
Physica D 285 (2014) 8–17
Contents lists available at ScienceDirect

Physica D

journal homepage: www.elsevier.com/locate/physd

Binocular rivalry waves in a directionally selective neural field model
Samuel R. Carroll, Paul C. Bressloff ∗

Department of Mathematics, University of Utah, Salt Lake City, UT 84112, USA

h i g h l i g h t s
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• Provides a specific biological application of neural field theory.
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a b s t r a c t

We extend a neural field model of binocular rivalry waves in the visual cortex to incorporate direction
selectivity of moving stimuli. For each eye, we consider a one-dimensional network of neurons that
respond maximally to a fixed orientation and speed of a grating stimulus. Recurrent connections within
each one-dimensional network are taken to be excitatory and asymmetric,where the asymmetry captures
the direction and speed of the moving stimuli. Connections between the two networks are taken to
be inhibitory (cross-inhibition). As per previous studies, we incorporate slow adaption as a symmetry
breaking mechanism that allows waves to propagate. We derive an analytical expression for traveling
wave solutions of the neural field equations, as well as an implicit equation for the wave speed as a
function of neurophysiological parameters, and analyze their stability. Most importantly, we show that
propagation of traveling waves is faster in the direction of stimulus motion than against it, which is in
agreement with previous experimental and computational studies.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Many perceptual phenomena in the visual system involve
wave-like propagation dynamics, including perceptual filling-in
[1], migraine aura [2], expansion of illusory contours [3], and
the line-motion illusion [4]. Another example that has received
great attention is the wave-like propagation of perceptual dom-
inance during binocular rivalry [5–10]. Binocular rivalry is the
phenomenon where perception switches back and forth between
different images presented to the two eyes. This provides a way of
studying the human visual system and identifying possible neu-
ral mechanisms underlying conscious visual awareness via non-
invasive psychophysical experiments [11,12].

In an experimental and computational study of rivalrous mov-
ing stimuli by Knapen et al. [13], it was shown that the propaga-
tion speed of a binocular rivalry wave depends on the direction
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and speed of the stimuli. In the experimental portion of their study,
two annular gratings were rotated at a fixed speed in opposite di-
rections for each eye. A low contrast image was presented to one
eye (the carrier stimulus) and a high contrast imagewas presented
to the opposite eye (the mask stimulus). Finally a temporary in-
crease of the contrast in a localized region of the lowcontrast image
triggered a duo of wave-like perceptual transitions in dominance
from mask to carrier that propagated upward within the bound-
aries of the annular-shaped carrier, one in the clockwise direction
and one in the counter-clockwise direction (see Fig. 1). Moreover,
it was found that waves travel faster in the direction of stimulus
motion than they do in the opposite direction. Knapen et al. [13]
also constructed a two-layer computational model with each layer
driven by a single eye. They included recurrent excitation within a
layer and mutual inhibition between layers. In order to model di-
rection selective cells, the inhibitoryweightswere taken to have an
asymmetric spatial rate of decay, that is, the efferents from a given
neuron decayed more rapidly on one side of the neuron than the
other (in a one-dimensional network). It was shown how such an
asymmetry was able to account for the dependence of wave speed
on stimulus motion.
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Fig. 1. Schematic illustration of rotating annuli stimuli analogous to those used by Knapen et al. [13]. A. The left (right) eye is presented with a low (high) contrast carrier
(mask) stimulus rotating in an anti-clockwise (clockwise) direction. A transient increase in the contrast of the carrier stimulus induces a pair of counter propagating waves
that travel from the bottom to the top of the annuli, resulting in a switch from perception of the mask to perception of the carrier. The wave traveling in the same direction
as the stimulus reaches the top first, indicating that it has a higher speed.
In this paper we extend the study by Knapen et al. [13] by
analyzing stimulus-motion-dependent propagation of binocular
rivalry waves in a continuum neural field model. Rather than im-
posing an asymmetry in the spatial decay of the mutual inhibi-
tion, we shift the recurrent excitatory weight functions along the
lines of previous neural fieldmodels of direction selectivity [14,15].
Such shifts were also used in earlier computational neural network
models [16,17]. In the case of fully symmetric synaptic weights,
we recover our previous model, which was used to analyze rivalry
waves induced by switching between stationary stimuli [9,10]. In
contrast to the results in Knapen et al. (2007), we find that impos-
ing an asymmetric shift in the inhibitory weight functions yields
no dependence of the wave speed on stimulus motion. Instead,
we show that the asymmetric shift must occur in the recurrent
weights in order to obtain motion-dependent wave speeds. We
derive an analytical expression for the wave speed of both waves
traveling with and against the stimulus as a function of stimulus
speed, and show that the speed is greater in the direction of mo-
tion.

2. Neural field model of direction selectivity with synaptic
depression

To motivate the model used in this paper, it is beneficial to
first discuss the functional architecture of the primary visual cor-
tex (V1). Each neuron in V1 responds to light stimuli in a local-
ized region of the visual field called its classical receptive field,
while stimuli outside a neuron’s receptive field do not directly af-
fect its activity. Rather, stimuli outside a neuron’s receptive field
will induce activity in that neuron indirectly via lateral connec-
tionswith other cortical neurons.Most neurons inV1 respondpref-
erentially to stimuli targeting either the left or right eye, which
is known as ocular dominance. Experiments suggest that neurons
with different ocular dominance may inhibit one another if they
have nearby receptive fields [18]. Additionally, most neurons in V1
are tuned to respond maximally when a stimulus of a particular
feature, such as orientation, is in their receptive field [19,20]. In the
case of orientation, this is known as a neuron’s orientation prefer-
ence; a neuron will not respond to a stimulus with a sufficiently
different orientation. It has been shown that at each point in the vi-
sual field (on an appropriately coarse-grained spatial scale), there
exists a corresponding set of neurons spanning the entire spectrum
of orientation preferences that are packed together as a unit in V1,
known as a hypercolumn [21,22,20]. Each hypercolumn consists
of neurons which, for sufficiently similar orientations, excite each
other and neurons with sufficiently different orientations inhibit
each other [23,24]. Anatomical evidence also suggests that inter-
hypercolumn connections link neurons with similar orientation
preferences [25,26]. The functional relationship between stimulus
feature preferences and synaptic connections within V1 therefore
suggest that V1 is a likely substrate of simple examples of binocular
rivalry such as those involving sinusoidal grating stimuli [27].

