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We consider a stochastic version of an excitable system based on the Morris-Lecar model of a neuron,

in which the noise originates from stochastic sodium and potassium ion channels opening and closing.

One can analyze neural excitability in the deterministic model by using a separation of time scales

involving a fast voltage variable and a slow recovery variable, which represents the fraction of open

potassium channels. In the stochastic setting, spontaneous excitation is initiated by ion channel noise.

If the recovery variable is constant during initiation, the spontaneous activity rate can be calculated using

Kramer’s rate theory. The validity of this assumption in the stochastic model is examined using a

systematic perturbation analysis. We find that, in most physically relevant cases, this assumption breaks

down, requiring an alternative to Kramer’s theory for excitable systems with one deterministic fixed point.

We also show that an exit time problem can be formulated in an excitable system by considering

maximum likelihood trajectories of the stochastic process.

DOI: 10.1103/PhysRevLett.111.128101 PACS numbers: 87.16.Vy, 05.40.�a, 87.10.Mn, 87.19.L�

Any understanding of brain function must include the
role of noise. Neural networks possess the ability to per-
form complex computations—taking advantage of noise
when possible, while still performing reliably. Broadly
speaking, a given neuron within a network receives input
from two main sources of noise: extrinsic background
synaptic activity and intrinsic noise due to thermal fluctua-
tions affecting cellular physiology.

One source of intrinsic noise is ion channel fluctuations
[1]. Sodium (Naþ) and potassium (Kþ) ion channels ran-
domly shift between open and closed conformations due to
the effects of thermal fluctuations, and the rate at which
channels switch state depends on the membrane voltage.
The voltage dependent activity of ion channels gives rise to
membrane excitability.

Once the voltage crosses a certain threshold, a transient
spike in voltage, called an action potential, is initiated. Ion
channel noise can lead to spontaneous action potentials
(SAPs), which can have a large effect on network function.
If SAPs are too frequent, a neuron cannot reliably perform
its computational role. Hence, ion channel noise imposes a
fundamental limit on the density of neural tissue. Smaller
neurons must function with fewer ion channels, making ion
channel fluctuations more significant and more likely to
cause a SAP. The effect of spontaneous activity on the
reliability of a neuron can be quantified using information
theory [2], but the relationship between ion channel noise
and spontaneous activity remains unresolved. Ultimately,
the goal is to understand the relationship between single
channel dynamics, channel density, and the spontaneous
activity rate. Separately, these are experimentally acces-
sible quantities, but channel conductances are not experi-
mentally observable, and the dynamics of the full system
must be inferred by observing the voltage. From a

theoretical perspective, the challenge is to formulate an
exit time problem for a nonlinear system with only one
deterministic fixed point.
Deterministic single neuron models, such as the

Hodgkin-Huxley model, are useful tools for understanding
membrane excitability [3]. These models assume a large
population of ion channels so that their effect on membrane
conductance can be averaged. As a result, the average
fraction of open ion channels modulates the effective
ion conductance, which in turn depends on voltage.
The Morris-Lecar (ML) model can be understood as a
simplified version of the Hodgkin-Huxley model in which
the fraction of open sodium channels is assumed to be in
the quasisteady state so that there are two dynamical
variables: the voltage v and the fraction w of open Kþ
channels. The deterministic ML equation is

Cm _v ¼ x1ðvÞfNaðvÞ þ wfKðvÞ þ flðvÞ þ Iapp;

_w ¼ ½w1ðvÞ � w�=�wðvÞ;
(1)

where fiðvÞ ¼ giðvi � vÞ determine the ionic currents and
x1ðvÞ ¼ f1þ tanh½2ð�Navþ �NaÞ�g=2 is the fraction of
openNaþ channels. The steady state forw isw1ðvÞ ¼ f1þ
tanh½2ð�Kvþ �KÞ�g=2, and the time constant �wðvÞ ¼
2�K coshð�Kvþ �KÞ is generally assumed to be large so
that the w dynamics are slow compared to v. We non-
dimensionalize voltage so that v! ðvþ veffÞ=veff , where
veff ¼ jgK’vK þ glvlj=jgK’þ glj (see Supplemental
Material [4] for parameter values.)
In the MLmodel of a neuron [5], there is no well-defined

threshold for initiation of a SAP, but an effective threshold
can be derived using a fast-slow analysis or separation of
time scales [3]. The Kþ channels open and close slowly
compared to Naþ channels, and the voltage response to
changes in the fraction of open Naþ channels is so fast that
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the fraction of open Kþ channels, w, remains relatively
constant. The full system has only one fixed point (see
Fig. 1), but if w is constant, the voltage equation is bistable
with three fixed points: the stable resting potential, an
unstable voltage threshold, and the stable excited state. In
Fig. 1(a), the phase plane dynamics of the system is shown
along with alternating fast-slow segments of the action
potential. To initiate a SAP, noise must drive the voltage
from the resting potential to a deterministic action potential
trajectory.

