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DUE: SEP 12TH

SANGHOON KWAK

Question 1 (Artin 2.5.1). Let ϕ : G → G′ be a surjective homomorphism. Prove that if G
is cyclic, then G′ is cyclic, and if G is abelian, then G′ is abelian.

Proof. Suppose G is cyclic, and let G = 〈g〉 for some g ∈ G. Then ϕ(gk) = ϕ(g)k for every
k ∈ Z, so ϕ(G) = 〈ϕ(g)〉. Because ϕ is surjective, it follows that G′ = 〈ϕ(g)〉 proving G′ is
cyclic.

Now suppose G is abelian. Pick arbitrary elements g′, h′ ∈ G′, and then there exist g, h ∈ G
such that ϕ(g) = g′ and ϕ(h) = h′ by surjectivity. Then

g′h′ = ϕ(g)ϕ(h) = ϕ(gh) = ϕ(hg) = ϕ(h)ϕ(g) = h′g′,

proving G′ is abelian. �

Question 2 (Artin 2.5.3). Let U denote the group of invertible triangular 2 × 2 matrices

A =

[
a b
0 d

]
, and let ϕ : U → R× be the map that sends A 7→ a2. Prove that ϕ is a

homomorphism, and determine its kernel and image.

Proof. Note a · a′ =
[
a b
0 d

] [
a′ b′

0′ d′

]
=

[
aa′ ab′ + bd′

0 dd′

]
, so

ϕ

([
a b
0 d

])
ϕ

([
a′ b′

0′ d′

])
= a2a′2 = ϕ

([
aa′ ab′ + bd′

0 dd′

])
,

proving ϕ is a homomorphism.

The kernel of ϕ is the set of invertible triangular matrices A =

[
a b
0 d

]
with a2 = 1, so

a = ±1. Since it is invertible, d should be nonzero. Hence,

kerϕ =

{[
±1 b
0 d

]∣∣∣∣ b, d ∈ R, and d 6= 0

}
.

For the image of ϕ, note that the entry a of A can be any nonzero real number, so a2 can
be all postiive real. Hence, ϕ(U) = R>0, the set of all positive real numbers. �
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Question 3 (Artin 2.5.6). Determine the center of GLn(R). (The homework was to prove
this when n = 2.)

Solution. When n = 2, you could prove the center is the set {kI2 | k ∈ R} where I2 is the
2× 2 matrix by computing matrix multiplication. Here we give a sketch the idea for general
n ≥ 2. Let C ∈ Z(GLn(R)) be a center element. As given in the hint, we use the fact that C
commutes with elementary matrices. Note the elementary matrices are multiplied from the
left, they give elementary row operations but multiplied from the right, they give elementary
column operations. Using this, we can narrow down the form of C in the following order:

• By commuting C with an elementary matrix of the first kind(add a multiple of one
row/column to another), one can conclude C should be a diagonal matrix, i.e. all the
off diagonal entries are zero.
• By commuting C with an elementary matrix of the third kind(multiply a row/column

by a nonzero constant), one can conclude all the diagonal entries of C should be the
same.

Therefore, we can conclude that Z(GLn(R)) ⊂ {kIn | k ∈ R\{0}} where In is the n×n identity
matrix. The converse is also true, that all the matrices of the form kIn are in the center of
GLn(R) because multiplying by kIn (from either left or right) is just a scalar multiplication
by k. This proves that the center is indeed {kIn | k ∈ R \ {0}}. //

Question 4 (Artin 2.6.1). Let G′ be the group of real matrices of the form

[
1 x

1

]
. Is the

map R+ → G′ that sends x to this matrix an isomorphism?

Proof. Yes, it is an isomorphism. Note

[
1 x

1

] [
1 y

1

]
=

[
1 x + y

1

]
, so G′ is a multiplicative

group. Hence, the map ϕ : R+ → G′ defined as ϕ(x) =

[
1 x

1

]
is a homomorphism:

ϕ(x + y) =

[
1 x + y

1

]
=

[
1 x

1

] [
1 y

1

]
= ϕ(x)ϕ(y).

Also ϕ is injective, as kerϕ = 0, where the identity element of G′ is the identity matrix

[
1 0

1

]
.

Finally, ϕ is surjective by definition of G′. This concludes that ϕ is an isomorphism. �

Question 5 (Artin 2.6.8). Prove that A 7→ (At)−1 is an automorphism of GLn(R).

Proof. First, observe that transposing and taking inverses are commutative on GLn(R). That
is, (At)−1 = (A−1)t. To see why, note for A ∈ GLn(R):

At · (A−1)t = (A−1 ·A)t = Itn = In,

where In is the n × n identity matrix. Now we claim that the map ϕ : GLn(R) defined as
ϕ(A) = (At)−1 is a homomorphism, and it has the inverse as its own, which implies that ϕ is
an automorphism.

First, note

ϕ(AB) = ((AB)t)−1 = (BtAt)−1 = (At)−1(Bt)−1 = ϕ(A)ϕ(B),

so ϕ is a homomorphism. To show ϕ−1 = ϕ, we prove ϕ ◦ ϕ = Id:

(ϕ ◦ ϕ)(A) = ϕ((At)−1) = (((At)−1)t)−1 = (((At)t)−1)−1 = A,

where we used the earlier observation that transposing and taking inverses are commuting.
All in all, ϕ is a homomorphism whose inverse, the same as ϕ, is also a homomorphism. This
concludes that ϕ is an automorphism. �
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Question 6 (Bonus question: Artin 2.6.3). Show that the functions f = 1/x and g = (x−1)/x
generate a group of functions, the law of composition being composition of functions, that is
isomorphic to the symmetric group S3.

Proof. There are multiple ways to prove this. One way to prove this is that, first observe f has
order 2 and g has order 3. Then consider a map that sends f to a transposition (1, 2) ∈ S3 and
sends g to a permutation (1, 2, 3) ∈ S3. One can check that this map is a homomorphism. It
is surjecive as (1, 2) and (1, 2, 3) generate the whole S3, and then it is automatically injective
by noting that the order of 〈f, g〉 is the same as that of S3, which is 6.

Here we sketch another idea of proof by analyzing how the group acts on a six point set
X = {13 , 3,

2
3 ,

3
2 ,−

1
2 ,−2}. Start with 3 ∈ R. After applying f and g to 3 multiple times, one

can notice that those multiplications end up six real numbers in X as in the following figure.
Note every vertex has valence four; incoming f, g and outgoing f, g.

Figure 1. Graphical representation of the group 〈f, g〉 ∼= D6
∼= S3.

Note that this diagram has the same “shape” if you replace each number with properly
labeled triangle, where the resulting diagram represents how dihedral group D6 of order 6
flips and rotates a triangle. Hence, forgetting the role of vertices and edges of each diagram,
those two diagrams are completely idential; which implies that the group structures of 〈f, g〉
and D6 are idential, so we can conclude 〈f, g〉 ∼= D6, where we know D6

∼= S3 finishing the
proof. If you want to learn more “shapes” of those groups, see e.g. the Wikipedia article of
Cayley Graph. �


