noise in different layers, then the diffusion
matrix depends on the phase difference A; — Ay, and the noise terms in the SDE (3.6) are
multiplicative. In order to avoid issues regarding the interpretation of the noise in terms of
Ito or Stratonovich, we will simplify the correlation matrix by setting

Cij (&) = 9;;C(8).
It follows that Djj, = d;,D, with D given by (2.26).

In the original analysis of interlaminar neural fields [17], A = A; — Ay was assumed
to be small, and (3.5a) and (3.5b) were Taylor expanded to first order in A, resulting in
a multivariate OU process. However, as we found for stimulus-locked fronts, A(t) is not
necessarily small. Therefore, one should proceed by looking for a stable fixed point of the
ODE
dA
dt
which is obtained by subtracting the deterministic parts of the pair of equations (3.6) and
setting G4 (A) = G1(A) £ Ga(—A). Suppose that there exists a & for which G_(&) = 0
and G'_(§) > 0. This represents a stable phase-locked state in the absence of noise, with
&o the relative shift of the fronts in the two networks. One can establish the existence of a
unique phase-locked state using the properties of G;(A) given by (3.7). Since the interlaminar
coupling is taken to be excitatory, J;(£) > 0 for all £, and Up(§) is a monotonically decreasing
function of &, the following properties hold:

(i) Gj(A) <0 for all A.

(ii) Gj(A) is a monotonically increasing function of A with Gj(A) — 0 as A — oo and
Gj(A) = Gj as A — —oo.

(iii) The functions G1(A) and Ga(—A) intersect at a unique point A = &y with the sign of
&o determined by the relative strengths of J; and Jo. By symmetry, if J; = Js, then & = 0.

Given the stable fixed point &y, one can now apply a linear-noise approximation to the
full SDE (3.6) and derive a multivariate OU process. Let

A(t) =& + Y (1), S(t) = Ai(t) + Da(t)

(3.11) —'2G_(n),

and write

8a() = 0+ SIS0+ YO Bal) =~ + T [5(0) ~ V(1)
Here S(t)/2 represents the “center-of-mass” coordinate. Equations (3.6) become
(3.12a) %[dS(t) b AY ()] + Gy (& + €2V (8))dt = dTT (1),
(3.12b) %[dS(t) LAY (8)] + Ga(—Eo — V2V (1))dt = dTTa(t).

We can now Taylor expand the nonlinear function G' with respect to €'/2Y (t). Adding and
subtracting the above equations then yields the linear system of SDEs

(3.13a) dS(t) + [G+ (o) + €'/2G (&)Y (D)]dt = AW (8),
(3.13Db) dY (t) + €2G" (&)Y (t)dt = dW_(t),

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 03/04/15 to 155.101.97.26. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

318 PAUL C. BRESSLOFF AND ZACHARY P. KILPATRICK

where
W (t) = Wi(t) = Wa(t).

W (t) are also independent Wiener processes with
(dWq(t)) =0, (dW,(t)dWy(t)) = 4Ddgpdt, a,b= =+.

Under the linear-noise approximation, fluctuations in the phase difference A(t) about the
fixed point &y satisfy a 1D OU process, which in turn drives fluctuations in the center-of-mass
variable S(t). If £y = 0, then we recover the results of Kilpatrick [17].

It immediately follows that the mean and variance of Y'(¢) are given by the equations
(cf. (2.28))

(B11) T = (Y1) = Y00V, Oy(t) = (Y1) — (Y(1) = o [1 - 2]
VeA

with A = G'_ (&) = G} (&) — G5(&) and G; defined by (3.7). This implies that in the limit

t — oo the mean of the phase-shift A(t) converges to the deterministic fixed point &, and

the variance about the fixed point converges to 2D+/¢/A. In the case of S(t), (3.13a) can be

integrated explicitly to give (with S(0) = 0)

t
S(t) = ~Gileo)t — G (&) [ Y(s)ds+ W)
0
Taking the mean and variance of this solution yields

319 () = (5(0)) =~ (et - FHIO [ e

and
(3.16) O =(S?) — 5 = G, (&)’ /0 /0 (Y ()Y () — (Y(s)){Y (s'))] ds'ds + 4D.

