2022 FALL MATH 5310 HOMEWORK 4 SOLUTIONS DUE: SEP 19TH

SANGHOON KWAK

Question 1 (Artin 2.8.6). Let $\varphi: G \rightarrow G^{\prime}$ be a group homomorphism. Suppose that $|G|=18,\left|G^{\prime}\right|=15$, and that φ is not the trivial homomorphism. What is the order of the kernel?

Solution. Let $k=|\operatorname{ker} \varphi|$. Note $\operatorname{ker} \varphi \leq G$ so $k \mid 18$. From the first isomorphism theorem, we also have $G / \operatorname{ker} \varphi \cong \varphi(G) \leq G^{\prime}$, so $\left.\frac{18}{k} \right\rvert\, 15$. Combining those, the only possible values for k are 6,18 . However, since φ is assumed to be nontrivial, $k \neq 18$ is not valid. Hence, $k=|\operatorname{ker} \varphi|=6$.

Question 2 (Artin 2.8.9). Let G be a finite group. Under what circumstances is the map $\varphi: G \rightarrow G$ defined by $\varphi(x)=x^{2}$ an automorphism of G ?

Solution. We claim that G is abelian and has odd order. First, as φ is a homomorphism we see that for every $a, b, \in G$:

$$
a^{2} b^{2}=\varphi(a) \varphi(b)=\varphi(a b)=(a b)^{2}=a b a b,
$$

which implies that $a b=b a$, so G should be abelian.
On the other hand, for φ to be injective, every element has to have odd order. Indeed, say $a \in G$ has order $2 m$ for some positive integer m. Then by definition of order, $a^{m} \neq 1$ and $a^{m} \in G$ but $\varphi\left(a^{m}\right)=a^{2 m}=1$ breaking the injetivity of φ. Hence, every element of G has odd order. This implies the order of G is odd. (Contrapositive of "Group of even order has order 2 element.")

Question 3 (Artin 2.11.4). In each of the following cases, determine whether or not G is isomorphic to the product group $H \times K$.
(a) $G=\mathbb{R}^{\times}, H=\{ \pm 1\}, K=\{$ positive real numbers $\}$.
(b) $G=$ \{invertible upper triangular 2×2 matrices $\}, H=\{$ invertible diagonal matrices $\}$, $K=\{$ upper triangular matrices with diagonal entries 1$\}$.
(c) $G=\mathbb{C}^{\times}, H=\{$ unit circle $\}, K=\{$ positive real numbers $\}$.

Solution. (a) Yes, $G \cong H \times K$. The map is $r \mapsto\left(\frac{r}{|r|},|r|\right)$.
(b) No, $G \neq H \times K$. Although the map $(D, U) \mapsto D \cdot U$ gives $G=H K$, one can check that H is not normal in G (that is, a conjugate of a diagonal matrix may not be diagonal.), so failes to be direct product.
(c) Yes, $G \cong H \times K$. The map is $x \mapsto\left(|x|, e^{i \cdot \arg (x)}\right)$ where $|x|$ is the magnitude of x and $\arg (x)$ is the argument of x.

Question 4 (Artin 2.12.2). In the general linear group $G L_{3}(\mathbb{R})$, consider the subsets

$$
H=\left[\begin{array}{ccc}
1 & * & * \\
0 & 1 & * \\
0 & 0 & 1
\end{array}\right], \quad \text { and } \quad K=\left[\begin{array}{lll}
1 & 0 & * \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

where $*$ represents an arbitrary real number. Show that H is a subgroup of $G L_{3}(\mathbb{R})$, that K is a normal subgroup of H, and identify the quotient group H / K. Determine the center of H.

Proof. Here we sketch how do we find the quotient group H / K. The key is to come up with a surjective homomorphism from H, with kernel $=K$. One natural construction of such homomorphism is:

$$
\varphi: H \longrightarrow\left(\mathbb{R}^{2},+\right), \quad\left[\begin{array}{ccc}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right] \longmapsto(a, c) \in \mathbb{R}^{2}
$$

Here $\left(\mathbb{R}^{2},+\right)$ is the group $\mathbb{R} \times \mathbb{R}$ equipped with componentwise addition. One can check that this is a surjective homomorphism. Hence, $H / K=H / \operatorname{ker} \varphi \cong \varphi(H) \cong\left(\mathbb{R}^{2},+\right)$.

To find the center of H, one can observe from computation that

$$
\left[\begin{array}{lll}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & a^{\prime} & b^{\prime} \\
0 & 1 & c^{\prime} \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & a^{\prime} & b^{\prime} \\
0 & 1 & c^{\prime} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right] \quad \text { if and only if } \quad a c^{\prime}=a^{\prime} c
$$

Hence, to commute with an arbitrary element $\left[\begin{array}{lll}1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1\end{array}\right] \in H$, it follows that $a^{\prime}=c^{\prime}=$ 0 . Therefore $K \subset Z(H)$. The other containtment $K \supset Z(H)$ can be verified by direct computation.

Question 5 (Artin 2.12.4). Let $H=\{ \pm 1, \pm i\}$ be the subgroup of $G=\mathbb{C}^{\times}$of fourth root of unity. Describe the cosets of H in G explicitly. Is G / H isomorphic to G ?

Solution. Recall $a H=b H$ if and only if $a b^{-1} \in H$. Hence we can describe the cosets of H as:

$$
a H=\{ \pm a, \pm a i\}=-a H=i a H=-i a H
$$

for $a \in G=\mathbb{C}^{\times}$.
We can realize H as the kernel of the fourth power homomorphism:

$$
\varphi: G \longrightarrow G, \quad z=r e^{i \theta} \longmapsto z^{4}=r^{4} e^{4 i \theta}
$$

where r is a positive real number and $\theta \in[0,2 \pi)$. Since $r^{4} e^{4 i \theta}$ still represents every nonzero complex number, φ is surjective. Therefore, the quotient G / H is still isomorphic to G.

Question 6 (Artin 2.M.14). Prove that the two matrices

$$
E=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right], E^{\prime}=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]
$$

generate the group $S L_{2}(\mathbb{Z})$ of all integer matrices with determinant 1.
Proof. The key is the Euclidean algorithm. Let $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in S L_{2}(\mathbb{Z})$. Since $a d-b c=1$, we have $\operatorname{gcd}(a, c)=1$. Note E and E^{\prime} each represents a row operation $R_{1} \mapsto R_{1}+R_{2}$ and $R_{2} \mapsto R_{1}+R_{2}$. Hence, using powers of E, E^{\prime} one can perform Euclidean algorithm on the
pair (a, c) to make it $(1,0)$ or $(0,1)$. After reducing (a, c) to $(1,0)$ or $(0,1)$, there are only limited choices for b, d, so the resulting matrix will be one of the forms:

$$
\left[\begin{array}{cc}
1 & m \\
0 & 1
\end{array}\right] \quad \text { or } \quad\left[\begin{array}{cc}
0 & -1 \\
1 & n
\end{array}\right]
$$

for some $m, n \in \mathbb{Z}$. Note that $\left[\begin{array}{cc}1 & m \\ 0 & 1\end{array}\right]=E^{m}$, and a matrix of the second form can be reduced to the first form by row operations:

$$
\left[\begin{array}{cc}
0 & -1 \\
1 & n
\end{array}\right] \xrightarrow{R_{1} \mapsto R_{1}+R_{2}}\left[\begin{array}{cc}
1 & n-1 \\
1 & n
\end{array}\right] \xrightarrow{R_{2} \mapsto R_{2}-R_{1}}\left[\begin{array}{cc}
1 & n-1 \\
0 & 1
\end{array}\right]
$$

which implies that $E^{\prime-1} E\left[\begin{array}{cc}0 & -1 \\ 1 & n\end{array}\right]=\left[\begin{array}{cc}1 & n-1 \\ 0 & 1\end{array}\right]$.
Therefore, any matrix in $S L_{2}(\mathbb{Z})$ can be row-reduced using E, E^{\prime} to one of the forms $\left[\begin{array}{cc}1 & m \\ 0 & 1\end{array}\right],\left[\begin{array}{cc}0 & -1 \\ 1 & n\end{array}\right]$, which can be further expressed as a product of E, E^{\prime} and their inverses. This concludes that $S L_{2}(\mathbb{Z})=\left\langle E, E^{\prime}\right\rangle$.

