
2022 FALL MATH 5310 HOMEWORK 6 SOLUTIONS
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SANGHOON KWAK

Question 1 (Artin 3.3.2). Let W ⊂ R4 be the space of solutions of the system of linear

equations AX = 0, where A =

[
2 1 2 3
1 1 3 0

]
. Find a basis for W .

Solution. Reducing the rows, we get the following system:{
x− z + 3w = 0

y + 4z − 3w = 0.

Solving each equation for x and y respectively we get the following general expression on the
vectors in W :

(x, y, z, w)t = (z − 3w,−4z + 3w, z, w)t = z(1,−4, 1, 0)t + w(−3, 3, 0, 1)t,

so 〈(1,−4, 1, 0)t, (−3, 3, 0, 1)t〉 is a basis for W . //

Question 2 (Artin 3.3.8). Prove that a set (v1, . . . , vn) of vectors in Fn is a basis if and only
if the matrix obtained by assembling the coordinate vectors of vi is invertible.

Proof. Let A be the matrix obtained by assembling the coordinate vectors of vi. Then
(v1, . . . , vn) forms a basis if and only if the row space of At is the whole space Fn, which
is equivalent to saying the system AtX = 0 has unique solution X = 0, if and only if At is
invertible, if and only if A is invertible. �

Question 3 (Artin 3.4.1). (a) Prove that the set B = ((1, 2, 0)t, (2, 1, 2)t, (3, 1, 1)t) is a basis
of R3.

(b) Find the coordinate vector of the vector v = (1, 2, 3)t with respect to this basis.
(c) Let B′ = ((0, 1, 0)t, (1, 0, 1)t, (2, 1, 0)t). Determine the basechange matrix P from B to B′.

Proof. (a) Let P1 =

1 2 3
2 1 1
0 2 1

. Reducing P t
1, we get

1 2 0
0 1 −2

3
0 0 1

 , having no zero rows.

This implies that the row space of P t
1, which is 〈B〉, is the whole space R3. This concludes

B is a basis.
(b) Note the matrix P1 above is the basischange matrix from B to the standard one. Because

what we want is the other way around, we compute P−11 = 1
7

−1 4 −1
−2 1 5
4 −2 −3

. Therefore,

v = (1, 2, 3)t with respect to B is:

P−11 v =

(
4

7
,
15

7
,−9

7

)t

.
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(c) Let P2 =

0 1 2
1 0 1
0 1 0

 be the basischange matrix from B′ to the standard matrix. Then

the basischange matrix P from B to B′ is nothing but

P = P−12 P1 =
1

2

−1 2 1
0 0 2
1 0 −1

1 2 3
2 1 1
0 2 1

 =

3
2 1 0
0 2 1
1
2 0 1

 . �

Question 4 (Artin 3.4.2). (a) Determine the basechange matrix in R2, when the old basis
is the standard basis E = (e1, e2) and the new basis is B = (e1 + e2, e1 − e2).

(b) Determine the basechange matrix in Rn, when the old basis is the standard basis E and
the new basis is B = (en, en−1, . . . , e1).

(c) Let B be the basis of R2 in which v1 = e1 and v2 is a vector of unit length making an
angle of 120◦ with v1. Determine the basechange matrix that relates E to B.

Solution. (a) P =

[
1 1
1 −1

]
is the basechange matrix from B to E, so its inverse P−1 =

1
2

[
1 1
1 −1

]
is the desired basechange matrix from E to B.

(b) Viewing e1, . . . , en as column vectors, the n × n matrix P =
[
en en−1 . . . e1

]
is the

basechange matrix from B to E. Hencee, the desired matrix is its inverse P−1, but one
can observe that P−1 = P . Hence, P is the basechange matrix from E to B.

(c) Since v2 =
(
−1

2 ,
√
3
2

)
, the basechange matrix from E to B is

[
1 −1

2

0
√
3
2

]−1
=

[
1

√
3
3

0 2
3

√
3

]
. //

Question 5 (Artin 3.4.3). Let B = (v1, . . . , vn) be a basis of a vector space V . Prove that
one can get from B to any other basis B′ by a finite sequence of steps of the following types:

(i) Replace vi by vi + avj , i 6= j, for some a in F .
(ii) Replace vi by cvi for some c 6= 0.
(iii) Interchange vi and vj .

Proof. First, note that it suffices to show one can get the standard basis E of V ∼= Fn from
any basis B using the steps (i–iii), since all of (i–iii) are reversible. Regarding v1, . . . , vn as
column vectors, we get a matrix P =

[
e1 e2 . . . en

]
, which is the basischange matrix from

B to E. Since P is invertible(Question 2), we can decompose P as a product of elementary
column matrices, each of which corresponds to one of the steps (i–iii). This concludes the
proof. �

Question 6 (Artin 3.M.2). Let A be a real n × n matrix. Prove that there is an integer N
such that A satisfies a nontrivial polynomial relation AN + cN−1A

N−1 + . . . + c1A + c0 = 0.

Proof. The idea is to regard Mn(R), the set of n×n real matrices as a n2-dimensional vector
space, and to consider the following set of n2 + 1 vectors:

S = {I, A,A2, . . . , An2} ⊂Mn(R).

Since Mn(R) is n2-dimensional, it follows that S is linearly dependent. Therefore there exist

a0, . . . , an2 ∈ R with (a0, . . . , an2) 6= (0, . . . , 0) such that
∑n2

i=0 aiA
i = 0. Say N ∈ {0, . . . , n2}

is the largest index such that aN 6= 0. Note we can further assume N > 0. Then simply
letting ci := ai/aN for i = 0, . . . , N − 1, we get

AN + cN−1A
N−1 + . . . + c1A + c0 = 0. �


