2022 FALL MATH 5310 HOMEWORK 9 SOLUTIONS DUE: OCT 31ST

SANGHOON KWAK

Question 1 (Artin 4.7.1). Determine the Jordan form of the matrix $A=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1\end{array}\right]$.

Solution. Observe the characteristic polynomial of A is $p(t)=(t-1)^{3}$, so we take $B=A-I=$ $\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$ to simplify to the case when the eigenvalue is 0 . Note $B^{2}=0$, so choosing a vector like $v=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$ such that $B v=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right] \neq 0$, we get a linearly independent set $(v, B v)$. This gives us a 2×2 Jordan block of B. For the last basis, we append a vector $w=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right] \in \operatorname{ker} B$ that is not contained in $\operatorname{span}\langle v, B v\rangle$, which gives a 1×1 (zero) Jordan block.

All in all, with the basis $(v, B v, w)=\left(\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right)$, the Jordan form of B is $J_{B}=$ $\left[\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$, so the Jordan form of A is $J_{A}=J_{B}+I=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$.

Question 2 (Artin 4.7.2). Prove that $A=\left[\begin{array}{ccc}1 & 1 & 1 \\ -1 & -1 & -1 \\ 1 & 1 & 1\end{array}\right]$ is an idempotent matrix, i.e., that $A^{2}=A$, and find its Jordan form.

Solution. That $A^{2}=A$ can be checked from computation. Note that this implies that every generalized eigenvector of A for 0 is indeed an eigenvector for 0 , as $A^{n} v=A v=0$ for every $n \geq 1$ and an eigenvector v of A for 0 . From the characteristic polynomial of A being $p(t)=t^{2}(t-1)$, the Jordan form for $\lambda=0$ consists of two a 1×1 Jordan block, which is just 2×2 Jordan matrix. For $\lambda=1$, it can only have the 1×1 Jordan block, so the resulting Jordan form of A is:

$$
\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

with the basis $\left(v_{1}, v_{1}^{\prime}, v_{2}\right)$ where $\left(v_{1}, v_{1}^{\prime}\right)$ is a basis for the eigenspace of $\lambda=0$, and v_{2} is an eigenvector for $\lambda=1$.

Question 3 (Artin 4.7.3). Let V be a complex vector space of dimension 5 , and let T be a linear operator on V whose characteristic polynomial is $(t-\lambda)^{5}$. Suppose that the rank of the operator $T-\lambda I$ is 2 . What are the possible Jordan forms for T ?

Solution. Since the rank of $T-\lambda I$ is 2 , the kernel of $T-\lambda I$ has dimension 3. Hence, Jordan forms for T consist of three blocks, so there are two possible Jordan forms: $(3,1,1)$ or $(2,2,1)$:

$$
\left[\begin{array}{lllll}
\lambda & & & & \\
1 & \lambda & & & \\
& 1 & \lambda & & \\
& & & \lambda & \\
& & & & \lambda
\end{array}\right] \quad\left[\begin{array}{lllll}
\lambda & & & & \\
1 & \lambda & & & \\
& & \lambda & & \\
& & 1 & \lambda & \\
& & & & \lambda
\end{array}\right]
$$

up to permuting the Jordan blocks.
Question 4 (Artin 4.7.7). Is every complex square matrix A such that $A^{2}=A$ diagonalizable?

Solution. Yes. Say $A^{2}=A$ and J be the Jordan form of A, such that $J=P^{-1} A P$ for some P. Then $J^{2}=P^{-1} A^{2} P=P^{-1} A P=J$. Since J is a block diagonal matrix with Jordan blocks, it follows that $J_{i}^{2}=J_{i}$ for each Jordan block J_{i} of J. Decompose $J_{i}=D_{i}+N_{i}$, as a diagonal part $D_{i}=\lambda I$ and nilpotent part N_{i}. Then

$$
J_{i}^{2}=D_{i}^{2}+2 D_{i} N_{i}+N_{i}^{2}=\lambda^{2} I+2 \lambda N_{i}+N_{i}^{2}=J_{i}=\lambda I+N_{i}
$$

For the diagonal entries to be matched, we have $\lambda^{2}=\lambda$, so it follows that $\lambda=0$ or $\lambda=1$. Plugging in $\lambda=0,1$ into above equation, we have $N_{i}^{2}= \pm N_{i}$. Since N_{i} is nilpotent, this implies that $N_{i}=0$. Therefore, each Jordan block J_{i} has to have only diagonal component with $\lambda=0$ or $\lambda=1$, which implies that J is a diagonal matrix, so A is diagonalizable.