In the large time limit, Y (¢) becomes a stationary process with zero mean and autocorrelation

function D
Y Y / _ —\/EA|8—8/‘.
V()Y () = e

Moreover,

e VeA|s—s'| tr VeA(s—s') 2t 2 VAt
—\/eAls—s ! o —€A(s—s / o - e
/o/oe dsds_2/0/0e deS_\/EA €A2{1 ¢ }

Hence, for large t
(3.17) 0% ~ 2Dt,

where we have used the fact that A = G"_(&).
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In conclusion, the mean position of each front is given by (for Y (0) = 0)

1/2 s
- % - EC;A’% (Bo(t)) = — 80 - G E0),

(3.18) (A1 (1)) 0=

Thus, as previously noted by Kilpatrick [17], one effect of weak coupling is to induce an O(+/€)
increase in the mean speed of each front according to
e'2G (&)

— —_— > C.
c c+ 5

Furthermore, in the presence of additive noise, fluctuations in the phase-shift are given by an
OU process, whereas fluctuations in the center of mass are given by Brownian diffusion in the
large-time limit.

3.2. Explicit results for Heaviside rate function. Since the uncoupled, deterministic neu-
ral field equations (e = 0) are given by (2.6), the calculation of the null vector V() and diffu-
sivity D for the Heaviside rate function proceeds as in section 2.2. That is, V(€) = —H (€)e~¢/¢.
Therefore, we only have to calculate the nonlinear function G;(A) of (3.7). First note that

—

[e.e] 00 1
| v = - [ e tuie = 5,
so that
Gy(a) = 2 :CC) R;(A)
with

00 —-A
(3.19 w8 = [T [ e~ e ae
0 —00
Taking J;(£) to be an exponential distribution, we find that for A >0

2
C ;0%

J _ )

Rj(A) = —L Lo o,
C—|-O'j

whereas for A > 0,

C—0j cCT — O~

je—A/Jj 2c2e—A/C)
J

Rj(—A) = OéjCUj (2 + g 2 2

For the sake of illustration, suppose that ¢ = 0.25, 0 = 0; = 1 and set ap/a; = . In
Figure 2 we plot the function G_(A) with respect to the phase-shift A for several values of
ag/aq. As expected, G_(A) is a monotonically increasing function of A with a unique zero
&o. In the case of symmetric weights (o« = 0) we have {; = 0, whereas for 0 < a <1 (1 < «)
we find that & > 0 (§9 < 0). Recall that the stationary variance about the phase-locked state
is

2\/eD

2 2 _
(3.20) (A(1)7) — (A@)” = &)
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Figure 2. Plot of G_(A) as a function of phase-shift A for different values of the relative weight o = a2 /a1
of excitatory coupling. Other parameter values are ¢ = 0.25 and 0 = 01 = 02 = 1. It can be seen that there
exists a unique zero &o for which G_ (&) = 0 and G’ (&) > 0. If the interlaminar weights are stronger (weaker)
in the direction 2 — 1, then & > 0 (&9 < 0). In the case of symmetric interlaminar connections we have & = 0.

&o is fixed by the degree of asymmetry « in the interlaminar connections. However, G’ (&p)
scales with aj, which establishes that increasing the strength of interlaminar coupling can
reduce the variance, as previously highlighted by Kilpatrick [17]. Upon considering weight
spatial scale o = 0; = 1, symmetric connectivity a = 1, and cosine noise correlations C'(§) =
cos(§), then D is given by (2.32), § = 0, G'_(0) = 20 /k; thus (A(t)) = 0 and

3.21 AW — (AW = —Y

(3:21) (AOP) — (B0 =

We compare formula (3.21) to numerical simulations in Figure 3, demonstrating how the
variance decreases with ay as well as the threshold «.