A certain subset of orientation-selective neurons in V1 also
respond to some directions of stimulus movement better than
others [28]. For example, a neuron may respond to a vertical line
moving leftwards but not moving rightwards. One mechanism for
generating direction selectivity is for visual stimuli in certain parts
of the receptive field to generate faster responses (shorter delays)
than other regions. Given these differences in response timing,
a line moving from a slow to a fast region generates a stronger
response than a linemoving froma fast to a slow region. That is, the
delayed response in the slow region occurs at approximately the
same time as the response in the fast region, resulting in a stronger
total response compared to the reverse order [29]. An analogous
dependence on the order of receptive field stimulation can occur
if the excitatory recurrent connections within V1 are spatially
shifted relative to the inhibitory connections [16,17,30]. This latter
mechanism has also been incorporated into continuum neural
field models of direction selectivity [14,15]; one advantage of
neural field models compared to spatially discrete computational
models is that the former allows analytical expressions for the
stimulus–response properties of the network to be obtained [31].

Recently, we constructed a neural field model of binocular
rivalry waves in the case of stationary stimuli [9]. The model con-
sists of a one-dimensional neural field for each eye, whose dynam-
ics represents the activity of neurons within a hypercolumn that
respond maximally to the given stimulus orientation. Recurrent
connectionswithin each one-dimensional network are assumed to
be excitatory, whereas connections between the two networks are
taken to be inhibitory (cross-inhibition). Slow adaptation is incor-
porated into the model by taking the network connections to ex-
hibit synaptic depression along the lines of Kilpatrick and Bressloff
[32], see also [33]. One of the main results of our previous analy-
sis was to show that some form of slow adaptation such as synap-
tic depression is required as a symmetry breaking mechanism in
order to allow for the propagation of binocular rivalry waves [9].
Note that one alternative to synaptic depression is spike frequency
adaptation, which has been used in a variety of other spatial and
non-spatial models of binocular rivalry [5,34,35,13,8]. In this pa-
per, we extend our previous neural field model of binocular ri-
valry waves, by incorporating an asymmetric shift in the recurrent
connections along the lines of Refs. [14,15]. The sign and size of
the shift determines the stimulus direction and speed preferences
of the neurons. A schematic illustration of the network architec-
ture is shown in Fig. 2. Following our previous work [9] and the
computational model of Knapen et al. [13], we replace the more
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Fig. 2. Schematic diagram of network architecture consisting of two one-dimensional neural fields. The left eye is shown an oriented grating moving rightwards and the
right eye is shown a different oriented grating moving leftwards. The neural fields represent the activity of neurons that respond maximally to the orientation and motion
of the corresponding grating. Recurrent connections within each one-dimensional network are assumed to be excitatory, whereas connections between the two networks
are inhibitory (cross-inhibition). The excitatory and inhibitory weight distributions are taken to be Gaussians with the former having an asymmetric shift of size x0 in the
left network and a shift of −x0 in the right network. For the sake of illustration, the weight distributions of afferents into neurons at x are shown for the left eye network;
the peak of the shift distribution occurs at x − x0 . Finally, slow adaptation is incorporated into the model by taking the network connections to exhibit synaptic depression.
complicated annuli stimuli by linear oriented gratings. Stationary
linear gratings were also used in the psychophysical experiments
of Kang et al. [7,8]. In order to consider the difference between
waves moving in the same direction as the stimulus motion and
waves moving in the opposite direction, we imagine inducing the
switch from mask to carrier using a local change of contrast at ei-
ther one end or the other of the carrier stimulus, see Fig. 3.

Let u(x, t) and v(x, t) denote the activity of the left and right
eye networks, respectively, at position x ∈ R at time t . Then the
associated neural field equation is given by

τ
∂u(x, t)
∂t

= −u(x, t)+ Iu

+


∞

−∞

we+(x − x′)qu(x′, t)f (u(x′, t))dx′

−


∞

−∞

wi(x − x′)qv(x′, t)f (v(x′, t))dx′, (2.1a)

τs
∂qu(x, t)
∂t

= 1 − qu(x, t)− βqu(x, t)f (u(x, t)), (2.1b)

and

τ
∂v(x, t)
∂t

= −v(x, t)+ Iv

+


∞

−∞

we−(x − x′)qv(x′, t)f (v(x′, t))dx′

−


∞

−∞

wi(x − x′)qu(x′, t)f (u(x′, t))dx′, (2.2a)

τs
∂qv(x, t)
∂t

= 1 − qv(x, t)− βqv(x, t)f (v(x, t)). (2.2b)

The nonlinear function f represents the mean firing rate of a local
population and is usually taken to be a smooth, bounded mono-
tonic function such as a sigmoid

f (u) =
1

1 + e−η(u−κ)
, (2.3)

where η denotes the gain and κ the threshold. However, in order to
derive explicit travelingwave solutions, it is convenient to consider
the high gain limit, η → ∞, so that f becomes aHeaviside function

f (u) = H(u − κ) =


0, if u < κ
1, if u > κ.

(2.4)
The functions we±(x − x′) represent the distribution of recurrent
synaptic weights from the local population at x′ to the population
at x within the same eye network, with (±) denoting the left and
right eyes, respectively. Typically, these are taken to be symmetric
functions such thatwe±(x) = we±(−x). However, in this paper we
will consider asymmetric recurrent weights of the form

we±(x) = we(x ∓ x0), (2.5)

where the sign and size of the shift x0 determines the stimulus di-
rection and speed preferences of neurons. Hence, the shift of the
left and right eye networks has the opposite sign, since they are re-
sponding to stimuli moving in opposite directions. The excitatory
distributionwe is assumed to have the following properties:

(i) we ∈ C(R) ∩ L1(R) and dwe/dx ∈ L1(R),
(ii) we(x) > 0 ∀x ∈ R,
(iii) we(x) = we(−x) and w(x) is a monotonically decreasing

function of x for x ≥ 0.

One typically takeswe to be a Gaussian function or an exponential
function. In the latter case,

we±(x) = aee−σe|x∓x0|. (2.6)

For numerical calculations we will use Eq. (2.6). Rather than mod-
eling the inputs Iu and Iv as depending on space and time, we sim-
ply choose the subset of neurons in V1 that respondmaximally to a
stimuluswith a fixed speed, which is captured by the parameter x0.
For cross-inhibition we use a symmetric weight function, wi, that
satisfies properties (i)–(iii). Again, one normally defines wi as an
exponential or Gaussian. Later we will show why imposing asym-
metry in the inhibition does not lead to motion dependent wave
speeds. Depressing synapses are incorporated into themodel in the
form of presynaptic scaling factors qu, qv with corresponding time
constant τs.

