2022 FALL MATH 5310 HOMEWORK 8 SOLUTIONS DUE: OCT 24TH

SANGHOON KWAK

Question 1 (Artin 4.4.2(a)). Let T be a linear operator on a finite-dimensional vector space V, such that T^{2} is the identity operator. Prove that for any vector v in $V, v-T v$ is either an eigenvector with eigenvalue -1 , or the zero vector. With notation as in Exercise 4.1, prove that V is the direct sum of the eigenspaces $V^{(1)}$ and $V^{(-1)}$.

Proof. To see a nonzero vector of the form $v-T v \in V^{(-1)}$, we compute

$$
T(v-T v)=T v-T^{2} v=T v-v=-(v-T v) .
$$

For $V=V^{(1)} \oplus V^{(-1)}$, by definition it suffices to show $V=V^{(1)}+V^{(-1)}$. For this, observe for any $w \in V$, we can decompose it as:

$$
w=\frac{w+T w}{2}+\frac{w-T w}{2} \in V^{(1)}+V^{(-1)} .
$$

(The decomposition foreshadows the real-imaginary decomposition $z=\frac{z+\bar{z}}{2}+\frac{z-\bar{z}}{2}$ where $V \cong \mathbb{C}$ and $T: V \rightarrow V$ is the complex conjugation $z \mapsto \bar{z}$.)

Question 2 (Artin 4.4.4). A 2×2 matrix A has an eigenvalue $v_{1}=(1,1)^{t}$ with eigenvalue 2 and also an eigenvector $v_{2}=(1,2)^{t}$ with eigenvalue 3. Determine A.

Solution. We have $A\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{l}2 \\ 2\end{array}\right]$ and $A\left[\begin{array}{l}1 \\ 2\end{array}\right]=\left[\begin{array}{l}3 \\ 6\end{array}\right]$. Combining this we obtain $A\left[\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right]=$ $\left[\begin{array}{ll}2 & 3 \\ 2 & 6\end{array}\right]$. Therefore,

$$
A=\left[\begin{array}{ll}
2 & 3 \\
2 & 6
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]^{-1}=\left[\begin{array}{ll}
2 & 3 \\
2 & 6
\end{array}\right]\left[\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 \\
-2 & 4
\end{array}\right] .
$$

Question 3 (Artin 4.5.1). Compute the characteristic polynomials p and the complex eigenvalues λ and eigenvectors v_{λ} of
(a) $\left[\begin{array}{ll}-2 & 2 \\ -2 & 3\end{array}\right]$
(b) $\left[\begin{array}{cc}1 & i \\ -i & 1\end{array}\right]$
(c) $\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$.

Solution. For characteristic polynomials, one can use Proposition 4.5.13 or more specifically Cayley-Hamilton theorem.
(a) Characteristic polynomial $p(t)=t^{2}-t-2$. Eigenvalues: $\lambda=-1,2$. Eigenvectors: $v_{-1}=\left[\begin{array}{l}2 \\ 1\end{array}\right], v_{2}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$.
(b) Characteristic polynomial $p(t)=t^{2}-2 t$. Eigenvalues: $\lambda=0,2$. Eigenvectors: $v_{0}=$ $\left[\begin{array}{c}i \\ -1\end{array}\right], v_{2}=\left[\begin{array}{l}i \\ 1\end{array}\right]$.
(c) Characteristic polynomial $p(t)=t^{2}-(2 \cos \theta) t+1$. Eigenvalues: $\lambda=e^{-i \theta}, e^{i \theta}$. Eigenvectors: $v_{e^{-i \theta}}=\left[\begin{array}{l}i \\ 1\end{array}\right], v_{e^{i \theta}}=\left[\begin{array}{c}i \\ -1\end{array}\right]$.

Question 4 (Artin 4.5.2). The characteristic polynomial of the matrix below is $t^{3}-4 t-1$.
Determine the missing entries. $\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 1 & 0 \\ 1 & x & y\end{array}\right]$.
Solution. As there is no t^{2}-term in the characteristic polynomial, the trace of the matrix is 0 . Hence, $y=-1$. Also, as the constant term is -1 , we have the determinant is $-(-1)=1$. Computing the determinant:

$$
0-(-1)+2(x-1)=2 x-1=1,
$$

so $x=1$.
Question 5 (Artin 4.5.3). What complex numbers might be eigenvalues of a linear operator T such that
(a) $T^{r}=I$,
(b) $T^{2}-5 T+6 I=0$?

Solution. Though the given relations would not determine the characteristic polynomial, we can get possible candidates of eigenvalues from the zeros of the corresponding polynomials: $t^{r}=1$ and $t^{2}-5 t+6=0$. That is, for (a) we get $t=e^{\frac{2 k \pi i}{r}}$ for $0 \leq k<r$ as possible eigenvalues of T and, for (b) $t=2,3$ are possible eigenvalues of T.

Question 6 (Artin 4.6.4). Let $A=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$. Find a matrix P such that $P^{-1} A P$ is diagonal, and find a formula for the matrix A^{30}.

Solution. The characteristic polynomial of A is $p(t)=t^{2}-4 t+3$, so the eigenvalues are 1,3 . The corresponding eigenvectors are $v_{1}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$ and $v_{3}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$. Hence, we set the new basis as $\mathcal{B}=\left\{\left[\begin{array}{c}1 \\ -1\end{array}\right],\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}$. Hence, the basis change matrix from the standard one to \mathcal{B} is: $P=\left[\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right]$, so we have

$$
P^{-1}(A P)=P^{-1}\left[\begin{array}{ll}
v_{1} & 3 v_{3}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right] .
$$

Therefore, $P^{-1} A^{30} P=\left(P^{-1} A P\right)^{30}=\left[\begin{array}{cc}1 & 0 \\ 0 & 3^{30}\end{array}\right]$, so we obtain

$$
A^{30}=P\left[\begin{array}{cc}
1 & 0 \\
0 & 3^{30}
\end{array}\right] P^{-1}=\frac{1}{2}\left[\begin{array}{ll}
3^{30}+1 & 3^{30}-1 \\
3^{30}-1 & 3^{30}+1
\end{array}\right] .
$$

Question 7 (Bonus; Artin 4.6.8). A linear operator T is nilpotent if some positive power T^{k} is zero: Prove that T is nilpotent if and only if there is a basis of V such that the matrix of T is upper triangular, with diagonal entries zero.

Proof. Let $T: V^{n} \rightarrow V^{n}$ be a linear operator. Suppose first T can be represented as an $n \times n$ upper triangular matrix U with diagonal entries zero. Say $P^{-1} T P=U$. Computing the characteristic polynomial of $U: p_{U}(t)=\operatorname{det}(t I-U)=t^{n}$, since $t I-U$ is still an upper triangular matrix with all of diagonal entries being t. Hence, we have $p_{U}(U)=U^{n}=0$, so $T^{n}=P 0 P^{-1}=0$, showing that T is nilpotent.

Conversely, suppose T is nilpotent, so $T^{k}=0$ for some positive k. We first claim that every eigenvalue of T is zero. Suppose λ is an eigenvalue of T and v is its associated eigenvector. Then $T v=\lambda v$, so $0=T^{k} v=\lambda^{k} v$, which implies that $\lambda^{k}=0$. Hence we prove $\lambda=0$.

Note that when we triangularize a matrix in Proposition 4.6.1(b), the eigenvalues of the matrix are placed in the diagonal entries of the resulting triangular matrix. Because every eigenvalue of T is zero, T can be triangularized so that all of diagonal entries are zero, which was what was wanted.