In the stochastic setting, fixing w to be constant during
initiation reduces the problem to exit from a potential well,
and Kramer’s theory provides an estimate for the sponta-
neous firing rate [6,7]. However, it is not clear if the fast-
slow analysis is valid in a stochastic setting. If w is not
constant then an exit time problem must be constructed
for the full system, where Kramer’s theory does not apply.
Therefore, we are immediately faced with a dilemma if we
hope to reduce the problem to an exit from a potential well.
How does one formulate an exit time problem in an excit-
able system with no clearly defined threshold? In certain
limiting cases one can extrapolate a threshold called a
ghost separatrix [8], but a more broadly applicable defini-
tion has not yet been developed.

In this Letter, we introduce a systematic perturbation
analysis which shows that (i) w is most likely not constant

during initiation of a SAP and (ii) there is a well-defined
threshold for action potential initiation, allowing for the
formulation of an exit time problem in an excitable system.
Initiation of a SAP can occur through two different

mechanisms. Assume that at the resting potential, the num-
ber of open Naþ and Kþ channels is set to their average
value. To study SAP initiation, one might first add Naþ
channel noise, but keep the slowKþ channels fixed as in the
deterministic analysis. Voltage fluctuations caused by sto-
chastic Naþ can drive the system from the resting potential
over the threshold, initiating a SAP. The stochastic initia-
tion of a SAP then reduces to a familiar problem: exit from a
potential well [7]. Fixing w constant is valid for the deter-
ministic analysis, but even if averageKþ channel activity is
slow, how doKþ channel fluctuations affect SAP initiation?
Fluctuations in the number of openKþ channels implies the
possibility that several channels close simultaneously,
decreasing w and thereby causing v to rise. Decreasing w
also reduces the voltage threshold (see Fig. 1). Indeed,
Monte-Carlo simulations of the ML neuron [Fig. 1(b)]
show that SAP can be generated byKþ channel noise alone,
without Naþ channel noise. Noise induced excitability has
been studied in the FitzHugh-Nagumo model with white
noise in the slow variable [9]. Hence, for fast-slow systems,
there are two limiting cases: noise applied only to the fast
variable [7] or only to the slow variable [9]. In this Letter,
noise in both variables is considered.
Past efforts to understand the relationship between SAP

and ion channel noise focus on a Langevin (or diffusion)
approximation. As a first approximation, one can add white
noise to a given deterministic equation, such as the ML
model (1). A better approach is to systematically derive a
Langevin approximation from a more detailed model of
ion channel fluctuations [6]. However, as recently shown
in [7], Langevin approximations break down when consid-
ering metastable dynamics such as initiation of a SAP.
Moreover, both studies assume that w is constant during
SAP initiation.
A stochastic version of the ML model is formulated as

follows. The voltage equation with n ¼ 0; 1; . . . ; N open
Naþ channels and m ¼ 0; 1; . . . ;M open Kþ channels is

_v¼ Iðv;m;nÞ� n

N
fNaðvÞþm

M
fKðvÞþflðvÞþIapp: (2)

We assume that each channel is either open or closed and
switches between each state according to

O! 
�iaiðvÞ

�ibiðvÞ
C; i ¼ Na; K; (3)

where the transition rates are aNaðvÞ¼e4ð�Navþ�NaÞ, bNa¼1,
aKðvÞ ¼ e�Kvþ�K , and bKðvÞ ¼ e��Kv��K . We assume
that the Naþ channels open and close rapidly, so that
1=�Na � �m, where �m ¼ Cm=gL is the membrane time
constant. Takingm and n in (2) to be stochastic birth-death
processes, we obtain a stochastic hybrid process, formu-
lated in terms of its probability density, which satisfies the
Chapman-Kolmogorov equation [10],

(a)

(b)