3. Existence of traveling waves

We now look for rivalry wave solutions in which the high activ-
ity state invades the suppressed left eye network, while retreat-
ing from the dominant right eye network. In doing so, we seek
solutions of the form u(x, t) = U(ξ) and v(x, t) = V (ξ) where
ξ = x − ct and c denotes the wave speed. That is, the fixed wave
profiles, U(ξ) and V (ξ), propagate with a speed c. Since we are
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Fig. 3. Induction of a wave moving in (i) the opposite direction to stimulus motions and (ii) the same direction as stimulus motion. For annuli stimuli a local increase in
the contrast of the carrier can induce both waves, whereas for linear gratings the local increase in contrast has to be induced separately at either one end or the other of the
stimulus.
considering the case where high activity states invade the sup-
pressed left eye network, we let limξ→−∞(U(ξ), V (ξ)) = XL and
limξ→∞(U(ξ), V (ξ)) = XR. HereXL denotes the activity during left
eye dominance while XR denotes activity during right eye domi-
nance. We define left eye and right eye dominant states in terms
of fixed points of the dynamical system in Eqs. (2.1) and (2.2). Fi-
nally, we must have that U(ξ) and V (ξ) cross the threshold κ at
some point. Since Eqs. (2.1) and (2.2) are invariant to translations,
we may allow U(ξ) to cross threshold at any arbitrary point. How-
ever, the distance between the threshold crossing values cannot be
arbitrary. Therefore we can let U(0) = V (ξ0) = κ .

3.1. Fixed points

We first search for homogeneous fixed point solutions (U∗, V ∗,
Q ∗
u ,Q

∗
v ). Using the Heaviside firing function and plugging these

into Eqs. (2.1) and (2.2) we obtain

U∗
= Iu + Q ∗

u AeH(U − κ)− Q ∗

v AiH(V − κ), (3.1a)

V ∗
= Iv + Q ∗

v AeH(V − κ)− Q ∗

u AiH(U − κ), (3.1b)

Q ∗

u =
1

1 + βH(U − κ)
, (3.1c)

Q ∗

v =
1

1 + βH(V − κ)
, (3.1d)

where

Ae =


∞

−∞

we±(x)dx, (3.2a)

Ai =


∞

−∞

wi(x)dx. (3.2b)

There are four possible homogeneous fixed points corresponding
to an off-state, a fusion state and twowinner-take-all (WTA) states.
The fusion state is given by

(U∗, V ∗) =


Ae − Ai

1 + β
+ Iu,

Ae − Ai

1 + β
+ Iv


, (3.3a)

(Q ∗

u ,Q
∗

v ) =


1

1 + β
,

1
1 + β


, (3.3b)

and occurs when Iu, Iv > κ − (Ae − Ai)/(1 + β). The left eye
dominant WTA state is given by

(U∗, V ∗) =


Ae

1 + β
+ Iu, Iv −

Ai

1 + β


, (3.4a)
(Q ∗

u ,Q
∗

v ) =


1

1 + β
, 1


, (3.4b)

which occurs when Iu > κ − Ae/(1 + β) and Iv < κ + Ai/(1 + β).
On the other hand, the right eye dominant WTA state is

(U∗, V ∗) =


Iu −

Ai

1 + β
,

Ae

1 + β
+ Iv


, (3.5a)

(Q ∗

u ,Q
∗

v ) =


1,

1
1 + β


, (3.5b)

which occurs when Iv > κ − Ae/(1 + β) and Iu < κ + Ai/(1 + β).
Finally the off state is simply (U, V ) = (Iu, Iv) and (Qu,Qv) =

(1, 1) which occurs when Iu, Iv < κ − (Ae − Ai)/(1 + β). It
has been shown elsewhere that all the fixed points of the space-
clamped network are linearly stable so that a limit cycle cannot
occur via a Hopf bifurcation, rather oscillations occur via an escape
mechanism [32]. Moreover, the oscillatory rivalry state coexists
with the fusion state when the inputs Iu and Iv are greater than
those values in which aWTA state exists (Iu, Iv > κ + Ai/(1+β)).
Since we would like the traveling wave solutions to coexist with
the space clamped rivalry state, we will use this inequality in the
analysis for existence of traveling waves.

3.2. Non-depressing synapses (β = 0)

Consider the simpler case of no synaptic depression, β = 0, so
that qu = qv ≡ 1,XL = (Ae+ Iu, Iv−Ai) andXR = (Iu−Ai, Ae+ Iv).
Bressloff and Webber [9] have previously established that, in the
case of symmetric weights, traveling waves cannot exist without
synaptic depression. We first check that the same result holds for
asymmetric weights. Using the Heaviside firing rate function and
applying integrating factors to Eqs. (2.1) and (2.2), we find that

U(ξ) =
1
c


∞

ξ

e(ξ−ξ
′)/c 

We+(ξ
′)− Wi(ξ0 − ξ ′)


dξ ′

+ Iu, (3.6a)

V (ξ) =
1
c


∞

ξ

e(ξ−ξ
′)/c 

We+(ξ0 − ξ ′)− Wi(ξ
′)

dξ ′

+ Iv, (3.6b)

where

Wp(x) =


∞

x
wp(y)dy (3.7)

for p = e+, e−, i. Imposing the threshold crossing conditions, we
obtain a pair of implicit equations for the wave speed c and ξ0:

κ = We+(0)− Wi(ξ0)

−


∞

0
e−ξ/c [we+(ξ)− wi(ξ − ξ0)] dξ + Iu, (3.8a)
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κ = We+(0)− Wi(ξ0)

+


∞

0
e−ξ/c [we+(ξ)+ wi(ξ + ξ0)] dξ + Iv. (3.8b)

Subtracting (3.8a) from (3.8b) gives

0 =


∞

0
e−ξ/c [we+(ξ)+ we−(ξ)+ wi(ξ − ξ0)

+ wi(ξ + ξ0)] dξ + Iv − Iu ≡ F(c, x0, ξ0). (3.9)

Note that for Iu = Iv
lim
c→0

F(c, x0, ξ0) = 0 (3.10)

and F(c, x0, ξ0) is monotonically increasing, so that only speed at
which the equation is satisfied is c = 0. Therefore there are no
travelingwave solutions in the absence of synaptic depression. The
existence of a non-zero wave speed arises when Iu ≠ Iv , however
binocular rivalry is known to occur even when Iu = Iv . Therefore
we must consider additional mechanisms that induce traveling
waves, such as the presence of synaptic depression.