4. Breakdown of linear-noise approximation. So far we have considered examples of
stochastic phase-locked fronts, in which there is a unique, stable phase-locked state in the
deterministic limit. This allowed us to carry out a linear-noise approximation and thus show
that fluctuations about the phase-locked state can be characterized in terms of an OU process.
Here we consider an example where the linear-noise approximation breaks down due to the
existence of an additional unstable phase-locked state in the absence of noise. We again con-
sider a pair of coupled neural fields given by (3.1a) and (3.1b), but now take the interlaminar
coupling to be given by a difference of exponentials: J; = Jo = J with

(4.1) J(z) =y [e_m — Be"m'/'y] , 0<p<l, v>1

This distribution represents short-range excitation and long-range inhibition. For the sake of
illustration, we assume that the interlaminar coupling is symmetric. The analysis of stochastic
phase-locking proceeds along identical lines to section 3, and we obtain the nonlinear SDE
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Figure 3. (A) The variance in the phase difference (A?) saturates in the limit t — oo. Variance is
computed as a function of time using numerical simulations (dashed line), and asymptotic theory (solid line)
predicts the saturation value (3.21). Interlaminar connectivity strength a1 = ae = 1, so & = 0 and (A(t)) = 0;
noise amplitude e = 0.0005. (B) The stationary variance decreases as a function of interlaminar connectivity
strength a1 = a2 in numerical simulations (circles) and theory (solid line). Threshold k = 0.4 and noise
amplitude € = 0.0005. Variances are computed using 25000 realizations each.

(3.6). In the absence of noise, the phase-difference A(t) evolves according to (3.11) with
G_(A) =G(A) — G(—A) and

19 A = /_Z V(e) U_Z J(g_gl)F(UO(£I+A)d£I:| de
h o | v

for J given by (4.1). In the case of a Heaviside rate function, G_(A) may be evaluated
explicitly to yield

(o +¢)? 62%1 [62(1 N e—A)}

(c+c)? 1
2 -

(4.3) G_(A) = day

— 4o By 5 [02(1 — e_A/C) — 72(1 — e_A/'Y)] .

c
In Figure 4, we plot G_(A) for various values of § with 0 = ¢ =1 and v = 4. It can be seen
that for a range of 3 values, there exist three fixed points, a stable fixed point at A = 0, and
a pair of unstable fixed points at A = +£;(3). Note that the lower bound value of 8 at which
the unstable fixed points emerge is where

(0 +c)? [Zz

1
1

oA _ 2 A2

4.4 li _ =4 =0

(“4.4) Aim G- (A) = dan —1 ~Prac ,Yz} ,

or where 3 = v~ 1. For sufficiently large 3 (strong mutual inhibition), the system undergoes
a pitchfork bifurcation, resulting in a single unstable phase-locked state. This occurs when

G'_(0) = 0, equivalently at

c+y

(4-5) B = Bpitch = m
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Figure 4. Plot of G_(A) as a function of phase-shift A for different values of the inhibitory weight (.
Other parameter values are 0 =1, ¢ = 0.25, a1 = 0.25, and v = 4. It can be seen that for intermediate values
of B, a stable phase-locked state at A =0 coexists with a pair of unstable fized points at A = +&o(5).

Let us focus on the regime where the stable phase-locked state at zero coexists with a
pair of unstable states. If we now carry out a linear-noise approximation about the stable
state, then the resulting OU process will capture the Gaussian-like fluctuations within the
basin of attraction of the phase-locked state on intermediate time scales. However, on longer
time scales, large fluctuations (rare events) can lead to an escape from the basin of attraction
due to A(t) crossing one of the unstable fixed points +&;. Destabilization of the noise-free
system is illustrated in Figure 5. Noise-induced escape from the stable state (as in Figure 6A)
cannot be captured using the linear-noise approximation. The full SDE for A(t) is obtained
by subtracting (3.6a) and (3.6b), which yields

(4.6) dA(t) = —G_(A)dt + \/pdW (t),
where we have set 4D = 1, u = /e and rescaled time according to t — ut. Here
(dW(t)) =0, (dW () dW (t')) =5(t —t')dt'dt.