FIG. 1 (color online). (a) Deterministic phase plane dynamics.
Nullclines: _v ¼ 0 (gray) and _w ¼ 0 (black). Black streamlines
represent deterministic trajectories. Thick (green and blue) curves
represent an action potential in the limit of slow w. The thick
orange curve with question marks represents the central question
of this Letter.What trajectory does a SAPmost likely followduring
initiation, and is w constant on that path? (b) Stochastic trajecto-
ries. StochasticKþ andNaþ channels: gray (red) for vðtÞ and gray
(blue) for wðtÞ. Stochastic Kþ and deterministic Naþ: light gray
(orange) for voltage vðtÞ and light gray (light blue) for wðtÞ.
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@

@t
�ðv;m; n; tÞ ¼ � @

@v
ðI�Þ þ �KLK�þ �NaLNa�: (4)

The jump operators, LNa¼ðEþn �1Þ�þNaðnjvÞþðE�n �1Þ
��NaðnjvÞ and LK¼ðEþm�1Þ�þK ðmjvÞþðE�m�1Þ��K ðmjvÞ,
govern opening or closing of Naþ and Kþ channels,
respectively, with E�a fðaÞ ¼ fða� 1Þ, �þNaðnjvÞ ¼ n,
��NaðnjvÞ ¼ ðN � nÞaNaðvÞ, �þK ðmjvÞ ¼ maKðvÞ, and
��K ðmjvÞ ¼ ðM�mÞbKðvÞ.

The deterministic system (1) is recovered in the limit
�Na ! 1, M ! 1. After setting w ¼ m=M, the limit
yields x1ðvÞ ¼ aNaðvÞ=½1þ aNaðvÞ� and w1ðvÞ ¼
aKðvÞ=½bKðvÞ þ aKðvÞ�, which is consistent with Eq. (1) [7].

A perturbation framework has been developed to study
metastable activity in similar models [7,11,12]. Similar
methods have also been applied to excitable systems per-
turbed by white noise [8]. (For more background, see
Refs. [13–17].) The model has two large parameters, and
in order to obtain a single small parameter to carry out a
systematic perturbation expansion, we define �� 1 such
that ��1Na ¼ �m� and M�1 ¼ �M�, with �M ¼ Oð1Þ. Of
course, N could also be a large parameter, but taking the
limitN ! 1,M ! 1 yields a different deterministic limit
than (1) (requiring an additional equation for the Naþ
conductance [7]). We emphasize that our approximation
is valid for any choice of N > 0.

We use a WKB perturbation method to obtain a uni-
formly accurate approximation of the stationary density
[16], which also tells us what path a stochastic trajectory is
most likely to follow during a metastable transition (i.e., a
path of maximum likelihood [14,18]). First, we assume
that the stationary solution has the form

�̂ðv;w; nÞ ¼ rðnjv;wÞ exp½��ðv;wÞ=��; (5)

where �ðv;wÞ is referred to as the quasipotential and
rðnjv;wÞ is the conditional distribution for n given v, w.
In the classic problem of exit in a double well potential, �
is the double well potential. More broadly, � is a measure
of how unlikely it is for a stochastic trajectory to reach
a point in phase space. After substituting (5) into (4)
(with @�=@t ¼ 0) and collecting terms in �, we find at
leading order

½��1m LNa þ pv þ hðv;w; pwÞ�rðnjv;wÞ ¼ 0; (6)

where pv ¼ @�=@v, pw ¼ @�=@w, and hðv;w; pwÞ ¼
�K=�M

P
j¼�ðe�j�Mpw � 1Þ��K ðMwjvÞ=M.

In order to solve (6) for � and r, we first take r to be of
the form rðnjv;wÞ ¼ An=½n!ðN � nÞ!�. The constant A
is determined by substituting r into (6) to obtain a con-
sistency expression with two terms: one linear in n
and one independent of n. From the former we obtain
A ¼ aNaðvÞ � ð�m=NÞ½pvgðv;wÞ þ hðv;w; pwÞ�, where
gðv;wÞ ¼ wfKðvÞ þ flðvÞ þ Iapp. After substituting this

into the remaining n-independent term, we obtain the
nonlinear scalar partial differential equation for �,
H ðv;w; @�=@v; @�=@wÞ ¼ 0, where