3.3. Slow synaptic depression (β > 0, τs ≫ 1)

We now include synaptic depression by looking for traveling
wave solutions in both the activity variables (as before) and in the
depression variables, with the latter given by qu(x, t) = Qu(ξ)
and qv(x, t) = Qv(ξ) such that limξ→−∞(Qu(ξ),Qv(ξ)) = ((1 +

β)−1, 1) and limξ→∞(Qu(ξ),Qv(ξ)) = (1, (1+β)−1). Additionally
we take the left and right activity states to be XL = (Ae/(1 + β)+
Iu, Iv − Ai/(1 + β)) and XR = (Iu − Ai/(1 + β), Ae/(1 + β)+ Iv).
Substituting the full traveling wave solution into Eqs. (2.1) and
(2.2) yields

Qu(ξ) =


1

1 + β


1 + βeξ(1+β)/cτs


, for ξ ≤ 0

1, for ξ ≥ 0
(3.11a)

Qv(ξ) =


1 −

β

1 + β
e(ξ−ξ0)/cτs , for ξ ≤ ξ0

1
1 + β

, for ξ ≥ ξ0

(3.11b)

and

U(ξ) =
1
c


∞

ξ

e
ξ−ξ ′

c

W e,u(ξ

′)− W i,v(ξ0 − ξ ′)

dξ ′

+ Iu, (3.12a)

V (ξ) =
1
c


∞

ξ

e
ξ−ξ ′

c

W e,v(ξ0 − ξ ′)− W i,u(ξ

′)

dξ ′

+ Iv, (3.12b)

where

W e,u(x) =


∞

x
we+(y)Qu(x − y)dy, (3.13a)

W e,v(x) =


∞

x
we+(y)Qv(y − x + ξ0)dy

=
1

1 + β


∞

x
we+(y)dy =

1
1 + β

We(x), (3.13b)

W i,u(x) =


∞

x
wi(y)Qu(x − y)dy, (3.13c)

W i,v(x) =


∞

x
wi(y)Qv(y − x + ξ0)dy

=
1

1 + β


∞

x
wi(y)dy =

1
1 + β

Wi(x), (3.13d)

where the second and fourth equalities come from the fact that,
when integrating in the region y > x, we have Qv(y− x+ ξ0) = 1.
Again, imposing threshold conditions we have the implicit equa-
tion

F(c, x0, ξ0) ≡
1
c


∞

0
e−

ξ ′

c

W e,u(ξ

′)− W e,v(−ξ
′)

+ W i,u(ξ
′
+ ξ0)− W i,v(ξ0 − ξ ′)


+ Iu − Iv = 0. (3.14)

It can be shown that both F(c, x0, ξ0) is an increasing function of c
and

lim
c→0

F(c, x0, ξ0) = 0 (3.15)

for Iu = Iv , so that only c = 0 satisfies the implicit equation and no
traveling wave solutions exist. This result is not surprising consid-
ering that all of the fixed points are stable so that no heteroclinic
orbits exist between the states.

Nevertheless, as previously shown by Bressloff and Webber [9]
for symmetric weights, a traveling wave solution does exist in the
case of fixed depression variables with Qu ≠ Qv . This adiabatic
approximation can be used when the network is in a binocular
rivalry state provided that (a) the duration of thewave propagation
is short compared to the natural switching period and (b) the
induction of the wave does not occur close to the point at which
spontaneous switching occurs [9]. (One possible alternative to this
approach would be to perturb the differential equations for the
depression variables.) With the adiabatic approximation in mind,
consider the modified system of neural field equations given by

∂u(x, t)
∂t

= −u(x, t)+ Iu + Qu


∞

−∞

we+(x − x′)f (u(x′, t))dx′

−Qv


∞

−∞

wi(x − x′)f (v(x′, t))dx′ (3.16a)

∂v(x, t)
∂t

= −v(x, t)+ Iv + Qv


∞

−∞

we−(x − x′)f (v(x′, t))dx′

−Qu


∞

−∞

wi(x − x′)f (u(x′, t))dx′. (3.16b)

Note that sinceQu andQv are nowarbitrary, the asymptotic left and
right eye activity states are redefined asXL = (Iu+QuAe, Iv−QuAi)
and XR = (Iu −QvAi, Iv +QvAe). In order for the waves to cross the
threshold κ , we require that both κ − QuAe < Iu < κ + QvAi and
κ−QvAe < Iv < κ+QuAi. Under the adiabatic approximation, the
solutions have the same form as (3.12a) and (3.12b), after replacing
all the synaptic depression solutions by a constant. The threshold
conditions become

κ = Iu + QuWe+(0)− QvWi(ξ0)

−


∞

0
e−ξ ′/c+


Quwe+(ξ

′)+ Qvwi(ξ
′
− ξ0)


dξ ′

≡ F+

1 (c+, x0, ξ0) (3.17a)

κ = Iv + QvWe+(0)− QuWi(ξ0)

+


∞

0
e−ξ ′/c+ [Quwi(ξ + ξ0)+ Qvwe−(ξ)] dξ ′

≡ F+

2 (c+, x0, ξ0) (3.17b)

and Eq. (3.14) becomes

F+(c+, x0, ξ0) ≡ ∆I + (Qu − Qv)(We+(0)+ Wi(ξ0))

−


∞

0
e−ξ ′/c+ [Qu(we+(ξ

′)+ wi(ξ
′
+ ξ0))

+Qv(we−(ξ
′)+ wi(ξ − ξ0))]dξ ′

= 0 (3.18)

where∆I = Iu − Iv . Note that we have introduced the index + on
F+ and c+ to indicate that we are looking for positive wave speeds
with respect to the sign of the shift x0, which corresponds to the
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Fig. 4. Plot of profiles in the co-moving frame ξ = x − ct for wave fronts traveling in the positive (left) and negative (right) directions. Exponential weight functions were
used with the following parameters: ae = 4, σe = 0.42, x0 = 2, ai = 1, σi = 0.1. Other parameters used: κ = 0.05,Qu = 0.42,Qv = 0.25, Iu = 0.4, Iv = 0.8.
case in which rivalry waves move in the same direction as the
carrier stimulus, see Fig. 3; we will consider negative wave speeds
later. If Qu > Qv > 0 and Iu ≤ Iv with |∆I| sufficiently small, then

lim
c+→0

F+(c+, x0, ξ0) = (Qu − Qv)(We+(0)

+Wi(ξ0))+∆I > 0, (3.19a)

lim
c+→∞

F+(c+, x0, ξ0) = −Qv(We+(0)+ We−(0)