Let p(A,t) be the probability density for the stochastic process A(t) given some initial con-
dition A(0) = Ag. The corresponding Fokker—Planck (FP) equation is given by

Op _OIG_(A)p(A )] | pd*p(At) _ 9J(AL)
ot oA 2 OA? TN

(4.7)

where

_ pOop(A,t)
2 0A

and p(A,0) = §(A — Ag). Suppose that the deterministic equation A = —G_(A) has a

stable fixed point at A = 0 and a pair of unstable fixed points at A = +&. Thus the

basin of attraction of the zero state is given by the interval (—&;,&1). For small but finite

J(At) = —G_(A)p(A, )
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Figure 5. Decoupling of fronts in the case of laterally inhibitory connectivity in (3.1la)—(3.1b) with no
noise. (A) For a symmetric network, starting the front positions A1 and As within the basin of attraction of
the coupled state (A1(0)—A2(0) = 3) leads to long-term coupling: lim; oo |A1(t) — A2(t)| = limi— oo |A(E)| = 0.
(B) Starting front positions A1 and Az outside the basin of attraction of the coupled state (A1(0) —A2(0) =4)
leads to long-term decoupling: lim; oo |A1(t) — Az(t)| = limy o0 |A(t)| = 00. Threshold k = 0.4, so ¢ = 0.25;
no noise (W1 = Wa = 0); coupling parameters are e = 0.005, o = 1, § = 0.4, v = 4. This results in the unstable
fized point (separatriz) occurring at A = Ay — Ag = 3.78. In all figures, the pink (blue) curve represents the
leading edge of the front (trajectory of threshold crossing point) for j =1 (57 =2).

1, fluctuations can induce rare transitions out of the basin of attraction due to a metastable
trajectory crossing one of the points +&;. Assume that the stochastic system is initially
at Ag = 0. In order to solve the first passage time problem for escape from the basin of
attraction of the zero fixed point, we impose absorbing boundary conditions at £&;; that is,
we set p(££1,t) = 0. Let T'(A) denote the (stochastic) first passage time for which the system
first reaches one of the points +£;, given that it started at A € (—¢£1,&1). The distribution
of first passage times is related to the survival probability that the system hasn’t yet reached
ifli

(4.8) S(t) = / (AL A,
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That is, Prob{t > T'} = S(t) and the first passage time density is

ds & 9p
(4.9) f(t) = Sl — (A, t)dA.

Substituting for dp/0t using the FP equation (4.7) shows that

S9J(A )

(4.10) 0= “5a

dA = J(&1,t) — J(—£1, ).

The first passage time density can thus be interpreted as the total probability flux leaving the
basin of attraction through the absorbing boundaries.

Using standard analysis, one can show that the mean first passage time (MFPT) 7(A) =
(T') satisfies the backward equation [14, 28]

dr  p d*t

(4.11) ~G- (D) 5o

= 1,

with the boundary conditions 7(4£;) = 0. Solving this equation yields

(4.12) T(A) = 1 (A) — 7o(A),

L) (L)L st
1 -1 1 A
(414 m(A):%(/_Z ([ l/ ay / ]

and

with

(4.13) n(A) =

I—I

(4.15) B(A) = exp [—% / o <y>dy} |

We can simplify the analysis considerably by exploiting the symmetry of the given problem,
namely, that G_(A) = —G_(—A) and hence ¥(A) = ¢(—A). It is then straightforward to
show that

2 [ dy /y’
4.16 7(0) = — — Y(z)dz.
( ) © wo v Jo )
This is identical to the formula for the MFPT for escape from the interval [0,&;) starting at
A = 0 with a reflecting boundary at A = 0 and an absorbing boundary at A = £;. Using
steepest descents, one can now derive the classical Arrhenius formula [14]

(4.17) 70) ~ 2 2U(E)-UO)]/n
[U"(&)|U"(0)

9
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Figure 6. (A) Numerical simulation demonstrating a phase-slip (arrows) for two coupled fronts in the
system (3.1a)—(3.1b), using the exponential coupling function (3.3) with a1 = az = 0.1. Quverlaid lines represent
the evolution of the leading edge of the fronts in times A1(t) and Ax(t). (B) Average time 7(0) = (T') until a
phase-slip increases as a function of the interlaminar coupling strength oy = aa. Theory (solid line) computed
using (4.16) is compared with numerical simulation results (circles) as the coupling a1 is varied. Threshold
k = 0.4, noise amplitude ¢ = 0.003. Mean first passage times (T') are computed with 1000 samples.

where

A
(4.18) U(A) = /0 G (y)dy.