Question 5 (Artin 4.7.8). Is every complex square matrix A similar to its transpose?
Solution. Yes. Say J is the Jordan form of A and $A=P^{-1} J P$ for some P. Then $A^{t}=$ $P^{t} J^{t}\left(P^{t}\right)^{-1}$, so it suffices ot prove J^{t} is similar to J. Write $J=D+N$ as a diagonal-nilpotent decomposition. Since $J^{t}=D+N^{t}$ as D is symmetric, and we have $Q^{-1} J^{t} Q=D+Q^{-1} N^{t} Q$, it further reduces to proving N and N^{t} are similar. Reducing once more, as each nilpotent part can be decomposed as nilpotent Jordan blocks $N=N_{1} \oplus \ldots \oplus N_{k}$ and $N^{t}=N_{1}^{t} \oplus \ldots \oplus N_{k}^{t}$, it is sufficient to proving each nilpotent block N_{i} is similar to N_{i}^{t}. Say N_{i} is of $d \times d$. Then N_{i} represents a nilpotent linear operator T_{i} with the standard basis $\left(e_{1}, \ldots, e_{d}\right)$. Now observe that by changing the basis to $\left(e_{d}, \ldots, e_{1}\right), N_{i}^{t}$ represents the same linear operator T_{i}. To be precise, letting

$$
P=\left[\begin{array}{llllll}
& & & & & 1 \\
& & & & & 1 \\
& & & . & & \\
& & & . & & \\
& & 1 & & & \\
1 & & & & &
\end{array}\right]
$$

then $P^{-1} N_{i} P=N_{i}^{t}$. (Note $P^{2}=I$, so $P^{-1}=P$.) This proves N_{i} and N_{i}^{t} are similar for each Jordan block N_{i} of N, concluding the proof.

Question 6 (Bonus: Artin 4.7.4). (1) Determine all possible Jordan forms for a matrix whose characteristic polynomial is $(t+2)^{2}(t-5)^{3}$.
(2) What are the possible Jordan forms for a matrix whose characteristic polynomial is $(t+2)^{2}(t-5)^{3}$, when space of eigenvectors with eigenvalue -2 is one-dimensional, and the space of eigenvectors with eigenvalue 5 is two-dimensional?

Solution. (a) First, as the characteristic polynomial is of degree 5, the matrix should be of size 5×5. From the observation that Jordan forms are triangular, the Jordan form should contain two -2 's and three 5's in diagonal. Therefore, the possible Jordan forms are:

$$
\begin{aligned}
& {\left[\begin{array}{ccccc}
-2 & & & & \\
& -2 & & & \\
& & 5 & & \\
& & & 5 & \\
& & & & 5
\end{array}\right],\left[\begin{array}{lllll}
-2 & & & & \\
& -2 & & & \\
& & 5 & & \\
& & 1 & 5 & \\
& & & & 5
\end{array}\right],\left[\begin{array}{lllll}
-2 & & & & \\
& -2 & & & \\
& & 5 & & \\
& & 1 & 5 & \\
& & & 1 & 5
\end{array}\right],} \\
& {\left[\begin{array}{ccccc}
-2 & & & & \\
1 & -2 & & & \\
& & 5 & & \\
& & & & 5
\end{array}\right],\left[\begin{array}{ccccc}
-2 & & & & \\
1 & -2 & & & \\
& & 5 & & \\
& & 1 & 5 & \\
& & & & 5
\end{array}\right],\left[\begin{array}{llll}
-2 & & & \\
\hline 1 & -2 & & \\
& & 5 & \\
& & 1 & 5 \\
& & & 1
\end{array}\right]}
\end{aligned}
$$

up to permuting Jordan blocks.
(b) Since the eigenspace for eigenvalue -2 is one-dimensional, the Jordan block for -2 should be $\left[\begin{array}{cc}-2 & -2 \\ 1 & -2\end{array}\right]$. Also, knowing the eigenspace for 5 is two-dimensional, we can rule out $\left[\begin{array}{lll}5 & & \\ 1 & 5 & \\ & 1 & 5\end{array}\right],\left[\begin{array}{lll}5 & & \\ & 5 & \\ & & 5\end{array}\right]$ from the candidates for the Jordan block for 5. In summary, the only possible Jordan form is:

$$
\left[\begin{array}{ccccc}
-2 & & & & \\
1 & -2 & & & \\
& & 5 & & \\
& & 1 & 5 & \\
& & & & 5
\end{array}\right] \cdot \quad / /
$$