+Wi(ξ0)+ Wi(−ξ0))+∆I < 0. (3.19b)

Note that the second inequality always holds, whereas the first
inequality is satisfied provided that |∆I| is small enough. Since
F+(c+, x0, ξ0) is continuous, the intermediate value theorem guar-
antees existence of a solution c+(x0, ξ0) > 0 such that F+(c+(x0,
ξ0), x0, ξ0) = 0. Given the solution c+ = c+(x0, ξ0), existence of
a traveling wave solution is guaranteed by the implicit function
theorem and is determined by the single threshold condition Eq.
(3.17a). It can be shown that a wave exists provided that

Qv(Wi(ξ0)+ Wi(−ξ0))+ κ

> Iu > κ + QvWi(ξ0)− QuWe+(0). (3.20)

Note that Wi(ξ0) + Wi(−ξ0) = Ai, so that the upper limit fol-
lows from the inequality imposed on Iu in order to ensure thewave
crosses threshold. The lower limit holds for appropriate choices of
parameters such that

Ae > 2(Ai + κ(1 + β)). (3.21)

This can be seen by noting that We+(0) > 1
2Ae for all x0 > 0,

Wi(ξ0) < Ai for all ξ0 and Qu > Qv > 1/(1 + β), so that

QuWe+(0)− QvWi(ξ0)− κ > Qv


1
2
Ae − Ai


− κ > 0. (3.22)

Thus we have that Iu > 0 > κ + QvWi(ξ0) − QuWe+(0). This in-
equality is reasonable to impose since it essentially states that the
total strength of inhibition cannot be too large. An example wave
profile is shown in Fig. 4(a).

We now consider existence of a traveling wave propagating in
the negative direction relative to the shift x0. In doing so we now
require that limξ→−∞(U−(ξ), V−(ξ)) = XR and limξ→∞(U−(ξ),
V−(ξ)) = XL as well as the threshold conditions, U−(0) = κ and
V−(ξ0−) = κ . Proceeding along similar lines to the case of positive
speed solutions, we find that

U−(ξ) = −
1
c−


∞

−ξ

e(ξ+ξ
′)/c−


QuWe−(ξ

′)

− QuWi(−ξ
′
− ξ0−)


dξ ′

+ Iu, (3.23a)
V−(ξ) = −
1
c−


∞

−ξ

e(ξ+ξ
′)/c−


QvWe−(−ξ

′
− ξ0−)

− QuWi(ξ
′)

dξ ′

+ Iv. (3.23b)

Imposing the threshold conditions gives

κ = Iu + QuWe−(0)− QvWi(−ξ0−)

−


∞

0
e−

ξ ′

|c−|

Quwe−(ξ

′)+ Qvwi(ξ + ξ0−)

dξ ′

≡ F−

1 (c−, x0, ξ0−), (3.24a)

κ = Iv − QuWi(−ξ0−)+ QvWe−(0)

+


∞

0
e−

ξ ′

|c−|

Quwi(ξ

′
− ξ0−)+ Qvwe+(ξ

′)

dξ ′

≡ F−

2 (c−, x0, ξ0−). (3.24b)

Subtracting Eqs. (3.24a) and (3.24b) yields the implicit equation

F−(c−, x0, ξ0) ≡ ∆I + (Qu − Qv)(We−(0)+ Wi(−ξ0−))

−


∞

0
e−

ξ
|c−| [Qu(we−(ξ)+ wi(ξ0− − ξ))

+Qv(we+(ξ)+ wi(ξ0− + ξ))]dξ = 0. (3.25)

Similar to positive wave speeds, we find that for Qu > Qv

lim
|c−|→0

F−(c−, x0, ξ0−) = (Qu − Qv)(We−(0)

+Wi(−ξ0−))+∆I, (3.26a)

lim
|c−|→∞

F−(c−, x0, ξ0−) = −Qv(We+(0)+ We−(0)

+Wi(ξ0−)+ Wi(−ξ0−)) < 0. (3.26b)

Again, there exists a solution c− = c−(x0, ξ0−) such that F−(c−,
x0, ξ0−) = 0 provided that lim|c−|→0 F− > 0. However, in con-
trast to the positive wave speed case, this latter inequality does
not necessarily hold for all x0 > 0. In order to show this, note that
We−(0) → 0 as x0 → ∞ and, as we show in Section 5.1, ξ0− is a
monotonically decreasing function of x0 so that Wi(−ξ0−(x0)) →

ω0 for some constant ω0 as x0 → ∞. If ω0 + ∆I < 0 then there
exists an x∗

0 such that

lim
|c−|→0

F−(c−, x∗

0, ξ0−(x
∗

0)) = 0, (3.27)

in which case the only solution is c− = 0. Thus existence of a neg-
ative wave speed disappears at c−(x∗

0) = 0, so that no traveling
waves exist for x0 > x∗

0 . Given the solution c− = c−(x0, ξ0−) for
x0 ∈ [0, x∗

0), existence of a traveling wave solution is determined
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by the single threshold condition given by Eq. (3.24a). It is then easy
to show that a wave exists provided

Qv(Wi(−ξ0−)+ Wi(ξ0−))+ κ

> Iu > QvWi(−ξ0−)− QuWe−(0)+ κ, (3.28)

which is consistent with the constraints already imposed on Iu. An
example of a negative speed wave profile is shown in Fig. 4(b).

4. Stability

To determine linear stability of traveling wave solutions U(ξ)
andV (ξ), we perturb solutions by the functionsψ(ξ, t) andϕ(ξ, t)
so that

U(ξ , t) = U(ξ)+ ψ(ξ, t), (4.1a)

V (ξ , t) = V (ξ)+ ϕ(ξ, t). (4.1b)

Substituting these into Eqs. (2.1) and (2.2) and linearizing about
U(ξ) and V (ξ) yield

∂Ψ (ξ , t)
∂t

= LΨ (ξ , t)

≡


c
∂

∂ξ
− I


Ψ (ξ , t)+


∞

−∞

A(ξ , ξ ′)Ψ (ξ , t)dξ ′, (4.2)

where Ψ (ξ , t) = (ψ(ξ, t), ϕ(ξ, t))T and

A(ξ , ξ ′)

=


Quwe+(ξ − ξ ′)f ′(U(ξ ′)) −Qvwi(ξ − ξ ′)f ′(V (ξ ′))
−Quwi(ξ − ξ ′)f ′(U(ξ ′)) Qvwe−(ξ − ξ ′)f ′(V (ξ ′))


. (4.3)