H ðv;w; pw; pvÞ ¼ ðx1fNa þ gÞpv þ hðv;w; pwÞ
� �m

N
ð1� x1Þ½ð2gþ fNaÞpvh

þ ðfNa þ gÞgp2
v þ h2�; (7)

which can be solved using the method of characteristics
[16]. Characteristics are curves ðxðtÞ;pðtÞÞ [with x ¼
ðv;wÞ and p ¼ ðpv; pwÞ ¼ rx�] that satisfy the following
dynamical system:

_x ¼ rpH ðx;pÞ; _p ¼ �rxH ðx;pÞ: (8)

Note that the deterministic system (1) is recovered by
setting p ¼ 0. Characteristic projections, xðtÞ, referred to
as metastable trajectories, are paths of maximum likeli-
hood leading away from the fixed point [14,18]. The

action, �ðtÞ, satisfying _�ðtÞ ¼ pðtÞ � _xðtÞ, is a strictly
increasing function of t, and the quasipotential is given
by �ðv;wÞ ¼ �ðtÞ at the point ðv;wÞ ¼ xðtÞ. Note that
_� ¼ 0 along deterministic trajectories. We solve (7) using
numerical ordinary differential equation integration [12].
A comparison of the WKB approximation to Monte Carlo
simulations can be found in the Supplemental Material [4].
Surrounding the stable fixed point, � takes the shape of

a potential well (Fig. 2), with convex level curves (gray
lines). Once � reaches a threshold, a caustic is formed as
the solution surface folds over on itself. Metastable trajec-
tories begin to overlap, and the solution �ðv;wÞ loses
uniqueness (left inset Fig. 2). Within this region, unique-
ness is achieved at each point by minimizing the action
over all metastable trajectories that pass through that point.

C

VN

WN
S

S

BN

BN

CP

CP

FIG. 2 (color online). Thin orange curves are SAP trajectories,
shown until they reach the metastable separatrix (S). The dashed
red curve is a SAP that reaches S near the bottleneck (BN). All of
the SAP trajectories that enter the shaded region are visually
indistinguishable from the dashed red line before crossing S.
Deterministic trajectories are shown as black streamlines. Left
inset: close up of the caustic formation point (CP) with over-
lapping metastable trajectories. Level curves of � are shown
inside the potential well region with gray lines. Also shown are
the caustic (C), v nullcline (VN), and w nullcline (WN).
Parameter values are N ¼ M ¼ 40 and �M ¼ 0:25.
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The caustic is a line along which every point is connected
to two equally likely metastable trajectories; it forms an
incomplete boundary around part of the potential well. The
remaining boundary is the curve of constant �ðv;wÞ ¼
�c, where �c � 1:034 is the quasipotential at the caustic
formation point (dashed line Fig. 2). We refer to this curve
as the metastable separatrix.

We identify SAP trajectories as those metastable trajec-
tories that cross the separatrix. SAP trajectories begin at
the fixed point as a single trajectory and then fan out just
before reaching the metastable separatrix (Fig. 2). After
crossing the separatrix, all of the SAP trajectories even-
tually reach the caustic. Although all SAPs are equally
likely to reach the separatrix, their likelihood of reaching
the caustic depends on their amplitude. Large amplitude
SAPs are less likely and reach the caustic far from the
caustic formation point. Strictly speaking, the most
probable SAP strikes the caustic formation point, but �
increases by a very small amount in the shaded region of
Fig. 2 because SAP trajectories are very close to determi-
nistic trajectories (thin black streamlines). (The relative
difference is j��j=�c � 0:01.) Hence, the stationary den-
sity (5) is nearly constant in the shaded region.

SAPs that cover the shaded region cross a very small
segment of the separatrix, the center of which acts as a
bottleneck for SAPs. The shaded region represents the
most likely, experimentally observable SAP trajectories;
it excludes small amplitude SAPs that (crossing above the
bottleneck) strike very close to the caustic formation point
and the less probable SAPs that (crossing below the bottle-
neck) strike the caustic above or behind the potential well
region. The portion of the SAP trajectory between the fixed
point and the bottleneck (see Fig. 2 dashed curve) repre-
sents the initiation phase; it is not constant and remains
below the v nullcline.

We have two limiting cases (see Fig. 3): (a) N ! 1 and
(b)M ! 1. In both casesH is simplified, but (7) remains
four dimensional. Suppose we also assume �K � ��1m .
Then, for case (a), we set x1ðv̂ÞfNaðv̂Þ¼�gðw;v̂Þ,
pv¼0 and H reduces to h½v̂ðwÞ; w; pw� ¼ 0, for which
pw ¼ ��1M lnð�þK=��K Þ is a solution. This solution general-
izes the result in Ref. [9] to channel noise. For case (b),
we recover the problem solved in Ref. [7]. Figure 3 shows
the SAP during the initial phase for case (a), (b), and
N ¼ M ¼ 40.