We compare our theory for the MFPT (T) = 7(0) to numerical simulations for symmetric
lateral inhibitory connectivity (4.1) and cosine noise correlations, so D satisfies (2.32), showing
in Figure 6 that the marginal rare event statistic is captured for low enough values of coupling
strength «1. However, as expected, our theory breaks down as the coupling strength a; is
increased. Our perturbation analysis is built upon the assumption of weak coupling between
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layers, so the reduced system will be a poorer characterization of the full integrodifferential
system’s dynamics for stronger coupling. For example, our reduced system does not account
for the reshaping of the front profile by the interlaminar coupling, which likely impacts the
waiting time until front decoupling. Fronts’ shapes may be altered in ways such that there
are multiple crossings of the firing rate threshold x, and capturing this feature would require
a more detailed reduced system.

The above analysis provides another example where knowledge of the nonlinear nature of
the phase-shift dynamics is crucial for determining the effects of noise. In sections 2 and 3,
the nonlinearity determined the unique phase-locked state &y about which we could carry out
a linear-noise approximation. Here, the explicit form of the nonlinearity is required in order
to determine the rate of escape from a (meta)stable phase-locked state that coexists with a
pair of unstable states. Note that, as expected, the mean escape time is exponentially large
in the weak noise limit y — 0, since U(&;) > U(0).

5. Bumps in weakly coupled stochastic neural fields. Kilpatrick has previously shown
that interlaminar coupling can reduce the long-term diffusion of bumps in stochastic neural
fields [16, 18]. Effective equations for the stochastic motion of bumps derived in this work
tended to be linear SDEs, such as OU processes. However, in [20] it was shown how the
impact of spatial heterogeneities can be accounted for by a nonlinear SDE that incorporates
the effective potential bestowed by the heterogeneity. Here, we extend this previous work as
well as our analysis of coupled fronts by considering nonlinear contributions to the effective
dynamics of bumps coupled in laminar neural fields. We focus on a pair of identical neural
fields on the ring x € (—m, 7|, labeled j = 1,2 and mutually coupled by interlaminar weight
distributions Ji(z) and Ja(x):

K

(5.1a) U (2,1) = [—Ul(x,t) + /

—Tr

w(z — ) F(U(, t>>dy} dat

+l/? / Ji(@ = y)F (Us(y,t))dydt + "> 2dW, (. 1)

—T

and
(5.1b) TdUs(z,t) = [—Ug(x,t) + /_7r w(x — y)F(Ug(y,t))dy} dt
(5.1¢) el / " o — y)F(Us (g, D) dydt + /2724y (2, 1),

The spatially extended Wiener processes Wi(z,t) and Wy(z,t) are defined on = € (—m,7]
with

(5.2) (dW(z,t)) =0, (dW;(x, t)dW;(2,t)) = 2C (z — 2)d; j6(t — t')dtdt'.

Coupling within a layer w(z — y) is assumed to be an even function of lateral inhibitory
type [1, 8, 20]. For comparison with numerical simulations, we assume intralaminar coupling

(5.3) w(x) = cos(x)
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and interlaminar coupling J;(x) may be asymmetric,
(5.4) Jj(z) = o cos(z),

and we will allow «; to be negative or positive. We will also set the time scale 7 = 1.
In the absence of interlaminar coupling and noise (e = 0), it can be shown that each neural
field independently supports a stationary pulse solution (bump), which satisfies the equation

(55) Unlz) = [ i~ 4) F(oly))dy

(see [20] for details). Each neural field is translationally symmetric, so each bump Uy(z) is
centered at an arbitrary location in the neural field. The nonlinear effects of noise and weak
coupling upon the position of the bumps can then be analyzed along identical lines to that of
traveling fronts in section 3, after setting ¢ = 0 and taking x € [—m, 7] rather than z € R. In
particular, writing

(5.6) Uj(x,t) = Up(a — A;(t) + € 2®;(z — Aj(0), 1), j=1,2,

we find that the displacements A;(t) satisfy the Langevin equation (3.6) with V(x) now the
null vector of the non-self-adjoint linear operator