Looking for solutions of the form Ψ (ξ , t) = Ψ (ξ)eλt we have the
spectral problem λΨ (ξ) = LΨ (ξ). Here we take the linear opera-
tor L : W 1,1(R,R2) → W 1,1(R,R2) to act on vector valued func-
tions whose elements belong to the Sobolev spaceW 1,1(R), which
is a Banach space. That is if Ψ ∈ W 1,1(R) then Ψ ,Ψ ′

∈ L1(R).
The motivation for this choice of a function space is that we want
to consider localized perturbations to traveling wave solutions.
Therefore we consider functions that decay to zero fast enough in
space. The wave will be linearly stable if all non-zero λ ∈ σ(L),
the spectrum of L, have negative real part and λ = 0 is a simple
eigenvalue [9]. Recall that the complex plane can be divided into
two sets: the spectrum σ(L) and the resolvent set ρ(L). Further-
more, the spectrum itself can be decomposed into the sum of the
point spectrum σp(L) and the essential spectrum σess(L). We say
that λ ∈ σp(L) if λ is an eigenvalue of L (the resolvent operator
Rλ = (L−λI)−1 does not exist)whileλ ∈ σess(L) if Rλ exists, but is
unbounded and not defined on a dense subset of W 1,1(R,R2). We
proceed by first finding eigenvalues of the operator L and points
in the resolvent set ρ(L) (λ ∈ C such that Rλ exists, is bounded
and is defined on a dense subset of W 1,1(R,R2)) as these are the
most straightforward values to find.

Note that for a Heaviside firing rate function we have that
f ′(U(ξ)) =

δ(ξ)

|U ′(0)| and f ′(V (ξ)) =
δ(ξ−ξ0)
|V ′(ξ0)|

so that we can write
Eq. (4.2) as
∂

∂ξ
−
λ+ 1

c


Ψ (ξ)+ B(ξ)Ψ = 0, (4.4)

where

B(ξ) =


Quwe+(ξ)

c|U ′(0)|
−

Qvwi(ξ − ξ0)

c|V ′(ξ0)|

−
Quwi(ξ)

c|U ′(0)|
Qvwe−(ξ − ξ0)

c|V ′(ξ0)|

 , (4.5)
andΨ = (ψ(0), ϕ(ξ0))T . Multiplying by e−(λ+1)ξ/c and integrating
yield

Ψ (ξ) =


∞

ξ

e
λ+1
c (ξ−ξ ′)B(ξ ′)Ψ dξ ′ (4.6)

and imposing self-consistencywe have the equation given in Box I.
This has a non-trivial solution provided thatλ is a zero of the Evans
function [9,36–38]

E(λ) = det(M(λ)). (4.8)

That is, the complex number λ is an eigenvalue of the linear system
if and only if E(λ) = 0. The existence of a zero eigenvalue, with
corresponding eigenfunction Ψ (ξ) = (U ′(ξ), V ′(ξ))T , reflects the
translation invariance of the traveling wave solutions. Attempting
to solve for other eigenvalues, we find that λ = 0 is the only
solution. That is, the only λ ∈ C in the point spectrum of the linear
operator L is λ = 0.

To compute λ ∈ ρ(L), the resolvent set, we consider solving
the problem Rλh = Ψ . This is equivalent to solving the equation
∂

∂ξ
−
λ+ 1

c


Ψ (ξ)+ B(ξ)Ψ = h(ξ) (4.9)

for Ψ (ξ). By imposing self consistency, we find that we can
uniquely solve for Ψ as

Ψ = M(λ)−1




∞

0
e−

λ+1
c ξ ′

h1(ξ
′)dξ ′

∞

ξ0

e−
λ+1
c (ξ ′

−ξ0)h2(ξ
′)dξ ′

 . (4.10)

We know that M(λ) is invertible since we are considering λ ∉

σp(L), so that det(M(λ)) = E(λ) ≠ 0. Therefore we can solve
for Ψ (ξ) in terms of h(ξ) as

Ψ (ξ) = Rλh(ξ) =


∞

ξ

e
λ+1
c (ξ−ξ ′)


B(ξ ′)Ψ − h(ξ ′)


dξ ′, (4.11)

which is well-defined for all h ∈ W 1,1(R,R2) when Re(λ) > −1
and λ ≠ 0. Therefore the resolvent set is ρ(L) = {λ ∈ C|Re(λ) >
−1, λ ≠ 0}. Thus we have that the spectrum of the linear op-
erator is given by σ(L) = {0} ∪ {λ ∈ C|Re(λ) ≤ −1}, since
C = ρ(L) ∪ σ(L). Since the real part of all of the non-zero el-
ements in the spectrum is strictly negative and zero is a simple
eigenvalue, we have that traveling wave solutions are stable.

5. Stimulus motion determines wave speed

We now use our analysis to determine how wave speed varies
with the shift x0 in the recurrent weights, and show that the speed
of propagation is greater for the wave traveling in the direction
of the low contrast stimulus, as previously observed in the
experimental and computational study of Knapen et al. [13]. We
also show that, in contrast to asymmetric spatial decay rates [13],
an asymmetric shift in the cross-inhibition cannot account for the
differences in wave speed.

5.1. Asymmetry in excitation

Recall the implicit equations F+(c+, x0, ξ0+) = 0 and F−(c−,
x0, ξ0−) = 0, see (3.18) and (3.25), which determine the positive
and negative wave speeds respectively. Note that if x0 = 0 then
we−(x) = we+(x) so that F+(c+, x0, ξ0+) = F−(c−, x0, ξ0−) when
|c−| = c+ and ξ0− = −ξ0+. This shows that when stationary stim-
uli are used, the traveling waves propagate at the same speed in
both directions and the traveling wave solutions are reflections of



S.R. Carroll, P.C. Bressloff / Physica D 285 (2014) 8–17 15

.7)
M(λ)Ψ =


Qu

c|U ′(0)|


∞

0
e−

λ+1
c ξwe+(ξ)dξ − 1 −

Qv
c|V ′(ξ0)|


∞

0
e−

λ+1
c ξwi(ξ − ξ0)dξ

−
Qu

c|U ′(0)|


∞

0
e−

λ+1
c ξwi(ξ + ξ0)dξ

Qv
c|V ′(ξ0)|


∞

0
e−

λ+1
c ξwe−(ξ)− 1

 
ψ(0)
ϕ(ξ0)


