2022 FALL MATH 5310 HOMEWORK 7 SOLUTIONS DUE: OCT 17TH

SANGHOON KWAK

Question 1 (Artin 3.5.2). Let W_{1} be the space of $n \times n$ matrices whose trace is zero. Find a subspace W_{2} so that $\mathbb{R}^{n \times n}=W_{1} \oplus W_{2}$.

Solution. One can find $W_{2}=\{k I \mid k \in \mathbb{R}\}$. Indeed, for any $A \in \mathbb{R}^{n \times n}$, we have $A=$ $(A-(\operatorname{tr} A) I)+(\operatorname{tr} A) I \in W_{1}+W_{2}$ and $W_{1} \cap W_{2}=0$.

Question 2 (Artin 4.1.4). Prove that every $m \times n$ matrix A of rank 1 has the form $A=X Y^{t}$, where X, Y are m - and n-dimensional column vectors. How uniquely determined are these vectors?

Proof. Let A be an $m \times n$ matrix of rank 1 . This means that every column of A can be spanned by a single vector, say v. Then for some $a_{1}, \ldots, a_{n} \in \mathbb{R}$, we have $A=\left[\begin{array}{llll}a_{1} v & a_{2} v & \cdots & a_{n} v\end{array}\right]=$ $v\left[\begin{array}{ccc}a_{1} & \cdots & a_{n}\end{array}\right]=X Y^{t}$. Note replacing X with $k X$ and Y with $\frac{1}{k} Y$ for $k \neq 0$ still gives $A=X Y^{t}$, so X and Y are uniquely determined upto scalar multiple.

Question 3 (Artin 4.2.1). Let A and B be 2×2 matrices. Determine the matrix of the operator $T: M \mapsto A M B$ on the space $F^{2 \times 2}$ matrices, with respect to the basis ($e_{11}, e_{12}, e_{21}, e_{22}$) of $F^{2 \times 2}$.

Solution. Answer: $\left[\begin{array}{ll}A_{11} B^{t} & A_{12} B^{t} \\ A_{21} B^{t} & A_{22} B^{t}\end{array}\right]=\left[\begin{array}{llll}A_{11} B_{11} & A_{11} B_{21} & A_{12} B_{11} & A_{12} B_{21} \\ A_{11} B_{12} & A_{11} B_{22} & A_{12} B_{12} & A_{12} B_{22} \\ A_{21} B_{11} & A_{21} B_{21} & A_{22} B_{11} & A_{22} B_{21} \\ A_{21} B_{12} & A_{21} B_{22} & A_{22} B_{12} & A_{22} B_{22}\end{array}\right]$. As an illutration, here we see how we get the first column, which records how T maps e_{11} with respect to ($e_{11}, e_{12}, e_{21}, e_{22}$). To see this, we compute:

$$
\begin{aligned}
A e_{11} B & =\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right]=\left[\begin{array}{ll}
A_{11} B_{11} & A_{11} B_{12} \\
A_{21} B_{11} & A_{21} B_{12}
\end{array}\right] \\
& =A_{11} B_{11} e_{11}+A_{11} B_{12} e_{12}+A_{21} B_{11} e_{21}+A_{21} B_{12} e_{22} .
\end{aligned}
$$

Question 4 (Artin 4.2.3). Find all real 2×2 matrices that carry the line $y=x$ to the line $y=3 x$.

Solution. This amounts to find a matrix T that carries a vector of the form $\frac{1}{k}\left[\begin{array}{l}1 \\ 1\end{array}\right]$ with $k \neq 0$ to a vector $\left[\begin{array}{l}1 \\ 3\end{array}\right]$. Namely, wrting $T=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, we have $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{l}\frac{1}{k} \\ \frac{1}{k}\end{array}\right]=\left[\begin{array}{l}1 \\ 3\end{array}\right]$. This gives $a+b=k$ and $c+d=3 k$. Hence, any matrix of the form

$$
T=\left[\begin{array}{cc}
a & k-a \\
c & 3 k-c
\end{array}\right]
$$

with $k \neq 0$ sends $y=x$ to $y=3 x$.

Question 5 (Artin 4.3.3). Let $T: V \rightarrow V$ be a linear operator on a vector space of dimension 2. Assume that T is not multiplication by a scalar. Prove that there is a vector v in V such that $(v, T(v))$ is a basis of V, and describe the matrix of T with respect to that basis.
Solution. Suppose $T\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{c}k \\ 0\end{array}\right]$ and $T\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{l}0 \\ \ell\end{array}\right]$ for some $k, \ell \in \mathbb{R}$. (Otherwise, we can take $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ or $\left[\begin{array}{l}0 \\ 1\end{array}\right]$ as our v.) As T is not a scalar multiple of the identity matrix, we have that $k \neq \ell$. Then taking $v=\left[\begin{array}{l}1 \\ 1\end{array}\right]$, we have $T v=\left[\begin{array}{l}k \\ \ell\end{array}\right]$, which is not a scalar multiple of v. Hence $v, T v$ form a basis for \mathbb{R}^{2}.

Now to find the matrix representation A of T, we note:

$$
\begin{aligned}
T(v) & =T v \\
T^{2}(v) & =a v+b T v,
\end{aligned}
$$

for some $a, b \in \mathbb{R}$ since $T^{2}(v) \in V=\langle v, T v\rangle$. Therefore, we obtain $A=\left[\begin{array}{ll}0 & a \\ 1 & b\end{array}\right]$. (In fact, using Cayley-Hamilton theorem covered later, one can identify $a=-\operatorname{det} T$ and $b=\operatorname{tr} T$.)

Question 6 (Bonus; Artin 4.M.5). Let $\varphi: F^{n} \rightarrow F^{m}$ be left multiplication by an $m \times n$ matrix A.
(a) Prove that the following are equivalent:

- A has a right inverse, a matrix B such that $A B=I$,
- φ is surjective,
- the rank of A is m.
(b) Prove that the following are equivalent:
- A has a left inverse, a matrix B such that $B A=I$,
- φ is injective,
- the rank of A is n.

Proof. (a) First assume there exist an $n \times m$ matrix B such that $A B=I$. Then such B represents a linear map $\psi: F^{m} \rightarrow F^{n}$ such that $\varphi \psi=\mathrm{Id}$. This proves that φ is surjective.

Now assume φ is surjective. Then

$$
\operatorname{rk} A=\operatorname{dim} \varphi\left(F^{n}\right)=\operatorname{dim} F^{m}=m .
$$

Finally, assume $\operatorname{rk} A=m$. By the above, this means that $\varphi\left(F^{n}\right)=F^{m}$, so φ is surjective. Hence φ has a right inverse ψ such that $\varphi \psi=\mathrm{Id}$. Now just setting B to be the matrix representation of ψ, we see B is the right inverse of A.
(b) The argument is symmetric to (a). Having left inverse of A is equivalent to having left inverse of φ, which is equivalent to φ being injective, if and only if $\operatorname{dim} \varphi\left(F^{n}\right)=n$, if and only if $\operatorname{rk} A=n$.