(5.7) LA(z) = —A(x) +/ w(z — 2’ )F'(Uy(2')) A(2)dz’

for any function A(z) € L?([—,n]) and Uy a bump solution. (The integrals in (3.7), (3.8),
and (3.10) are now taken with respect to the circle rather than the real line.) Continuing along
identical lines to section 3, we can show that the phase difference A(t) = Aq(t) — As(t) evolves
according to (3.11). Hence, a stable phase locked state A(t) = z¢ will satisfy G_(z¢) = 0 and
G'(z¢) > 0. Finally, carrying out a linear noise approximation establishes that fluctuations
about the phase-locked state are given by an OU process, whereas fluctuations in the center of
mass are given by Brownian diffusion in the large-time limit, as was previously found in [16].
Moreover, in the limit ¢ — oo,

2 2 _ 2VeD
(5.8) (A7) = (A®)" = & (o)’

with
. V(m)C(x—x’)V( ’)dx’dg;
{ ™ V(@) Uy(x)da]”

(5.9) D=

)

and G_(A) = G1(A) — Ga(—A) for

f V(z [f J; :L"—:L")F(Uo(x’+A))dx’ dz
f V(x x)dz
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5.1. Explicit results for Heaviside rate function. The uncoupled deterministic neural
field equations (e = 0) are given by

(5.11) W = —u;(z,t) + /7r w(x —y)H(uj(y,t) —k)dy, j=1,2.

—Tr

Thus, for a cosine weight function (5.3), bump solutions satisfy (5.5), so fixing their peak to
be at z = 0, we have [20]

(5.12) Up(x) = Acosz, Uj(z) = —Asinz, A=+1+nr2—1—r2
and

1
(5.13) Up(ta) =k, a= Z + <% -3 sin~! H) ,

where the wider bump (larger a) will be stable [20]. The null space V(z) of the adjoint operator
L* satisfies

(5.14) V(x) = % /_: cos(a + y)V(y)dy + % /_: cos(a — y)V(y)dy,

which has solution V(z) = §(z + a) — 6(z — a). For concreteness, we take C'(x) = Cy cos(z),
where Cjy has units of length. It follows from (5.9) that

2 2
(flr V() Sin(x)dx) + (ffﬂ V() COS(l‘)dl‘) B Co
[Us(a) — Uj(—a))? 242/

(5.15) D=y
Moreover, noting that
(5.16) V(2)Uj(x)dr = Uj(—a) — Ul(a) = 2Asina

and taking cosine interlaminar connectivity (5.4), we have G;(A) = a;sin A, so that
(5.17) G+(A) = (g F ag)sinA.

A related result was derived in [20], demonstrating that weak nonlinear spatial heterogeneities
can be inherited by the underlying dynamics of stochastically moving bumps in single-layer
neural fields. Hence, w can immediately identify the two fixed points on A € (—m, 7], where
G_(A) =0 at A = 0,7. Their stability is easily computed,

(5.18) Ao = -G (0) = —(a1 + az),
(5.19) Ar = =G (1) = (o1 + a2),

so if g + g > 0, then 29 = 0 (1 = 7) is stable (unstable), and if oy + ae < 0, then 27 =0
(xo = m) is unstable (stable). Thus, for locally inhibitory connectivity, the bumps’ positions
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Figure 7. (A) The variance in the phase difference (A?) (note the mean (A) = 0) saturates in the limit
t — oo. Variance is computed as a function of time using numerical simulations (dashed line), and asymptotic
theory (solid line) predicts the saturation value (5.20). Threshold k = 0.5; interlaminar connectivity strength
a1 = ae = 1; noise amplitude e = 0.01. (B) The stationary variance decreases as a function of interlaminar
connectivity strength a1 = ag in numerical simulations (circles) and theory (solid line). Other parameters are
as in (A). Variances are computed using 5000 realizations each.

can be driven apart (zg = ), so they are antiphase relative to one another. Either way, we
can compute the stationary variance about the phase-locked state

2y/eD Co/e
(5.20) (A1) —(A®)? = el = =
" (@0)  Jor + asl(1+ V- #2)
Thus, we recover the result from [16], showing the strength of interlaminar coupling reduces
variance in stochastic bump motion. We demonstrate in Figure 7 that the variance in the
phase difference is well approximated by (5.20) as compared with numerical simulations.