= 0. (4

Box I.
one another. For x0 > 0 we can determine the relationship be-
tween c− and c+ by implicitly differentiating Eqs. (3.17a), (3.17b),
(3.24a) and (3.24b). Noting that

dF+

1 (c+(x0, ξ0), x0, ξ0)
dx0

=
dF+

2 (c+(x0, ξ0), x0, ξ0)
dx0

=
dF−

1 (c−(x0, ξ0), x0, ξ0)
dx0

=
dF−

2 (c−(x0, ξ0), x0, ξ0)
dx0

= 0,

we have
dc+
dx0
dξ0
dx0

 = −


∂F+

1

∂c+
∂F+

1

∂ξ0
∂F+

2

∂c+
∂F+

2

∂ξ0


−1 

∂F+

1

∂x0
∂F+

2

∂x0

 (5.1)

and a similar expression for |c−| and ξ0−. Solving for dc+/dx0 and
dξ0/dx0 gives

1
c+

dc+
dx0

=
Q 2
u G[we+(ξ)]G[wi−(ξ)] − Q 2

v G[we−(ξ)]G[wi+(ξ)]

G[wi−(ξ)]Γ1(c+, ξ0,Qu,Qv)+ G[wi+(ξ)]Γ2(c+, ξ0,Qu,Qv)
, (5.2)

and
dξ0
dx0

= −
1

QuQv

Q 2
u G[we+(ξ)]Γ2(c+, ξ0,Qu,Qv)+ Q 2

v G[we−(ξ)]Γ1(c+, ξ0,Qu,Qv)
G[wi−(ξ)]Γ1(c+, ξ0,Qu,Qv)+ G[wi+(ξ)]Γ2(c+, ξ0,Qu,Qv)

, (5.3)

wherewi±(ξ) = wi(ξ ∓ ξ0),

G[f (ξ)] =


∞

0
e−ξ/c+ f (ξ)dξ,

H[f (ξ)] =


∞

0
ξe−ξ/c+ f (ξ)dξ,

(5.4)

and
Γ1(c+, ξ0,Qu,Qv) = Q 2

u H[we+(ξ)] + QuQvH[wi+(ξ)],

Γ2(c+, ξ0,Qu,Qv) = Q 2
v H[we−(ξ)] + QuQvH[wi−(ξ)]. (5.5)

The functionals G and H are strictly positive when f (ξ) > 0 for all
ξ > 0. It follows that ξ0 is a monotonically decreasing function of
x0, since both of the terms in the numerator and denominator of Eq.
(5.3) are positive for all x0 > 0. To determine the sign of dc+/dx0
we need only consider the term in the numerator of Eq. (5.2), since
the term in the denominator is always positive. Additionally, it is
sufficient to show that A(x0) ≡ Q 2

u G[wi−(ξ)] − Q 2
v G[wi−(ξ)] > 0

for all ξ0 = ξ0(x0) aswe+(ξ) > we−(ξ) for all ξ > 0. The inequality
A(x0) > 0 certainly holds if ξ0(0) < 0 sincewi(ξ+ξ0) > wi(ξ−ξ0)
for all ξ0 < 0 and ξ0 is decreasing so that ξ0(x0) < ξ0(0) < 0 for all
x0 > 0. The proof is less obvious if ξ0(0) > 0. Nevertheless, if ξ0(0)
is small enough then one can find values of Qu and Qv such that

Q 2
uwi(2ξ0(0)) > Q 2

vwi(ξ(0)) (5.6)
and, since ξ0 is decreasing, Eq. (5.6) holds for all ξ0(x0). Under these
conditions, A(x0) > 0 for all x0 > 0 and c+ is a monotonically in-
creasing function of x0.

Similarly, solving for dc−/dx0 and dξ0−/dx0 gives
1

|c−|

d|c−|

dx0

=
−Q 2

u G[we−(ξ)]G[wi+(ξ)] + Q 2
v G[we+(ξ)]G[wi−(ξ)]

G[wi+(ξ)]Γ1(c−, ξ0−,Qu,Qv)+ G[wi−(ξ)]Γ2(c−, ξ0−,Qu,Qv)
, (5.7)
and
dξ0−
dx0

= −
1

QuQv

×
Q 2
u G[we−(ξ)]Γ2(c−, ξ0−,Qu,Qv)+ Q 2

v G[we+(ξ)]Γ1(c−, ξ0−,Qu,Qv)
G[wi+(ξ)]Γ1(c−, ξ0−,Qu,Qv)+ G[wi−(ξ)]Γ2(c−, ξ0−,Qu,Qv)

, (5.8)

where now

G[f (ξ)] =


∞

0
e−ξ/|c−|f (ξ)dξ,

H[f (ξ)] =


∞

0
ξe−ξ/|c−|f (ξ)dξ .

(5.9)

and

Γ1(c−, ξ0−,Qu,Qv) = Q 2
u H[we−(ξ)] + QuQvH[wi−(ξ)],

Γ2(c+, ξ0,Qu,Qv) = Q 2
v H[we+(ξ)] + QuQvH[wi+(ξ)]. (5.10)

Again, we see that ξ0− is a monotonically decreasing function of
x0 so that the analysis for the existence of negative wave speeds
in Section 3.3 holds. When x0 = 0, we know that we−(x) =

we+(x), ξ0− = −ξ0 and c− = −c+ so that

d|c−|

dx0


x0=0

= −
dc+
dx0


x0=0

. (5.11)

Hence, if c+ is increasing at x0 = 0 then |c−| is decreasing at
x0 = 0. Thus in a neighborhood of x0 = 0, c+ > |c−|. Suppose
that there is a point at which |c−| > c+ for x0 ≠ 0. It follows
that there must have been a value x∗

0 ≠ 0 at which |c−| = c+.
Subtracting Eq. (3.25) from Eq. (3.18) with |c−| = c+ requires that
F+(c+, x0, ξ0)− F−(c+, x0, ξ0−) = 0. However,

lim
c+→0

[F+
− F−

] = (Qu − Qv)(We+(0)