To summarize our results, we find that fluctuations in the
slow recovery dynamics of Kþ channels significantly
affect spontaneous activity in the ML model. The maxi-
mum likelihood trajectory during initiation of a SAP can be
thought of as a path of least resistance, dropping below the
voltage nullcline where voltage increases deterministically.
Hence, SAP initiation is more likely to occur using the
second of the two mechanisms mentioned in the introduc-
tion: a burst of simultaneously closing Kþ channels causes
v to increase. If one takes w to be constant, only the first
mechanism is available and the path is artificially

constrained, which alters the quasipotential. In other
words, constraining the path alters the effective energy
barrier for SAP initiation, which significantly affects deter-
mination of the spontaneous firing rate. Although it is
more difficult to construct an exit time problem in an
excitable system, this can now be done using the meta-
stable separatrix. The methods used here are general and
may lead to future studies of noise-induced dynamics in
other nonlinear stochastic systems. In particular, it would
be interesting to extend the current analysis to the
Hodgkin-Huxley model, where the Naþ channels have a
slow inactivating component.
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s u p p l e m e n t a r y m a t e r i a l

J a y M . N e w b y , 1 , ∗ P a u l C . B r e s s l o ff , 2 a n d J a m e s P . K e e n e r 2

1 M a t h e m a t i c a l B i o s c i e n c e I n s t i t u t e , O h i o S t a t e U n i v e r s i t y , 1 7 3 5 N e i l A v e . C o l u m b u s , O H 4 3 2 1 0
2 D e p a r t m e n t o f M a t h e m a t i c s , U n i v e r s i t y o f U t a h , 1 5 5 S o u t h 1 4 0 0 E a s t , S a l t L a k e C i t y U T 8 4 1 1 2

M O N T E - C A R L O S I M U L A T I O N S

I n t h i s s u p p l e m e n t a r y m a t e r i a l , w e d i s c u s s v e r i fi c a t i o n

o f o u r a n a l y t i c a l / n u m e r i c a l r e s u l t s b y c o m p a r i n g t h e m

t o M o n t e - C a r l o s i m u l a t i o n s . P a r a m e t e r v a l u e s u s e d h e r e

a n d i n t h e m a i n a r t i c l e a r e l i s t e d i n [ 1 ] . M o t i v a t e d b y

R e f . [ 2 ] , w e p e r f o r m M o n t e - C a r l o s i m u l a t i o n s ( f o r d e t a i l s

a b o u t t h e a l g o r i t h m , s e e t h e n e x t s e c t i o n ) t o o b t a i n

t r a j e c t o r i e s t h a t s t a r t a t t h e fi x e d p o i n t a n d e v e n t u a l l y

r e a c h t h e l i n e v = 0 . 6 ( t h e r i g h t e d g e o f e a c h p a n e i n

F i g . S . 1 ) . F r o m t h e e n s a m b l e o f t h e s e t r a j e c t o r i e s , w e

d e t e r m i n e t h e s t a t i s t i c s o f t h e p o s i t i o n o f t r a j e c t o r i e s

a s a f u n c t i o n o f t i m e p r e c e d i n g a r r i v a l a t v = 0 . 6 . W e

t h e n s e t t h e t i m e a t w h i c h e a c h t r a j e c t o r y e n d s ( i . e . ,

t h e t i m e a t w h i c h t h e y r e a c h v = 0 . 6 ) t o t = 0 a n d l o o k

b a c k w a r d i n t i m e i n o r d e r t o o b s e r v e t h e b e h a v i o r o f

t h e p r o c e s s d u r i n g t h e i n i t i a t i o n p h a s e o f a s p o n t a n e o u s

a c t i o n p o t e n t i a l . T r a j e c t o r i e s a r e s a m p l e d t o o b t a i n

h i s t o g r a m s o f t h e p a t h h i s t o r y d e fi n e d a s

Q ( v , w , t ) d v / M ≡ P r [ v ( t ) ∈ ( v , v + d v ) , w ( t ) = w | v ( t
f