5.2. Noise-induced phase-slips. As in the case of fronts, noise not only causes the center
of mass of both bumps to wander diffusively, it can also lead to rare events, where the bumps
temporarily become uncoupled. Typically, noise will perturb the phase difference A(t), while
the local dynamics of the stable fixed point will pull the phase difference back to xy. However,
on longer time scales, large fluctuations can lead to A(t) crossing the separatrix given by the
unstable fixed point z1. These events cannot be captured by a linear-noise approximation.
Note that a similar observation was made by Kilpatrick and Ermentrout in [20] in a single-layer
network with periodic spatial heterogeneity in the weight function.

The nonlinear SDE describing the stochastic motion of the phase difference A(t) is given
by (4.6). Let p(A,t) be the probability density of the stochastic process A(t) given initial
condition A(0) = Ag. The corresponding FP equation takes the form

(5.21) Op G (A)p(A,1)] | wdp(At) _ DJ(At)
‘ ot oA 2 0A2 T AN
where

san=-BPED G apa

and p(A,0) = §(A —Ap). As in the case of fronts, we suppose that the deterministic equation
A = —G_(A) has a stable fixed point at A = 0 and a pair of unstable fixed points at A = +x;.
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Thus the basin of attraction of the zero state is given by the interval (—z1,z1). For small
but finite u, fluctuations can induce rare transitions where trajectories cross through one of
the unstable separatrices £x1. To solve the first passage time problem for these phase-slips,
starting with A(0) = 0, we impose absorbing boundary conditions at +z1; that is, we set
p(xz1,t) = 0. Let T'(A) denote the (stochastic) first passage time for which the system first
reaches one of the points +x1, given that it started at A € (—x1,x1). As in the case of fronts,
one can show that the MFPT 7(0) = (7'(0)) is given by the formula

_2 iy
(5.22) == [ /O (2)dz,
where

) A
(5.23) B(A) = exp [—; / G_<y>dy]

We can obtain explicit results in the case of a Heaviside rate function, local cosine weight
function (5.3), and cosine interlaminar connectivity (5.4). To begin, we employ equation (5.17)
to note that

a) + o A
(5.24) P(A) = exp [—w /0 sin(y)dy] = exp [—a@(1l — cos A)],
where & = 2(a1 + a2)/p. Thus,
(5.25) 7(0) = %/OW /Ox e(cosy —cosx) gy 4o

which is straightforward to integrate using numerical quadrature. We compare in Figure 8
the analytically derived approximation to the mean time between phase-slips (5.25) to results
computed numerically simulating the full system of stochastic integrodifferential equations
(5.1a)—(5.1b). The theory we compare assumes cosine noise correlations (C(z) = Cjcos(z)),
so that D is given by (5.15). Assuming symmetric coupling o = @y = « and inverting the
rescaling ¢t — pu~'t, we have

a
1 m pz ——(cosy — cos )

2 =— veD dyda.

(5.26) 7(0) 26D/0 /0 e ydx

6. Discussion. In this paper we have explored the impact of stimuli and coupling on the
stochastic motion of patterns in neural field equations. Our main advance is to demonstrate
nonlinear contributions to the effective stochastic equations for the position of wandering pat-
terns. In order to achieve this, we have assumed that the stimuli or the coupling between
multiple layers of a neural field are weak, namely, having comparable amplitude to the spatio-
temporal noise term that forces the system. Then, utilizing a small noise and small coupling
expansion, we have derived nonlinear Langevin equations whose effective potentials are shaped
by the spatial profile of coupling. This allows us to approximate the statistics of rare events,
such as large deviations whereby waves become decoupled from one another, analogous to the
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Figure 8. (A) Numerical simulation demonstrating a phase-slip (arrows) for two coupled bumps in the
system (5.1a)—(5.1b), using the cosine coupling function (5.4) with a1 = a2 = 0.1. Owverlaid lines represent
the evolution of centers of mass of the bumps in time A1(t) and Az(t). (B) Average time 7(0) = (T') until a
phase-slip increases as a function of the interlaminar coupling strength oy = aa. Theory (solid line) computed
using (5.26) matches numerical simulation results (circles) well. Threshold k = 0.5, noise amplitude ¢ = 0.05.
Mean first passage times (T') are computed with 1000 samples.

well-hopping of bumps observed in spatially heterogeneous neural fields [20]. Such stochastic
dynamics would not be captured by a linear system of SDEs.