−We−(0)+ Wi(ξ0)− Wi(−ξ0−)),

lim
c+→∞

[F+
− F−

] = 0

for all x0 > 0. Since F+
−F− ismonotonic in c+, then the only value

of c+ that satisfies the implicit equation is ∞. On the other hand,
we have already shown that c+ → ∞ is not a solution of Eq. (3.18).
Thus there could not have been a point at which c+ = |c−| for any
x0 > 0. Hence, c+ > |c−| for all x0 > 0. This proves that the speed
of the wave moving in the same direction as the stimulus is faster,
as observed experimentally by Knapen et al. [13]. In Fig. 5B, we
show a plot of the wave speeds versus x0 calculated from our an-
alytical expressions. Note that in the given parameter regime, the
negative wave speed solution disappears at a critical value of x0, as
discussed at the end of Section 3. In Fig. 5A, we give an example of
a fast (same stimulus direction) and a slow (opposite stimulus di-
rection) traveling wavefront, which are generated by numerically
simulating the full neural field model given by Eqs. (2.1) and (2.2).
The network is taken to operate in the regime of slow synaptic de-
pression (τs = 100), so that the results of our adiabatic approx-
imation hold. In particular, the slopes of the space–time plots are
consistentwith the analytically obtainedwave speeds. The numer-
ical simulations were implemented using a direct Euler scheme
and the trapezoid rule.
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Fig. 5. Motion dependent wave speed. (A) Space–time plot of traveling fronts with positive wave speed (left) and negative wave speed (right) with x0 = 3, obtained by
numerically solving the full model given by Eqs. (2.1) and (2.2). Note that U−(x, t) has been reflected about the x = 0 axis for visual comparison against U+(x, t). (B) Plot of
analytically obtained positive and negative wave speeds against x0 . Same parameter values were used as in Fig. 4.
5.2. Asymmetry in inhibition

We now analyze the dependence of wave speed on stimulus
motion when we impose the asymmetry in the inhibitory weight
function. Again, using the adiabatic approximation for the depres-
sion variables we can rewrite Eqs. (2.1) and (2.2) as

∂u(x, t)
∂t

= −u(x, t)+ Iu

+Qu


∞

−∞

we(x − x′)f (u(x′, t))dx′

−Qv


∞

−∞

wi+(x − x′)f (v(x′, t))dx′, (5.12a)

∂v(x, t)
∂t

= −v(x, t)+ Iv

+Qv


∞

−∞

we(x − x′)f (v(x′, t))dx′

−Qu


∞

−∞

wi−(x − x′)f (u(x′, t))dx′. (5.12b)

In contrast to the previous analysis, we(x) is a symmetric function
whilewi±(x) = wi(x∓ x0) is asymmetric, andwe(x) andwi(x) sat-
isfy properties (i)–(iii) in Section 2. Without presenting the equa-
tions for the wave profiles we just look at the threshold conditions

κ = QuWe(0)− QvWi−(ξ0)

−


∞

0
e−

ξ
c+ [Quwe(ξ)+ Qvwi+(ξ − ξ0)] dξ

≡ F+

1 (c+, x0, ξ0), (5.13a)

κ = QvWe(0)− QuWi−(ξ0)

+


∞

0
e−

ξ
c+ [Qvwe(ξ)+ Quwi−(ξ + ξ0)] dξ

≡ F+

2 (c+, x0, ξ0). (5.13b)

Since

Wi−(ξ0) =


∞

ξ0

wi−(x) =


∞

0
wi−(x + ξ0) (5.14)

and

wi±(x ∓ ξ0) = wi(x ∓ ξ0 ∓ x0), (5.15)

it follows that

∂F+

1

∂x0
=
∂F+

1

∂ξ0
,

∂F+

2

∂x0
=
∂F+

2

∂ξ0
.

Therefore, from Eq. (5.1),

dc+
dx0

=

∂F+

1
∂ξ0

∂F+

2
∂x0

−
∂F+

2
∂ξ0

∂F+

1
∂x0

∂F+

1
∂c+

∂F+

2
∂ξ0

−
∂F+

2
∂c+

∂F+

1
∂ξ0

= 0, (5.16)

and thus the wave speed does not depend on stimulus motion. A
similar argument holds for negative wave speeds.

6. Discussion

In this paper we explored direction selectivity in the context
of binocular rivalry waves and analyzed the dependence of wave
speed on stimulus motion. We used a continuum neural field
model of competitive networks that has been used extensively in
neural field literature to explain wave-like propagation in neural
media [31]. We incorporated direction selectivity by imposing an
asymmetry in the recurrent excitatory weight function involving
a shift x0 that depends on the speed of the stimulus; this was mo-
tivated by models of direction selectivity in cortical neurons. We
showed that the speed of waves traveling in the direction of the
stimulus increased as the stimulus speed increased. Additionally
we found that, for a range of stimulus speeds, the speed of waves
traveling against the stimulus decreased as the stimulus speed
increased. Moreover, we showed that waves moving in the direc-
tion of the stimulus travel faster than waves in the opposite direc-
tion, consistent with the experimental and computational study
of Knapen et al. [13]. It is important to note, however, that there
are several major differences between our neural field model and
the computational model of Knapen et al. [13]. First, the latter
authors used spike frequency adaptation rather than synaptic de-
pression as the slow negative feedback mechanism. Second, in-
stead of including an asymmetric shift in the recurrent excitatory
connections, they took the rate of spatial decay of the inhibitory
weights to be asymmetric. Interestingly, we have shown analyti-
cally that, in the case of synaptic depression, an asymmetric shift
in cross-inhibition does not generate differences in propagating
and counter-propagating wave speeds. On the other hand, numer-
ical simulations of our model (not shown) confirm that differences
in wave speeds consistent with psychophysical experiments do
occur when a spatial decay asymmetry is incorporated into the ex-
citatory connections, but not when they are included in the cross-
inhibition. Comparison with the computational model of Knapen
et al. [13] thus suggests that the type of spatial symmetry breaking
mechanism is sensitive to the form of slow adaptation.
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However, certain caution must be exercised whenmaking such
a comparison, sincewe consider a 1D neural field, whereas Knapen
et al. consider a ring network. From a mathematical perspective, a
traveling wave only strictly exists in the former case, whereas on
a ring or a finite interval a front-like solution is transient. It is not
clear from the computational study of Knapen et al. whether or not
there is sufficient time for front-like solutions to develop. Thus our
mathematical analysis cannot be applied directly to theirmodel on
a ring. Nevertheless, one can view front solutions on an unbounded
domain to be relevant to a bounded physical domain, under the
assumption that the size of the domain is sufficiently large for
a front-like solution to form. Therefore, it should be possible to
extend the analytical methods presented in this paper to explore
different combinations of weight asymmetries and adaptation
processes in a more systematic fashion.

Another possible extension of our work would be to consider
a more realistic two-dimensional network topology that can deal
with more complex stimuli such as moving annuli. Instead of con-
sidering one line of neurons for each eye, we would introduce a
circle of neurons for each point in the visual field — this would al-
lowus to take orientation information into account using an exten-
sion of the coupled ring model [39,40]. We could then investigate
the experimental observation that the speed of binocular rivalry
waves also depends on the orientation of the patterns within the
left and right eye annuli [5].
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