) = v

f

, v ( t 0 ) = v 0 , w ( t 0 ) = w 0 ] , t 0 < t < t

f

, v < v

f

. ( S . 1 )

E a c h p a n e i n F i g . S . 1 i s t h e h i s t o g r a m o f Q f r o m 1 × 1 0

3

t r i a l s a t d i ff e r e n t p o i n t s i n t i m e , w i t h v

f

= 0 . 6 , t
f

= 0 ,

a n d ( e ff e c t i v e l y ) t 0 = − ∞ ( t r a j e c t o r i e s t a k e a l o n g t i m e

t o r e a c h v

f

) . F o r e x a m p l e , t h e fi r s t p a n e i s t h e h i s t o g r a m

o f t r a j e c t o r i e s a t t = − 2 7 . 6 m s b e f o r e r e a c h i n g v = 0 . 6 .

T h e m a x i m u m l i k e l i h o o d t r a j e c t o r y i s b y d e fi n i t i o n t h e

p e a k o f t h e h i s t o g r a m a s a f u n c t i o n o f t i m e , a n d i t i s

e v i d e n t f r o m F i g . S . 1 t h a t i t c o i n c i d e s w i t h t h e c h a r a c -

t e r i s t i c p r o j e c t i o n ( s h o w n i n o r a n g e ) .

F i g . 3 i n t h e m a i n t e x t s h o w s a h e a t m a p o f t h e h i s -

t o g r a m o f t h e c o n d i t i o n a l p r o b a b i l i t y

P r [ w ( t ) = w | v = v

m

( t ) ] =

Q ( w , v

m

, t )



M

m = 0 Q ( m / M , v

m

, t )

, ( S . 2 )

w h i c h s h o w s t h e d i s t r i b u t i o n o f w c o n d i t i o n e d o n v =

v

m

( t ) ≡ a r g m a x

v

Q ( w , v , t ) . H e n c e , t h e m o d e ( a r g m a x

o f t h e h i s t o g r a m ) o f t h e c o n d i t i o n a l p r o b a b i l i t y s h o w n i n

F i g . 2 f o r e a c h fi x e d v a l u e o f v c o r r e s p o n d s t o t h e t i m e

d e p e n d e n t m o d e o f t h e p r o b a b i l i t y d e n s i t y Q s h o w i n

F i g . S . 1 .

T h e W K B m e t h o d p r e s e n t e d i n t h e a r t i c l e p r o v i d e s

a n a p p r o x i m a t i o n o f t h e s t a t i o n a r y p r o b a b i l i t y d e n s i t y

f u n c t i o n ( 5 ) . I n F i g . S . 2 , w e c o m p a r e t h i s a p p r o x i m a t i o n

t o h i s t o g r a m s o b t a i n e d b y M o n t e - C a r l o s i m u l a t i o n s f o r

t h r e e d i ff e r e n t l i m i t i n g c a s e s : ( a ) N → ∞ , ( b ) M →
∞ , a n d ( c ) M = N = 5 0 . H e n c e , t h e q u a s i p o t e n t i a l

f r o m t h e W K B a p p r o x i m a t i o n i s r e l a t e d t o t h e s t a t i o n a r y

p r o b a b i l i t y d e n s i t y b y Φ ( v , w ) ∼ − � l o g ( ˆρ ( v , w ) ) . L e v e l

c u r v e s o f Φ ( w h i t e c u r v e s ) f r o m t h e W K B a p p r o x i m a t i o n

s h o w t h a t Φ / � a n d − l o g ( ˆρ ) ( s h o w n a s h e a t m a p s ) a r e i n

c l o s e a g r e m e n t .

M O N T E - C A R L O S I M U L A T I O N A L G O R I T H M

M o n t e - C a r l o s i m u l a t i o n s a r e g e n e r a t e d u s i n g a n e x t e n -

s i o n o f t h e a l g o r i t h m p r e s e n t e d i n [ 3 ] . I n s t e a d o f u s i n g

t h e G i l l e s p i e a l g o r i t h m a s i n [ 3 ] , w e u s e t h e n e x t r e a c t i o n

m e t h o d a l o n g t h e l i n e s o f [ 4 ] . T h e a l g o r i t h m i s e x a c t i n

t h e s e n s e t h a t t h e t r a n s i t i o n t i m e s c a n b e a p p r o x i m a t e d

t o a n y d e s i r e d p r e c i s i o n . T h e s i m u l a t i o n s w e r e c o d e d i n