As with all perturbation methods, our results are dependent on the particular choice of
scaling with respect to e. We have chosen the scaling of the external inputs, noise amplitudes,
and interlaminar coupling so that all the terms contribute to the amplitude equation obtained
by applying the Fredholm alternative. If one changed the scaling, then one or more of these
contributions would disappear at this level of perturbation theory. Unfortunately, not enough
is known biologically to determine the “correct” scaling. However, there are biological reasons
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for treating these various contributions as weak (see the review [5]). First, neural systems
tend to adapt to constant stimuli and amplify weak fluctuations about a constant background
via recurrent connections (weak external inputs). Second, there are long-range connections
within cortex that play a modulatory role in neuronal firing patterns (weak interlaminar
connections). Third, although individual cortical neurons tend to be noisy, at the population
level fluctuations tend to be relatively weak (weak noise).

In sections 3-5 we considered a pair of 1D neural fields that are homogeneous when ¢ = 0
(no interlaminar coupling nor external noise). This means that each unperturbed neural
field supports a 1D pattern (front, bump) with a marginally stable degree of freedom (also
known as a Goldstone mode), which reflects the underlying translation symmetry. The in-
corporation of weak interlaminar coupling and noise breaks the translation symmetry of each
neural field, resulting in a pair of nonlinear Langevin equation for the positions of the two
patterns. Carrying out a linear-noise approximation of the dynamics in the neighborhood
of a phase-locked state shows that the center of mass of the two patterns exhibits Brownian
dynamics, whereas the separation of the two patterns satisfies an OU process. A natural
generalization of our analysis is to consider N neural fields. There are now N Goldstone
modes when € = 0, arising from the fact that each neural field is equivariant with respect
to local uniform shifts. Introduction of weak pairwise interlaminar coupling and noise would
result in IV coupled Langevin equations, specifying the individual positions of the N coupled
patterns. Again, under a linear-noise approximation, we expect the center of mass of the
N patterns to exhibit Brownian dynamics, whereas the N — 1 remaining degrees of freedom
satisfy an OU process, as shown in [16]. The existence of Brownian dynamics is a conse-
quence of the fact that in the presence of interlaminar coupling but no noise, the N Goldstone
modes reduce to a single Goldstone mode representing translation symmetry with respect
to a global shift of all the fields. The addition of a weak external input to one of the neu-
ral fields would break this remaining symmetry, and the center of mass could phase-lock to
the stimulus. Under a linear-noise approximation, the center of mass would now satisfy an
OU process.

Another obvious extension of our theory would be to consider two-dimensional neural
fields, reflecting the laminar-like structure of the cerebral cortex [25]. For example, one could
extend the theory of radially symmetric bumps developed in [12] to the case of multilayer
neural fields. In this case each neural field has two marginally stable modes when ¢ = 0,
corresponding to translation symmetry in the plane. One could also consider the stochastic
motion of more intricate spatiotemporal patterns such as spiral waves, which occur when
some form of slow adaptation is included [23]. In particular, the methods developed here
could be employed to study how noise shapes the angular velocity and tip location of spiral
waves coupled to external stimuli or other patterns. Finally, our approach might be utilized to
study stochastic switching in neural field models of binocular rivalry [7, 19]. Since switching
is brought about by a combination of adaptation as well as fluctuations, multiple timescale
methods could be combined with our small noise approximation to calculate the distribution
of switching times [3]. More generally, it would be interesting to develop a large deviation
theory for phase-locked patterns in stochastic neural fields; see, for example, Kuehn and
Riedler [22].
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