2022 FALL MATH 5310 HOMEWORK 5 SOLUTIONS DUE: SEP 26TH

SANGHOON KWAK

Question 1 (Artin 3.1.2). Find the inverse of 5 modulo p, for p = 7, 11, 13 and 17.

Solution.

 $5^{-1} \equiv 3 \mod 7$, $5^{-1} \equiv 9 \mod 11$, $5^{-1} \equiv 8 \mod 13$, $5^{-1} \equiv 7 \mod 17$. // **Question 2** (Artin 3.1.4). Consider the system of linear equations $\begin{bmatrix} 6 & -3 \\ 2 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$. (a) Solve the system in \mathbb{F}_p when p = 5, 11 and 17.

(b) Determine the number of solutions when p = 7.

Solution. (a) Note that we can get the inverse of the coefficient matrix using the formula:

$$\begin{bmatrix} 6 & -3 \\ 2 & 6 \end{bmatrix}^{-1} = ((6)(6) - (-3)(2)) \begin{bmatrix} 6 & 3 \\ -2 & 6 \end{bmatrix} = (42)^{-1} \begin{bmatrix} 6 & 3 \\ -2 & 6 \end{bmatrix},$$

where $(42)^{-1}$ is the multiplicative inverse in \mathbb{F}_p . Since all 5, 11, 17 are relatively prime to 42, the inverse exists. Therefore, the solution of the system is:

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = (42)^{-1} \begin{bmatrix} 6 & 3 \\ -2 & 6 \end{bmatrix} \begin{bmatrix} 3 \\ 1 \end{bmatrix} = (42)^{-1} \begin{bmatrix} 21 \\ 0 \end{bmatrix}$$

which is $\begin{bmatrix} 3\\0 \end{bmatrix}$ in \mathbb{F}_5 , $\begin{bmatrix} 6\\0 \end{bmatrix}$ in \mathbb{F}_{11} , and $\begin{bmatrix} 9\\0 \end{bmatrix}$ in \mathbb{F}_{17} .

(b) Note that 42 has no inverse in \mathbb{F}_7 . Indeed, the system is dependent:

$$\begin{bmatrix} 6 & -3\\ 2 & 6 \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix} = \begin{bmatrix} 3\\ 1 \end{bmatrix} \qquad \stackrel{\text{mod } 7}{\equiv} \qquad \begin{bmatrix} -1 & -3\\ 2 & 6 \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix} = \begin{bmatrix} -4\\ 8 \end{bmatrix},$$

so any pair of $(x_1, x_2) \in \mathbb{F}_7 \times \mathbb{F}_7$ satisfying $x_1 + 3x_2 = 4$ is a solution. Therefore, there are 7 solutions to this system when p = 7.

//

Question 3 (Artin 3.1.5). Determine the primes p such that the matrix

$$A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 3 & -1 \\ -2 & 0 & 2 \end{bmatrix}$$

is invertible, when its entries are considered to be in \mathbb{F}_p .

Solution. Recall a matrix is invertible if and only if its determinant is multiplicative invertible in \mathbb{F}_p . Computing the determinant of A, we get det A = 10, so A is invertible if and only if $p \neq 2, 5$.

Question 4 (Artin 3.1.6). Solve completely the systems of linear equations AX = 0 and AX = B, where

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & -1 & -1 \end{bmatrix}, \quad \text{and} \quad B = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$$

(a) in \mathbb{Q} ,

- (b) in \mathbb{F}_2 ,
- (c) in \mathbb{F}_3 ,
- (d) in \mathbb{F}_7 .

Solution. First, using the formula for matrix inverse, we get

$$A^{-1} = 3^{-1} \begin{bmatrix} 1 & 1 & 1 \\ 2 & -1 & -1 \\ -1 & 2 & -1 \end{bmatrix},$$

so we can conclude A^{-1} exists only in \mathbb{Q} , \mathbb{F}_2 , and \mathbb{F}_7 . Using this, the solutions for (a), (b), (d) are: $X = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^T$ for AX = 0, and $X = \begin{bmatrix} \frac{1}{3} & \frac{2}{3} & -\frac{4}{3} \end{bmatrix}^T$, $X = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$, and $X = \begin{bmatrix} 5 & 3 & 1 \end{bmatrix}^T$ for AX = B of (a), (b), and (d) respectively. For (c), setting the augmented matrix from the given systems AX = 0 and AX = B we

get:

[1	1	0	$\left 0\right $		[1	1	0	1
1	0	1	0	and	1	0	1	-1
1	-1	-1	0		1	-1	-1	1

respectively. Reducing those into row echelon form:

[1	1	0	0		[1	1	0	1	
0	1	-1	0	and	0	1	-1	2	
0	0	0	0		0	0	0	2	

Therefore, the solutions for AX = 0 for (c) are: (0, 0, 0), (2, 1, 1) and (1, 2, 2) but AX = Bhas no solution.

Question 5 (Artin 3.2.2). Which of the following subsets is a subspace of the vector space $F^{n \times n}$ of $n \times n$ matrices with coefficients in F?

- (a) symmetric matrices $(A = A^t)$,
- (b) invertible matrices,
- (c) upper triangular matrices.
- Solution. (a) Yes, as the zero matrix is symmetric, and the transpose operation commutes with addition and scalar multiplication.
- (b) No, as the zero matrix is not invertible.
- (c) Yes, as the zero matrix is upper triangular, and being upper triangular is closed under addition and scalar multiplication. //

Question 6 (Bonus; Artin 3.1.11). Prove that the set of symbols $\{a + bi | a, b \in \mathbb{F}_3\}$ forms a field with nine elements, if the laws of composition are made to mimic addition and multiplication of complex numbers. Will the same method work for \mathbb{F}_5 ? For \mathbb{F}_7 ? Explain.

Proof. The key idea is that every nonzero element of $C_p\{a + bi | a, b, \in \mathbb{F}_p\}$ is invertible under multiplication if and only if p does not divide $a^2 + b^2$ for every $(a, b) \in \mathbb{F}_p \times \mathbb{F}_p \setminus (0, 0)$. This is because $(a + bi)(a - bi) = a^2 + b^2$, so

$$(a+bi)^{-1} = (a^2+b^2)^{-1}(a-bi).$$

When p = 3, we have $x^2 \equiv 0, 1 \mod 3$ so 3 divides $a^2 + b^2$ if and only if both a, b are divisible by 3. This means that for every $(a, b) \neq (0, 0), a^2 + b^2$ is not divisible by 3, so the set C_3 forms a field.

When p = 5, this fails as 5 divides $1^2 + 2^2 = 5$, so in particular 1 + 2i is not invertible. When p = 7, we have $x^2 \equiv 0, 1, 2, 4 \mod 7$, so 7 divides $a^2 + b^2$ if and only if $a \equiv b \equiv 0 \mod 7$. Therefore, for every $(a, b) \neq (0, 0), a^2 + b^2$ is not divisible by 7, so the set C_7 forms a field.