C ( u s i n g t h e G N U S c i e n t i fi c L i b r a r y f o r r a n d o m n u m b e r

g e n e r a t o r s ) a n d c a r r i e d o u t i n P y t h o n , u s i n g t h e S c i P y

p a c k a g e . I n b e t w e e n e a c h j u m p i n t h e n u m b e r o f o p e n

c h a n n e l s , t h e v o l t a g e i s e v o l v e d a c c o r d i n g t o t h e d e t e r -

m i n i s t i c d y n a m i c s

˙v =

n

N

f N a ( v ) +
m

M

f K ( v ) + f l e a k ( v ) + I a p p , ( S . 3 )

T h e s o l u t i o n p r o v i d e s t h e r e l a t i o n s h i p b e t w e e n v o l t a g e

a n d t i m e ,

v ( t ) =



v ( t 0 ) −
c 2

c 1



e

− c 1 ( t − t 0 )
+

c 2

c 1
, ( S . 4 )

w h e r e

c 1 =

n

N

g N a +
m

M

g K + g l e a k , ( S . 5 )

c 2 =

n

N

g N a v N a +
m

M

g K v K + g l e a k v l e a k + I a p p . ( S . 6 )

T o c o m p u t e t h e n e x t j u m p t i m e , w e c o m p u t e f o u r r a n -

d o m j u m p t i m e s f o r e a c h o f t h e f o u r p o s s i b l e t r a n s i t i o n s :

n → n ± 1 a n d m → m ± 1 . E a c h t r a n s i t i o n t i m e i s
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F I G . S . 1 . H i s t o g r a m o f M o n t e - C a r l o t r a j e c t o r i e s p r i o r t o r e a c h i n g t h e l i n e v = 0 . 6 ( t h e r i g h t e d g e o f e a c h p a n e ) . E a c h p a n e

s h o w s t h e h i s t o g r a m a t a d i ff e r e n t t i m e , w i t h t = 0 t h e t i m e a t w h i c h t h e t r a j e c t o r y r e a c h e s v = 0 . 6 . T h e o r a n g e c u r v e s h o w s

a c h a r a c t e r i s t i c p r o j e c t i o n t h a t p a s s e s t h r o u g h t h e b o t t l e n e c k . T h e d a s h e d w h i t e l i n e i s t h e m e t a s t a b l e s e p a r a t r i x . T h e w h i t e

d o t i s t h e fi x e d p o i n t . T h e s o l i d w h i t e l i n e i s t h e v - n u l l c l i n e . P a r a m e t e r v a l u e s u s e d a r e N = 4 , M = 5 0 , a n d λ M = 1 / 5 . T h e

h i s t o g r a m i s d i v i d e d i n t o b i n s ( w m , v j ) = (

m
M , − 0 . 2 + j 0 . 8

2 0 ) , m = 0 , 1 , · · · , M a n d j = 0 , 1 , · · · , 2 0 .

F I G . S . 2 . C o m p a r i s o n o f t h e W K B a p p r o x i m a t i o n o f t h e s t a t i o n a r y d e n s i t y , ˆρ ( v , w ) , t o M o n t e - C a r l o s i m u l a t i o n s . T h e s t a t i o n a r y

d e n s i t y i s r e p r e s e n t e d a s − l o g ( ˆρ ) . T h e W K B m e t h o d a p p r o x i m a t e s t h i s q u a n t i t y w i t h � ( v , w ) / � � − l o g ( ˆρ ( v , w ) ) . L e v e l c u r v e s

o f � a r e o b t a i n e d b y i n t e g r a t i o n o f ( 7 ) a n d a r e s h o w n ( w h i t e l i n e s ) a l o n g w i t h h e a t m a p s o f h i s t o g r a m s g e n e r a t e d f r o m M o n t e -

C a r l o s i m u l a t i o n s . T h r e e c a s e s a r e s h o w n : ( a ) N = 1 0 0 0 , M = 5 0 , ( b ) N = 5 0 , M = 1 0 0 0 , a n d ( c ) N = 5 0 , M = 5 0 .

