Homework 5: Singularities, Residue Calculus

Singularities

1. If f is a holomorphic function defined in {|z| > R} (we think of this
set as a neighborhood of o) we say that oo is a removable or essential
singularity or a pole provided that 0 is the respective singularity for
the function g(z) = f(1). Show that

(i) A nonconstant polynomial has a pole at infinity.
(ii) If f is an entire function which is not a polynomial, then f has
an essential singularity at oo.
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Note that our standard essential singularities such as e= or sm% come

from the construction in (ii), and we also get some new examples, e.g.
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Residue Calculus.

2. Let P be a polynomial of degree > 2.

(a) Show that for any circle C' of big enough radius so that it encloses

all roots we have
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(b) Assuming all roots z1,--- , 2, of P are distinct prove (using the
Residue theorem) that
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You may want to spend a few minutes thinking about how to prove
(ii) without the Residue theorem.
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Show that
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when 7 € R~ {—1,1}.

Prove the Wallis formula
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Hint: Use the contour consisting of [0, R], [0, Re*>™/"] and the short
arc of |z| = R connecting the endpoints.

Prove that
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Hint: For the contour take the rectangle of height 7 and base [—R, R].

Prove that
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This can be done in many ways, including Fourier series, but here you
should use Residue Calculus.

Prove that
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T has residue (—1)" at z = n.
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