
Homework 5: Singularities, Residue Calculus

Singularities

1. If f is a holomorphic function defined in {|z| > R} (we think of this
set as a neighborhood of ∞) we say that ∞ is a removable or essential
singularity or a pole provided that 0 is the respective singularity for
the function g(z) = f(1z ). Show that

(i) A nonconstant polynomial has a pole at infinity.

(ii) If f is an entire function which is not a polynomial, then f has
an essential singularity at ∞.

Residue Calculus.

2. Let P be a polynomial of degree ≥ 2.

(a) Show that for any circle C of big enough radius so that it encloses
all roots we have ∫

C

dz

P (z)
= 0

(b) Assuming all roots z1, · · · , zn of P are distinct prove (using the
Residue theorem) that

n∑
j=1

1

P ′(zj)
= 0

3. Compute
1

2πi

∫
|z|=1

sin

(
1

z

)
dz

4. Show that ∫ 2π

0

dθ

1− 2r cos θ + r2
=

2π

|1− r2|
when r ∈ R∖ {−1, 1}.

5. Prove the Wallis formula

1

2π

∫ 2π

0
(2 cos θ)2mdθ =

(
2m

m

)
for m = 1, 2, · · · .
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6. Prove that ∫ ∞

0

dx

1 + xn
=

π
n

sin
(
π
n

)
for n = 2, 3, · · · .
Hint: Use the contour consisting of [0, R], [0, Re2πi/n] and the short
arc of |z| = R connecting the endpoints.

7. Prove Jordan’s lemma: Let F be a continuous function defined in
{z ∈ C | |z| ≥ R0, Im(z) ≥ 0} satisfying F (z) → 0 when z → ∞. If
m > 0 and ΓR denotes the semicircle {z | |z| = R, Im(z) ≥ 0}, then∫

ΓR

eimzF (z) dz → 0 as R → ∞

Hint: When the dust settles you will want to show thatR
∫ π
0 e−mRsin(t)dt

is uniformly bounded as R → ∞. It is convenient to break the integral

into
∫ π/2
0 and

∫ π
π/2. E.g. on the first one argue that for some ϵ > 0

we have sin(t) ≥ ϵt on [0, π/2] and then you can calculate the integral
with ϵt in place of sin(t).

8. Prove that ∫ ∞

−∞

x3 sinx

(x2 + 1)2
dx =

π

2e

Hint: As usual, f(z) = z3eiz

(z2+1)2
.

9. Prove that ∫ ∞

0

x sinx

x4 + 1
dx =

π

2
e−1/

√
2 sin

(
1√
2

)
10. Prove that ∫ ∞

−∞

cosx

coshx
dx =

π

cosh
(
π
2

)
Hint: For the contour take the rectangle of height π and base [−R,R].

11. Prove that
∞∑
n=1

1

n4
=

π4

90

This can be done in many ways, including Fourier series, but here you
should use Residue Calculus.
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12. Prove that

1− 1

22
+

1

32
− 1

42
+

1

52
− · · · = π2
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Hint: π cscπz = π
sinπz has residue (−1)n at z = n.

13. We showed in class that if ϕ : C → C is a continuous function defined
on the circle |z| = 1 then the Cauchy formula

f(z) =
1

2πi

∫
C

ϕ(ξ)

ξ − z
dξ

defines a holomorphic function in D = {|z| < 1}.

(i) Compute f when ϕ(ξ) = ξ = 1/ξ.

(ii) Compute f when ϕ(ξ) = ξn for n ∈ Z.
(iii) Compute f when ϕ is given by its Fourier series

ϕ(ξ) =
∑
n∈Z

anξ
n

under the assumption that convergence of the series is uniform.

Hint: The answer to (iii) is to remove the negative powers. So from
this point of view holomorphic functions form a “half-dimensional”
subspace of the space of functions on the circle.

3