W e s e t � = 0 . 1 , o t h e r p a r a m e t e r s c a n b e f o u n d i n [ 1 ] . T h e h i s t o g r a m s a r e d i v i d e d i n t o b i n s ( w m , v j ) = (

m
M , − 0 . 6 + j 2 . 6

5 0 0 ) ,

m = 0 , 1 , · · · , M a n d j = 0 , 1 , · · · , 5 0 0 . T h e v - n u l l c l i n e ( g r e y c u r v e ) a n d t h e w - n u l l c l i n e ( b l a c k c u r v e ) a r e a l s o s h o w n

d i s t r i b u t e d a c c o r d i n g t o

W

−
N a ( t ) = 1 − e

− � N a n ( t − t 0 )
, ( S . 7 )

W

+
N a ( t ) = 1 − e x p



− β N a

�

t

t 0

�

+
N a ( v ( τ ) ) d τ



, ( S . 8 )

W

±
K ( t ) = 1 − e x p



− β K

�

t

t 0

�

±
K ( v ( τ ) ) d τ



. ( S . 9 )

A f t e r i n t e g r a t i n g t h e v o l t a g e d e p e n d e n t t r a n s i t i o n r a t e s

w e o b t a i n f o r ( i = + , j = N a ) a n d ( i = ± , j = K ) ,

�

t

t 0

�

i

j

( v ( τ ) ) d τ =

1

c 1
�

i

j

(

c 2

c 1
) ( E i ( z

i

j

e

− c 1 ( t − t 0 )
) − E i ( z

i

j

) ) ,

( S . 1 0 )

w h e r e

z

+
N a = 4 γ N a



v ( t 0 ) −
c 2

c 1



, ( S . 1 1 )

z

±
K = ± γ K



v ( t 0 ) −
c 2

c 1



, ( S . 1 2 )

a n d E i i s t h e e x p o n e n t i a l i n t e g r a l f u n c t i o n d e fi n e d a s t h e

C a u c h y p r i n c i p l e v a l u e i n t e g r a l ,

E i ( x ) =

�

x

− �
t

− 1
e

t

d t , x �= 0 . ( S . 1 3 )

D e n o t e t h e j u m p t i m e s b y t

i

j

, i = ± a n d j = N a , K , a n d

l e t U b e a u n i f o r m r a n d o m v a r i a b l e . T h e j u m p t i m e s a r e

g i v e n b y t h e s o l u t i o n t o

W

i

j

( t

i

j

) = U . ( S . 1 4 )
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T h e r e i s o n e v o l t a g e i n d e p e n d e n t j u m p t i m e ,

t

−
N a = −

l o g ( U )

n β N a

. ( S . 1 5 )

B e c a u s e t h r e e o f t h e t r a n s i t i o n r a t e s d e p e n d o n v o l t a g e ,

a n d t h e r e f o r e t i m e , t h e d i s t r i b u t i o n s f o r t h e j u m p t i m e s

a r e n o t e x p l i c i t l y i n v e r t i b l e . H e n c e , t h e n e x t j u m p t i m e s

a r e g i v e n i m p l i c i t l y b y

1

c 1
�

+
N a (

c 2

c 1
) ( E i ( z

+
N a e

− c 1 ( t
+
N a − t 0 )

) − E i ( z
+
N a ) ) = − l o g ( U ) ,

1

c 1
�

±
K (

c 2

c 1
) ( E i ( z

±
K e

− c 1 ( t
±
K − t 0 )

) − E i ( z
±
K ) ) = − l o g ( U ) .

( S . 1 6 )

T o g e n e r a t e t h e v o l t a g e d e p e n d e n t j u m p t i m e s , a N e w t o n

r o o t fi n d i n g a l g o r i t h m i s a p p l i e d t o ( S . 1 6 ) w i t h a t o l e r -

a n c e o f 1 0 − 8 . O n c e a l l f o u r t r a n s i t i o n t i m e s h a v e b e e n

c o m p u t e d , t h e n e x t t r a n s i t i o n t i m e i s

t

i ∗
j ∗

= m i n

i = ± , j = N a , K
{ t i

j

} . ( S . 1 7 )

T h e g l o b a l t i m e i s u p d a t e d w i t h t ← t + t

i ∗
j ∗
. T h e s t a t e

i s u p d a t e d w i t h v ← v ( t

i ∗
j ∗
) ( w h e r e v ( t ) i s g i v e n b y ( S . 4 )

w i t h t 0 t h e t i m e o f t h e p r e v i o u s j u m p ) , n ← n + i ∗ i f

j ∗ = N a , a n d m ← m + i ∗ i f j ∗ = K .

∗ n e w b y . 2 3 @ m b i . o s u . e d u
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